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Introduction

This thesis presents some results obtained during my PhD course Dottorato in
Tecnologie dell’Informazione, at the Universita di Parma, Dipartimento di In-
gegneria dell’Informazione, in the three years period 2009-2012. The work has
been focused on the problem of the time-optimal motion control of wheeled au-
tonomous systems, such as unicycle robots, automatic guided vehicles (AGVs),
car-like vehicles and truck and trailer (or one-trailer) systems.

The aim is to obtain a control that provides a smooth motion of the un-
manned vehicle in minimum-time. In order to do that, it is necessary to plan
a path with an appropriate geometric continuity, and two time-optimal input
signals of velocity and steering angle continuous with their derivatives. More-
over, a feedback controller must be adopted to guarantee the robustness of the
overall control scheme. Final result of the thesis can be viewed as the synthesis
of various methods for hybrid feedforward/feedback control for a wide class
of wheeled mobile robots. Figure 1 presents a conceptual scheme that sum-
marizes the idea behind the hybrid feedforward/feedback control, which is the
final result of the work done along the three years of study and research.

Path planning and velocity planning can be completely independent to each

other, on condition that:

1) the planned path has an appropriate geometric continuity and satisfies

geometric interpolating conditions at the path endpoints, and

2) the velocity is a C'-function satisfying interpolating conditions (on dis-

tance, velocity and accelerations) at the endpoints of the planned time-
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Figure 1: The overall architecture for the optimal motion control of the wheeled

vehicle.

Indeed, given a sufficiently smooth path, a dynamic inversion procedure can be
applied to determine the feedforward control inputs of the autonomous vehicle
still maintaining freedom in the planning of velocity input.

Hence, the thesis first shows some methods that permit to plan a path
and optimal input signals which lead to a minimum-time smooth motion for a
variety of automatic guided systems in nominal conditions (i.e. no noise affects
the systems). Secondly, it is shown how guarantee the tracking of the planned
trajectory by means of a feedback control, when the system is affected by
additive noise.

The very first part of the thesis (chapter 1) faces the time-optimal velocity
planning with arbitrary boundary conditions for an automatic guided vehicle.
Initially, only a constraint on the maximum value of the jerk (i.e. the veloc-
ity second derivative) is considered. The addressed minimum-time planning
problem has been recast into an input-constrained minimum-time reachability
control problem with respect to a suitable state-space system, where the con-

trol input is actually the sought jerk of the velocity planning. By virtue of the
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well-known Pontryagin’s Maximum Principle the optimal input-constrained
control is then a bang-bang function. An algebraic approach to obtain this
optimal solution has been devised and a new algorithm to compute the bang-
bang jerk profile is exposed. This problem has been reconsidered introducing
constraints also on the maximum values of the velocity and acceleration. In
this case the Pontryagin’s Maximum Principle does not ensure the existence
of the time-optimal control. Sufficient conditions, guaranteeing the existence
of a solution to the minimum-time constrained planning problem, are exposed.
The time-optimal control is not a classic bang-bang function, but it shall be a
generalized bang-bang. The problem has been faced through discretization and
the obtained solution is based on a sequence of linear programming feasibility

checks, depending on motion constraints and boundary conditions.

Chapter 2 presents two methods for the path planning of car-like and one
trailer vehicles. It is shown how plan paths with an appropriate geometric
continuity by resolving a geometric interpolation. In particular, the geometric
interpolation problem, which has infinite dimension, has been recast into a
polynomial interpolation problem (a finite dimension problem), by means of the
n-splines. The shaping of this kind of spline depends on a vector of parameters
called “eta”, and on the boundary conditions. It is then presented a multi-
optimization process to optimally choose these free parameters, with the aim
to plan trajectory that respect bounds on curvature and curvature derivative,
ensuring avoidance of the obstacles in the “real” workspace. In the case of the

car-like vehicle, applications to the autonomous parking problem are presented.

In chapter 3, the dynamic path inversion block (cf. figure 1) is outlined by
introducing a procedure that permits to obtain a minimum-time steering con-
trol input for an automatic guided vehicle (AGV). One can consider to have
just planned a path and a time-optimal velocity profile exploiting the tech-
niques introduced in the first two chapter. The optimal steering input signal
for the AGV is obtained with a dynamic inversion on the planned path, based
on some geometric properties of the path itself, and of the AGV kinematic sys-

tem. Similar procedure can be easily determined for the other vehicles, such as
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the car-like and the one-trailer.

Finally, chapter 4 proposes two methods for the trajectory tracking for au-
tonomous systems affected by additive noise. Both methods are thought for
cases where continuous-time or high-frequency revelation of the system state
or output is not possible or not economical and only low-frequency feedback
is practicable. The implemented solutions to this trajectory tracking problem,
relies on iterative replanning methods to compute a new reference trajectory,
used to generate the feedforward inverse command velocities that help in re-
ducing the tracking errors. For both techniques explicit closed-form bounds on

the tracking error are provided.



Chapter 1

Minimum-time velocity

planning

Plans are only good intentions unless

they immediately degenerate into hard work

— Peter Drucker

In the wide field of vehicles autonomous navigation, significant research
efforts have been dedicated to the problem of optimal motion planning. The
problem of motion planning for autonomous guided vehicles is a well known
and studied issue in robotics, see for example the recent books [1] and [2].
This chapter propose techniques for minimum-time velocity planning with ar-
bitrary boundary conditions, considering two different cases: one with only
constraint on the maximum absolute value of the jerk (i.e the velocity second
derivative), and one with constraints also on the maximum absolute value of
the acceleration and velocity. The minimum-time velocity planning is cast in
the context of the so-called path-velocity decomposition [3] using the iterative

steering navigation technique [4,5].

The first two sections briefly introduce the optimal control theory, with
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particular attention to the linear time-optimal problem. For more details on

this arguments see, for example, books [6, 7.

The third section presents a procedure for the synthesis of a velocity C*-
function that permits in minimum-time and with a bounded jerk to interpolate
given velocity and acceleration at the time planning interval endpoints and to
travel a given distance. The condition on the maximum jerk value permits to
obtain a smooth velocity profile [8]. The addressed minimum-time planning
problem will be recast into an input-constrained minimum-time reachability
control problem with respect to a suitable state-space system, where the control
input is actually the sought jerk of the velocity planning. By virtue of the well-
known Pontryagin’s Maximum Principle the optimal input-constrained control

is then a bang-bang function.

Finally, a solution for the constrained minimum-time velocity planning is
presented. In this case, the time-optimal solution is not a classic bang-bang
function, but it shall be a generalized bang-bang function [9]. The minimum-
time transition is obtained by discretizing the continuous-time model and for-
mulating an equivalent discrete-time optimization problem solved by means
of linear programming techniques. More precisely, boundary conditions and
problem constraints are expressed by linear inequalities on a column vector
u, representing the input signal (i.e the jerk) at sampling times. Hence, the
minimum-time planning problem is reformulated as a feasibility test for a linear
programming problem, and the minimum number of steps required to complete
the given transition can be found through a simple bisection algorithm. The use
of linear programming techniques for solving minimum-time problems for lin-
ear discrete-time systems subject to bounded inputs dates back to Zadeh [10].
Subsequently, many contributions have appeared focusing on various improve-
ments. For example a faster algorithm is proposed in [11]. For what concerns
time-optimal control for continuous-time systems, a related result, under dif-

ferent hypotheses, is presented in [12].
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1.1 Optimal control theory

Optimal control is the process of determining control and state trajectories for
a dynamic system over a period of time, in order to minimize a performance
index. The method is closely related in its origins to the theory of calculus of
variations and it is largely due to the work of Richard Bellman [13], and Lev
Pontryagin et al. [14]. Optimal control and its ramifications have found appli-
cations in many different fields, including aerospace, process control, robotics,
bioengineering, economics, and it continues to be an active research area within

control theory.

1.1.1 Problem statement and notation

Consider optimal problems defined by the constraint set C, a subset of the
tangent bundle of a smooth manifold M, and a cost function f, that is a real-
valued function having C as its domain. A trajectory of C' is an absolutely
continuous curve z(t) € M such that 2 (¢) € C for almost all ¢ in the domain

of . The total cost of x is defined as

[ (%) a.

where [0,7T] denotes the domain of z. Given any two points x¢ and xf in M,
the optimal trajectory of C is the one which connects xy to xy and whose total
cost is minimal among all such trajectories of C.

The considered sets C' admit sections of the form & = F(w(§),u1, ..., Um),
where (u1,. .., un) takes values in a fixed set U € R™, 7 indicates the natural
projection from T'M onto M, and £ is an arbitrary point of C. Then, the
trajectory velocity ‘é—f is parametrized by the controls uq, ..., u,,, and its total

cost can be expressed as

T T
/ o (t), u(t))dt / Fo F(x(t), u(t))dt.
0 0

In a given section of C, the trajectories of C' that connects two given points

xo and x7 in a finite time T, coincide with the solution curves x(t) of the
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differential system

Cfl—”t” = F(x(t),u(t),...,un(t))

z(0) = xg

x(T)=xy.
Under suitable smoothness assumptions on F', each control function u(t) deter-
mine a unique solution curve, so the problem of finding the optimal trajectories
of C'is converted to one of finding the controls that give rise to the optimal
trajectory and that is an optimal control problem.

We shall need additional notation. For any matrix C', C’ indicates its trans-
pose, while span(C') represents the set of all the eigenvalues of C'. For any vector
space E, its dual is denoted by E*.E can be regarded as a subspace of (E*)*
through the correspondence e — g(e) for any e € E and g € E*. When F is
finite-dimensional, £ = (E*)*. Recall that a linear mapping L : E — E* is

said to be symmetric if L is equal to its dual mapping L*.

1.2 Linear time-optimal problem

The process of transferring one state into another along a trajectory of a given
differential system such that the time of transfer is minimal is known as the
minimal-time problem, and it is one of the basic concerns of optimal control
theory. Consider the linear time-invariant system,

Cfi—:tc = Az + Bu, (1.1)
with z € M C R" and v € U, C R™, where A and B are constant matrices of
order n X n and n x m respectively. Let system (1.1) be defined in a real, finite-
dimensional vector space M in which the control functions are restricted to
a compact and convex neighborhood U, of the origin, in a finite-dimensional
control space U, and also assume that (1.1) is controllable and that control
functions are measurable. A trajectory is defined by the pair (z,u), in which
x is an absolutely continuous curve of some time interval [0,7], T > 0, that

satisfies (1.1) almost everywhere in [0, 7.



1.2. Linear time-optimal problem 9

Definition 1 A trajectory (x,u) is called time-optimal on an interval [0,T] if
for any other trajectory (y,v) of (1.1) defined on its interval [0, S], for which
y(0) = z(0) and y(S) = =(T'), S is larger than or equal to T.

Theorem 1 For any time-optimal trajectory (x,u) on an interval [0,T]

a) the terminal point x(T') belongs to the boundary 0.A(x(0),T) of the set of
reachable points from x(0) at t =T of system (1.1);

b) any point b that belongs to the boundary of the set reachable from the origin
at time T is the terminal point of a time-optimal trajectory on the interval

[0, 7).

Proof. If x(T') belonged to the interior of A(x(0),T), then z(7T") would also
belong to the interior of A(z(0),T — €), for some € > 0, which is not possible,
because that would violate the time optimality of (z,u) on the time-interval
[0, T]. This argument proves part a).

To prove b), note that for any 7" > 0, points on the boundary of A(0,T)
cannot be reached in a time shorter than 7. On the other hand A(0, T') is com-
pact for each T' > 0. Therefor, for each b on 0.A(0,T) there exists a trajectory
(,u) defined on the time-interval [0,77] such that x(0) = 0 and z(T") = b. It
follows by the foregoing argument that (x,u) is time-optimal on [0, 7. O

1.2.1 The maximum principle

For the minimum-time control problems, the Pontryagin maximum principle
provides the necessary and the sufficient conditions for optimality. The reader
is recommended to consult [6, pp. 305-306] for the proof of the theorem and
other details.

Theorem 2 (Pontryagin’s Maximum Principle) Any time-optimal trajec
tory (z,u) on an interval [0, T] is the projection of an integral curve (Z,p,u) of
the Hamiltonian vector field H associated with H(x,p,u) = —po+p(Az+ Bu),
with pg equal to either 0 or 1, such that
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a) H(z(t),p(t),u(t)) = maxuey, H(Z(t),p(t),uw) for almost all t in [0,T);
b) H(z(t),p(t),u(t)) = 0 almost everywhere in [0,T];

¢) Blt) £ 0 for any t, if po = 0.

Proof. See [6, pp. 305-306]. O

Remark The following remarks are helpful for clarify some important aspects

and consequences of the maximum principle:

1. H should be regarded as a function on T*"M = M x M* parametrized

by both the choice of a control function and the value of pg.

2. Assume that u(t) is a given measurable control function with values in U,.
Each integral curve o(t) = (x(t),p(t)) of the Hamiltonian vector field H
associated with H (z,p,u(t)) = —po + p(Az + Bu(t)), when expressed in

canonical coordinates, satisfies the following pair of differential equations:

dx dp
—=A B — = A .
= Aa(t) + Bult), = —Ap(t)

3. The maximality condition a) of theorem 2 is equivalent to p(t)Bu(t) =
maxyep, p(t)Bu for almost all ¢ in [0, 7.

1.2.2 Bang-bang principle for scalar systems

The bang-bang principle says that the optimal controls take the most advan-
tage of possible control action at each instant. The name is motivated by the
particular case of a control space given by the interval U, = [u~,u"], where
optimal controls must switch between the minimal and maximal values v~ and
ut. There are various theorems that make this principle rigorous. Here, the

simplest one is reported, as Sontag stated in [7, pp. 436-437].

Theorem 3 (Weak bang-bang) Assume that the matriz pair (A, B) is con-
trollable. Let u be a control steering system (1.1) from an initial state xg to a
final state x¢ in minimal time T > 0. Then, u € OU, for almost t in [0,T7].
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Proof. The proof directly derives from the application of the Pontryagin’s max-
imum principle (see [7, pp. 436-437]). O

Thanks to theorem 2 it is possible to state that the time-optimal control
@ is unique and it is also possible determine its structure (for a more rigorous
treatment see [7] and [15]).

We specialize now to single input systems (m = 1), and write b instead of
B in (1.1). In general U, = [u~,u"], but we will take, in order to simplify the
exposition, v~ = —1 and u™ = 1. Assume that the pair (A,b) is controllable.
For each two states xg and w7, there is a unique time-optimal control  steering

xo to xy, and there is a nonzero vector v € R™ such that
u(t) = sgn(y'e ), (1.2)
for all t ¢ S, 7, where
Syr={tel0,T]: Yeb=0},

is a finite set. This means that the optimal control u is a piecewise constant
function, which switches between values —1 and 1. The following proposition
permits to determine the number of switchings in the case of system matrix A

has only real eigenvalues.
Proposition 1 Suppose that the matriz A has only n real eigenvalues,i.e.
span(A) € R.

Then, for each v, b and T', Sy 1 as at most n — 1 elements, whereby any time-

optimal control for system (1.1) as no more than n — 1 switchings.

Proof. This proposition derives directly from the application of the Pontrya-
gin’s maximum principle to the time-optimal control of a scalar system. Reader

can find several proofs of this proposition (see, for example [7,15]).
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1.3 Minimum-time velocity planning with arbitrary

boundary conditions

This section introduces and explains the approach presented in [16], which
solves the minimum-time velocity planning problem with arbitrary boundary
conditions and a constraint on the maximum jerk value. The obtained optimal-
time solution, based on Pontryagin’s Maximum Principle, is a smooth planning
with continuous velocities and accelerations. The devised algebraic algorithm
to solve this minimum-time planning problem is well suited to be implemented
within the framework of path-velocity decomposition for autonomous naviga-

tion.

1.3.1 Problem statement and the structure of the optimal so-
lution

The following definition will be used along this paper.

Definition 2 A function f : R — R, t — f(t) has a PC? continuity, and we
write f(t) € PC? if

a) f(t) € C'(R),

b) f(t) € C* (R —{t1,t2,...}),

c) lim, - D2f(t), Ilim,_,+ Df(t) , i=1,2,...
where {t1,ta,...} is a set of discontinuity instants.

The problem is to plan a minimum-time smooth velocity profile v(t) € PC?
while a given constraint on the maximum jerk value jj; is guaranteed and
the initial and final conditions on the velocity and acceleration are arbitrarily
assigned. Formally:

min tr, 1.3
veEPC? ! ( )

such that

/0 " o€yt = s, (1.4)
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v(0) =, wu(ty)=vy, (1.5)
9(0) = ap, O(ty) =ay, (1.6)
[o(t)| < jm, Vte[0,ty], (1.7)

where sy > 0, jis > 0 and vy, vy, ag, ay € R are arbitrary velocity and
acceleration boundary conditions. sy is the total length of the path and ¢y is
the travelling time to complete this path. The solution of the above problem
is 9(t) € PC? with associated minimum-time ;.

The minimum-time planning problem (1.3)-(1.7) can be easily recast to an
input-constrained minimum-time control problem with respect to a suitable
state-space system. Indeed consider the jerk #(¢) as the control input u(t) of a

cascade of three integrators as depicted in figure 1.1.

u(t) o(t) v(t) s(t)

— 1 > 1 > 1 |—
S S s
Figure 1.1: The system model for velocity planning.
Introducing the state x(¢) as the column vector

x1(t) s(t)

xo(t) | =] o(t) |,

z3(t) o(t)

the system is represented by the differential equation
010
x(t) =Ax(t)+But)=10 0 1 | x()+ | 0 | u(t). (1.8)

000 1

Hence, problem (1.3)-(1.7) is equivalent to find a time-optimal control ()
that brings system (1.8) from the initial state x(0) = [0vgag]’ to the final state
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x(tf) = [sf vy ag]’ in minimum time 7, while satisfying the input constraint
[a@)| < jm, VEE[01y].

In sections 1.2.1 and 1.2.2 it has been exposed that the Pontryagin’s maxi-
mum principle gives a necessary and sufficient condition for this class of prob-
lems. Moreover, it has been shown that in the case of a linear scalar system
the time-optimal control @(t) is a bang-bang function. In our case it will be a
piecewise constant function that switches between the —jas and +j,s. Finally,
another information on the optimal control structure is obtained from propo-
sition 1. Considering that system (1.8) has three null eigenvalues we deduce,
by virtue of proposition 1, that the time-optimal jerk @(¢) has at most two
switching instants. Hence, the general structure of the optimal u(t) is depicted
in figure 1.2 where up € {—jar, +jm} and 0 < ¢ <ty < ¢y with tf > 0.

u(t) A

UM —_—

3] to 173 't

—UM L = =

Figure 1.2: An example of the minimum-time control (jerk) profile.

1.3.2 The algebraic solution

It has been shown above the structure of the time-optimal control u(¢). In
the following, an algebraic approach will be exposed to exactly determine this

optimal jerk profile.
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Exploiting the boundary conditions (1.3)-(1.6), the problem is to find the
switching time values ¢; and ¢, the minimum time ¢; and the sign of the jerk
initial value @(0), while satisfying the constraint 0 < t; <ty <ty with &7 >
0. From the boundary condition (1.6) on the final acceleration value we know
that

ty
w0+ [ ale)de = ay.
0
Integrating the optimal jerk profile on the three intervals, the following relation

is obtained
t1 to ff
ao+/ uMder/ (—UM)d€+/ upd§ = ay ,
0 t1 to

and finally a first linear equation in ¢y, t and ¢y is found
2th1—2th2+quf:af—ao. (1.9)

The acceleration profile x3(t) is obtained by integrating the optimal jerk ac-

cording to
t
na(t) = ao+ [ ale)ds, Ve (0.7,
0
that results in the following equation

ag +upt t € 0,t]
x3(t) = Q4 ao+2unty —upt t € [ty to] (1.10)
apg+2upti —2uprto+upt tG[tQ,t_f].

Now, by virtue of the boundary condition (1.5), the following relation is de-
duced B
ty
we [ as(©)de =vy,
0

hence, from (1.10), one obtains

t1 to
Uo+/ ao+uM€d5+/ (ap +2up ty — upr §)d§
0

t1

f
+/ a0+2th1—2th2+uM§)d§—vf
t2
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Finally, a quadratic equation in ¢, t3 and ¢y is found

_ _ 1 _
—th%—l—Qthltf—i—th%—2th2tf—i—§th?c+aotf:vf—vo. (1.11)

Integrating the acceleration function z3(t) as follows

t —
xg(t) :U0+/0 $3(£)d£, VYt € [O,tf],

the velocity profile z2(t) is obtained

(Uo—i-aot—i-%thQ tE[O,tl]

t+2uptit—upt2 —Supt2 telt,t
2a(t) = vo+agt+2un tyt —upty — 5 uy [t1,t2] (112)

%thQ—th%—i-th%—i-Qthlt

—2upmtat+agt+ v te[tQ,t_f].

By virtue of the boundary condition (1.4), the following relation holds

ty
/O a(€)dE = s

then, from (1.12), we deduce

t1 1 to
/ (Uo+ao€+§uM€2)df+/ (vo + ag € +2ups ty € — upr 3
0

t1
1 tr 1
—§uM52)d5+/ (5uM52—th%+th%+2th1§
to

—2upt2 §+ag§ +vo)dE = sy .

Finally, the last cubic equation in ¢1, to and ¢y is given by

_ 1 _
gth:f—th%tf—i-thlZ?c—gth%—i-th%tf—thgi?c
(1.13)

1 1 _
—f—gqu?—f—iaof%—}—votf:sjr.
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The time-optimal velocity profile is planned by solving the nonlinear algebraic
system given by equations (1.9), (1.11) and (1.13).
Here, we consider the case of positive initial jerk (i.e. upsr = +jar). From

equation (1.9) follows

15 las—a
1=ty — -t - 1.14
1=t =5ty + 2 in (1.14)
By substituting relation (1.14) in (1.11) the relation below holds
3 ;12 1 Iy 1 2
$Jm by —5 (Bay—ao) by + 5 (ay — ao) +Uf—vo]
ty = ! = . (115)

Jmty—ay+ag

By substitution of (1.14) and (1.15) in (1.13), a quartic equation in ¢y unknown

is obtained

1 1 1 1 3
3—2u?\/lt§+§uM(ao—af)t§+ <§’UJM(1}0+UJ£)— E(a%—ka%)— gaoaf> t2
3_ .3 4, 4
1a0af 1 ao_a/f 1a0+af
— — - — — t -
+<8 wnr (ao af) YRy +apgvy —ayrvg uM8f> 3 9% u?u
2 2
Lagay, o 9 Lagay 1 9 o
ﬂﬁ(ao af)_ﬁu?\/[ —5(00+vf)+vovf—a05f+afsf:0.
(1.16)
In the case of negative initial jerk (i.e. up;y = —7jar), the optimal solution can be

found by changing the sign of jps in (1.9), (1.11) and (1.13) and then applying
the same procedure exposed above. In sake of simplicity the three equations

system for this case is omitted.

The optimal degenerate case

Consider a positive initial jerk value (i.e. up; = +7ar)- A solution of the three
equations system (1.9), (1.11) and (1.13) exists only if the following relation
holds (see (1.15))

Jmty—ap+ag#0. (1.17)
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If (1.17) is not verified, follows that
ap + jm ty = ay,
which corresponds to the optimal degenerate solution expressed by

— a
h=t,=0, fj=-—"2

-~ (1.18)

Hence, by virtue of condition ¢y > 0 the following inequality must hold
af > ap.

The optimal degenerate jerk is

I~

(t)=jm, Vte[0,iy]. (1.19)

Note that solution (1.18) satisfies equation (1.9). Integrating (1.19) one deduces

the acceleration function
x3(t) = ao+jmt, Vte0,ty].
In the same way the optimal velocity function is obtained
! 1 _
.1‘2(75) =y +/ wg(f)dg =v9+apt+ 5 iM t2, Vt € [O,tf] ,
0

and then the optimal space function is given by

t 1 1 _
SCl(t):/ $2(£)df:’00t+§a0t2+6j]\4t3, Vte[O,tf].
0

If t =iy, by virtue of the boundary conditions (1.3) and (1.4) follows that

_ 1 .
vo—i—aotf—i—ith?c:vf, (1.20)

and
1

— 1 2
Uotf+§a0tf+6

ja 3 = sy (1.21)
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By substituting relation (1.18) in (1.20) the relation below is deduced
a?c — a3

1
2 jm

+uvg —vy=0. (1.22)
Then, by substituting relation (1.18) in (1.21) the following equation holds

1 af 2@ 1%% Vpap Vo das

6% 3Jy 2 J% v iu

—s;=0. (1.23)

Relations (1.22) and (1.23) must be satisfied in the degenerate case. Note that
they are exactly the second and the third equation of system (1.9), (1.11), (1.13)
when it has solution (1.18).
In case of initial negative jerk (i.e. up;y = —jps), the optimal degenerate
solution is
at) = —ju, Ve (0.5,

corresponding to

th=ty=0, &= (1.24)
JM
This degenerate case emerges with
ap > af,
and the following relations hold
2 _ .2
1 ag —ay
- — +v9g—vr=0, 1.25
5L =y (1.25)
and )
lﬁ_ga_g_la%af_”0a0+”0“f_3f:o (1.26)

655 34 2 4% M  Jm
1.3.3 The minimum-time algorithm

The Minimum-Time Velocity Planning (MTVP) algorithm is presented by
exploiting the algebraic solution exposed in subsection 1.3.2. This algorithm

must verifies if a positive or a negative jerk degenerate solution exists; after
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that, if a degenerate solution was not found it checks the generic cases of ini-
tial positive and negative jerk solutions. Hence, the MTVP algorithm can be

synthesized as follows:

begi n

if ar>apthen
procedure PJDS;

end

if ayr<apthen
procedure NIDS;

end

procedure PJS;

procedure NJS;

end

Then, the MTVP algorithm is composed of four separated procedures: the
Positive Jerk Degenerate Solution (PJDS), the Negative Jerk Degenerate So-
lution (NJDS), the Positive Jerk Solution (PJS) and the Negative Jerk Solu-
tion (NJS). Let us describe these procedures in detail.

Procedure PJDS

This procedure starts if ay > ap, because is not possible to have a degener-
ate solution with positive initial jerk (i.e. upr = +jar) if af < ap. If condi-
tions (1.22) and (1.23) are verified the positive jerk degenerate solution (1.18)
is imposed and the MTVP algorithm is stopped, otherwise the algorithm ex-

ecution returns to the main program. The procedure is as follows:

begi n
.f 1a?cfag d
'35 tw-v=0an
1 97 24} 1a3a; | way _ voay
1% 2% _1%% 4 vag _ —sg=0then

652, 3353, 2 5% M M
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[t1,t2,84] = 10,0, <572 ;
exit

el se
return

end

Procedure NJDS

This procedure is dual to the PJDS one. If ay < a¢ and conditions (1.25)
and (1.26) are verified, the negative jerk degenerate solution (1.24) is imposed

and the main program is stopped.

begi n

i f laO*a?‘Jrv — vy =0 and
2 " im 0 f=
1% 20 1d8er  wa | W9 _ o _(then
652, 343 2 j% Jm M =

return
end

Procedure PJS

First, all the positive real roots of quartic equation (1.16) are computed and
stored in an array T. Then expressions (1.14) and (1.15) are used to deter-
mine a feasible solution. If three values of 1, t2, and ty satisfying inequalities
0<t; <ty <t ¢ are found the minimum-time velocity planning solution is

obtained and the main program is stopped.



22 Chapter 1. Minimum-time velocity planning

begi n
Comput e the positive real roots of

equation (1.16), T = [tfi,tp, ..., tpjWith (<4);
if Tis enpty then

return

1,...,ldo
[% M t?ifé (3 affao) tfri»m (af7a0)2+vffvoj| )
Jm tri—ag+ao )

if 0<ty <ty then
tuztzi—%tfcﬁ—%%;
if 0<ty; <ty then
[t1,t2, 5] = [t1s, t2s, t3i] ;
exit
el se
conti nue
el se
conti nue
return
end

Procedure NJS

This procedure is dual to the PJS one. The quartic equation to start with is
the modified (1.16) where jas is substituted by —jas. Then all the positive real

solutions of this equation are computed and a feasible solution is sought.

begi n

In equation (1.16) do the substitution jy + —ju
and conpute the positive real roots,
T = [tfl,tfz,...,tfl] with (l < 4) ;
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if Tis enpty then
return

for i ..., do

= 1’
; [% M t?ifé 3 affao) tf¢+4],1M (af—a0)2+vffvo]
29 — ;

JM tpi—ag+ao )

if Ogtzigtﬁthen

_ 1,2  1a5-ao
tiy =t — 5 th + 3 ij ;

if 0<ty <ty then
[t1,ta, y] = [tri, t2i, t3i] 5
exit
el se
conti nue
el se
conti nue
return
end

1.3.4 Simulations results

Example 1: consider the following data: sy = 3,25 m, jy = 0,5 m/s3, vy =
0 m/s, ap = 0 m/s?, vy = 2,25 m/s and ay = 1,5 m/s?. Exploiting the
MTVP algorithm described in subsection 1.3.3 the following optimal solution

is obtained:

upy =+Jpm ti=1s to=3s £f=7S

The jerk, acceleration, velocity and space profiles, for this case, are depicted
in figure 1.3.

Example 2: let be the case of: sy = 8,42 m, jy = 0,25 m/s?, vp = 1 m/s,
ap = 0,5 m/s? vy = 2,75 m/s and ay = 0 m/s?. The optimal solution is the
following:

uy =+jm ti1=1s tngf:4s
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Figure 1.3: The optimal profiles of jerk @(t), acceleration a(t), velocity o(¢), and

space §(t) for example 1.

See figure 1.4 for the optimal @(t), a(t), v(t) and 5(¢) profiles.
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Figure 1.4: The optimal profiles of jerk @(t), acceleration a(t), velocity ©(t), and

space §(t) for example 2.

1.4 Minimum-time constrained velocity planning

This section explains a procedure which has appeared for the first time in [17].

The proposed method solves again the minimum-time velocity planning prob-
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lem with generic initial and final boundary conditions for the velocity and
the acceleration but with constrains not only on the jerk but on velocity and
acceleration too.

This minimum-time planning problem is relevant in the context of robotic
autonomous navigation, where the iterative steering supervisor periodically
replans the future mobile robot motion starting from current position, velocity
and acceleration conditions. The problem is faced through discretization and
its solution is based on a sequence of linear programming feasibility checks,

depending on motion constraints and boundary conditions.

1.4.1 Problem statement and sufficient condition

The faced problem is the minimum-time planning of a smooth velocity pro-
file v(t) € PC?([0,tf]) (see definition 2), where ¢y represents the travelling
minimum-time along a given path whose length is equal to s, respecting given

velocity, acceleration, and jerk constraints. Formally:

Jmin iy, (1.27)
such that .

/O o(€)dé = s, (1.28)

v(0) =g, o(ty)=uvy, (1.29)

9(0) = ag, o(ty) =ay, (1.30)

lo(t)] <wvar, Ve [0,t], (1.31)

[o(t)] < an, Vte|0,ty], (1.32)

()] < jnmr, VEE[0 L], (1.33)

where sy, var,an,jm € Ry and vg,vf,a0,a5 € R are given boundary con-
ditions. For the special case of zero boundary conditions (i.e. vg = vy = 0,

ap = ay = 0) a closed form solution has been provided by [18]. Remark that in
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our context of iterative autonomous navigation, it is crucial to consider generic
boundary conditions on initial and final velocities and accelerations.

Such as in section 1.3 the problem is recasted into a minimum-time con-
trol problem with respect to a suitable state-space system. Indeed consider
again the jerk #(¢) as the control input u(t) of the cascade of three integrators
as depicted in figure 1.1. The system equations are still given by (1.8). Con-
straints (1.31), (1.32) and (1.33) will be considered as two state constraints
and an input bound respectively. Hence, problem (1.27)-(1.33) is equivalent to
finding a time-optimal control @(t) that brings system (1.8) from the initial
state x(0) = [0wvp ap]’ to the final state x(¢7) = [s;vfay] in minimum time ¢y,

while satisfying the following constraints

() < var, VEE[0,7], (1.34)

s < anr, VEE 0,7, (1.35)
and

a(t) < jar, Yt e [0,77]. (1.36)

In the case of constrained state, it is not guarantee that a time-optimal control
u(t) exists. The existence of solution @(t) of problem(1.27)-(1.33) depends on
the values of the initial state xq, the final state x¢, and it also depends on the
constraints (1.34)-(1.36). To guarantee the existence of the optimal control @(t),
these values must respect four sufficient conditions as stated in the following

result.

Proposition 2 The minimum-time optimal control u(t), solution of problem
(1.27)-(1.33), from initial state x(0) = [0vgao)’ to final state x(tf) = [spvsay)

exists if the following sufficient conditions are satisfied:

vl < war, lvp| < omr, (1.37)
|ao| < anr, lay| < anr, (1.38)
. 1 a%
if ag>0 then wvy+ = — <wp, (1.39)
2 jm



1.4. Minimum-time constrained velocity planning 27

1 2
if ap <0 then vo——?—OZO, (1.40)
2 jm
1 a
if ap>0 then vf—i,—fZO, (1.41)
IM
2
1 a
if ap <0 then vf+§,—f <wunm, (1.42)
IM
and
Sf > Sref s (143)

where s.op 1s a reference distance depending on the problem data which is de-

fined below by a four-step procedure:

1.

v lao| 1 af L ag
1:=——+-— and wvi:=vy+sgn(ay) = —.
IM 3Jz2\/[ ( )QJM
2. 3 2
1a 14
::M_—% and vy := Uf—Sgn(af)_~_f'
JIM 3 2 Jm

3. if /jm lv1 — va| < aps then

Upef := max (v1,v2) ,

_ 2Uep Vim[or —va] [ o1 — ol
M

Se -t D) )

Im

else

4. Spef =81+ Sc+ 82

Proof. The argument of the proof uses the equivalence of problem (1.27)-(1.33)
with the constrained control problem (1.34)-(1.36). Specifically, it shall be
found a control input w(t) that brings the state from [0 vy ag]’ to [sf vs af]’
while satisfying the imposed state constraints. Obviously, if this input exists,

then the optimal one will exists too.
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Consider the case ag > 0. If conditions (1.37), (1.38) and (1.39) on initial
state x(0) hold, it is possible to apply a control function u(t) = —jps which
brings the acceleration x3(t) to zero before the velocity xo(t) exceeds its bound-
ary value vys. In fact, if w(t) = —jas with ¢ € [0,¢1] (where ¢; is the critical

time where the acceleration became null) the following result is true

t
x3(t) = agp +/ u(§)dé = ag— jut. (1.44)
0
But in t = t; we have z3(t1) = 0, so it is possible to obtain the critical time
value
I (1.45)
IM

Integrating equation (1.44) in [0, 1], it follows that

t
1
IEQ(t) :U0+/ xg(f)dfzvo+aot—§th2. (146)
0
In ¢t = t1, by substituting relation (1.45) in (1.46), the value of v; = xa(t1) is

obtained
1 ag
v =vo+ 5,
2 Jm
then, by virtue of condition (1.39) we know that v; < vys and constraint (1.34)

is satisfied. The traveled space at time ¢ is

_vpap 1 ag

51 = /0 e L | (147)

M 343,

Consider the case of ay < 0; if conditions (1.37), (1.38) and (1.42) are
verified, the final state x(t;) can be reached by applying the control function
u(t) = —jm, with ¢ € [to,tf]. The acceleration function is given by

t
z3(t) = / u(€)dé = —ju (t —ta), (1.48)
to
and in t =ty we have x3(tf) = ay, so it is possible to obtain
tp—ty=——L (1.49)

IMm
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By integrating equation (1.48) in [to,tf], we get

t
2o(t) :v2+/tfx3(g) :vg—%jM (b — t2)?. (1.50)

In t = ty, by substituting relation (1.49) in (1.50), the value of vy = xa(t2) is

s 19

vy = vf+ = ——,

? I JM

then, by virtue of condition (1.42), constraint (1.34) holds. The traveled space
for t € [to,tf] is

vpay 197

SS9 — /tf wg(f)df = (1.51)

ta YRR

If v1 = v9, the total traveled space is sy = s1 + s2, where 51 and sy are given
by (1.47) and (1.51) respectively, then condition (1.43) is verified.

Consider the case of v1 > wvy: by defining t. as the time instant when

x3(t.) = —ac, where —a, is the acceleration minimum value, and if a. < ayy,

it is possible to interpolate v; and ve with the following control jerk function:
u(t) = —jM t e [tl,tc]
u(t) =jm  t € [teta],

where t. — t; = to — t.. Then, for u(t) = —jp in t € [t1,1.] the acceleration

function is given by

t
2a(t) = [ € = —jus (¢ - 11). (1.52)
t1
But for ¢t = t, we have x3(t.) = —a, so it is possible to obtain
te—t) = 2 (1.53)
IM

By integrating equation (1.52) one deduces the velocity function

.%'Q(t) Zvl—i-/t.%‘g(f)df:’l)l—%j]\/[ (t—t1)2. (1.54)

t1
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In ¢t = t., by substituting (1.53) in (1.54), the velocity is given by

1 a?
.’L'Q(tc) = U1 — 5.]—]\04

The distance sg covered in the time-interval [¢1,t.] is deduced as follows,

te a 1a3
53 = 2o(&)dE = v) — — = == 1.55
’ /tl &) Y 653 (1.55)

By applying the same procedure in the time-interval [to, ], with u(t) = jas,

the following result is obtained

a2
ra(te) =v2 + 5 —,
IM
while the traveled space sy is given by
a. 5 a
$4=V1-— — 55
IM 6 Im
In ¢ = t. we have
1 a? 1 a?
’1)1——.—27124‘—.—, 156
2 jm 2 jm (1.56)

and solving equation (1.56) for a., the following equality holds

ac=/ju (v1 —v2). (1.57)

The distance s., covered in the time-interval [t1,¢2], is given by

2v1 Vg (01 —v2) [ (01— v2)]*?

JM i3

Se =83+ 84 = ) (1.58)
where a. was substituted with relation (1.57). For the time-interval [0, ],
the total traveled space is sy = s1 + s. + s2, where s1, s and s are given by
relations (1.47), (1.51) and (1.58) respectively, then condition (1.43) is verified.

Finally consider v; > vy and a. = /ja (v1 — v2) > aps. In this case it

will exists a time-interval [t.1, tc2], where acceleration z1(t) will be equal to its
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minimum value —ayy, while the control function will be u(t) = 0. In ¢ = t

and in t = t.9, the velocity values are given by

1 a2
t — _ - M
xa(te1) = vy 2 s
and
1 a2
Lo = 1 ayr
zo(te2) = va + 5 _jM )

a
Ug—i——j—M:’Ul—_.—M_aM(th_tcl)' (159)

From equation (1.59) the following equality is obtained

V1 — V2 apr

th - tcl = N . (160)
ap JIM
The traveled space in [t.1,tc2] is given by
1
S5 = 5(@1 +'U2) (t02 _tcl)v (161)
and by substituting relation (1.60) in (1.61) it is possible to obtain
2 am 2 JM

The distance s. covered for ¢ € [t1, 2] is obtained by summing s3 and ss, given
3
by (1.55) and (1.62) respectively, with s4 = Y22 1 1 %M and it results to be

o T8,
1 (v2 =02 1
o= Limw)  Lan(vitv) (1.63)
2 am 2 M

Then, the total traveled space is sy = s1 + s. + s3 , where s1, s2 and s, are
given by (1.47), (1.51) and (1.63) respectively, and condition (1.43) is verified.

The other sufficient conditions can be proved in the same way saw above. [J
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1.4.2 An approximated solution using discretization

This subsection shows how to find a numerically approximated solution of
problem (1.27)-(1.33) by discretization of system (1.8). The technique that
will be introduced, exploits the result presented by Consolini and Piazzi in [19],
which shows that, given a continuous-time system, an approximated optimal

control can be found through the following procedure:
1. find the discretized system with sampling period T5;
2. find the optimal input sequence u(k);

3. use for the continuous-time system the input function u(¢) obtained from

the discrete-time sequence with a zero-order hold

) =ar, (171
where T € R is the sampling period and Vx € R,
|z] =max{z€Z: z<uz},
denotes the integer part of x.

As shown in [19], when Ts — 0 the approximated solution converges to the
optimal continuous-time solution.

The optimal discrete-time control sequence @(t) can be found by means of
linear programming. In fact, in the discrete-time case, the constraints (1.34)-
(1.36) can be represented as linear inequalities and the minimum number of
steps needed for the requested transition can be found through a sequence of
feasibility tests of a linear programming problem.

The matrices of the equivalent discrete-time system are the following ones:

1 T, 37172
Ag=erT=10 1 1T, |,
0 0 1
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and

NI— O~
2

3

Ts
B, =f(A,T,)B = (/ eATdT> B =
0

where T is the sampling period. Then, the discrete-time system is
x(k+1)=Agx(k) + Bgu(k), (1.64)

whose solution is given by

k—1
x(k) = Ak xo+ > AN"/Byu()), (1.65)
j=0
where
.%'1(]6)
x(k) = | x2(k)
z3(k)

u(ks —1)
from (1.36) it follows that it must be
—upm-1g, Su<up-lg,,

where 1, denotes the ky-dimensional vector whose components are all equal

to 1. The velocity constraint for discrete-time system is given by

—UMS.%'Q(]{)SUM, with kZO,...,kf—l. (1.66)
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From equation (1.65), velocity sequence zo(k) can be written as follows

562(]{5) = Cl X(kﬁ)
k—1
= C; |Afxo+ ) ALBiu())
=0
k—1
= Ci1Alxo+) CiA"/Byu()), (1.67)
=0

where
Ci=]010].
By substituting (1.67) in (1.66), the following relation is obtained

k—1
—uy — C1Alxg <Y C1ALBgu(j) < vy — CrAlxq,
j=0

with k = 0,...,k; — 1. Set v, = vps- 1, then the inequality on velocity con-
straint (1.66) become

—v.— G <Hju<v. -Gy,

where G; € R*f and H; € R¥f*¥s are given by

_ oo -
ClAdXQ
G =| CAlx |,
k-1
_ClAdf Xo_
and ~ _
C:By o .- 0]
Ci1A:By ¢}
H, = ClA?le O
_ClAZf_le oo .. CiBy |
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The acceleration constraint for discrete-time system (1.64) is given by
—ap < a3(k) <ap, with k=0,...,kf—1. (1.68)
Set a. = apr- 15 and
C;=]0 0 1],
then, constraint (1.68) is written as
—a.— Gy <Hyu<a.— Gy,
where Gy € R*f and Hy € R¥f*ks are given by
_ oo -
CQ Ad X0
Gy = Csy A?i X0 ,
i CQ Asf_l X0 i
and ~
C2 By o .- O
CQ Ad Bd Lo 0]
Ho=1 C;AZB; -~ . O
hy1 -
| C2A/  B; -+ - CBy |
The interpolation condition on final state can be written as follows
1 (ky) sf
xp=x(kr)=| xa(ky) | = | vy (1.69)
x3(ky) ar
From equation (1.65) we have
kp—1 ‘
xp=Al xo+ Y AT B (), (1.70)

J=0
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then, by substituting equation (1.70) in (1.69) we obtain the final state inter-

polation condition as follows
kg
Heyu=x; - A, xo,

where H,, € R***/ is given by

H,, = [ A, Ab?B, . By
In conclusion given a number of steps k¢, there exists an input vector u for
which the constraints on velocity, acceleration and jerk, and the final interpo-
lation condition are satisfied if and only if the following linear programming

problem is feasible

—upr 1k, <u<upelg,
~v.—Gi <Hju<v.—- G
—a,— Gy <Hyu<a.—Go
Hequ:Xf—Afoo.

(1.71)

1.4.3 The bisection algorithm

The minimum number of steps /;:f and the associated optimal discrete-time
control sequence (k), with k =0,...,ks — 1, can be determined by means of
a sequence of linear programming feasibility tests, defined by (1.71), through
a simple bisection algorithm. The Minimum-Time Control algorithm (MTC)

is summarized as follows:

begi n
ky <1,
[+ 0
whil e «~ LPP do
l(—k‘f
kf FQkf
end
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h<—k7f;
whileh—1>1do
ky  [25;
if - LPP then
l<—k7f;
el se
h(—k:f;
end
k} — h;
u*(k) + u,
end

In MTC algorithm LPP denotes a linear programming procedure that solves
problem (1.71), which, if a feasible solution exists, returns the solution se-
quence u and the number of steps k; if the problem is feasible it also returns
a Boolean true value.

The algorithm performances strongly depend on the used sampling time.
By reducing T, which means sampling the continuous-time system with an
higher frequency, the dimension of the resulting linear programming problem
increases, thus causing an increment of the total computational time. Consid-
ering the computational complexity, Karmarkar has shown in [20] that a linear
programming problem can be solved by means of an interior-point algorithm
with running time proportional to n3°, where n is the number of inequalities.
In our case this would means that each feasibility test would require a time
proportional to n2-, where ng is the total number of samples. The complexity
of the bisection search, with respect to the minimum number of samples, is
given by O(logny), therefore the total complexity of the proposed algorithm is
given by O(n3® logns). For more details on the algorithm complexity see [21].

1.4.4 Simulations results

Example 1: consider the following interpolation conditions and constraints:
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e initial state

_ . . 0T
XO = /UO =
| ao | L 0]
e final state ) ) o
Sf
Xpi= | vy | =
L af | L 0]

e problem constraints
v =0,65m/s apy =05m/s> jy =0.5m/s’

The jerk, acceleration, velocity and space profiles, obtained by means of the
MTC algorithm, are depicted in figure 1.5.

1

08

06

—(t)
- --af(t)

25

o(t)
---5(t)

S

—06 1 05 : .

Timels] Timels]

Figure 1.5: The pseudo-optimal profiles of jerk @(t), acceleration a(t), velocity o(t),
and space 3(t) for example 1.

Example 2: consider the following problem:
e initial state
50
X0 = | vp =10

ao
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e final state

St 2
Xfi= | vy = 1
af 0,25

e problem constraints

vpr=1,5m/s ap =0.6m/s* jy =0.5m/s®

The jerk, acceleration, velocity and space profiles, obtained in this case, are

depicted in figure 1.6.

0.8

0.6

04

35

Time[s] Timel[s]

Figure 1.6: The pseudo-optimal profiles of jerk w(t), acceleration a(t), velocity o(t),

and space 5(t) for example 2.

Example 3: the problem data are given by:

e initial state

S0 0
Xp:= | vg | = 1
ap —0.5
e final state
sf 2,167
Xpi= | vy | = 0,5

af 0,5
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e problem constraints
vpr=1m/s ap =05m/s2 jy =0.5m/s>

Figure 1.7 shows optimal solution obtained by means of the MTC algorithm.

25

1
ogl| = u(t)
o6l = = = a(t)
0.4
0.2
0 I~
' ~
. N
,
02 PRd S~ L.
. ’ ~ N -
04T, <f-
_06 :
-0.8
1 i i i i i
0 0.5 1 1.5 2 25

i i i i i i
Timels] 0 05 1 5 . 2 y 25 3 35 4
imejs.

Figure 1.7: The pseudo-optimal profiles of jerk @(t), acceleration a(t), velocity o(t),
and space 3(t) for example 3.



Chapter 2

Path generation and

autonomous parking

A goal without a plan

18 just a wish.

— Antoine de Saint-Exupery

In this chapter the problem of the path planning for nonholonomic vehi-
cles is discussed. The two methods presented in the following are well suited
for their implementation into the framework of autonomous parking of au-

tonomous vehicles.

Fist section proposes a multi-optimization approach to the autonomous
parking of car-like vehicles [22]. It uses a polynomial curve primitive, the n3-
spline, to build up intrinsically feasible path maneuvers over which to minimize
with a weighted sum method the total length of parking paths and the mod-
uli of the maximum path curvature and curvature derivative. The approach
takes into account the mandatory constraint of obstacle avoidance and max-
imal steering angle and the constraint of maximal curvature derivative which

is a selectable limit to ensure the desired smoothness of the parking paths.
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Simulation results are included for a garage parking example.

Section 2.2 addresses the smooth path generation of a truck and trailer
vehicle (cf. [23]). It is shown how the fourth-order geometric continuity of the
trailer path (continuity of the unit tangent vector, curvature, and first and
second derivatives of curvature) is associated to the vehicle’s smooth control
inputs (velocity and steering of the truck). Then, taking into account the non-
holonomic constraints of the articulated vehicle, the path generation can be
performed by the introduction of the n*-spline. This is a ninth-order polyno-
mial curve primitive that can interpolate given Cartesian points with associ-
ated arbitrary unit tangent vector, curvature, and first and second derivatives
of curvature. The n*-spline depends on a set of eight (eta) parameters that can
be freely chosen to change the path shape without changing the interpolations
conditions at the path endpoints. Completeness, minimality, and symmetry of
the n-spline are established. An example on a parking maneuver of the ar-
ticulated vehicle is presented and the pertinent optimal path planning is also

discussed.

2.1 Multi-optimization of n?-splines for autonomous

parking

This section proposes a multi-optimization approach to the autonomous park-
ing of car-like vehicles. Focusing on the planning of motion maneuvers of car-
like vehicles, the parking problem can be theoretically introduced as follows:
given an initial configuration and a final configuration of the vehicle, find a path
joining the initial and final configurations such that: 1) the path is collision-
free, i.e. the vehicle on the path avoids any collision with all the obstacles of
the parking scenario (other cars, walls, curbs, etc.); 2) the path is feasible (or
admissible), i.e. the vehicle on the path satisfies the differential constraints of
the vehicle model (the nonholonomic constraints) and the actuator constraints
(such as e.g. the bound on the maximal steering angle of the front wheels).

The parking problem without differential and actuator constraints becomes



2.1. Multi-optimization of n3-splines for autonomous parking 43

the so-called piano mover’s problem which is a classic problem in the motion
planning literature (cf. the book [24] and the extensive references included).
When the parking problem formulation is complete with both requirements
1) and 2), the approaches exposed in the literature are mainly based on a
two-step procedure: First, a collision-free path that ignores differential (and
actuator) constraints is determined. Then this path is suitably modified in
order to accommodate to the constraints. In such a way, the first step just
requires to pick up a solution technique for the piano mover’s problem and
in the second step ad hoc smoothing techniques or local steering methods are
devised to accomplish a complete solution.

The two-step procedure was first proposed by Laumond et al. in [25] and
subsequently several variants appeared [26-28] (also cf. [29] and references
herein included).

The solution proposed in this section, first addresses the parking problem
as a smooth feedforward control problem where the vehicle’s sought control
inputs, the linear velocity and the front wheel steering angle, are C'-signals,
i.e. continuous time functions admitting derivatives that are still continuous.
Then, the introduction of the concept of third-order geometric continuity of
Cartesian paths and the procedure of dynamic path inversion as exposed in [5]
permits the feedforward control problem to be reduced to a purely geometric
problem followed by a velocity planning problem. This geometric problem re-
gards the search of a sequence of feasible paths connecting the initial vehicle
configuration to the final one while satisfying all the the required constraints
(obstacle avoidance, maximum steering angle, etc.). In this context, a path is
feasible if it is a G>-path, i.e. a path that has continuity, along the curve, of the
unit-tangent vector, curvature, and derivative of the curvature with respect to
the arc length (cf. subsection 2.1.1).

2.1.1 The smooth parking problem

We consider an autonomous parking problem for the car-like vehicle depicted in

figure 2.1. The Cartesian coordinates of the rear-axle middle-point are denoted
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}/A

NV

Figure 2.1: The car-like vehicle on the Cartesian plane.

by x, y and 6 is the vehicle orientation angle with respect to the X axis. The
distance between the rear-axle and the front-axle is [. With the usual modeling
assumptions (no-slippage of the wheels, rigid body, etc.) the following nonlinear

kinematic model of the car-like vehicle can be deduced:

z(t) = v(t) cosO(t)
y(t) = v(t) siné(t) (2.1)
0(t) = Lo(t) tand(t),

where the vehicle control inputs are v(t) and 6(t), the velocity of the rear-axle
middle-point and the steering angle of the front wheels respectively. Recall
definition 7 of G3-paths, that will be used along this chapter.

In order to obtain a smooth motion control, inputs v and § must be func-
tions with C! continuity, i.e. continuous functions with continuous first deriva-
tives. A connection between smooth inputs and paths of the car-like vehicle is

established by the following result.

Proposition 3 Assign any T > 0. If a Cartesian path T is generated by the
car-like vehicle described by system (2.1), with inputs v(t),5(t) € C([0,T7])
where v(t) # 0 and |6(t)] < 5 Vt € [0,T], then T is a G*-path. Conversely,
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given any G3-path T there exist inputs v(t),5(t) € CY([0,T]) with v(t) # 0
and |6(t)] < § Vt € (0,T), and initial conditions such that the path generated
by (2.1) coincides with the given T.

Proof. Tt follows from an analogous result presented in [5]| for unicycle mobile
robots. O

Instrumentals to our approach to path planning for the autonomous park-
ing of car-like vehicles are the following concepts of configuration vector and

corresponding configuration space.

Definition 3 The coordinate position (considering the middle-point of the rear-
azle) and orientation of the vehicle with respect to the Cartesian plane {X,Y}

and the steering angle § compose the configuration vector as follows:

q1
q2
q3
q4

€0, (2.2)

S DR R

where @ = R? x [0,27[ x [~dp, +6pr], is the configuration space; herein &y

18 the mazimum allowed value of the steering angle.

In the parking scenario, the occupancy area of the car-like vehicle is denoted
by A which is normally a rectangle moving in the Cartesian plane {X,Y},
referred as the parking space P. The car body A occupies a portion area of P
that depends on the configuration vector g, i.e. A = A(q) C P. In the parking
space there are also the obstacles B;, i = 1,2,...n, (see figure 2.2) considered
as convex polygons without loss of generality. Recall that a non-convex polygon
can be always decomposed in two or more convex polygons.

The parking problem can be introduced as a smooth feedforward control
problem for model (2.1), i.e. the problem of devising inputs v(t),§(t) € C*, for
which the vehicle starting from a given configuration qs = [z ys 05 ds)’ reaches
an assigned final or goal configuration qg = [z4y, 04 d4)" while avoiding all the

obstacles and satisfying at any time the constraint |§(¢)| < dps. The sought
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P a

Figure 2.2: Parking space P with car A(q) and obstacles B;, i = 1,...,n.

feedforward control may admit maneuvers, i.e. changes of sign in the vehicle
velocity v(t), so that when the velocity is positive the car performs a forward
movement whereas when it is negative we have a car’s backward movement.
On the grounds of proposition 3 and of the (dynamic) path inversion con-
cept [5] introduced in the precedent chapter, the smooth parking feedforward
control problem can be reduced to a purely geometric problem, to be more
specific a purely Cartesian G>-path planning problem followed by a veloc-
ity planning on the determined paths. This means determining a sequence of
(feasible) G3-paths {T'1,T,...T4} (h is the number of parking paths) that
the vehicle can exactly follow by applying feedforward inputs v(t),d(t) where
v(t) € C! can be freely designed with the constraint of having zero velocity
and zero acceleration at the the start and at the end of each path I';. The

steering input on the path I'; can be simply determined by (cf. [5] and [30])

5(t) =+ arctan(lﬁi(s))‘s:ff_ v(€)dg

for a forward (+) or backward (-) movement. Herein k;(s) is the curvature

function of arc length s and t; is the time instant at the beginning of T;.
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In the following, a path I' to be followed by the vehicle with a forward or
backward movement will be denoted by I'" or I'™ respectively. Therefore, a se-
quence of paths {I'1,I's,... T} isactually {T'y,I'5,... T} b or {Ty,T5,...T; }
if h is odd, and {T'{,T5,... I} or {r{,T5,... I‘;} if h is even. In the intro-
duced sequence of paths we see an alternation of forward and backward paths,
i.e. a forward path F;r is followed by a backward I';, | or viceversa. Any pair
of subsequent paths {F:,F;_l} or {I';” ,F;_l} is made of paths that meet each
other at a common Cartesian point corresponding to a configuration vector q;
(¢ = 1,...h — 1) which is still common for the vehicle at the end of path T
and at the start of I'; 1 in case of no steering at standstill, i.e. the case when
5(t) =0 if v(t) = 0.

When the vehicle parking problem can be solved without maneuvers we
have just one G3-path I'f or T] (h = 1) to determine and optimize (see

figure 2.3). If no solution can be found with one path because of the obstacles

rf = =~
N
A(QQ) \
\
:L: \
A(qs) |
\ |
\ /
\ r- 7/
N e
~ _ _ -~

Figure 2.3: The vehicle from q5 to q4 with forward path Ff or backward I']".

and the limitation given by the maximum steering angle §s, a solution may
be sought with two chained paths {T'{,T5} or {I'], T3} (h = 2). In this case

there is one motion inversion of the vehicle or, in other words, one maneuver
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to complete the parking task. On the parking space, I'y and I's meet at a cusp
point whose Cartesian coordinates are given by the first two components of
configuration vector qi. In figure 2.4, the case of two maneuvers (h = 2) is
depicted. When also with h = 2 no solution is found we can try with more

paths. Figure 2.5 shows the case of three maneuvers h = 3.

A(as)

Figure 2.4: The two-paths sequences {I'/, T} and {T'[,I'J} for the parking

planning.

The G3-paths T';, i = 1,..., h composing the sequence {I';,T5,...T;} must
satisfy specific interpolation conditions at the endpoints of each T'; (cf. subsec-
tion 2.1.2) in order to guarantee the overall feasibility of the planned paths.
In particular considering that the vehicle starts at the given configuration

qs = [zs ys 05 0] it follows that the starting point of 'y satisfies:
e Cartesian coordinates are (zsys);

e direction angle of the unit-tangent vector is 6s;
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mym
[N} Alar)

Figure 2.5: The three-paths sequences {I'f,I';,T'3 } and {T';,T';, 5} for the
parking planning.

e scalar curvature kg is given by (cf. [5,31])

1 .
o = { stands  ifI'y = Ff‘ (2.3)

—%tam(i9 ifI'y =17 ;

e the derivative of the scalar curvature with respect to the arc length, &

can be freely chosen.

Analogously, the vehicle arrives finally at the goal configuration q, =

[4Yg 0494 for which the endpoint of I'j, satisfies:
e Cartesian coordinates are (x4 %q);
e direction angle of the unit-tangent vector is ;
e scalar curvature k, is given by

1 : +
T tand fI',="_
Ky :{ e (2.4)

—%tandg if 'y =T ;
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e the derivative of the scalar curvature with respect to the arc length, &,

is a free parameter of the planning problem.

The smooth parking problem considered in this paper can be introduced as

follows.

Problem 1 (Multi-optimization of a sequence of G3-paths for the
smooth parking problem) Given the number h of paths, consider the space
Fi, of all the sequences of G3-paths {Fi", ry,...Th} (or {I'y, F;’, ...Tx}) such

that this sequence:

a) is feasible as a whole, i.e. there exist feedforward controls v(t),5(t) € Ct for

which the vehicle of model (2.1) follows the path sequence ezxactly, and
b) connects the given initial configuration qs to the final configuration qg.
Find the path sequence in Fp that minimizes the indezes
e the mazimum value of the absolute curvature on the h paths,

e the mazimum value of the absolute curvature derivative on the h paths,

and
e the total length of the h paths I'1,T9,... Ty
subject to the following constraints
1) avoidance of all the obstacles By, Bs ... B, along the paths T'1,Ta,...Ty;
2) {mazimum value of the absolute curvature on the h paths} < kps;
3) {mazimum value of the absolute curvature derivative on the h paths}< fkps;
4) avoidance of steering at standstill;

where Ky = %tan oy and kg is a freely chosen bound for the absolute value

of the curvature derivative.
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Remark It is worth noting the differences among the constraints of prob-
lem 1. Constraints 1) and 2) are hard constraints related to obstacle avoidance
and maximal steering angle (which is a vehicle’s mechanical constraint) re-
spectively, whereas constraints 3) and 4) are soft constraints related to path
smoothness and parking modality respectively. In particular, if steering at
standstill is admitted, the fourth constraint, which is considered in this ex-
position, can be removed without changing the proposed overall approach to
the parking problem.

The constrained multi-optimization of problem 1 is a search in the infinite-
dimensional space Fj,. In the next subsection, an approximation scheme based
on n>-splines will make possible to reduce the search into a finite-dimensional

space for which standard parameter optimization can be used.

2.1.2 Shaping paths sequence with 73-splines

The n3-splines (cf. in [32]) are an effective tool to approximate Cartesian paths
with third-order geometric continuity. Indeed, they can interpolate a sequence
of Cartesian points over which unit-tangent vector, curvature, and curvature
derivative can be arbitrarily assigned. A single n3-spline is a seventh-order

polynomial curve

p(u;n) = [pa(u) py(u)]',  u €0,1], (2.5)
pe(u) = Z a;u’ py(u) = Z,Biul, (2.6)
=0 =0

that depends on a six-dimensional vector i (the eta parameter vector) and
interpolates the data vectors ¢, = [Xq Yo Oa Ka ko) and ¢, = [z yp Op Ky Fp)’, at
the curve endpoints p(0;m) and p(1;m) respectively: (x4 y,) and (zpyp) are
the Cartesian coordinates of the endpoints, 6, and 6, are the direction angles
of the unit-tangent vectors, x, and x; are the scalar curvatures, and £, and
kyp are the derivatives of the scalar curvatures with respect to the arc length.

The n is a free vector in Ri x R* that can be used to shape the resulting path
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while maintaining the interpolation conditions at the endpoints. The complete
closed-form expressions of the n®-spline are reported in [32] and [33].

Here, we propose to use a simplified version of the 73-spline that only
depends on the first two components of vector n (actually the most impor-
tant ones, cf. section V of [32]) while the remaining components are set to
zero. Specifically, in this case 7 is redefined as the two-dimensional vector
[na )" € RZ where its positive components are the mathematical velocities of
the curve at the endpoints, i.e. n, = |[|p(0;n)| and m, = ||p(1;m)|. The corre-
sponding simplified closed-form expressions of coefficients «;, 5;, 7 = 0,1,...,7,

appearing in (2.5) and (2.6) are detailed below:

ap = Tq, Q1 = 1)q 080,

1 1
g = —5172,%@ sinf,, «3= —Engf%a sin 4,

2
ay = 35 (zp — x4) — 20m, cos b, + (Ema + gﬁa"%a) 172 sin 6, — 15m; cos 0y

5! 1
- <§"5b - gﬁb'%b) 1; sin Oy,

ay = —84(xp — 4) + 4514 cos O, — (10K, + na/%a)ng sin 0, + 397 cos Oy
1 .
+ (7/% - 5771,/%) 772 sin 6y,

15 2
ag = 70(xp — x4) — 36m, cos b, + (—ma + —7](1/2&@> ng sin 6, — 34mny cos 6,

2 3
13 1
- <?"‘€b - 5%'%) 1 sin Gy,

1
a7 = —20(xp — 24) + 10m, cos 0, — <2/<a + énaka) 772 sin 0, + 101 cos 6y
1 9 .
+ | 2Kp — Em,/ib n; sin Oy,

BO = Ya, B = Na sin 0,

1 1 5.
62 = 5772'%(1 COs Haa 63 = 6772/% COs 6(17

. 2 .
Ba =35 (yp — ya) — 201, sin b, — <5I<éa + gﬁa’ﬁz) 172 cos 0, — 15m; sin Gy
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2 6
Bs = —84(yp — ya) + 45, sin b, + (10K, + na/%a)ng cos 0, + 391, sin G,

1
- (7Hb - _77b/"<vb> 1y os Oy,

5 1 .
+ (—fib - _77b/<vb> g cos O,

2

15 2

Be = T0(yp — Ya) — 367, sin b, — <?/<a + gna’%a> 172 cos 6, — 34m sin 6y,

131\,
+ 5 b~ Tk 7;, €08 Op,

1
Br = —20(yp — Ya) + 100, sin b, + (2/@1 + Ena/%a> 772 cos 0, + 10m; sin 6y

1
— <2/€b — 6771,12&[,) 775 COS 49[, .

The infinite-dimensional space JF, of problem 1 can be approximated with a
finite-dimensional space by using n>-splines. Consider an element of F, i.e. a
sequence of G3-paths {Ff, ry,....Th} (or {I'7, F;, ...,I'n}), then each FZTF or
I';, will be approximated by a single (simplified) n3-spline denoted as p; (u; ;)

or p; (u;m;). Hence, the sequence of n3-splines

{pf (w;m1), Py (uimy), ..., Pr(usny)},

or
{py (w;n), Pg (u;ma), ..., Pr(wsmy)}s

will be used to set up the multi-optimization for the parking path planning.
The simplified spline p;(u;m;) is defined by the interpolating conditions
Cai = [®ayiYa,i Oayi Kai Fai) and cp; = [Ty Ybi Opi i Fpi)' at the path end-
points and by the parameter vector m; = [14,; M| -
Remark In the proposed approximating scheme, a path I'; is actually ap-
proximated by p; ([0, 1];m;), i.e. the Cartesian image over interval [0, 1] of the
n3-spline curve p; (u;n;). In the following, to simplify notation the same sym-
bol p; (u;m;) or even p; is used to denote both the parametric curve and the

corresponding path.
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The parking sequence of n3-splines {p1,p2,...,Pn} can satisfies the con-
ditions a) and b) and the constraint 4) of problem 1 by a proper assignment of
the interpolation conditions. These assignments are exemplified below for the
cases h =1, 2.

Case h = 1 with {p](u;n;)} (one forward movement of the vehicle): The
vehicle starts at configuration qs and arrives at configuration q, (cf. (2.3)

and (2.4)). Hence, the spline parameters can be set as follows:

T Tg
Ys Yg
Co1l = 0 , Cp1 = 0
er(u.n ) ) a,l ) s b,1 ) g
LA™ 7 tan d 7 tan d,
\ m = [z3 2],

where 21,29 € [—Fum, fa) and 23,24 € Ry indicate the free variables to be
optimized. These are packed in the vector z = [21 23 23 24]’ that belongs to the
search space Z 1= [—fpr, finr]? x R2.

Case h = 1 with {p] (u;m,)} (one backward movement of the vehicle): The

spline parameters can be set as follows:

Ts Tg
Ys Yg
_ Ca,1 = 93 + 7 , Cp1 = ‘99 + 7 5
Py (u;my) : — 1 tan d, — 1 tand
Ny = [23 24]',
where z = [21 20 23 24]' € Z = [k, or)? ¥ Ri.

Case h = 2 with {p{ (u;n;), p; (u;n5)} (one forward movement plus a back-
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ward one): All the spline parameters can be set as follows
( - - - —
Ts <9
Ys 210
" Ca,1 = 05 ; Ch1 = 211 )
Py (u;my) %tan S 219
L 2 [ 22 |
L 771 = [25 ZG]/7
( - — —
29 Tg
Z10 Yg
B Co2= | 211 +7 |, Cp2 = 09 + 7
Py (u;my) : — 219 _% tan d,
IS “4 i
L 772 = [27 ZS]/7
where the free variables are z;, ¢ = 1,...12, and they form the vector z € Z

with Z = [—far, n]t x RY x R? x [0,27) X [k, k) which is a twelve-

dimensional search space.

Case h = 2 with {p] (u;n,),ps (¥;m3)} (one backward movement plus a a

forward one): similarly to the previous case, all the parameters can be set as

follows

Py (usmy) :

Ca,1 =

T
Ys
0y + 7
—% tan o

21

n = [25 26]',

)

29

<10

, Cp1 = 211 | >

212

22
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L, e ]
210 Yg
ot (i) Ca2= | z11+7 |, Ch2= Oy ;
23T 2 — 212 %tanég
L <3 i L %4 i
My = [27 25]".

When h > 2, the spline parameters can be set up similarly as in the pre-
sented cases. Table 2.1 reports the dimension and structure of the search space
Z as a function of h. In particular, when the parking is done with h splines,
the dimension of the search space is 8h — 4: every added spline increases of 8
the dimension of Z.

Remark The proposed approximation scheme replaces each path I'; of se-
quence {I';,T'g,...,T';} with only one n3-spline to avoid excessive increasing
of the dimension of the search space Z. Yet, it would be possible within the
same proposed framework to improve the approximation by using two or more

13-splines for each T;.

2.1.3 Setting up the multi-optimization

In this section the multi-optimization of problem 1 is dealt with the sub-
stitution of the infinite-dimensional space F;, with the finite-dimensional pa-
rameter space Z introduced in the previous section. This corresponds to do
the searching for multi-optimization on the sequences of simplified n3-splines
{p1(u;m1), p2(u;ms), - .., pr(u;my,)} instead of the sequences of G3-paths in-
troduced in subsection 2.1.2.

The three indexes to be minimized using the standard weighted sum method
[34] are (cf. problem 1): the maximum value of the curvature modulus on the
h splines, the maximum value of the absolute value of the curvature derivative
(with respect to the arc length) on the h splines, and the total length of the
h splines. These indexes are respectively denoted by Kmaz, Fmaz, and S and

depend on the parameter vector z € Z. They can be determined as follows (the
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h | dim(Z) Z
1 4 [—Fnr, fenr)? x R2
[—Fonr, k)t x RY x R%x
2 12
[0, 27T) X [—KZM,KVM]
—Fars fr]® x RS x REx
+
3 20
[0,2m)? x [—knr, kar)?
[—Fnr, o) ?P x R2 x R2(A-1
h | 8h—4

[0, 27T)h71 X [—KZM, /iM]hfl

Table 2.1: Dimension and structure of the search space Z.

dependencies on z are omitted for simplicity and p;(u;n;) = [ps,i(u) pyi(w)]’,
i=1,...,h,cf (2.5)):

Emag = max Kmag,i (27)
i=1,...h

where (i =1,...,h)

Kmaz,i = Jnax |ki(u)]

and

S

Hz(u) _ px,l( )py,( ) — px,z(u) 'y,i(u)
(2 i (u) + 9 ()

is the scalar curvature of spline p;(u;n;);

)

Njwo

Rmaz = zinl?xh /%max,i s (28)
where (i =1,...,h)
d/ii )
u
ds ’

Rmag,i = Max
u€(0,1]
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and

d/iz‘( - PaiPyi — Paibyi 3(pz,i]5y,i — P,iPy,i) Pe,ibe,i + Py,iby,i)

ds (p?“ + pzz)Q (p?az + pzz)g

)

is the derivative of the curvature of spline p;(u;n;) with respect to the arc
length (for brevity the dependency on w is omitted in the right side of the

above relation);
h
Stot = Z Stot,i 5 (2-9)
i

where .
Stot = /O [52.(6) + 52.,(6)] V2

The constraint of obstacle avoidance is dealt with the concept of occupancy

span of the vehicle along a path planning:

Definition 4 The occupancy span of the wvehicle along the spline sequence

{P1,P2,...,Pn} is the set defined as

where
Si={peP:pecAlq),q1 =psi(u), @2 = pyi(u),

q3 = arg(pa,i(u) + jpyi(uw)) v € [0,1]} .

Note that the occupancy span depends on z € Z, i.e. § = S(z). Define
the obstacle region O as the union of all the obstacles, i.e. O = U, B; and
the vehicle avoids all the obstacles along a path planning if and only if the
intersection of S(z) and O is the empty set (cf. constraint (2.11) below).

Now the nonlinear constrained multiobjective optimization problem for the

geometric planning of autonomous parking can be stated as follows:

Problem 2 (Multi-optimization of a sequence of n3-splines for the
smooth parking problem) Given the number h of paths, consider the param-
eter space Z that defines the sequences {p},py,---,pPn} (or {P{,P3,---,Pr})



2.1. Multi-optimization of n3-splines for autonomous parking 59

according to the interpolating scheme exposed in section 2.1.3. Then, the posed
problem is (A1, 2, 3 >0 and Ay + Ao + A3 = 1):

mig M Emaz (2) + ANoFmaz (Z) + A3Stot(2) (2.10)

VAS

subject to
S(z)n0 =g, (2.11)
Fmaz(Z) < Kar, (2.12)
Fomaz(2) < finr - (2.13)

The coefficients A1, Ao, and A3 of the composite index to be minimized

in (2.10) can be freely chosen in order to weight the smoothness of the resulting
maneuver paths (which is related to low values of both ke and Fpee) versus
the minimization of s, the total length of the parking paths.
Remark Note that the possible constraint of avoiding steering at vehicle’s
standstill does not appear in the constraints (2.12)-(2.13) because it is plainly
enforced by proper assignment of the geometric interpolating conditions on the
n3-splines.

Obstacle avoidance constraint (2.11) can be equivalently reduced to an
equality constraint by computing the mazimal collision area of the vehicle
along the spline sequence:

mca = max mca;, (2.14)
i=1,..,h

mca; = m[%% {area (A(q) N O) : q1 = pzi(u),
ue|0,

q2 = py,i(u)v q3 = arg(pa:,i(u) + jpy,i (u))} .
Constraint (2.11) is therefore equivalent to

mca(z) =0,

and in such a way problem 2 becomes a constrained minimization problem for

which a standard penalty method [35] can take into account all the constraints
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so as to reduce the whole multi-optimization to the minimization of just one
index. In a real-time scenario for autonomous parking, fast local minimization
algorithms can be then implemented to solve problem 2 provided that the fol-
lowing data is readily available: (1) the number h of splines; (2) the maneuver
sequence to prefer {p},p5,...,Pn} or {P{,P4,---,Pr}; (3) an initial esti-
mate of the parameter vector z. Reasonably, this data can be determined by
using look-up tables that can be constructed off-line by extensive optimizations
such as those based on methods of stochastic global multi-objective optimiza-
tion [36].

2.1.4 Simulation results

Example 1: Firstly, an example of garage parking maneuver in a constrained
environment is considered for a standard compact car with wheelbase and
maximum steering angle of the front wheels [ = 2.3 m and §;; = 0.464 rad.
Hence, the maximum curvature of the car pathsis ks = % tandyr = 0.218 m~ 1.
The allowed maximum absolute value of the curvature derivative with respect
to the arc length is chosen as k3 = 2.50 m~2. The origin of the Cartesian
plane P is chosen to be inside the parking lot that the car has to reach. The

car has start configuration
qs = [:Cs Ys Os 53]/ = [7 —6 371'/4 O]/,

and the final goal configuration, which corresponds to a front car parking mode
(i.e. the car can only reach the goal configuration with a forward final motion

because of the surrounding obstacles (cf. figure 2.6), is
dg = (g yg 04 0g] = [0.7070]".

The multi-optimizations for solving this parking problem are set up with
weights Ay = 0.5, Ay = 0.2, and A3 = 0.3. All the possible spline sequences

to be considered up to three splines are the following (the arguments of the
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n3-splines are omitted for compactness):

1: {pi}, {p1 };
2: {p{, Py}, {PrsP3h
3 {p{. Py, pPi} {PT. Py, P5 )

= > =
Il

The sequences {p; }, {P7, P52}, {P1, P53, P3| have to be discarded due to
the fact that the last spline has to be covered with a car’s forward move-
ment (front car parking). Hence the topologically possible sequences are: {p]},
{p1.p3}, {pP{. Py, p§}. Parking with {p] } is not feasible because the multi-
optimization (2.10) fails to satisfy all the required constraints (2.11)-(2.13).
Instead, both sequences {p;, p3 } and {p], P, 3} lead to feasible parking
maneuvers.

For the two splines maneuver the multi-optimization of {p], p3 } leads to

a Pareto optimal solution
7€ Z=[-2525"* xR} xR? x [0,27) x [-0.218,0.218]

for which Kyae(Z) = 0.143 m™L, fpnes(Z) = 0.260 m™2, s404(Z) = 22.8 m. This
solution is depicted with graphic simulation in figure 2.6. Plots of curvature
and curvature derivative are reported in figure 2.7.

For the three splines maneuver the multi-optimization of {p;, p5, pgr}

leads to solution
zZ € Z=[-2525]° x R} x R* x [0,27)? x [-0.218,0.218],

for which Kpaz(Z) = 0.168 m™Y, fpes(Z) = 0.704 m~2, s404(Z) = 25 m. This
solution is depicted figure 2.8, while curvature and curvature derivative are
reported in figure 2.9.

Example 2: As second example, a parallel parking maneuver in a constrained
environment is considered with the same data for the dynamic model and for
the constraints, given for the precedent example. The car has start and final
configurations

Ao = [ s 0, 0 = [~2.525 7 0],
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Figure 2.7: Plots of curvature and curvature derivative as functions of the arc

length along the entire optimal spline maneuver {p;,pj } in example 1.
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Figure 2.8: Optimal parking with three-spline maneuver {p'li',pQ_ ,pé"} in ex-

ample 1.
0.1 0.08
0.08 0.06
0.06
0.04
0.04
0.02 o2y
—_ @
= =
—-0.02 002 |
-0.04
-0.04
—0.06
-0.08 -006
-0.1 -0.08
0 5 10 15 20 0 5 10 15 20
[m] [m]

Figure 2.9: Plots of curvature and curvature derivative as functions of the arc

length along the entire optimal spline maneuver {py, p5,p1 } in example 1.
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Figure 2.10: Optimal parking with three-spline maneuver {p;,py,p3 } in ex-

ample 2.
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Figure 2.11: Plots of curvature and curvature derivative as functions of the arc

length along the entire optimal spline maneuver {py, p5,p1 } in example 2.
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and
dg = [2g yg 04 04] =007 0],
respectively. Setting Ay = 0.3, Ay = 0.2, and A3 = 0.5, sequence {p;, Py, P3 }

is the first one results to be feasible. The optimal solution
7€ Z=[-2525]° x R} x R* x [0,27)? x [-0.218,0.218]*.

for the sequence {p], Py, P3 } gives the results: Kyqz(Z) = 0.165 ML, g (Z)
0.551 m~2, s;,4(Z) = 17.9 m. This solution is depicted with graphic simulation
in figure 2.10. Plots of curvature and curvature derivative are reported in fig-
ure 2.11.

2.2 Path generation for a truck and trailer vehicle

In this section a method for the smooth path generation of a truck and trailer
vehicle is presented. The advantages and potentialities in achieving full or
partial autonomy in the guidance of automated vehicles are a strong motivation
to improve current technologies and methodologies. Focusing on the motion
automation of articulated vehicles, the present work addresses the need to
generate high quality drive paths for an automated truck and trailer vehicle.
This need can arise in a variety of applications (e.g. in industry, agriculture,
mining, etc. [37,38]).

Considering the usual kinematic model of a truck and trailer vehicle, this
section presents a new trajectory generation method in which the feedforward
(i.e. open-loop) control can steer the vehicle from an initial configuration to
a final one, while permitting free shaping of the trailer path connecting these
configurations. With this method, the feedforward controls, i.e. the truck veloc-
ity and the steering angle of the front wheels, are smooth C'-signals, the initial
and final configurations are arbitrary and the connecting path is modeled by
using a new curve primitive, the n*-spline.

The problem of nonholonomic trajectory generation for an n-trailer ve-

hicle (i.e. an articulated vehicle consisting of a truck towing n trailers) was
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considered and solved in [39] by using three distinct classes of control inputs:
sinusoids, piece-wise constants, and polynomials. This method relies on, by co-
ordinate transformations, the conversion of the n-trailer system into a Goursat
normal form and then into the corresponding chained form [40] for which the
controllability problem (i.e. the problem of steering between system configura-
tions) is solved by feedforward control. Then, by reversing the transformations
the actual system inputs are obtained; however in this reversing singularities
may appear so that the desired control is not guaranteed to be obtained in all
planning cases. Moreover, the method does not account for any flexibility in

direct shaping or modeling the Cartesian paths of the trailers and the truck.

This section proposes a path generation methodology for the smooth feed-
forward control of the truck and trailer vehicle within the framework of path-
velocity decomposition [3]. A result presented in the following subsections
(proposition 4) shows that the path generated by the vehicle trailer is a G-
path [32,33] (i.e. a path which has fourth-order geometric continuity) if and
only if, excluding kinematic singularities, the velocity and the steering func-

tions of the truck are Cl-functions.

Fourth-order geometric continuity accounts for the continuity along the
curve of the path itself, the unit tangent vector, the curvature, and the first and
second order curvature derivatives with respect to the arc length. Therefore,
when pursuing the smooth feedforward control of the articulated vehicle, path
planning can be pertinently done with G*-paths. This naturally leads to the

polynomial G*-interpolating problem on the Cartesian plane.

The section presents a complete solution to this interpolating problem. The
solution is the m*-spline which is a ninth-order polynomial curve interpolat-
ing Cartesian points with associated arbitrary G*-data (unit tangent vector,
curvature, first and second derivatives of curvature). The n-spline generalizes
the n2-spline and n3-spline previously presented in the precedent sections. The
n*-spline is a curve primitive that depends on set of 8 parameters, which can
be freely chosen to modify the path shape without changing the interpolation

conditions at the path endpoints.
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2.2.1 Smooth feedforward control of the truck and trailer ve-
hicle

Consider a truck an trailer vehicle with the trailer supposed to be joined to the
truck at the midpoint of its rear axle. See figure 2.12 where a schematic plan

view of the articulated vehicle on a Cartesian frame {z, y} is depicted. We

Y

Y1

Figure 2.12: Schematic of a truck and trailer vehicle.

indicate with couple (z1, y1) the coordinates of the axle midpoint of the trailer
and with 6; its orientation angle with respect to the x axis. The truck actuates
the motion by the velocity v of the rear wheels and by the steering angle ¢
of the front wheels. The distance between the front axle and the rear axle of
the truck is dy, whereas the distance between the trailer axle and the rear axle
of the truck is d;. With the usual modeling assumptions of rigid body of the
truck and the trailer and of no-slippage of the wheels, the following nonlinear

kinematic model of the articulated vehicle can be deduced

1 = wcos(fy—01) cosbq
gl = v cos(fp —0;) sinb, (2.15)
0y = tan o

v
do
v
dy

Sin(90 — 91) .
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We saw in the precedent sections that in this context it is convenient to use
the extended state of model (2.15), or configuration of the articulated vehicle,

which is defined as the state plus the inputs and their derivatives:
(x1,y1,00,01,v,0,6,0) . (2.16)
The following definition will be used along this section:

Definition 5 (GX-curve, k > 2) A curve p(u), with u € [ug,u1], has k-
th order geometric continuity, and we say p(u) is a G*-curve, if p(u) is a
GF=1-curve, %p(u) € PC([up,u1]), and the (k — 2)-th order derivative of
the curvature with respect to the arc length is continuous along the curve, i.e.

%m(u) € C%[ug, u1]).

The G*-continuity of curves can be naturally extended to Cartesian paths as

follows:

Definition 6 (GX-paths) A given set of points of a Cartesian plane is a G*-

path if there exists a parametric G*-curve whose image is the given path.

We stated above that, in order to obtain a smooth vehicle motion, inputs v(t)
and §(t) must be C'-functions. Such a continuity of these vehicle inputs is
linked to the fourth-order geometric continuity of the trailer path as stated by

the following proposition.

Proposition 4 Assign any ty > 0. For model (2.15), consider smooth inputs
v(t),d(t) € CH([0,ty]), with v(t) # 0, |6(t)] < 5 and initial conditions such that
00(t) — 01(t)] < 5, Vt € [0,tf]. Then the path generated by model (2.15), i.e.

231

Y1
inputs v(t),0(t) € CH([0,t7]) with v(t) # 0, |6(t)] < 5, Vt € [0,ts] and initial
conditions for which |0o(t) — 601(t)| < 5, Vt € [0,t7] and the path generated by

([O,tf]) =T.

([0,t¢]), is @ G*-path. Conversely, given a G*-path T' there exist smooth

T
Y1

system (2.15) coincides with the given T, i.e.
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Proof. Let us demonstrate the first part of the proposition. The solution of the
differential equations (2.15) leads to trajectory [z1(t)yi(t)]’, t € [0,t¢] which
is a regular Cartesian curve. Indeed, its derivative [1(¢) 91(¢)]7 never vanishes
over [0,%f] because v(t) # 0 and |0o(t) — 01(t)| < 5, Yt € [0,1].

The unit tangent vector of curve [z1(¢) y1(¢)]" can be expressed as

_ _@®un@ _ cos 01 (t)
RV OET O (t))[sinm(t)]' 1

Hence, the unit tangent vector 7 is continuous over the trailer curve because
61(t) is continuous in [0,t¢].
As known from the theory of planar curves [41], the scalar curvature k is

given by the derivative of the tangent angle 6; with respect to the arc length
s, where s = fg(az%(f) + y%(f))%df. It can be expressed as follows

. dfy dfp 1 . 1
P I LT
ds dt G (@1 + 9}
v 1
= 2 sin(0g—0;) ——
g, S =00 o
1
= sgn(v) — tan(fy — 61) . (2.18)

dy

For the continuity of the state variables fy and #;, curvature x is continuous

in [0, %] too. The derivative of the scalar curvature & is given by

dr 1 1 1
an _ — tané — —sin(6y — 0,) ] . 2.1
ds  dicos3 (8o —0) |do 0T 4 sin(fo — 01) (2.19)

The curvature derivative ‘é—’; is then continuous along the curve because 6y, 01

and ¢ are continuous in [0,%f]. Finally, the second derivative of the curvature
can be expressed as follows

d’k 5 % tand — d_ll sin(90 — 091)

ds? lu|dody cos?é cost(By — 01) sen(v) d? cos®(0p — 61)

> (2.20)
3 % tand — % sin(fp — 61)| sin(6y — 61)

d1 COS5(90 — 91)

+sgn(v)
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Again, from the continuity of the state variables 6y and 6; and from the hy-
pothesis v,§ € C1([0,¢¢]), the second derivative of the curvature with respect
to the arc length is continuous in [0, t¢]. This shows that curve [z1(¢) y1(t)] is
z1

Y1
In order to prove the converse part of the proposition, consider the G*-

a G*-curve, hence the image ([0,]) is a G*-path.

curve p(s), where s is the arc length on I" and p([0, s¢]) = I" with s¢ being the

total arc length of I'. We choose the following initial conditions

.%'1(0) _
[ y1(0) ] —PO
00(0) = arg 2 (0) + arctan(d;x(0))
01(0) = arg 2 (0),

(2.21)

where z—g’(s) and k(s) are the unit tangent vector and the curvature of p(s)

respectively.
Also consider any vy (t) € C1([0,¢f]) such that v1(t) > 0, V¢ € [0,¢/] and

ty
/0 on(€)d = s

Then define the control inputs as

1
2

t) = v1(t) [1 + d?k? 2.22
o) = o B (222)
and
dody %
0(t) = arctan do: STt 0 12d52 3] (2.23)
) ] o

Obviously, v(t) # 0, Vt € [0,t¢] and v(t) € C*([0,t]) because vy € C1([0,t¢])
and £ € CY([0,sy]). Moreover, |6(t)] < F, Vt € [0,¢f] and 8(t) € C([0,y])
because k € C%([0, s7]) (indeed p(s) is a G*-curve).

Explicit solutions of system (2.15) can be given for 6y and 6; as follows:

Oo(t) = 60(0) + /O t%)tana(mdr, (2.24)

01(t) = 6o(t) — arctan [dix(s)]] (2.25)

s= [ vi(€)d¢
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Straightforwardly, solution (2.24) satisfies the third equation of system (2.15).
By explicit derivation of solution (2.25) and some computations the fourth

equation of system (2.15) is also verified and

O1(t) = vi(t)r(s)|,_ P EE 0t (2.26)

From (2.25) evidently the inequality [0o(t) — 61(t)] < 5, Vt € [0,%;] follows.

The last point to prove is

fEl(t)
[ yi(t) ] = P()|impt gy ae - t € [0:25]- (2.27)
First note that
01(t) = arg Ccll_p ’ (2.28)
F ls= [y vi(€) de

and recall that

d
K= £(arg7'), (2.29)

because 61(0) = arg Z—E(O) (cf. conditions (2.21)) and the derivatives of both
sides of (2.28) coincide (cf. (2.29) and (2.26)):

dt 7 ds gty () ae ds " ds |ty eae At

= K(S)|3:fot v (€)de U1 (t) = él(t) .
In turn, identity (2.27) holds because [1(0) y1(0)]" = p(0) (cf. conditions (2.21))

and derivatives of the sides of (2.27) are equal to each other. Indeed, by virtue
of (2.22) and (2.25)

v1(t) = v(t) cos(Oy(t) — 01(t)),
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so that
d dp ds
ap(s) . = s . “at
s= [y v1(€)de § s=[y v1(€)dE

cos arg fl—g
sin arg Z—S

_ | cos 01(t)
sin 91 (t)

v (t)
s= [ v1(€)d¢

] o(t) cos(Bolt) — 61 (1)) = [ #1(0) ] ,

1(t)

the last equality being derived from the first two equations of system (2.15).
d

The provided proof of proposition 4 is fully constructive. Indeed, it pro-
vides the dynamic path inversion procedure to determine the feedforward in-
verse control to drive the articulated vehicle from a given configuration to a
target configuration, along a G*-path. This path can be any desired G*-path
provided that the path endpoints have Cartesian coordinates, unit tangent vec-
tor, curvature, and first and second derivatives of curvature in accordance with
the current vehicle configuration (cf. (2.17)-(2.20)). Hence, the generation of
a G*-path for the articulated vehicle must ensure interpolating conditions at
the endpoints up to the second derivative of the curvature. This is the problem

that is addressed, in a polynomial setting, in the next subsection.

2.2.2 The n*-splines

Considered the result relative to the smooth feedforward control of the truck
and trailer vehicle as exposed in the previous section (proposition 4), the fol-

lowing interpolation problem in the Cartesian plane is introduced.

Problem 3 Determine the minimal order polynomial curve which interpolates
two given endpoints pa = [ra yal' and pp = [z yB]
tangent vectors defined by angles 04 and O0p, scalar curvatures kK4 and Kp,

" with associated unit

curvature derivatives k4, kp and second-order derivatives of the curvature k4,

kp (both deriwatives are defined with respect to the arc length) (see figure 2.13).
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Assume that interpolating data pa, pp € R?, 04,05 € [0,27), k4, kg € R,
kA, kB € R and K4, kp € R can be arbitrarily assigned.

Y a
OB

va’ti’%'BH‘%B

04
PA, KA, KA, KA

v

Figure 2.13: The polynomial G*-interpolating problem.

The provisional solution for the above interpolating problem is given by a

ninth-order polynomial curve p(u) = [a(u) B(u)]’, v € [0,1] defined as follows
9 .
a(u) = Z a;u’, (2.30)
i=0

9
Blu) = B, (2.31)
=0

where coefficients a;,5; ¢ = 0,...,9 are to be determined according to the
above interpolating problem. As known from the theory of planar curves, the

unit tangent vector 7 and curvature x can be expressed as

T(u) = % (2.32)
() = 20 =98 (2.33)

(a+p)32
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Deduction of the first and second derivative of the curvature x with respect to
the arc length leads to the following formulae:
ds (a2 + (42)3

) (2.34)
o) =[(@B —wh+al - @h)a®+ ) - 7(aB - @) (ad + )
(6% + F%) = 3(6f — Gp)(6° + B2 + & + B5) (67 + 5%)
+ 18(af3 — a) (ad + BB)> @
(2.35)
The imposition of the G*-interpolating conditions of the above problem on the

endpoints of p(u) leads to the following relations:

P(0) = pa, (2.36)
p(l) =ps, (2.37)
SCR 235)
SO 29)
K(0) = ki, (2.40)
k(1) = kg, (2.41)
%(0) e (2.42)
%(1) = g, (2.43)
%(0) =, (2.44)
%’;(1) = ig. (2.45)

Note that relation (2.38) and (2.39), which ensure the interpolation of the
unit tangent vectors, are well posed provided that n; and ny are any positive

parameters.
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Relations (2.36)-(2.45) form a nonlinear algebraic system of 14 equations
in the 20 unknowns «;, 5;. Hence this system may admit a solution set with

6 degrees of freedom. This solution set can be parametrized according to the

introduction of further 6 real parameters 73, ..., ng defined as follows:

. _COSHA-

(B(0), | . ) = m3, (2.46)
_smHA_

. _COSHB-

B(1), | . ) = T, (2.47)
_smHB_

_COSHA-

(P(0), | . ) = s, (2.48)
_smHA_

_COSHB-

(P(1), | . ) = 76, (2.49)
_smHB_

_COSHA-

(P(0), | | ) =, (2.50)
sin 6 4

_COSHB-

(P(1), | | ) = ms. (2.51)
sinfp

Equations (2.36)-(2.45) and (2.46)-(2.51) form an algebraic system of 20 equa-
tions in the 20 unknowns «;, 5;, 1 = 0,...,9 that depends on the real parame-
ters m1,m2 € Ry and n3,...,7m8 € R. This parameters can be packed to form the
eta vector m := [y ... ng]’ belonging to the parameter space H := R? x RS
From equations (2.36) and (2.38) we determine

ag=x4, Bo=ya,
(2.52)
ap =mn1cosfa, [Br=mnsinfy.

Equations (2.37) and (2.39) lead to the linear equations

9 9
a(l) = Zai =xp, p(1)= Zﬁl =YB, (2.53)
=0 =0

9 9

&(1) =) iay=mgcosbp, B(1)=> iBi=nsinbp. (2.54)

i=1 =1
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From equation (2.40) and solution «aq, 31 given by (2.52) we obtain
—2m1 sin B qa + 211 cos 0482 = n%fm , (2.55)

and from (2.46)
2cosfp0ie +2sin 0482 =n3 . (2.56)

Equations (2.55) and (2.56) give the solutions
1 1, |
a9 :5773 cos 04 — 5171/@1 sinfy , (2.57)
1 1,
B =5 sin@4 — EnlmACOSHA. (2.58)
Taking into account relation (2.34), equation (2.42) becomes
(6c1Bs — 6B1as)n; — 12(c1 B2 — azfr)(arae + Bifa) = niia, (2.59)
and from (2.48) we obtain
6cosfaas + 6sinf583 = 75 . (2.60)

By substitution of solutions (2.52), (2.57), and (2.58), equations (2.59), (2.60)
form a linear algebraic system in the unknowns «g, 3 which has a unique
solution because the determinant of its coefficient matrix is equal to 677 and

it differs from zero on the assumption n; > 0. This solution is given by

1 1 5. . 1
ag = — | gMIBKA + £NkA | sin 0a+ G5 o8 04, (2.61)
1 1 3, L.

Using relation (2.35), equation (2.44) becomes

12(201 By — 204 B1 + a3 — asBo)nt — 84(a1 B3 — asBr) (aran + B1B2)ns
—12(e1 B2 — a231) (203 + 2535 + 3aras + 3B183)n5

+144(a1 B2 — b)) (arag + B152)? = 11k a
(2.63)
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and from (2.50) we have
24 cos 0 qaq + 24sin 04084 = 17 . (2.64)

By substitution of solutions (2.52), (2.57), (2.58), (2.61), and (2.62), the above
equations (2.63), (2.64) are a linear algebraic system in the unknowns ay, Ss.

There exists a unique solution given by

1 1, . 143 1 4.
g = — | ~MmNska + 1 isRA + SMKA+ 5 NikA

6 8 24
, X (2.65)
- 5773/@4) sinf + 5417 cos 04,
1 1 . 1 1 4.
By = | =mmska + —ninsia + =nik% + —ntia
6 4 8 24 (2 66)

8

because the coefficient matrix of system (2.63), (2.64) is nonsingular (the de-

1 1 .
+ —n3ka | cosO4 + ﬂmsmHA,

terminant of this matrix is 2477 which differs from zero because 7; > 0). By

substituting relations (2.54) into equation (2.41) we obtain
nacosfp B(1) —nasinfp (1) = n3kp, (2.67)

and from (2.47)
cosOp (1) +sinfp S(1) =14 . (2.68)

The linear system given by equations (2.67) and (2.68) admits the unique
solution (its coefficient matrix is nonsingular because it is equal to —ny that

differs from zero by assumption):

@(1) =mngcosbp — n%mB sin 0g, (2.69)
5(1) :7]4sin03+n§/€3 cosfp. (2.70)

Using relations (2.54), (2.69), (2.70) into equation (2.43) we have

ng coslp ﬁ(l) — 7]% sinfp a(1) = ng/%B + 3773774&3 (2.71)
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and from (2.49)

cosfp @(1) +sinfp 5 (1) = ne. (2.72)

The determinant of coefficient matrix of linear equations (2.71), (2.72) is —n3

so that the following unique solution holds:

A& (1) =ngcosbp — (ngf%B + 3772174,%3) sinfpg, (2.73)
ﬁ(l) = ngsinfp + (7]%/%3 + 3172774,%3) coslp. (2.74)

By substituting relations (2.54), (2.69), (2.70), (2.73), (2.74) into equation (2.45)

we obtain

n3cosfp B (1) —n3sinfp 'd (1) =

' (2.75)
'k + 3nsKG + 30k + dnanekp + 6manakp .

and from (2.51)

cosfp & (1) +sinfp B (1) =ns. (2.76)

Again, the pair of linear equations (2.75) and (2.76) admits a unique solution

(the determinant of the coefficient matrix is —n3) which is reported below:

‘a’(1) =ngcosfp — [3 (772/-@3 + 773/-@%) + dnomukp + 677%774/%3 + ng’i%B] sinfpg,
(2.77)

5(1) =ngsinfp + [3 (nZFcB + 77‘21%33) + dnomukp + 677%774/%3 + ng’iég] cosfOp.
(2.78)

By collecting the relations defining a(1), (1), é(1), & (1), and ‘o’ (1) (cf. (2.53),
(2.54), (2.69), (2.73), (2.77)) the following linear system in the unknowns as,
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Qag, a7, ag, 1S g is obtained:
o5 +ag+art+ag+ag=Tp—0p— Q] —Q— 03 — Q4
Sag + 6ag + Tay + 8ag + 9ag = na cosp — ap — 2a0 — 3z — day
205 4+ 30ag + 42ar7 4+ 56ag + 729 = My cos Op — 77%%;3 sinfpg
— 209 — b6ag — 120y
(2.79)
60as + 12006 + 210a7 + 336 + 5049 = mg cos Op
— (77%/%3 + 3772774#;3) sinflg — 6az — 240y
1205 4 360ag + 8407 + 1680ag + 30249 = mg cos Op

— [773/'%3 +3 (7]3%33 + nZFcB) + 4dnomukp + 677%774/%3] coslp — 24ay .

Similarly, by collecting the relations defining 5(1), B(l), B(l), B (1), and 5(1)
(cf. (2.53), (2.54), (2.70), (2.74), (2.78)) the following linear system in the
unknowns s, Bs, 87, Bs, and By holds:
(85 + B+ 7+ Bs + Bo =y — Bo— P1— B2 — Bs — P

505 + 656 + 707 + 80 + 9By = n2sinblp — P1 — 202 — 33 — 44

20835 + 3085 + 4287 4 5633 + 72P9 = nusinfp + Nk p cos

— 282 — 683 — 12534
6085 + 12086 + 21087 + 33635 + 50489 = 16 sin O
+ (nSI%B + 3772174,%3) cosfp — 683 — 243,
12085 + 3608 + 84087 + 16808s + 302439 = ngsinfp
+ [m3iip + 3 (n3kh + nikp) + donakp + 6n3naiip] sinfp — 248, .

(2.80)

The above linear systems (2.79), (2.80) have the same coefficient matrix whose
determinant is 288. Hence, a unique solution can be deduced for all the un-
knowns. The explicit expressions of all coefficients «;, 3;, 1 = 0,...,9 are not
reported for brevity (see [23] for more details). The resulting polynomial curve

is denoted by p(u; ) and it is called n*-spline.

Proposition 5 (Completeness) The n*-spline p(u;n) satisfies any given
set of interpolating data pa, 04, KA, kA, kAo and pB, 0B, kKB, kB, KB for
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all m € H. Conversely, given any ninth-order polynomial curve q(u), u € [0, 1]
with q(0) # 0 and §(1) # 0 which satisfies a given set of interpolating condi-
tions pa, 04, kK4, kA, ka and P, 0B, KB, kB, kB, there exists a parameter
vector m € H such that p(u;m) coincides with q(u).

Proof. Tt has been shown that system (2.36)-(2.51) is equivalent to a linear
system whose coefficient matrix is nonsingular, provided that n; > 0 and 72 >
0. Hence, the solution provided by the n*-spline is unique and satisfies any
given set of interpolating data pa, 04, k4, ka, k4 and pp, 0B, KB, KB, KB
for all n € H. Define n; := [|q(0)|| and 72 := ||q(1)||, so that n1,7m2 > 0 by
hypothesis. Define 74 := [cosf4 sinf4)’, 75 := [cosfp sinfp]" and set the

parameters ns, ..., ng according to

13 = (4(0), Ta), n5:=(d(0), Ta), n7:=(4d(0), Ta),

na= (A1), 78), me:=(d(1), 75), ns:=(d(1), Tp).
Having defined all the eta parameters, consider the algebraic system (2.36)-
(2.51) with the given set of interpolating conditions pa, 04, K4, 4, k4 and pp,
0B, kB, kB, kp. The unknowns are the coefficients of a ninth-order polynomial

curve p(u). Hence, there exists a unique solution, the n*-spline p(u;n), that

must coincides with q(u). O

Property 1 (Minimality) The n*-spline p(u;n) is the minimal order poly-
nomial curve interpolating any arbitrarily given set of data pa,pr € RZ,

04,0 € [0, 27T), kA, kB €R, kg, kg ER, and K4,k € R.

Proof. Proposition 5 shows that the n*-spline p(u;n) is the family of all poly-
nomial curves, till to the ninth order, interpolating any given G*-data. Hence,
if an eighth or lower order polynomial curve interpolating any assigned set of
boundary condition exists, it must coincide with p(u;n) for some appropri-
ate n € H. Consider the following boundary conditions (leading to a so-called
lane-change path):

pa=1[00,pg=1[21],04=0p=0,64 = kg =0,

ka=kp=0,k4 =Kp =0,
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and evaluate the n*-spline using its coefficients (cf. [23]):

1 1 1 35
a(u;n) = mu + =nzu® + —nsu® + —nrut + [252 — T0m — 56m2 — =13

2 6 24 2
21 5 5 1 s 105
+7774 5 6 T 5, + ﬂﬁs} u’ + [—840 + 224m + 196m2 + B
7720 23 5 1 ] 6
—— s+ =5 4 g + =17 — = 1080 — 2801, — 2601, —
5 + 3 + Gl + ' 6778] u’ + [1080 — 28071 — 26072 — 6313
15 11 5 1],
+53n4 — 575~ 5 — gl | Ul + [—630 + 16071 + 15572 + 3573
65 7 5 1
— s+ A5 4 =6 + —n7 — =ng | ub + [140 — -
5 M+ Ans + ons + o 6778] u® + [140 — 3571 — 35m2
15 15 5 5 Lo 0
—-—— —MNa— =T5 — =N — = —ng| U
9 3 9 T4 6775 6776 24777 24778 s

Blu;m) = 126u° — 420u° + 540u" — 315u® + 700 .

Evidently, 5(u;n) is a strict ninth-order polynomial that does non depend on
7. Thus, it is not possible to interpolate the given data with an eighth or lower
order polynomial curve. O

Proposition 5 and property 1 make evident that the found n*-spline is the
complete solution the posed G*-interpolating problem. The n*-spline present
itself as a family of polynomial curves parametrized by eta parameters 7y, ..., 7s.

A relevant property of this parametrization is the symmetry.

Property 2 (Symmetry) Assume n =n2 =v € Ry, n3 = —my = w € R,
s =n6=z€R, nr=—-ng=t€R and definen=pvovw —wzzt —t.
Moreover, consider 04 = 0p = 0 € [0,27), k4 = —kp = Kk € R, g = kp =
k €R, kg = —kp = Kk € R. Then, for any pa and pp, curve p(u;n) satisfies

the following symmetry relation
p(u;n) =pa+pp—p(l—umn) (2.81)

Vu € [0,1], Yo € Ry, Yw, z,t € R, V0 € [0,27), and VK, i, ik € R.
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Y a

YA

TA
Figure 2.14: Symmetry of the n*-spline.

Proof. It is always possible to find d;,dy € R such that (cf. figure 2.14)

cos 0 d —sin6
sin 0 2 cosO |’

Curve p(u; ), evaluated by means of its coefficients and the assigned inter-

£

PB = Pa +di

polating conditions, can be expressed as

TaA cosf cosf@ —sinf
p(u;m) = ‘o fut |
YA sin 6 sinf  cosf

w 2
K
KU

1 3 t 4
+- u” +— u
6 | ko3 + 3I€’Uw‘| 24 | kvt + 6402w + dkvz + 3kw? + 3%31}41
N 126d; — 126v — 28w —Tz— 1t 5
u
126dy — —fw4 ;/-'@113 gm) w — 28kv> —%IQ’LUQ — RVZ — %m)w 2H3’U4
n —420d, + 420v + 91w +2+ L 6
u
—420dy + —fw + 2 m) + fw 2w + 91kv? + kw? + 1 fwz—i— —fww—i— T3t
540d; — 540v — 116w —13z — 2t .
540dy — —m) — 13403 — 4kv%w — 116Kk0v%2 —2kw? — %/ﬂ)z — 39kvw — 2K3v*
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—315d; + 3150 + 22w +22+ 3¢ .
—315ds + %i{’u‘l + 1—25/%1)3 + %waw + 13—5111)2 +§nw2 + %nvz + %m)w + %n3v4
L 70d; — 70v — 15w f%z — %t 9
u )
70dy — 1—12/'%1)4 — %mﬁ — %iﬂ)Qw — 15k0? fi/in — %nvz — Brvw — i/{3v4

(2.82)
Now, use (2.82) to evaluate p(u;n)+p(1—u;n). Some algebraic manipulations

are required to obtain

T cos —sinf| |d
p(w;n) +p(1—wm) =2 " + | "' =pa+ps,
YA sinf cosf do

and conclude that, evidently, (2.81) holds Yu € [0,1], Vv € Ry, Yw, z,t € R,
V0 € [0,27), and Vk, i, & € R. dJ

A variety of curve primitives (circular arc, clotoids, cubic spirals, etc.) can
be approximated by the n*-spline (as shown in [32,33] for the n-spline). The
significant case relative to the line segment primitive, as illustrated by property

below.

Property 3 (Line segment generation) Let be given any pair of Cartesian
point pa, pp with pa # pp. Define 0 := arg(pp — pa) and set 04 = 0 =0,
ka=kp =0, kg =kp =0, kg = kp = 0. Then, p(u; n) is a line segment
Yn e H.

Proof. Define d := ||pp — pa||. Hence

PR =pPa+d

cos 6
sing |’
and the n*-spline with the assigned interpolating condition can be expressed

as follows

plusm) = || + flusm) [ 9] , (2.83)

sin 6
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where f(u;n) is the following function

1 1 1 35
fusn) =mu+ 57731&2 + 6n5u3 - ﬂmu“ - [126d = 70 = 567> — <713

+ 21 o o + 1 5 1 | —420d + 2241 + 1961 + 105
—_— _ — [ — u —
9 T4 2?75 Tle 5 4?77 B 4778 m T2 B UE

7 20 23 5 1
— =Mt o+ =N+ I _778] u® + [540d — 280m; — 26072 — 6373

2 3 6 6
15 11 5 1
+ 5314 — 7175 — ?776 — 57]7 + Zn8:| u7 + [—315d + 160n; + 155m2 + 3573
65 7 5 1 15
- = 4 Z - 8 — — _ -
5 + 4ns + 56 + i 6778] u” + [70d 3511 — 3572 5 113
N 15 5 5 1 N 1 0
—Ny — N5 — =N6 — — — u”.
5= G5~ g6 — 5 T 57

It is easy to verify that f(0;n) = 0 and f(1;n) = d. Thus, equation (2.83)
proves that p(u;n) belongs to the segment line joining p4 with pp Vn € H. O

2.2.3 A path planning example

Consider a parking maneuver for an automated truck and trailer vehicle in
an unobstructed environment. The composed vehicle starts from the initial

configuration

. 3 7 T
0g, 0 0,0,0) = (1 -7, = —
(xl)yl) 0,%1,v,0,0, ) ( 8)35 477) 250)05 12)

0),
and with a forward movement reaches the final configuration (0, O, 7,0, 0,0, 0)
(as usual, Cartesian coordinates are expressed in meters |m| and angles in
radians [rad]). The truck vehicle has wheelbase dy = 3 m and the distance
between the trailer axle and the truck joint is d; = 4 m. The path of the trailer
at the endpoints must have [z4 ya]' = [18 3]', 4 = § and [zp yp]' = [0 0],
Og = .

From formulae (2.18), (2.19) we also deduce that k4 = —0.25 m~!, iy =
0.1882 m~2 and kg = 0, g = 0. The second derivatives of curvature at the

endpoints, k4 and kg, can be freely chosen according to relation (2.20) because
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the truck and trailer is at rest in the initial and final configurations (v = 0 and
6= 0). Hence, the parking path which refers to the trailer axis midpoint can
be planned using an n*-spline p(u,n) with the above determined interpolating
conditions. The actual shape of this n%-spline depends on 10 free parame-
ters (ka,kp € R, n1,m2 € Ry, n3,...,n8 € R) and this gives a significant
flexibility in achieving a satisfactory parking maneuver. The most important
parameters influencing the path shape are k4, ip and “curve velocities” 1,79
(cf. (2.38), (2.39)). See figures 2.15, 2.16, 2.17, and 2.18 which depict families

of paths according to the following settings. For all n*-spline families we have

Yo

Figure 2.15: The n*-spline with i 4 varying in [-3, 3].

ny =---=mn3 =0and k4 € [-3, 3], kp = 0, ;1 = n2 = 10 (figure 2.15),
ka =0, kp € [-3, 3], m = n2 = 10 (figure 2.16), k4 = kp =0, m € [4, 25],
n2 = 10 (figure 2.17), and k4 = kp = 0, ;1 = 10, 12 € [4, 25] (figure 2.18).

The other shaping parameters are 73,74, the curve acceleration projected
on the unit tangent vectors at the endpoints of the n*-spline (cf. (2.46), (2.47)),
15,76, the curve jerk at the curve endpoints (cf. (2.48), (2.49)), and n7,ns, the
curve jerk derivatives at the path endpoints (cf. (2.50), (2.51)).

The freedom in selecting the free parameters leads to pose an optimal path

planning problem. A sensible index to minimize is the maximum of the steering
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Yo

Yo

Figure 2.17: The n*-spline with 7; varying in [4, 25].

angle modulus over the whole maneuver path:

. min dmax ; (2.84)
Ra,kBeER, neH

where dmax := max,e[o, 5,1 [0(s)[, and sy denotes the total length of the n-

spline. The steering angle as a function of the curvilinear abscissa, d(s) can be
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Yo

Figure 2.18: The n*-spline with 7 varying in [4, 25].

uniquely determined by relations (2.18) and (2.19):

do

K(S) d0d1 dk
(1+ d32(s))1/2

(+ &2 ds

d(s) = arctan + (2.85)

The above formula (2.85), which is a generalization of the well-known relation
0(s) = arctan [dyk(s)] for car-like vehicles without trailers, is the basis of the
dynamic path inversion approach to the feedforward of the truck and trailer
vehicle [5]. The optimal minimax problem (2.84) can be reduced to a standard
minimization by a sweeping discretization over u € [0, 1], the curve parameter
of spline p(u;m). Using local optimization, the following results have been
obtained: the optimal maximum steering is dmax = 0.6197 rad (corresponding
to 35°.51) which is archived with K4 = —0.0783 m~2, kg = —0.124 m~2,
m = 3b.14, o = 22.73, N3 = 70.40, Ny = —0.5326, )5 = —1367, g = —17.42,
N7 = 7013, and 7jg = 214.6. The corresponding length of the n*-spline is 5p=
25.74 m. These results are depicted in figures 2.19 and 2.20. In particular,
figure 2.20 reports both the optimal path of the trailer and the corresponding
path of the truck.

It is useful for real-time applications to reduce the computational burden

associated to problem (2.84). This can be achieved by adopting the heuristic



88 Chapter 2. Path generation and autonomous parking

Figure 2.19: The optimal steering &(s) for problem (2.84).

14 B

Figure 2.20: The optimal maneuver paths for problem (2.84).
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of setting to zero all the eta parameters from 73 to ns [30,32,33]. In such a
way, the considered problem becomes

min (Smax . (286)
KaA,kB€ER, M >0,m2>0

The found solution for problem (2.86) is dmax = 0.7309 (or 41°.88) which
corresponds to the parameters k4 = —0.0353 m~2, kg = —0.0825 m~2, 7j; =
30.33, and 72 = 17.31; the total spline length is 57 = 24.20 m (see figures 2.21
and 2.22).

Figure 2.21: The optimal steering &(s) for problem (2.86).

Another index which can be appropriately minimized is the total spline
length sy and also considering the previous index dmax, it emerges a multi-
objective optimization that can be posed as follows:

min H{)\15max + Aosy} (2.87)

Ra,kBER, ne

where A1, Ao > 0 and Ay + Ay = 1. The weight coefficients A\; and Ay can be
freely chosen to set a trade-off between dmax and sy. For example by choos-
ing A1 = 0.95 and A2 = 0.05, the found solution for (2.87) is the following:
AMdmax + A28 = 1.836 with dmax = 0.6761 (or 38°.74), 57 = 23.88 m. The
corresponding optimal parameters are k4 = —0.0642 m~2, kg = —0.1401 m~2,
m = 28.14, 775 = 23.18, N3 = 19.28, 4 = 1.054, 755 = —737.7, 75 = —18.08,
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Figure 2.22: The optimal maneuver paths for problem (2.86).

77 = 885.3, and 7z = 346.3. It is worth noting that the optimal distance 5
of multi-optimization (2.87) is reduced (that is, improved) of 7.2% with re-
spect to the 5y of the single optimization (2.84) whereas dmax of (2.87) is
increased of 9.1% with respect to the dmax of (2.84). This may be useful as far
as the increasing of dmax is compatible with the mechanical limit of the truck
and trailer steering angle. As previously done for the single optimization, the
simplified multi-optimization problem is

RA7R36$$?>07712>0{)\15maX + Aasy}. (2.88)
With A; = 0.95 and Ay = 0.05 the solution of (2.88) is A\;émax + A25f = 1.873
with dmax = 0.7564 (or 43°.34), 5 = 23.09 m. The corresponding parameters
are kg = —0.0341 m—2, kg = —0.1069 m~2, i; = 26.05, and 7y = 15.78 (see
figures 2.23 and 2.24).
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Figure 2.23: The optimal steering &(s) for multi-optimization problem (2.88)

14 B

Figure 2.24: The optimal maneuver paths for multi-optimization prob-
lem (2.88)






Chapter 3

Time-optimal dynamic path

1nversion

Strong lives are motivated

by dynamic purposes

— Kenneth Hildebrand

Nowadays, the handling of materials and parts through Automatic Guided
Vehicles (AGVs) is of increasing importance in the automation and logistics
of factories and warehouses. The absence of human intervention in the normal
operations of the AGVs permits to optimize by design the performances and
specifically to pursue a motion planning to achieve fastest movements with full
respect of all the pertinent constraints [42,43|. Considering the more general
scenario of trajectory planning of wheeled mobile robots, the basic problem of
minimum-time planning between two robot configurations has been addressed
with 1) unobstructed environments and 2) obstructed environments with obsta-
cle to be avoided (respectively cf. [44] and [45] and references therein reported).
The former case has been mainly dealt with the Pontryagin Maximum Principle

(PMP) whereas with the latter, that is more difficult, a variety of sub-optimal
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or approximating techniques has been proposed e.g. potential functions, sam-
pling methods such as Probabilistic Road Maps (PRMs), Rapidly-Exploring
Dense Trees (RDTs), etc. Focusing on the special case of time-optimal (or
minimum-time) trajectory planning on specific, desired paths, the use of the
path-velocity decomposition [3] permits to reduce the planning to a suitable
optimal velocity problem. This was the approach pursued by Prado et al. [46]
who presented a sub-optimal method based on path segmentation to achieve a
smooth velocity planning suitable for both static and dynamic environments.

This chapter presents a solution for the problem of time-optimal trajec-
tory planning of an AGV on a given feasible path while respecting velocity,
acceleration and jerk constraints. Moreover, this planning must connect two
arbitrary dynamic configurations of the AGV, i.e. at the start and at the end
of the planning the AGV may not be at rest. A key to solve the problem is to

recast it as a dynamic path inversion problem.

3.1 Introduction to dynamic inversion

The dynamic inversion technique has been recently developed for the synthesis
of high performance control systems [47,48|. The idea behind this method is
the inversion of the dynamical system in order to find an input that generates
the desired output. Figure 3.1 shows a possible control scheme based on system

inversion, which is essentially an open-loop control.

Desired Input Output
Output Inverse System 5
) ModZI > Z

Figure 3.1: Dynamic inversion based control.

In many cases, once the desired output is known in advance, it is possi-

ble to perform a stable inversion, i.e. to determine a corresponding bounded
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(noncausal) input. The actual control system design can be centered on a
feedforward /feedback scheme (see figure 3.2) where the feedforward control is
determined through stable inversion and a feedback regulator handles modeling
and signal errors [49]. The majority of the works pursuing this approach deals
with nonlinear and nonminimum-phase systems and the emphasis is on algo-

rithmic procedures to perform a stable inversion on a given output function.

Desired
Input Output
Output | |nverse System N
d Model I ”
+
K
+ i - Observation
;u‘

Figure 3.2: Feedforward/feedback control scheme.

3.1.1 Input-output dynamic path inversion

For a wide class of dynamic systems, the inversion problem can also be posed as
a stable dynamic input-output path inversion. Dynamic path inversion, which
was introduced in [5], is the problem, given a desired path on the output
space, of finding the control inputs that generate the desired path. We said
above that it is a variant of the more studied dynamic (signal) inversion which
is the problem of finding the control inputs that generate the desired signal
outputs [49-51].

The idea is to consider the output signal y(¢) as a function parametrization
of a path T' in the output space RP. For a given time interval [0, 7], the path
I is defined as the image of output function (i.e. I' = y([0,¢1])). This problem

can be formally stated as follows:
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Problem 4 Given a path I' C RP and a traveling time T > 0, find initial
conditions and input u(t) for which the system output y(t) satisfies

y([0,7]) =T

This problem is quite general and especially relevant for the motion control of
nonholonomic wheeled vehicles, and it has a strong connection with differential
flatness [52,53].

Roughly speaking, a system with n scalar inputs is said to be differentially
flat if there exist m outputs yi,...,y, for which the system variables (i.e.
the states and the inputs) can be algebraically expressed as functions of the
outputs and their derivatives, till a finite order. A more rigorously definition
of the flatness, is given in the next chapter. When the system is differentially

flat, the dynamic path inversion problem is relatively easy to solve.

3.2 Time-optimal dynamic path inversion for an au-

tomatic guided vehicle

This section presents the work appeared in [31], which faces time-optimal tra-
jectory planning of an automatic guided vehicle (AGV) on a given feasible
path while respecting velocity, acceleration and jerk constraints. A theoretical
result shows the connection, for the AGV, between the geometric continuity of
its paths and the smoothness of its control inputs (linear velocity and steering
angle of the AGV motor wheel). The solution hence proposed for the optimal
planning is based on a dynamic path inversion algorithm, for which first the
optimal velocity profile is determined and then the optimal steering signal is

derived from a geometrical construction.

3.2.1 Kinematic model and problem statement

A typical wheeled automatic guided vehicle has forks for handling materials,

two passive wheels and a motor wheel. See figure 3.3 where a schematic plan
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Figure 3.3: A wheeled AGV on a Cartesian plane.

view of an AGV and a Cartesian reference frame are depicted. As usual, z and
y indicate the Cartesian coordinates of the AGV rear-axle middle-point and 6
is the vehicle orientation angle with respect of the z-axis. The motion of the
AGYV is actuated by the forward motor wheel whose linear velocity is v and ¢
is the steering angle; [ is the distance between the rear-axle and the forward
wheel’s hub. With the usual modeling assumptions of no-slippage, rigid body
and nonholonomic constraints the following nonlinear kinematic model of the

AGV can be deduced [54]:

x(t) = v(t) cosb(t) cosd(t)
y(t) = ov(t) sinf(t) cosd(t) (3.1)
0(t) = T v(t) sind(t).

The linear velocity v and the steering angle § are the AGV control inputs. The

following definition will be used along this chapter:

Definition 7 A Cartesian path T has third order geometric continuity, and
we say T is a G3-path, if its scalar curvature is continuous and the derivative
with respect to the arc length of the curvature is continuous on the path too
(for more details see [5]).
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In order to obtain a smooth motion control, inputs v and § must be func-
tions with C' continuity, i.e. they are continuous functions with continuous
derivatives. A connections between smooth inputs and paths of the AGV is

established by proposition below (recall proposition 3).

Proposition 6 Assign any T > 0. If a Cartesian path I is generated by the
AGYV with inputs v(t),5(t) € C*([0,T]) where v(t) # 0 and [6(t)] < I, Vt €
[0,T), then T is a G3-path. Conversely, given any G>-path T' then exist inputs
v(t),0(t) € CH([0,T]) with v(t) # 0 and [6(t)] < 5, V¢t € [0,T], and initial
conditions such that the path generated by the AGV coincides with the given T'.

Proof. proposition above can be deduced by a similar result proposed by Guar-
ino Lo Bianco et al. in [5]. O

Instrumental to our approach to optimal motion control of AGVs is the
definition of an "extended state" of system (3.1) that also comprises the control

functions and their first derivatives:

{2,900, 0(8), v(),5(6), (1), 6(1) } .

Then, the following time-optimal dynamic path inversion (TOPI) problem can

be posed.

Problem 5 (TOPI problem) Given an assigned G3-path T', determine the
control functions v(t), 6(t) € PC? (see definition 2) such that system (3.1)
travels ezactly on path T in minimum-time ty from initial extended state (at
timet=0)

A= {UCA,yA,HA,vA,@A,5A,5A} ;

to final extended state (at time t =ty)

B = {xBayBa HB)UB)Q‘}Ba 63)53} )
satisfying the following constraints

0<w(t) <wm, Vtel0,ty],
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[0(t)| < an, Vte[0,ty],
5 < jm,  VEE0, ],
where var, ay, jp > 0 are given bounds.

Hence, in order to give a solution to TOPI problem, it is preliminarily
necessary to determine a desired G3-path that satisfies the interpolating data
deduced from the extended states A and B [32]. Let us introduce the following

relations
vr(t) = v(t) coso(t), (3.2)
() = 0(t) cos d(t) — v(t) 6(t) sind(t), (3.3)
w(t) = %v(t) sin6(¢) | (3.4)
o) = % o(#) sin 5(t) + %v(t) 5t) cos (1), (3.5)

where v, (t) and ©,(t) denote the linear velocity and acceleration of the AGV
rear-axle middle-point, and w(¢) and w(¢) denote the angular velocity and
acceleration of the AGV. From [5], the curvature and its derivative with respect

to the arclength, k4 and I%A int =0, and kg and kB int= t_f, are given by

wA _ WAUpA — WA VA

ka=—2, ka= . , (3.6)
UrA Ura
and . .
hp =B = BB _WBUE (3.7)
UrB UrB

where wy = w(0), vp4 = v,(0), wp = w(ty) and v, = v, ({f). By substituting
relations (3.2)-(3.5) in (3.6)-(3.7), the following equations are obtained

1
kA:i tand g, (3.8)
. 1 SA
ko= —"—F— 3.9
A= v cos3dy (3.9)
and )
kp = - tandp, (310)

l
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1 g

kp=-—"2—. A1
B l vg cos3dp (3.11)

On the extended states A and B we impose the assumptions
|04] < 7/2, and |dp| < 7/2.

Therefore, relations (3.9) and (3.11) indicate that there exist two definite for-

bidden cases
{va=0}A{0a#0},  {vp=0}A{op #0},

which are considered as further assumptions on the TOPI problem. On the
other hand if v4 = 0 and 5,4 = 0 and similarly vg = 0 and 53 = 0, then I%A
and kp can be arbitrarily assigned and this improves the design freedom in
shaping the I' path for the AGV.

Hence, the G3-path T’ must satisfy at the endpoints the interpolations con-
ditions shown in figure 3.4, i.e. the initial and final Cartesian points of I" have
(xa,y4) and (xp,yp) as coordinates, 04 and fp as unit-tangent directions, k4

and kp as curvatures, k4 and kp as curvature derivatives respectively.

Y

0B

B, Y, kB, kB

TA, YA, ka,ka

Figure 3.4: The interpolations conditions at the endpoints of path T.
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This interpolation problem can be easily solved using the n3-splines [32,33],

introduced in the precedent chapter, which are seventh-order polynomial curves
with free design parameters (the 1 vector) to shape the desired path intercourse
between the endpoints.
Remark In the following subsections, path I'" denotes the Cartesian path gen-
erated by the rear-axle middle-point, i.e. by (x(¢), y(t)). Below another relevant
path of the AGV, denoted by I'y, is introduced. I'y is the path generated by
the AGV forward motor wheel.

3.2.2 The dynamic path inversion algorithm

The time-optimal control functions #(¢) and 6(¢), which permit the AGV to
follow the given path I' in minimum-time, will be obtained by a dynamic path
inversion procedure.

Note that functions ©(t) and §(t), solution of the TOPI problem, are as-
sociated to the actuated motor wheel of the AGV (see figure 3.3), so that the
inversion procedure will need to determine the path I'y of the forward wheel
which is geometrically linked to I'. Knowledge of I'y and its total distance
sy allows to apply the path-velocity decomposition method [3] to the TOPI
problem so that the velocity ©(t) will be computed independently from 6(t)
by setting the minimum-time constrained velocity planning discussed in sec-
tion 1.4. Then the optimal steering §(¢) will be determined by exploiting the
geometric properties of model (3.1) relative to paths I' and I'y.

The dynamic path inversion algorithm can be then described in the follow-

ing three steps:

1. Determine the path I'y of the forward wheel. Consider the following

parametrization of path ' (as customary using n>-splines)

p(u): [0,1] — R?
u— p(u).
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The unit tangent vector 7(u) of T' is given by

)
™) = e

and a parametrization of path I'y can be obtained as follows

pr(u) = p(u) +17(u), ue|0,1], (3.12)

where [ is the distance between the rear-axle middle point and the forward

wheel. Figure 3.5 depicts the geometric relation between paths I' and I';.

Y

Figure 3.5: Geometric construction of the forward path I'y.

Compute the total distance s; to be travelled by the forward wheel on
[y:

1
sy = /0 1B (u)|ds (3.13)

2. Determine the minimum-time velocity o(t) by solving the constrained

problem widely exposed in section 1.4.
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3. Determine the optimal steering function 6(¢) by solving the following

equation system:
{ Jo o(€)de = [ 195(6)]ldé (3.14)
o(t) = arg T f(u) — arg 7(u).

The geometrical meaning of this determination is depicted in figure 3.6.

Figure 3.6: Geometrical interpretation of equation system (3.14).

Remark The velocity planning problem leads to a smooth velocity profile (see
section 1.4) that is easy to implement on an actuator drive because velocity and
acceleration are continuous and the jerk (the time-derivative of acceleration) is
limited and constrained as desired (by setting the bound j37). Also note that
the constraint v(¢) > 0 imposes that the automatic guided vehicle does not go

backward on the desired path.

3.2.3 Example

Consider an AGV with [ = 1.1 m, the distance between the motor wheel and

the rear-axle, and constraints on the actuation of the motor wheel given by
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vy =3 m/s, ap =1 m/s?, and jy = 0.5 m/s3.
It is desired a minimum-time transition between the extended states A and

B given by (measures are expressed in m, m/s, m/s?, rad, rad/s):

A={za,ya,04,04,04,6,64} = {0,0,0,1,-1,0,0} .

B ={2p,y5,08,v5,a5,08.65 | = {16,8,0,3,0,0,0} .

The desired Cartesian path I' between (z4,y4) and (zp,yp) is an S-shaped
path that can be easily determined by interpolation with the n-splines [32].
The interpolation data are (64, ka4, I%A) and (0p, kg, I%B) for which 84 = 0 and
f0p = 0 from the assigned extended states A and B and k4 = 0, ks =0 and
kp =0, kg = 0 as it follows from relations (3.8)-(3.11).

Path T is then an n3-spline, a seventh order polynomial curve, whose free

parameters are chosen according to the heuristic rule suggested in [30,32]:

n= (77177727773777477757776) = (dv d70707070)7

where d = |[(xa —zB,ya —yB)|| = 17.89 is the Euclidean distance between
(xa,y4) and (zp,yp). Path T is the blue one depicted in figure 3.7.

To determine the time-optimal controls #(¢) and §(t) which are the solution
to the TOPI problem we use the dynamic path inversion algorithm described
in three steps in subsection 3.2.2.

Step 1: The path I'y of the forward motor wheel is computed according
to (3.12). It is depicted in figure 3.7. The length of 'y is sy = 19.12 m ac-
cording to (3.13).

Step 2: The existence of the time-optimal velocity is guaranteed by the ful-
filment of the sufficient conditions of proposition 2. Indeed, conditions (1.37)
and (1.38) are immediately satisfied. Because a4 < 0 and ap > 0, we check con-
ditions (1.40) and (1.41) respectively: vA+%;% =02>0and vB—%;—QE =3>0.
Application of the four-step procedure of proposition 2 determines s,.; = 8.17

m so that the last inequality (1.43) is also satisfied: sy > s,.s. Hence, since
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Figure 3.7: The planned path I' and the associated forward path I'y of the
AGV.

the constrained minimum-time velocity problem has solution, the TOPI prob-
lem has solution too by virtue of the path dynamic inversion algorithm of
subsection 3.2.2.

The approximated determination of ©(t) is gained with the procedure de-
tailed in subsection 1.4.2 and its profile is shown in figure 3.8. It has been
chosen the sampling time 7' = 0.01 s and the linear programming routine has
run using MOSEK [55]. The resulting minimum-time for the transition of the
AGV from A to B along I is ¢y = 10.64 s.

Step 3: The optimal steering control §(t) is determined by solving (3.14)
with a sweeping discretization on parameter u € [0, 1]. The result is shown in
figure 3.9. Many simulations of the motion of the AGV have been performed.
In particular, the minimum-time transition of the AGV between the extended
states A and B along I' has been simulated by using the found #(t) and §(t). The
adopted approximations are good enough to ensure a tracking of the planned

trajectory with negligible errors.
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Figure 3.8: The optimal velocity profile v(t).

0.25

Figure 3.9: The optimal steering control §(t).
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Replanning methods for the

trajectory tracking

It is a bad plan that admits

of no modification.

— Publilius Syrus

As known, a fundamental problem in control theory for automation is out-
put tracking [56]. Given a desired signal or reference on the output variable of
a controlled dynamical system, the problem is to appropriately manipulate the
input of the system in such a way that the actual output follows as close as pos-
sible the desired reference. The classic solution approach prescribes the design
of a feedback controller that can asymptotically zero the tracking error [57-59].
When the desired output is known in advance, an alternative tracking control
strategy is inversion-based control. It is a feedforward /feedback strategy where
the feedforward is determined by stable input-output inversion and the feed-
back is activated by a controller whose input is the error between the reference
state and the actual state [49,50,60]. A variant of this strategy considers the

application of a feedback controller first to reduce the effects of unmodeled
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dynamics or uncertainties on the controlled system and then the closed-loop

dynamics is inverted by the stable inversion procedure [61].

Both the classic approach to output tracking and the newer inversion-based
one expect the continuous-time availability of the measured output or the mea-
sured state of the controlled system. However, there are cases where continuous-
time or high-frequency revelation of the system state or output is not possible
or not economical and only low-frequency feedback is practicable. The result-
ing control framework is then an hybrid feedforward/feedback scheme where
the controlled system is commanded by feedforward (i.e. open-loop) inputs
that are periodically updated to compensate or reduce the tracking error. This
paradigm has been pioneered in [62,63] for the robust stabilization of nonlinear
driftless and chained systems; an application was also proposed for the lane

following control of a vision-based autonomous car [30].

In the first section, within the framework of hybrid feedforward/feedback
control schemes we propose a trajectory tracking problem of a WMR modeled
by a unicycle model affected by norm-bound noise (cf. [64]). Given a desired,
feasible Cartesian trajectory to be tracked by the WMR, the proposed control
scheme uses a recursive convex replanning method to compute a new reference
trajectory whenever the WMR’s state is real-time available at a frequency
assigned by the replanning time period 7' (cf. section 4.1.1). Then, this new
reference trajectory that is still feasible is used to generate the feedforward in-
verse command velocities that help in reducing the tracking errors (see figure
4.5). If the replanning period 7 is sufficiently small relative to the noise magni-
tude, explicit closed-form bounds on the global tracking error are provided (cf.
corollary 1). In such a way a "practical" tracking convergence to the desired

trajectory is achieved.

Second section presents the output tracking of a nonlinear flat system af-
fected by additive noise on its state derivative (cf. [65,66]). More specifically,
we consider a controlled system whose performance output is a flat output of
the system itself [67]. A desired output signal is sought on the actual output

by using a feedforward inverse input that is periodically updated using the
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observation of the full system state acquired at intervals of period T". The pro-
posed method is actually an iterative output replanning that uses the desired
output trajectory and the updated state to replan an output trajectory whose
inverse input helps in reducing the tracking error. This iterative replanning ex-
ploits the Hermite interpolating polynomials to achieve an overall arbitrarily
smooth input and a tracking error that can be made arbitrarily small under
mild assumptions if the sampling period 7T is sufficiently small.

Notation: If z is a C'(R, R") function, () denotes the derivative of z of order I,

z(ty) and z(t; ) denotes, respectively, lim_ St z(t) and lim - x(t). For any

—t
vector v € R", (v); denotes its i-th component.

4.1 Recursive convex replanning

This section considers the Cartesian trajectory tracking of wheeled mobile
robots to be performed by an hybrid control scheme with feedforward inverse
control and a state feedaback that is only updated periodically and relies on a
recursive convex replanning of the reference trajectory. This approach applied
to the standard unicycle model is shown to maintain its efficacy also in presence
of noise or unmodeled robot dynamics. Explicit, sufficient conditions are pro-
vided to ensure global boundedness of the tracking error. Finally, experimental

results are presented using Lego Mindstorm mobile robots.

4.1.1 Trajectory tracking for the unicycle

Here, the recursive tracking approach discussed in this section is presented

in the case of the kinematic unicycle. Consider the following model for the

) = () e "

unicycle (see figure 4.1)

(

. @ 8.
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where (z,y) € R? is the position of the center of the unicycle, @ is the ori-
entation angle and v, w are the velocity control inputs, and set z = (x,y, ).

Functions n and 7y are noise terms that satisfy the bounds Vt € R
t < N
In@l < N, )
e(t)] < No.

When the noise terms are not present, (i.e. N = 0 and Ny = 0) system (4.1)

is called the nominal unicycle.

Y

Figure 4.1: Schematic of a unicycle mobile robot.

Consider a reference trajectory g defined as follows.

Assumption 1 Let vy : Ry — R? be a reference trajectory with C® continuity
such that:

a) 0<Vi <ol <V,
b) [[Fo @) < A -

Exact tracking of 7 is achieved when, V¢ > 0,
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The following straightforward result characterizes completely the exact track-

ing problem for the nominal unicycle.

Property 4 Ezact tracking is achieved for the nominal unicycle (4.1), i.e.

( ;Cg; ) — 0(t), Vt>0,

if and only if the following conditions hold:

a z(0) |
) ( 4(0) ) =0(0),

b) (0 ( ) ) = 50(0),

d) w(t) =4 arg(f(t)),Vt > 0.

Conditions a), b) imply that the initial conditions must be such that at the
initial time the unicycle lies at the beginning of the curve with orientation
angle parallel to the tangent vector to the curve 7g. Conditions ¢), d) actually
define the controls that must be used to exactly track the given reference.
These controls are feedforward velocity input signals because depend only on
the reference .
Remark Having chosen a C3-trajectory reference, i.e. a trajectory function
that is continuous with its derivatives till to the third order, we obtain by
means of c¢) and d) smooth velocities v(t), w(t) with continuous accelerations,
i.e. v,w € C1(R}). A weaker condition to still ensure continuous accelerations
is to assume 9 € C?(R,) and 7y is a G3-curve, i.e. a curve with third order ge-
ometric continuity (continuity along the curve of the tangent vector, curvature,
and derivative of the curvature with respect to the arc length) [5].

Obviously, using feedforward control only, defined by c) and d), the track-
ing error may grow unbounded if N > 0, Ny > 0. In order to keep the error
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bounded one may use continuous-time feedback control. In this section another
approach is considered, based on an idea similar to iterative steering (see [4]).
The method consists in using at all times the feedforward controls given by c),
d) but the reference trajectory is periodically replanned. When t € [0, T, 7o is
used as reference trajectory, for t € [T, 2T a different curve 7, is used and, in
general the reference trajectory ~; is used for t € [¢T', (i +1)T]. Each references
v; is defined recursively with respect to v;—1 in such a way to keep the track-
ing error limited. Before explaining in detail the overall feedforward /feedback
strategy, the replanning operator to be used to construct each reference ~; from

~i—1 is defined as follows:

Definition 8 (Replanning Operator) Let be given a (current) reference tra-
jectory vy : [to, +00) — R? and a robot’s state zy = (w0, Yo, 00). Define a new

reference trajectory v 1.~ © [to, +00) — R? according to the convex replanning:

Yao.t0.1 () = At = to) [(20, yo) + R(en(to))(v(t) = v(t0))]

(4.3)
+(1L = At —t0)) (1),

where

e \: R, — [0,1] is a monotone decreasing C>-function with A\(0) = 1,
DIA0) =0, i = 1,2,3 and lim;_, ;o0 A(t) = 0;

cosx —sinx

. R(w)zl

) s the rotation matriz,
sinz cosx

e eg(ty) = by — arg5(to) is the heading angle error at time tg.
The curve v1 = 7.4 49,70 1S @ C3-function and enjoys the following properties
71(to) = (20, %0) »
argv1(to) = 0o,

lim 1 (£) = 70(t) = 0.

t—o00
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x
In other words, trajectory =1 at g is equal to ( 0 > and its derivative has

Yo
the direction given by 6y. Asymptotically 1 converges to g and the rate

of convergence is controlled by the monotone decreasing function A\. Remark
that the replanned curve v is determined trough a linear convex combination,
weighted by A(t), of function 7y and another trajectory obtained by rotating

and translating g itself, as depicted in figure 4.2. For instance, one may choose

(0, y0) + R(eq(t0)) (v(t) —~(t0)) .7

(z(t0), y(to))

C Yzo,t0,70

Yo(to)

Figure 4.2: Convex replanning.

A using C3-transition polynomials [48] and setting the transition time equals

to 27"
M) = 1-35(—= s LY
- oT oT

~ oL 6+20 - 7, t e 0,27], (4.4)
() +»(a)

At) = 0, t>2T.

The graph of this function is reported in figure 4.3.
The motion control method can be summarized as follows (it is assumed
that a), b) of property 4 hold).
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Figure 4.3: The C3-transition polynomial A(t).

1) For t € [0,T], where T' > 0 is the replanning time, the control functions are

given by c), d) (in property 4)

2) Fort e [iT,(i+1)T], with i = 1,2, ..., the control velocities are defined by

u(t) = [l (4.5)
d :

wlt) = S ang(it) (16)
where 7;(t) is the trajectory determined via the convex replanning oper-

ator (4.3):
Yi = V2(iT),iT -1 - (47)
That is, for ¢ € [iT, (i + 1)T], an open loop control is applied, that
x(iT)

y(iT)
0(iT), to reference trajectory v;—1. Therefore the reference trajectory ~; is

would drive the nominal system from state < ) with orientation

defined recursively with respect to trajectory 7;_1, as shown in figure 4.4.
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/ Vi+1
7 Yi

Y0

Figure 4.4: Recursive generation of reference trajectories.

The overall control scheme is depicted in figure 4.5 where the Recursive
Convex Replanning Operator block takes care of the iterative trajectory gen-
eration and the Inverse Control Operator block computes the actual control
by means of differential relations (4.5),(4.6).

Yot RE‘C):J]LSE:\;E 10 Inverse Control Yo 20
%‘ S
Replanning Operator w(t) WMR ?
Operator
z(iT) XT

Figure 4.5: The hybrid feedforward /feedback scheme for the trajectory tracking

of wheeled mobile robots.

The control method just outlined draws on the idea of iterative state steer-
ing (see [4]), the main difference lies in the fact that each replanned trajectory
is defined recursively with respect to the previous one. With respect to the

iterative state steering, this method has the following significant differences:

e if the noise functions 1 and 7y affecting system (4.1) are zero during time
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interval [¢T', (i+1)T] the replanned trajectory coincides with the previous
one, i.e. ¥;41 = 1. No replanning is actually performed in absence of

noise.

e The replanning does not affect the control smoothness as w and v re-
main C'-functions, linear and angular accelerations remain continuous.
Actually, these control functions could be made arbitrarily regular by

choosing sufficiently regular reference vy and function .

e Even if a direct comparison is difficult, the sufficient conditions for ap-
plying this method are somehow weaker than the one appearing in [4]
since it is not required that the tracking error decreases in norm after

the replanning time T (see (c) of assumption 1 in [4]).

In this section, this method will be analyzed, conditions will be found that
allow keeping the tracking error limited and bounds will be provided. The

problem that will be solved is therefore the following.

Problem 6 Find conditions on trajectory g, replanning time T and noise
magnitude that gquarantee that the tracking error is bounded, and find an esti-

mate on the error norm.

In section 2.1.2, this problem will be considered for a general class of sys-
tems that includes the unicycle model (4.1). The main result of this work
(proposition 7), when applied to the case of the unicycle vehicle with function

A defined as in (4.5), brings to the following result.

Corollary 1 Consider control laws given by (4.5) and (4.6) and let A(t) be
given by (4.4). If T < % then the following bounds hold

58T Ny Vas + (%QNG +TN)

= 4.8)
83 ) (
1—-35T Ny

5 I

19i(t) = Fo(@)] <

b)) =@l < (1+7) TN+ + 58 @9
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This result means that if the product of the replanning time 7" and the noise
bound Njy is sufficiently small, then the difference between the replanned curves
~; and the reference curve 7y is bounded (the tracking error has similar bounds).
Obviously, the provided bounds grow as the replanning time 7T increases and
decrease with the noise bounds N, Ny. Exact tracking is guaranteed only when
N =0 and Ng =0.

4.1.2 Recursive tracking in a general setting

In this subsection we introduce the recursive tracking problem in a more general
setting and present a technical result (proposition 7) which will permit to find
tracking bounds for the case of the unicycle vehicle discussed in section 4.1.1.

Consider system

z(to) = 2o,

{z’(t) = f(z(t),u(t)) +n(t) (4.10)

where z(t) € R", u(t) € R™ and 7 is a noise term that satisfies the following
constrain
In®I <N VteR, (4.11)

with N € R;. As in the case of the unicycle, when N = 0, the system above
is called the nominal system (4.10). Define as feasible trajectory a reference

function which can be exactly tracked by the nominal system (4.10):

Definition 9 A continuous function vy : R — R™ is a feasible trajectory

for (4.10) with control ug, if the following differential equation is satisfied

Yo(t) = f(10(t), uo(t)), t=>0. (4.12)

The following is the fundamental assumption for defining a recursive iterative
tracking. For every feasible system trajectory =y, every initial state z and time
t, it is assumed that there exists a feasible replanned trajectory that brings

asymptotically the state from Z to the reference ~.
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Assumption 2 If v is a feasible trajectory for (4.10) then Vz € R" andt € R
there exist continuous functions us ., : [t,+00) = R™ and ;7. : [t, +00) —
R™, such that

;72,5,70 (t) = f(’ﬁfﬁo (t)’ Uz, t0 (t)) (4.13)
’72,{,70 (Z) = Zz ?
and
tig-noo Yz, (8) = 0(t) = 0. (414)

Assumption 2 allows defining a recursive iterative control (as has been done
in the case of the unicycle vehicle in section 4.1.1) in the following way.
Control Law: Given a reference trajectory g, the control function u for

system (4.1) is defined as follows

a(t) = uo(t), if t € [0, 7]

- noo (4.15)
(t) = Uz(z'T),iTm,l(t) ifte[iT, (i +1)T],

I~

where
2 (t = t), u(t
) = fE.E0) ws)
Yi(t) = ’Yz(z‘T),z‘T,%_l(t), 1> 0.
The following defines a particular class of positive definite operators, similar

to Lyapunov functions.

Definition 10 Let n be a positive integer, then U : R™ — R, is a seminorm if

the following conditions hold

1. V(0) =0;

2. V(z) >0,Vz € R";

3. V(21 4+ 22) < V(21) + V(22), V21,290 € R™.

Moreover V.= (V1,Va,..., V) : R" — R! is a vector of seminorms if each

component V; is a seminorm.

Notation: for any relational operator <g and z,y € R, x <r y means x; <g

yi,izl,...,n.
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Definition 11 Given a function ¢ : Ry — Ry and a seminorm U, we say
that system (4.10) is (U, @)-bounded, if, when % is a feasible trajectory with

control u and z s the solution of the following system

{ ) = flet),a(t) +n(t)

then, Yt > tg
U(z(t) —7(t)) < ot —tg). (4.17)

The following proposition is the main result of this section.

Proposition 7 Let V' be a vector of seminorms and U a seminorm, vy a
feasible tragectory for (4.10), with control function ug. Let z(t) and ~y; be defined
according to (4.15), (4.16). Let function ® : R' x R x R! — R! be such that

V(Vzo.ton () = (1)) < @(U(2(t0) = v(t0));t = to, W(y —0)),  (418)

and ® is monotone increasing with respect to each component of the argument
W, defined as W(vy) = supyegr V (7(t)). Moreover, assume that there exists a
function p(t), such that (4.10) is (U, @)-bounded. If there exists V € R! such
that

“+00
k=1
then, Vt € R and Vi € N,
V(%i(t) =) < V. (4.20)

Proof. Proposition 7 can be proved by induction as follows. Consider first ¢ = 0,

in this case inequality (4.20) holds since, by 1) of definition 10,

V() =) =V(0)=0<V.
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Moreover assume that (4.20) is verified for s = 0,1,...,] — 1, then from (4.18)
and 2) of definition 10 the following relation is obtained
l

l
V@) —v@) =V <Z(’Yk(t) - vkl(t))> <Y V((t) = w1 (t))
k=1

k=1

!
<@ UERT) = ea (RT)) t = kT W (i () = 70(8))) -
k=1

(4.21)
From (4.17), with 4 = v,_1 and tg = (k — 1)T, Yk = 1,...,1, the following
inequality holds
U(=(kT) = 1(kT)) < o(T).
Since by the inductive hypothesis relation (4.20) is true for ¢ = 0,1,...,1 —1,
VieR:
W (y-1(t) =70(t) <V,

therefore, the following inequality is obtained

l
V(u(t) = 0(t) <D @(p(T),t — kT, V). (4.22)
k=

1
and finally, combining (4.22) and (4.19), it follows that

V() = () < V.

]

Remark that instead of finding separately a function ® and ¢ which sat-
isfy (4.18) and (4.17), one can find directly the composite function ®(p(7T),t—
to, W (v —10)) which appears in (4.19), as will be done for the unicycle vehicle.
The idea behind proposition (7) is the following. The key element for finding
bounds for trajectories ~; defined in (4.16) consists in finding the function
O(p(T),t—to, W(y—"0)), which provides bounds on the norm at time ¢ of the
difference of a curve replanned at ¢y with the previous one (), as a function of
the replanning time 7', the time elapsed since the parameterization (¢ —ty) and
the maximum value of the norms of the difference between v and the reference

curve p.
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4.1.3 Application to the tracking problem for the unicycle

In this subsection proposition 7 is applied to the tracking problem for the
unicycle vehicle, introduced in section 4.1.1.
The following lemma estimates the error on the feed-forward control of

system (4.1) caused by the noise terms.

Lemma 1 Consider system (4.1), assume that a) and b) in property 4 hold
and that the controls u and w are given by c¢) and d). Then the following
inequalities hold

|0(t) — arg(10(t))| < Not, (4.23)

a(t) ) _
[(260) =i
x(t)

Proof. Define eg(t) = 0(t) — arg(§o(t)) and e(t) = ( 0 > — 7(t), then
)

ép(t) = mp(t) and |ég(t)] < Ny, from which (4.23) is obtained. Moreover é =
o(t) — Y(t
c'os ®) c'os(arg.'y( ) +nand ||é(t)]| < Varv/2y/T — coseg + N. Since

sin 0(t) — sin(arg~(t))
cosz >1— %2, then ||é(t)| < VMtQéV" + Nt, from which (4.24) follows. O
The following result represents the direct application of proposition 7 to

t2
< ENQVM + Nt. (4.24)

the case of the unicycle.

Proposition 8 Consider system (4.1), where the control u is defined by (4.5)-
(4.6) and the reference function ~yy satisfies assumption 1. Moreover suppose
that

X =T Ny <1.

+oo +oo .
SONGT) + > AGTD)|T

=0 1=0

Define
400
Va=(1—x)"" (TN(,VMTNG (Z NTi) + A(Ti)Ti>

=1

+ <@ +NT> ix(z}o ,

(4.25)
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B T2 B +o0 B +o0
V= (5 No(Va + V) + NT) Z A(Ti) 4+ TNy(Vo + Var) Z AT1), (4.26)
i=1 i=1
— +Cx> _1 — +Cx> .. .
V3 = (1 ~TNg Y _ A(iT)> {TNG (Vo + Var) (Z A(T) + A(”))
i=0 i=1
+o00 TQ +o00 .
+ Ay T Ny z;)\(iT) + (5 Ny +TN> Z;)\(iT)} ,
(4.27)
and suppose that the following condition is verified
Vin < Va,
then the following inequalities hold, Vi € N and ¥Vt > T,
17:(t) = v @)1l <V, (4.28)
19:(t) = 0 ()| < Va, (4.29)
1%:(t) = Ao ()| < V3. (4.30)
Moreover the controls defined by (4.5) and (4.6) satisfy the following bounds,

Vi € N, Vt > iT,

u(t) € [V — Vo, Vay + V2, (4.31)
An + Vs

] < =—/—==. 4.32

ol < 57— (4.32)

Proof. Since, input functions u(t), w(t) defined in (4.5) and (4.6) are C* and
respectively C, then the extended state z = {x,v,0,, 7, &, 3} is well defined.
Set V' = (V1,V2,V3) with Vi = ||[(z,9)[, Vo = [[(&,9)] and V5 = [(Z,§)]-
Remark that V satisfies definition 10. In order to use proposition 7, we now
define the function ® = (&, P9, P3) such that (4.18) holds. To define ¥y,

consider the following bound
Vi(atto) oy = 7) = IA(E = t0) {R(eq(t0)) [ () — v (to)]
+7(to) + ey (to)} + [1 = At — to)] () — 1D
= [[A(t = to) {[R(eq(t0)) — 1] [v(t) — v(to)] + e5(t0) } |,
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together with [|R(g(to)) — I|| < |eg(to)| and

[v(t) —v(o)ll < (t —to) Sup YOI < (& —to) |V + sup 7)) = Ao @)l
< (t—to) [Var + Wal(y — )] -

Therefore, by lemma 1, we find the bound

Vi(Vatto),toy — V) < At —to) {lea(to)] (t — o) [Waly —0) + Var] + ley (to) [}
< Oy (T,t —to, W(y —0)) -

Analogously

Va(Vatto)toy = ) = IIA(E = to) {[R(ep(t0)) — I)[7(t) —(to)] + ey (to)} +(2)
{A(t —to) [R(eq(to)) — I]}]| < @oT,t — to, W(y —0)) -
Finally
Va(Yatto)tor = ) = IA(E = to) {[R(es(to)) — I1[v(t) — (o) + ey (to)]}
+A(t — to) [Rleg(to)) — I17(t) +5(8) {1 + A(t — to) [R(ep(to) — 1]}
+3(8) At — to) [R(eq(to) — 1] = 5(1)|| < ®3(T, ¢ — to, W (v —0)) -
From (4.25), (4.26) and (4.27) it follows that, for k =1,2,3
+o0o
i=1
and, by (4.20) of proposition 7, relations (4.28), (4.29) and (4.30) hold. More-
over, ¥t € [iT, (i + 1)T]
u(t) = %O = [I90(t) +%i(t) — Yo @)
€ [Vin = sup {|14:(8) = J0(®)ll}, Var + sup{[[4:(t) = Fo ()]}

C [Vin— Vo,V + V2,
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hence (4.31) holds. Furthermore,

et (0501 _ (0]
O = 1@

(
S0} _ Aw + Vs
0O} = Vo=V

)] = |5 arg(34(1)] <

1o (O] + supgsir {117:(2)
~ B0 = supgsir{lI7:(2)

therefore (4.32) holds and the proof of proposition 8 is complete. O
Corollary 1 follows from proposition 8 when \ is given by (4.4).

4.1.4 Simulation results

The method presented in subsection 4.1.1 has been compared with the con-
troller for the unicycle presented in [68, p.809]. We have assumed that the
state is measured only at regular intervals T' = 1 s, which represents also the
replanning time for our algorithm. The state appearing in the feedback control
law presented in [68] is obtained through a discontinuous open loop observer
which is updated at each observation time. The gain in this controller have
been set to have controls signals of magnitude similar to the method of sec-
tion 4.1.1. As reference trajectory we have considered a periodic spline followed
with constant speed 1 m/s. The noise bounds appearing in (4.2) are given by
N = 0.5v/2 and Ny = 0.5. The obtained results are presented in figures 4.6
and 4.7. The two methods showed a similar performance in terms of tracking
error. However, the control method presented in this section has the advantage
of providing overall continuous input signals whereas the control signals of the
classic controller are discontinuous (even if this is a consequence of having used
a discontinuous observer). Our method has the advantage of guaranteeing an
arbitrary class of continuity in the input signals. Moreover, it is not an ad hoc
solution for the unicycle, since it can be applied in principle to any system

satisfying the conditions presented in section 4.1.2.
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Figure 4.6: a) The robot trajectory and b) the control inputs for the recursive
method.

Figure 4.7: a) The robot trajectory and b) the control inputs for the method

presented by Samson.



126 Chapter 4. Replanning methods for the trajectory tracking

4.1.5 Experimental results

We have implemented an experimental setting for the method presented in
section 4.1.1. A mobile robot built with Lego Mindstorm NXT pieceshas been
used. The traction is provided by two front wheels, a passive rear castor wheel
is used to prevent the robot from falling over. The inputs variable are w; and w;.,
the angular velocity of left and right wheels. Set v = r% and w = 7577,
where r is the driving wheels radius and L is the distance between the two
wheels. After this substitution this differential drive robots can be described
with the unicycle model (4.1).

Two red markers of different sizes have been placed on the robot and the
system state (x,y,6) is measured ten times per second through a Unibrain
firewire camera, using standard computer vision techniques. A personal com-
puter running MATLAB contains a systems observer for finding the robot state
and implements the recursive controller presented in (4.5), (4.6) and (4.7). The
control signals are computed and sent to the wheeled robot via Bluetooth. The
replanning time has been set to T' = 0.8 s. This experimental setting is charac-
terized by some difficulties, in particular the Bluetooth transmission introduces
in the control loop a delay of 80 ms, and the wheels occasionally experiment
slippage.

Figure 4.8-a) shows the experimental results obtained when the reference
trajectory is a circle of radius equal to 30 cm, followed with a constant speed
of 0.2 m/s. The red line represents the reference trajectory vy and the blue
line the robot observed position. In the middle of the test the robot has been
moved with a rod to test the robustness of the controller, this explain the large
transient error present in the figure. In figure 4.8-b), the norm of the (z,y)
component of the tracking error is showed; the spike on time ¢ = 40 it is due
to the test of the robustness of the controller.

Figure 4.9-a) shows another experiment where the desired trajectory is a
spline which has been reparameterized with constant speed 0.15 m/s. The as-
sociated tracking error is shown in figure 4.9-b). Remark that the evaluation

of functions ~; in (4.7) require the use of a recursive function. If function A
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Figure 4.8: a) Reference and actual trajectory for a circle b) the norm of the

(z,y) component of the tracking error with respect to time.
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a) b)

Figure 4.9: a) Reference and actual trajectory for a composite spline b) the

norm of the (x,y) component of the tracking error with respect to time.
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reaches 0 in finite time 7, then the maximum order of recursion is given by

the ratio 7 (recall that T" is the replanning time). Since the order of recur-

sion is deterministic, the proposed control law can be implemented in a real
time controller. Parameter T' must be carefully chosen. In fact, on one hand,

by (4.8), (4.9), reducing T improves the tracking performances. On the other

T
T

the controller and the computational effort.

hand, it increases the ratio the number of recursions needed to implement

4.2 Tterative output replanning for flat systems

The section considers the output tracking problem for nonlinear systems whose
performance output is also a flat output of the system itself. A desired out-
put signal is sought on the actual performance output by using a feedforward
inverse input that is periodically updated with discrete-time feedback of the
sampled state of the system. The proposed method is based on an iterative out-
put replanning that uses the desired output trajectory and the sampled state to
replan an output trajectory whose inverse input helps in reducing the tracking
error. This iterative replanning exploits the Hermite interpolating polynomials
to achieve an overall arbitrarily smooth input and a tracking error that can
be made arbitrarily small if the state sampling period is sufficiently small and
mild assumptions are considered. Some simulation results are presented for the

cases of an unicycle and a one-trailer system affected by additive noise.

4.2.1 Problem statement

Consider the nonlinear controlled system
&= f(z,u), (4.33)

with x € C(R,R"), u € C(R,R™). System (4.33) is flat if there exists an
output function y such that the system state z(¢) and the input u(¢) can be
written as a function of y and its derivatives up to a finite order, evaluated at

time t. More precisely the following definition can be given (see [52]).
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Definition 12 System (4.33) is flat if there exist a flat output y of dimension
m, two integers v and s and mappings ¢ from R™ x R™ETY 4o R™ of rank m
in a suitably chosen output subset, and (g, P1) from R™+2) o R™ x R™, of

rank m +n in a suitable open subset, such that

y:(yl,...,ym)zi/)(sc,u,u,...,u(s)), (4.34)

implies that
T = ¢0(y)y) s ,y(r)) )
U= ¢1(y)y) cee ’y(r—i—l)) )

the differential equation % = f(¢o, P1) being identically satisfied.

(4.35)

In this way, function ¢y represents the state x with the output y and its
derivatives up to the order r. Function ¢; represents the input u with the
output and its derivatives up to the order r + 1.

For simplicity, for a C" function f we use the notation f* = (f, fM, ..., f™),
to denote the ordered set containing function f and its time derivatives up to
the order n.

If ¢y is sufficiently regular, differentiating (4.35), one obtains functions ¢;,
such that, for any ¢ > 1

ul™ = g, (5*), (4.36)

i.e., the input derivatives can be expressed as a function of the output and
its derivatives. Similarly, if ¢ is sufficiently regular, differentiating (4.34), one

obtains functions ;, such that, for any ¢ > 0
y@ = oy(x, @+, (4.37)

with ¢¥9 = 1, where 1 is given in (4.34). Combining (4.36) and (4.37), the
following identity holds Vi > 1

w™Y = ¢ (3o, @), - . ., Yppi(, AEFH)) (4.38)

It is well known that tracking and motion planning problems can be easily

solved for flat systems, see for instance chapter 7 of [52]. In this section we study



130 Chapter 4. Replanning methods for the trajectory tracking

the tracking problem for system (4.33), in presence of a bounded disturbance

added to the nominal velocity of the state:
a(t) = f(2(t),u(®)) +n(t), (4.39)
where 7 is a disturbance signal such that
In(®)|l < N, vVt €R. (4.40)

The performance output of system (4.39) is given by

y=(z,u). (4.41)

We assume that y is a flat output for system (4.39) when no noise is present
(i.e., n = 0). In this case, from (4.34) and (4.35), it follows that the output

signal y satisfies

y=1(go(@"), or(5")). (4.42)

Note that the form (4.39) may be restrictive since the disturbance 7 enters as
a pure additive term. This form does not include, for instance, cases in which
a disturbance multiplies the state x or the input wu.

We assume that the full system state is acquired periodically, with a sam-
pling period equal to T" > 0. In this way, the feedback control relies on the
discrete-time observed sequence x(kT'), k € N. For instance, this assumption
is reasonable when the system state is obtained through a camera, using com-
puter vision techniques. In this case, a sampling time of T" = 0.1 seconds would
be a typical situation.

We study an iterative output replanning technique for controlling sys-
tem (4.39), based on Hermite interpolating polynomials, similar in spirit to
the iterative state steering method presented in [4]. Roughly speaking, the
method is the following. A sufficiently regular reference output trajectory yq
is assigned in advance. During each time interval [T, (k + 1)T[, a replanned

output y, is computed such that
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1. y, corresponds through (4.35) to an initial state which is the same as
x(kT), i.e.

2(kT) = ¢o(yp(KT), Gp(KT), - ...y (KT)) -

2. the replanned output y, converges to the desired one yq at time (k+1)T,
ie, yp((E+1)T) =yq((k+1)T).

The control is given according to (4.35), Vt € [kT, (k + 1)T[, by

u(t) = o1 (yp(t), Up(t), . ..,y I (2)) .

Since the system is affected by additive noise and in interval [kT, (k + 1)T7]
open loop control is used, at time (k + 1)T the system output y((k + 1)7T) is
different from yq((k 4+ 1)T"). Hence, the above step is repeated, finding a new
replanned trajectory y,, that would drive the output of the nominal system to
yq at time (k+2)T. Again, for the presence of noise, at time (k+2)7T the actual
system output is different from the reference trajectory and a new trajectory
is replanned. Since the replanned trajectories converge to the reference y4, the
system output is driven towards the desired output and the tracking error is
kept limited despite the presence of a disturbance. This method is illustrated
in figure 4.10, while figure 4.11 shows the corresponding control scheme.

We prove that the tracking error can be made arbitrarily small if the replan-
ning time 7' is chosen sufficiently small. Moreover, we show that the replanned
output y, can be chosen in such a way to have an arbitrary degree of continuity

on the resulting input function.

4.2.2 An Hermite interpolation problem
Consider the following problem.

Problem 7 (Replanning problem) Given flat system (4.33), an output ref-
erence trajectory, yq € C"THR,R™), an initial state xo € R™ and initial values
for the input and its derivatives uo,u(()l),...,u(()l_l), find an output reference

trajectory y, € C™YR,R™) such that the following properties hold
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Figure 4.10: The iterative replanning method. The figure shows the reference

output trajectory g4, the actual system output y and the replanned trajectory

Yp-

Ya (t) Iterative output Yp (t) Flatness -based u(t) &= f(z,u) +n y(t)

replanning inversion y = Y(z,u)

x(kT) X T

Figure 4.11: The iterative control scheme for the trajectory tracking of a flat

System.
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a) ¢o(y,(0)) = o, i.e., zq is the initial state of the system trajectory that has

Yp as output,

b) u(()i) = ¢i+1(§£+i+1(0)), i=0,....,0—1ie, u(()i) is the initial value of the
i-th derivative of the control for the system trajectory which has y, as

output,

c) yp(t) = ya(t), Vt > T, where T is a given positive constant, i.e. function yy,

converges to yq at time T.

For any | € N, let ¥g, ¥y,..., ¥, 4, be vectors in R™ and set matrix ¥ =
(Vo,¥q,..., ¥, ). Consider the interpolation problem of determining a func-
tion g 7 € C"T([0, T], R™) that satisfies the two conditions

di

%W\D,T(O) =U,;,i=0,...,7r+1, (4.43)
dt .

(1) =0, =0, r+1. (4.44)

Condition (4.43) requires that function mg p have the first » + [ derivatives
equal to the columns of ¥ at time ¢ = 0, while condition (4.44) requires that
all derivatives up to the (r + [)-th be equal to 0 at time ¢t = T.

This problem belongs to the class of Hermite interpolation problems, which
have been widely studied in interpolation literature. Its solution can be written

in the form
r+l

(mo,7)i(t) = Z Ar(t) (Wi, (4.45)
k=0

where the Hermite interpolation function A7 is the minimum degree polyno-
mial that satisfies conditions
d’ d’

= App(0) = 6ig, —Ap(T) =0,
T ATK(O0) = i S ATA(T)

1ifi=0,
0; = )
0 otherwise.

where
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These polynomials have degree 2(r+1+1) and can be computed in closed form

using a result presented in [69]:

ke r—k+l i . |
oy el b (=) (r+i+)!
Arg(t) = (¢ =1T) B4 T (ST ) (4.46)

These polynomials satisfy the following inequality, V¢ € [0, 7]

Tk r—k+l (T—i—l—i—l)'
Ar (D] < — vy
[Ark(t)] < 75 Z; il(r +1)!

Expression (4.45) implies that, for any 7 > 0, there exists a constant C, such
that, VT € [0,T], Vt € [0,T]

mw, ()] < Cl[¥. (4.47)

Figure 4.12 shows some of the Hermite polynomials A7 ;. We use Hermite poly-

1
Aip
08
0.6
04
A
02
At
/yj//\y—\
o :
0 0.2 0.4 0.6 0.8 1

Figure 4.12: The first three Hermite polynomials for r +1 =4 and T = 1.

nomials for defining the replanned trajectory y,. To this end, define function

1; - R™ x Rm(r+l+1) N Rmx(r+l+1)
(4.48)
(Z)Ua/vla s )UT-H) ~ (¢05 ¢1) s )(br-i-l) )
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such that
O = Yr(z,v0,v1,...,08)  k=0,...,7+1, (4.49)

where 1y is defined in (4.37). In this way ®j, represents the k-th derivative of
the output obtained when the system state is z and the input and its derivatives

are given by v;, 7 = 0, ..., k. Finally define the reference trajectory y, as follows

ya(t) + mer(t) H0<t<T
Yp(t) = )
Ya(t) ift>T,

where
o r+l —r
\I/:w(xo,u(()o),...,u(()+))—de(O). (4.50)

Function y,, solves the replanning problem, since
1. it belongs to O™,
2. it satisfies properties a) and b) because of conditions (4.43) and (4.50),
3. it satisfies property c) because of condition (4.44).

Remark In this way, xg represents the initial state corresponding to output
function ¥, and uo,ugl), ... ,u(()rH) represent the initial input and the initial
input derivatives up to the degree r + 1.

The use of Hermite interpolation allows to define replanned trajectories that
corresponds to arbitrary conditions on the initial state, the initial input and

its derivatives.

4.2.3 Iterative control law

Using the replanning method described in the previous sections, the control

law for system (4.39) is defined as follows
ut) = ¢1(y, (1)), (4.51)
where ¢; is given in (4.35) and, for t €]kT, (k + 1)T

Yp(t) = ya(t) + To),r(t —kT), (4.52)
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with
U(0) = (0, ugsuy, ... uf ) = 54(0), (4.53)
and, for £ > 0,

(k) = P(a(kT™),a" T KT ™)) — g5 (kT) . (4.54)

In (4.53), xy represents the initial state x(0) and the assigned constants wuo,

uél), e ,ué”l) are the initial control input with its derivatives. In other words,

in time interval |kT, (k4 1)T] it is used the control function u that would drive
the nominal system (4.33) along the reference trajectory y,(t). This trajec-
tory is computed by adding the polynomial function 7y )7 to the reference

trajectory yq. In this way the replanned trajectory y, satisfies the properties

a) ¢o(y,(kT)) = x(kT), i.e. x(kT) is the value at time KT of the state trajec-

tory that corresponds to y,,

b) g};“((k +1)7T7) = §2+l((k +1)T), i.e. the replanned trajectory is the same
as the desired trajectory at time (k+ 1)T.

4.2.4 Main results

A relevant property is that the resulting control function u is C*~! continuous

as shown in the following proposition.
Proposition 9 The control function u defined in (4.51) belongs to class C'~1.

Proof. Since y,, is of class C" ! in the open sets |kT, (k+1)T[ according to (4.36),
the control function belongs to C!~! in the the union of intervals |kT, (k-+1)T7,
k € N. It remains to prove C'~! continuity on k7', k € N. Since system (4.33) is
flat, by definition (4.51) and taking into account (4.36) it follows that, Vk € N,

u(KTT) = ¢ipa (g, T (RTT)), i=0,...,1-1,
moreover, by conditions (4.37), (4.54)

y P (RTH) = y(a(kT7), 0" (KT7)), i = 0,...,1,
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therefore by (4.38), u®(kT*) = v (KT~), Vi = 0,...,1 — 1, Vk € N, which
proves C'~1 continuity. O
Remark With regards to proposition 9, it is worth noting that integer [ is, in
practice, a free parameter provided that a sufficiently smooth desired trajectory
yq € C"T! is designed. Consequently, this implies that the control input of the
proposed method can be chosen as smooth as necessary or desired.

The main result of this paper requires the following Lipschitz assumption
on function (4.33).

Assumption 3 Given flat system (4.33), there exist constants 0 < Lf, Ly, € R
for which Vxi,x9 € R" u € R™

1f (21, u) = [, u)l| < Lyllzy — o,

and the associated function 1) (see (4.48)) satisfies the following condition,
Va1, x2 € R™ and ug, ..., U4 € R™

||sz)($15 ug, - - - auT-H) - QZ)(‘TQ) ug, - - - auT-H)H < L¢||$1 - :C2H :
The following theorem states that it is always possible to choose a replanning
time T, sufficiently small, such that the output tracking error is lower than

any given positive constant e.

Theorem 4 Let @(t) = f(x(t),u(t)) be a control system with flat output (4.41),
such that assumption 3 is satisfied. Let yq € C"THR,R™) be a reference tra-
jectory for the flat output . Consider the differential system

{ i(t) = f(z(t), ult) +n(t) (4.55)
.T,'(O) =20,

where ||n(t)|| < N, Vt € R, and the initial state xq is such that there exists an
initial control ugy for which y4(0) = ¥ (xg,up). Then, for any € > 0, there exists
T > 0 such that the solution of (4.55) with control function u given by (4.51)
satisfies

b(ae), u(t)) — gat)] < e, ¥t > 0.
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The following lemma will be used in the proof of theorem 4.

Lemma 2 Let Ly € R be such that Vxi,2o € R" and Vt € R

1f (@1,8) = fa2, )| < L[l — a2, (4.56)
and let x and x, be the solutions of

{ i) = ft) +n) { (1) = flart)

z(0) = o, zr(0) = 2o,

with xo € R"™ and ||n(t)|| < N, vVt € R. Then

elrt —1

[(t) = 2 (@)] < I

N. (4.57)

Proof. By hypothesis (4.56) the following differential inequality is satisfied

dfx(t) — (0|
dt

Inequality (4.57) follows from the Comparison Lemma, solving the correspond-

< |f @), 8) +0(t) = [l (@), )] < Lyllz@) = z-@)] + N

ing linear differential equation in the variable ||z — z,||. O
Proof of theorem 4. For any k € N, Vt € [kT, (k + 1)T, let =, be the solution

of the following differential system

{ @ (t) = fo,(t), u(t)) (4.58)
. (KT) = z(kT) ,

where the control w is given by (4.51). System f(z,u) is flat and by definition 12
the associated function ¢g satisfies the differential equation

doo(p)
dt

(t) = f(9o(7(1), ¢1 (5, (1)) - (4.59)

By construction, the replanned trajectory y, satisfies z(kT') = ¢o(y,(kT)).
Since u is defined by (4.51), differential equation (4.58) can be rewritten as

iy (t) = f(zr(t), 1 (75 TL(1)))
2,.(kT) = z(kT) .
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Hence, for ¢ € [kT,(k + 1)T)[, x,(t) is the solution of the same differential
equation (4.59) as ¢, therefore z,.(t) = ¢o(y,(t)). Consequently, by (4.42),
Y@ (t), u(t)) = (¢o(Fp), $1(7")) = yp(t).

Moreover, using lemma 2,

LT 1
I9(6) = 38l = 1 0) = )] € Ll = ) < Ly = N

Set T sufficiently small such that Ly, eLfLT;fl N < §,sothat ||ly(t) —y,(D)| < 5,
vt > 0.

Remark that, Vk € N,
[ (x(KT), @+ (KT)) — (2, (KT), @ (KT))|
elsT — 1
< Lylla(KT) - 2, (KT) | < Ly—— N,
f

therefore, by (4.47) and assumption 3, Vt € [kT, (k + 1)T|

Hyp(t) - yd(t)H = H7r1/7(:c(kT),u(kT),...,u(’"‘H)(kT))fgcTLl(kT),T(t)H

< C||(x(kT), u(kT),. .., u"(&T)) — g (KT
elsT — 1

= CL¢H:c(k:T) —z,. (KT < C’L¢TN .

f

Choose then T such that CL¢6L’£LT%N < 5, so that [[y,(t) — ya(t)|

Vt > 0. Finally set T = min{7},7T>}, then the thesis holds since, V¢
1y (@) = ya@®I < lly(®) = ypO + [[yp(t) = wa(B)]] < e

<<
> 0,
O

4.2.5 Simulation results for the case of a unicycle

This section shows some simulation results obtained by applying the method
presented in the above subsections to a unicycle system illustrated in figure 4.1.
Here, the unicycle kinematics (4.1) of section 4.1 is proposed again with the

only substitution of y with z.

T cos 6
< P ) = v ( sin 0 ) ) (4.60)
0

= w(t) +me(t),
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In this example we want that the unicycle follows a C? curve with continuous
control inputs v(t), w(t) € C°. We have assumed that the state is periodically
measured with sample time 7" = 1 s. The performance output is given by
y = (z, z), which is a flat output with » = 1 for the nominal unicycle (4.60). In
order to obtain a C° control input, by proposition 9 we set [ = 1. In this way
the Hermite interpolating polynomials (4.46) have degree 2(r + 1+ 1) = 6.

As reference trajectory we have considered a periodic spline yg followed
with constant speed 1 m/s. The noise bounds appearing in (4.2) are given by
N = 0.5v/2 and Ny = 0.5. The obtained result is presented in figure 4.13. The
control inputs and the error functions are depicted in figure 4.14 and 4.15,

where the position error e(t) and the angular error ey(t) are defined as follows

NEUAN
€<t>—<z<t)> alt)

eg(t) = 0(t) — arg ga(t).

Figure 4.13: Simulation results for unicycle system with the iterative replanning
method.

Figure (4.16) shows the reference trajectory yg, the replanned one y, and

the actual unicycle output y.
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Figure 4.14: The control inputs for the iterative replanning method applied to

the unicycle system.
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Figure 4.15: The error functions for the iterative replanning method applied

to the unicycle system.
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Figure 4.16: The reference trajectory y4, the replanned one y, and the actual

unicycle output y, for the unicycle example.

Comparison with a well known method

The proposed method has been compared with the same one used for the
comparison in subsection 4.1.5 (cf. [68, p.809]), with an observation time set
to be T' = 1 s. The gains in the Samson’s controller have been set to obtain
control signals of magnitude similar to the introduced method. The results
obtained with this method are shown in figures 4.17, 4.18 and 4.19.

The two methods shows a similar performance in terms of tracking error.
However, the control method presented in this section has the advantage of pro-
viding input signals of an arbitrary degree of continuity, whereas the control
signals of the classic controller are discontinuous (even if this is a consequence
of having used a discontinuous observer). Moreover, the iterative output re-
planning method has the advantage of being applicable to any system with a

flat performance output.
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Figure 4.17: Simulation results for the unicycle with the Samson’s method.

v(t)

olt)

Figure 4.18: The control inputs for the Samson’s method applied to the unicycle

System.
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Figure 4.19: The error functions for the Samson’s method applied to the uni-

cycle system.

4.2.6 Simulation results for the case of a one-trailer system

The iterative output replanning method has been applied to a truck and trailer,
or one trailer, system (see section 2.2). With respect to the coordinates (z, 2)
of the middle point of the trailer rear axle, the well-known equations for this

system are given by

& = wcosb cos(By— 01) + n.(t)
Z = wsinf cos(fy — 01) + n.(t)
0 = w+ g (t)

6, = g sin(fp — 01) +ng, (1),

where 6y and 6; are the orientation angles of the pulling truck and of the trailer
respectively, and d represents the distance between the rear point (z, z) of the
trailer and the joint point on the truck. The control input function v is the
truck longitudinal velocity while w represent its angular velocity. As shown
in [53], this system is flat (r = 2) with respect to the performance output
y = (z,2). In this case to limit the degree of the interpolation polynomials, we

have chosen [ = 0, obtaining therefore a discontinuous control by proposition 9.



4.2. Iterative output replanning for flat systems 145

In this simulation, the noise terms have been chosen such that |n,(t)], [n.(t)],
Im9, ()|, |me, ()] < 0.2. The value of the distance d is set to be equal to 1 m.

Truck pulling a trailer

As reference trajectory gyg we have considered the same C? periodic spline
used for the unicycle example, characterized by a positive constant speed of 1

m/s. The obtained results are presented in figures 4.20, 4.21 and 4.22, where
eolt) = 01(t) — ang ().

Figure 4.20: Tracking results for the one-trailer system on a periodic spline, in

the truck pulling trailer case.

As in the case of the unicycle, the iterative output replanning method shows

a good performance in terms of tracking error.

Truck pushing a trailer

As known, the trajectory tracking of trailer system in reverse gear is more
difficult than in forward driving, because it is unstable (see [70]). The reference
trajectory is again the periodic spline used in the previous examples, with the
difference, in this case, of being characterized by a constant negative speed of
—1 m/s. The obtained results are presented in figures 4.23, 4.24 and 4.25.
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v(t)
oft) ||

Figure 4.21: The control inputs for the iterative replanning method applied to

the one-trailer system, in the truck pulling trailer case.
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Figure 4.22: a) The error functions for the iterative replanning method applied
to the one-trailer system, in the truck pulling trailer case and b) a close up of

it on a smaller time interval.
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Figure 4.23: Tracking results for the one-trailer system on a periodic spline, in

the truck pushing trailer case.

41

L
25

L
30

L
35

40

Figure 4.24: The control inputs for the iterative replanning method applied to

the one-trailer system, in the truck pushing trailer case.
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"o 5 10 15 20 25 30 35 40 a) 20 2 2 2 2 2 b)

Figure 4.25: a) The error functions for the iterative replanning method applied
to the one-trailer system, in the truck pushing trailer case and b) a close up of

it on a smaller time interval.

Also in this case, the iterative output replanning method shows a good

performance in terms of tracking error.



Conclusions

The thesis has presented some methods useful for the optimal planning and
control for the motion of autonomous wheeled vehicles. In particular, the ex-
posed techniques may be applied to the wide class of flat systems (cf. definition
12). Results can be summarized as an hybrid feedforward/feedback control
scheme, whose purpose is to guarantee a robust and highly performing control.

High performances are reached out with the planning of time-optimal and
continuous velocity profiles and geometrically continuous paths, that lead to
a continuous steering input signal. This means that a smooth and optimal
motion of the wheeled vehicle can be attained and, in such a way, the vehicle
autonomous navigation can perform agile and event-driven maneuvers.

Robustness is achieved by means of iterative trajectory replanning proce-
dures, which guarantee the tracking of the planned trajectory in the presence
of noise. It has been proved the existence, for the proposed trajectory planning
methods, of closed-form bounds on the tracking error.

Simulation and experimental results obtained during this research point out
that the presented methods may be well suited for a real-time implementation
provided that some of the required optimizations are done off-line. Indeed,
optimal velocity profiles and paths can be generated in real-time using fast local

optimization routines based on look-up tables built with off-line optimization.
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