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IntrodutionThis thesis presents some results obtained during my PhD ourse Dottorato inTenologie dell'Informazione, at the Università di Parma, Dipartimento di In-gegneria dell'Informazione, in the three years period 2009-2012. The work hasbeen foused on the problem of the time-optimal motion ontrol of wheeled au-tonomous systems, suh as uniyle robots, automati guided vehiles (AGVs),ar-like vehiles and truk and trailer (or one-trailer) systems.The aim is to obtain a ontrol that provides a smooth motion of the un-manned vehile in minimum-time. In order to do that, it is neessary to plana path with an appropriate geometri ontinuity, and two time-optimal inputsignals of veloity and steering angle ontinuous with their derivatives. More-over, a feedbak ontroller must be adopted to guarantee the robustness of theoverall ontrol sheme. Final result of the thesis an be viewed as the synthesisof various methods for hybrid feedforward/feedbak ontrol for a wide lassof wheeled mobile robots. Figure 1 presents a oneptual sheme that sum-marizes the idea behind the hybrid feedforward/feedbak ontrol, whih is the�nal result of the work done along the three years of study and researh.Path planning and veloity planning an be ompletely independent to eahother, on ondition that:1) the planned path has an appropriate geometri ontinuity and satis�esgeometri interpolating onditions at the path endpoints, and2) the veloity is a C1-funtion satisfying interpolating onditions (on dis-tane, veloity and aelerations) at the endpoints of the planned time-



2 Introdutioninterval.
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Figure 1: The overall arhiteture for the optimal motion ontrol of the wheeledvehile.Indeed, given a su�iently smooth path, a dynami inversion proedure an beapplied to determine the feedforward ontrol inputs of the autonomous vehilestill maintaining freedom in the planning of veloity input.Hene, the thesis �rst shows some methods that permit to plan a pathand optimal input signals whih lead to a minimum-time smooth motion for avariety of automati guided systems in nominal onditions (i.e. no noise a�etsthe systems). Seondly, it is shown how guarantee the traking of the plannedtrajetory by means of a feedbak ontrol, when the system is a�eted byadditive noise.The very �rst part of the thesis (hapter 1) faes the time-optimal veloityplanning with arbitrary boundary onditions for an automati guided vehile.Initially, only a onstraint on the maximum value of the jerk (i.e. the velo-ity seond derivative) is onsidered. The addressed minimum-time planningproblem has been reast into an input-onstrained minimum-time reahabilityontrol problem with respet to a suitable state-spae system, where the on-trol input is atually the sought jerk of the veloity planning. By virtue of the



Introdution 3well-known Pontryagin's Maximum Priniple the optimal input-onstrainedontrol is then a bang-bang funtion. An algebrai approah to obtain thisoptimal solution has been devised and a new algorithm to ompute the bang-bang jerk pro�le is exposed. This problem has been reonsidered introduingonstraints also on the maximum values of the veloity and aeleration. Inthis ase the Pontryagin's Maximum Priniple does not ensure the existeneof the time-optimal ontrol. Su�ient onditions, guaranteeing the existeneof a solution to the minimum-time onstrained planning problem, are exposed.The time-optimal ontrol is not a lassi bang-bang funtion, but it shall be ageneralized bang-bang. The problem has been faed through disretization andthe obtained solution is based on a sequene of linear programming feasibilityheks, depending on motion onstraints and boundary onditions.Chapter 2 presents two methods for the path planning of ar-like and onetrailer vehiles. It is shown how plan paths with an appropriate geometriontinuity by resolving a geometri interpolation. In partiular, the geometriinterpolation problem, whih has in�nite dimension, has been reast into apolynomial interpolation problem (a �nite dimension problem), by means of the
η-splines. The shaping of this kind of spline depends on a vetor of parametersalled �eta�, and on the boundary onditions. It is then presented a multi-optimization proess to optimally hoose these free parameters, with the aimto plan trajetory that respet bounds on urvature and urvature derivative,ensuring avoidane of the obstales in the �real� workspae. In the ase of thear-like vehile, appliations to the autonomous parking problem are presented.In hapter 3, the dynami path inversion blok (f. �gure 1) is outlined byintroduing a proedure that permits to obtain a minimum-time steering on-trol input for an automati guided vehile (AGV). One an onsider to havejust planned a path and a time-optimal veloity pro�le exploiting the teh-niques introdued in the �rst two hapter. The optimal steering input signalfor the AGV is obtained with a dynami inversion on the planned path, basedon some geometri properties of the path itself, and of the AGV kinemati sys-tem. Similar proedure an be easily determined for the other vehiles, suh as



4 Introdutionthe ar-like and the one-trailer.Finally, hapter 4 proposes two methods for the trajetory traking for au-tonomous systems a�eted by additive noise. Both methods are thought forases where ontinuous-time or high-frequeny revelation of the system stateor output is not possible or not eonomial and only low-frequeny feedbakis pratiable. The implemented solutions to this trajetory traking problem,relies on iterative replanning methods to ompute a new referene trajetory,used to generate the feedforward inverse ommand veloities that help in re-duing the traking errors. For both tehniques expliit losed-form bounds onthe traking error are provided.



Chapter 1Minimum-time veloityplanning Plans are only good intentions unlessthey immediately degenerate into hard work� Peter DrukerIn the wide �eld of vehiles autonomous navigation, signi�ant researhe�orts have been dediated to the problem of optimal motion planning. Theproblem of motion planning for autonomous guided vehiles is a well knownand studied issue in robotis, see for example the reent books [1℄ and [2℄.This hapter propose tehniques for minimum-time veloity planning with ar-bitrary boundary onditions, onsidering two di�erent ases: one with onlyonstraint on the maximum absolute value of the jerk (i.e the veloity seondderivative), and one with onstraints also on the maximum absolute value ofthe aeleration and veloity. The minimum-time veloity planning is ast inthe ontext of the so-alled path-veloity deomposition [3℄ using the iterativesteering navigation tehnique [4, 5℄.The �rst two setions brie�y introdue the optimal ontrol theory, with



6 Chapter 1. Minimum-time veloity planningpartiular attention to the linear time-optimal problem. For more details onthis arguments see, for example, books [6, 7℄.The third setion presents a proedure for the synthesis of a veloity C1-funtion that permits in minimum-time and with a bounded jerk to interpolategiven veloity and aeleration at the time planning interval endpoints and totravel a given distane. The ondition on the maximum jerk value permits toobtain a smooth veloity pro�le [8℄. The addressed minimum-time planningproblem will be reast into an input-onstrained minimum-time reahabilityontrol problem with respet to a suitable state-spae system, where the ontrolinput is atually the sought jerk of the veloity planning. By virtue of the well-known Pontryagin's Maximum Priniple the optimal input-onstrained ontrolis then a bang-bang funtion.Finally, a solution for the onstrained minimum-time veloity planning ispresented. In this ase, the time-optimal solution is not a lassi bang-bangfuntion, but it shall be a generalized bang-bang funtion [9℄. The minimum-time transition is obtained by disretizing the ontinuous-time model and for-mulating an equivalent disrete-time optimization problem solved by meansof linear programming tehniques. More preisely, boundary onditions andproblem onstraints are expressed by linear inequalities on a olumn vetor
u, representing the input signal (i.e the jerk) at sampling times. Hene, theminimum-time planning problem is reformulated as a feasibility test for a linearprogramming problem, and the minimum number of steps required to ompletethe given transition an be found through a simple bisetion algorithm. The useof linear programming tehniques for solving minimum-time problems for lin-ear disrete-time systems subjet to bounded inputs dates bak to Zadeh [10℄.Subsequently, many ontributions have appeared fousing on various improve-ments. For example a faster algorithm is proposed in [11℄. For what onernstime-optimal ontrol for ontinuous-time systems, a related result, under dif-ferent hypotheses, is presented in [12℄.



1.1. Optimal ontrol theory 71.1 Optimal ontrol theoryOptimal ontrol is the proess of determining ontrol and state trajetories fora dynami system over a period of time, in order to minimize a performaneindex. The method is losely related in its origins to the theory of alulus ofvariations and it is largely due to the work of Rihard Bellman [13℄, and LevPontryagin et al. [14℄. Optimal ontrol and its rami�ations have found appli-ations in many di�erent �elds, inluding aerospae, proess ontrol, robotis,bioengineering, eonomis, and it ontinues to be an ative researh area withinontrol theory.1.1.1 Problem statement and notationConsider optimal problems de�ned by the onstraint set C, a subset of thetangent bundle of a smooth manifold M , and a ost funtion f , that is a real-valued funtion having C as its domain. A trajetory of C is an absolutelyontinuous urve x(t) ∈M suh that dx
dt (t) ∈ C for almost all t in the domainof x. The total ost of x is de�ned as

∫ T

0
f

(

dx

dt
(t)

)

dt ,where [0, T ] denotes the domain of x. Given any two points x0 and xf in M ,the optimal trajetory of C is the one whih onnets x0 to xf and whose totalost is minimal among all suh trajetories of C.The onsidered sets C admit setions of the form ξ = F (π(ξ), u1, . . . , um),where (u1, . . . , um) takes values in a �xed set U ∈ R
m, π indiates the naturalprojetion from TM onto M , and ξ is an arbitrary point of C. Then, thetrajetory veloity dx

dt is parametrized by the ontrols u1, . . . , um, and its totalost an be expressed as
∫ T

0
c(x(t), u(t))dt =

∫ T

0
f ◦ F (x(t), u(t))dt .In a given setion of C, the trajetories of C that onnets two given points

x0 and xf in a �nite time T , oinide with the solution urves x(t) of the



8 Chapter 1. Minimum-time veloity planningdi�erential system










dx
dt = F (x(t), u(t), . . . , um(t))

x(0) = x0

x(T ) = xf .Under suitable smoothness assumptions on F , eah ontrol funtion u(t) deter-mine a unique solution urve, so the problem of �nding the optimal trajetoriesof C is onverted to one of �nding the ontrols that give rise to the optimaltrajetory and that is an optimal ontrol problem.We shall need additional notation. For any matrix C, C ′ indiates its trans-pose, while span(C) represents the set of all the eigenvalues of C. For any vetorspae E, its dual is denoted by E∗.E an be regarded as a subspae of (E∗)∗through the orrespondene e → g(e) for any e ∈ E and g ∈ E∗. When E is�nite-dimensional, E = (E∗)∗. Reall that a linear mapping L : E → E∗ issaid to be symmetri if L is equal to its dual mapping L∗.1.2 Linear time-optimal problemThe proess of transferring one state into another along a trajetory of a givendi�erential system suh that the time of transfer is minimal is known as theminimal-time problem, and it is one of the basi onerns of optimal ontroltheory. Consider the linear time-invariant system,
dx

dt
= Ax+Bu , (1.1)with x ∈M ⊂ R

n and u ∈ Uc ⊂ R
m, where A and B are onstant matries oforder n×n and n×m respetively. Let system (1.1) be de�ned in a real, �nite-dimensional vetor spae M in whih the ontrol funtions are restrited toa ompat and onvex neighborhood Uc of the origin, in a �nite-dimensionalontrol spae U , and also assume that (1.1) is ontrollable and that ontrolfuntions are measurable. A trajetory is de�ned by the pair (x, u), in whih

x is an absolutely ontinuous urve of some time interval [0, T ], T > 0, thatsatis�es (1.1) almost everywhere in [0, T ].



1.2. Linear time-optimal problem 9De�nition 1 A trajetory (x, u) is alled time-optimal on an interval [0, T ] iffor any other trajetory (y, v) of (1.1) de�ned on its interval [0, S], for whih
y(0) = x(0) and y(S) = x(T ), S is larger than or equal to T .Theorem 1 For any time-optimal trajetory (x, u) on an interval [0, T ]a) the terminal point x(T ) belongs to the boundary ∂A(x(0), T ) of the set ofreahable points from x(0) at t = T of system (1.1);b) any point b that belongs to the boundary of the set reahable from the originat time T is the terminal point of a time-optimal trajetory on the interval

[0, T ].Proof. If x(T ) belonged to the interior of A(x(0), T ), then x(T ) would alsobelong to the interior of A(x(0), T − ǫ), for some ǫ > 0, whih is not possible,beause that would violate the time optimality of (x, u) on the time-interval
[0, T ]. This argument proves part a).To prove b), note that for any T > 0, points on the boundary of A(0, T )annot be reahed in a time shorter than T . On the other hand A(0, T ) is om-pat for eah T > 0. Therefor, for eah b on ∂A(0, T ) there exists a trajetory
(x, u) de�ned on the time-interval [0, T ] suh that x(0) = 0 and x(T ) = b. Itfollows by the foregoing argument that (x, u) is time-optimal on [0, T ]. �1.2.1 The maximum prinipleFor the minimum-time ontrol problems, the Pontryagin maximum prinipleprovides the neessary and the su�ient onditions for optimality. The readeris reommended to onsult [6, pp. 305�306℄ for the proof of the theorem andother details.Theorem 2 (Pontryagin's Maximum Priniple) Any time-optimal traje-tory (x̄, ū) on an interval [0, T ] is the projetion of an integral urve (x̄, p̄, ū) ofthe Hamiltonian vetor �eld ~H assoiated with H(x, p, u) = −p0+p(Ax+Bu),with p0 equal to either 0 or 1, suh that



10 Chapter 1. Minimum-time veloity planninga) H(x̄(t), p̄(t), ū(t)) = maxu∈Uc H(x̄(t), p̄(t), u) for almost all t in [0, T ];b) H(x̄(t), p̄(t), ū(t)) = 0 almost everywhere in [0, T ];) p̄(t) 6= 0 for any t, if p0 = 0.Proof. See [6, pp. 305�306℄. �Remark The following remarks are helpful for larify some important aspetsand onsequenes of the maximum priniple:1. H should be regarded as a funtion on T ∗M = M ×M∗ parametrizedby both the hoie of a ontrol funtion and the value of p0.2. Assume that u(t) is a given measurable ontrol funtion with values in Uc.Eah integral urve σ(t) = (x(t), p(t)) of the Hamiltonian vetor �eld ~Hassoiated with H(x, p, u(t)) = −p0 + p(Ax+Bu(t)), when expressed inanonial oordinates, satis�es the following pair of di�erential equations:
dx

dt
= Ax(t) +Bu(t) ,

dp

dt
= −A∗p(t) .3. The maximality ondition a) of theorem 2 is equivalent to p̄(t)Bū(t) =

maxu∈Uc p̄(t)Bu for almost all t in [0, T ].1.2.2 Bang-bang priniple for salar systemsThe bang-bang priniple says that the optimal ontrols take the most advan-tage of possible ontrol ation at eah instant. The name is motivated by thepartiular ase of a ontrol spae given by the interval Uc = [u−, u+], whereoptimal ontrols must swith between the minimal and maximal values u− and
u+. There are various theorems that make this priniple rigorous. Here, thesimplest one is reported, as Sontag stated in [7, pp. 436�437℄.Theorem 3 (Weak bang-bang) Assume that the matrix pair (A,B) is on-trollable. Let ū be a ontrol steering system (1.1) from an initial state x0 to a�nal state xf in minimal time T > 0. Then, ū ∈ ∂Uc for almost t in [0, T ].



1.2. Linear time-optimal problem 11Proof. The proof diretly derives from the appliation of the Pontryagin's max-imum priniple (see [7, pp. 436�437℄). �Thanks to theorem 2 it is possible to state that the time-optimal ontrol
ū is unique and it is also possible determine its struture (for a more rigoroustreatment see [7℄ and [15℄).We speialize now to single input systems (m = 1), and write b instead of
B in (1.1). In general Uc = [u−, u+], but we will take, in order to simplify theexposition, u− = −1 and u+ = 1. Assume that the pair (A, b) is ontrollable.For eah two states x0 and xf , there is a unique time-optimal ontrol ū steering
x0 to xf , and there is a nonzero vetor γ ∈ R

n suh that
ū(t) = sgn(γ′e−tAb) , (1.2)for all t /∈ Sγ,T , where

Sγ,T =
{

t ∈ [0, T ] : γ′e−tAb = 0
}

,is a �nite set. This means that the optimal ontrol ū is a pieewise onstantfuntion, whih swithes between values −1 and 1. The following propositionpermits to determine the number of swithings in the ase of system matrix Ahas only real eigenvalues.Proposition 1 Suppose that the matrix A has only n real eigenvalues,i.e.
span(A) ∈ R .Then, for eah γ, b and T , Sγ,T as at most n− 1 elements, whereby any time-optimal ontrol for system (1.1) as no more than n− 1 swithings.Proof. This proposition derives diretly from the appliation of the Pontrya-gin's maximum priniple to the time-optimal ontrol of a salar system. Readeran �nd several proofs of this proposition (see, for example [7, 15℄).



12 Chapter 1. Minimum-time veloity planning1.3 Minimum-time veloity planning with arbitraryboundary onditionsThis setion introdues and explains the approah presented in [16℄, whihsolves the minimum-time veloity planning problem with arbitrary boundaryonditions and a onstraint on the maximum jerk value. The obtained optimal-time solution, based on Pontryagin's Maximum Priniple, is a smooth planningwith ontinuous veloities and aelerations. The devised algebrai algorithmto solve this minimum-time planning problem is well suited to be implementedwithin the framework of path-veloity deomposition for autonomous naviga-tion.1.3.1 Problem statement and the struture of the optimal so-lutionThe following de�nition will be used along this paper.De�nition 2 A funtion f : R → R, t→ f(t) has a PC2 ontinuity, and wewrite f(t) ∈ PC2 ifa) f(t) ∈ C1(R) ,b) f(t) ∈ C2(R− {t1, t2, . . . }) ,) ∃ limt→t−i
D2f(t) , ∃ limt→t+i

D2f(t) , i = 1, 2, . . .where {t1, t2, . . . } is a set of disontinuity instants.The problem is to plan a minimum-time smooth veloity pro�le v(t) ∈ PC2while a given onstraint on the maximum jerk value jM is guaranteed andthe initial and �nal onditions on the veloity and aeleration are arbitrarilyassigned. Formally:
min
v∈PC2

tf , (1.3)suh that
∫ tf

0
v(ξ)dξ = sf , (1.4)
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v(0) = v0 , v(tf ) = vf , (1.5)
v̇(0) = a0 , v̇(tf ) = af , (1.6)
|v̈(t)| ≤ jM , ∀t ∈ [0, tf ] , (1.7)where sf > 0, jM > 0 and v0, vf , a0, af ∈ R are arbitrary veloity andaeleration boundary onditions. sf is the total length of the path and tf isthe travelling time to omplete this path. The solution of the above problemis v̄(t) ∈ PC2 with assoiated minimum-time t̄f .The minimum-time planning problem (1.3)-(1.7) an be easily reast to aninput-onstrained minimum-time ontrol problem with respet to a suitablestate-spae system. Indeed onsider the jerk v̈(t) as the ontrol input u(t) of aasade of three integrators as depited in �gure 1.1.PSfrag replaements
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Figure 1.1: The system model for veloity planning.Introduing the state x(t) as the olumn vetor
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ẋ(t) = Ax(t) +Bu(t) =
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x(t) +







0
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u(t) . (1.8)Hene, problem (1.3)-(1.7) is equivalent to �nd a time-optimal ontrol ū(t)that brings system (1.8) from the initial state x(0) = [0v0 a0]

′ to the �nal state
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x(t̄f ) = [sf vf af ]

′ in minimum time t̄f , while satisfying the input onstraint
|ū(t)| ≤ jM , ∀t ∈ [0, t̄f ] .In setions 1.2.1 and 1.2.2 it has been exposed that the Pontryagin's maxi-mum priniple gives a neessary and su�ient ondition for this lass of prob-lems. Moreover, it has been shown that in the ase of a linear salar systemthe time-optimal ontrol ū(t) is a bang-bang funtion. In our ase it will be apieewise onstant funtion that swithes between the −jM and +jM . Finally,another information on the optimal ontrol struture is obtained from propo-sition 1. Considering that system (1.8) has three null eigenvalues we dedue,by virtue of proposition 1, that the time-optimal jerk ū(t) has at most twoswithing instants. Hene, the general struture of the optimal ū(t) is depitedin �gure 1.2 where uM ∈ {−jM ,+jM} and 0 ≤ t1 ≤ t2 ≤ t̄f with t̄f > 0.PSfrag replaements ū(t)

uM

−uM

t1 t2 t̄f t

Figure 1.2: An example of the minimum-time ontrol (jerk) pro�le.1.3.2 The algebrai solutionIt has been shown above the struture of the time-optimal ontrol ū(t). Inthe following, an algebrai approah will be exposed to exatly determine thisoptimal jerk pro�le.



1.3. Minimum-time veloity planning with arbitrary boundaryonditions 15Exploiting the boundary onditions (1.3)-(1.6), the problem is to �nd theswithing time values t1 and t2, the minimum time t̄f and the sign of the jerkinitial value ū(0), while satisfying the onstraint 0 ≤ t1 ≤ t2 ≤ t̄f with t̄f >

0. From the boundary ondition (1.6) on the �nal aeleration value we knowthat
a0 +

∫ t̄f

0
ū(ξ)dξ = af .Integrating the optimal jerk pro�le on the three intervals, the following relationis obtained

a0 +

∫ t1

0
uMdξ +

∫ t2

t1

(−uM )dξ +

∫ t̄f

t2

uMdξ = af ,and �nally a �rst linear equation in t1, t2 and t̄f is found
2 uM t1 − 2 uM t2 + uM t̄f = af − a0 . (1.9)The aeleration pro�le x3(t) is obtained by integrating the optimal jerk a-ording to
x3(t) = a0 +

∫ t

0
ū(ξ)dξ , ∀t ∈ [0, t̄f ] ,that results in the following equation

x3(t) =











a0 + uM t t ∈ [0, t1]

a0 + 2 uM t1 − uM t t ∈ [t1, t2]

a0 + 2 uM t1 − 2 uM t2 + uM t t ∈ [t2, t̄f ] .

(1.10)Now, by virtue of the boundary ondition (1.5), the following relation is de-dued
v0 +

∫ t̄f

0
x3(ξ)dξ = vf ,hene, from (1.10), one obtains

v0 +

∫ t1

0
(a0 + uM ξ)dξ +

∫ t2

t1

(a0 + 2 uM t1 − uM ξ)dξ

+

∫ t̄f

t2

(a0 + 2 uM t1 − 2 uM t2 + uM ξ)dξ = vf .



16 Chapter 1. Minimum-time veloity planningFinally, a quadrati equation in t1, t2 and t̄f is found
−uM t21 + 2 uM t1 t̄f + uM t22 − 2 uM t2 t̄f +

1

2
uM t̄2f + a0 t̄f = vf − v0 . (1.11)Integrating the aeleration funtion x3(t) as follows

x2(t) = v0 +

∫ t

0
x3(ξ)dξ , ∀t ∈ [0, t̄f ] ,the veloity pro�le x2(t) is obtained

x2(t) =











































v0 + a0 t+
1
2 uM t2 t ∈ [0, t1]

v0 + a0 t+ 2 uM t1 t− uM t21 − 1
2 uM t2 t ∈ [t1, t2]

1
2 uM t2 − uM t21 + uM t22 + 2 uM t1 t

−2 uM t2 t+ a0 t+ v0 t ∈ [t2, t̄f ] .

(1.12)
By virtue of the boundary ondition (1.4), the following relation holds

∫ t̄f

0
x2(ξ)dξ = sf ,then, from (1.12), we dedue

∫ t1

0
(v0 + a0 ξ +

1

2
uM ξ2)dξ +

∫ t2

t1

(v0 + a0 ξ + 2 uM t1 ξ − uM t21

−1

2
uM ξ2)dξ +

∫ t̄f

t2

(
1

2
uM ξ2 − uM t21 + uM t22 + 2 uM t1 ξ

−2 uM t2 ξ + a0 ξ + v0)dξ = sf .Finally, the last ubi equation in t1, t2 and t̄f is given by
1

3
uM t31 − uM t21 t̄f + uM t1 t̄

2
f −

1

3
uM t32 + uM t22 t̄f − uM t2 t̄

2
f

+
1

6
uM t̄3f +

1

2
a0 t̄

2
f + v0 t̄f = sf .

(1.13)



1.3. Minimum-time veloity planning with arbitrary boundaryonditions 17The time-optimal veloity pro�le is planned by solving the nonlinear algebraisystem given by equations (1.9), (1.11) and (1.13).Here, we onsider the ase of positive initial jerk (i.e. uM = +jM ). Fromequation (1.9) follows
t1 = t2 −

1

2
t̄2f +

1

2

af − a0
jM

. (1.14)By substituting relation (1.14) in (1.11) the relation below holds
t2 =

[

3
4 jM t̄2f − 1

2 (3 af − a0) t̄f + 1
4 jM

(af − a0)2 + vf − v0
]

jM t̄f − af + a0
. (1.15)By substitution of (1.14) and (1.15) in (1.13), a quarti equation in t̄f unknownis obtained

1

32
u2M t43 +

1

8
uM (a0 − af ) t33 +

(

1

2
uM (v0 + vf )−

1

16
(a20 + a2f )−

3

8
a0 af

)

t23

+

(

1

8

a0 af
uM

(a0 − af )−
1

24

a30 − a3f
uM

+ a0 vf − af v0 − uM sf

)

t3 −
1

96

a40 + a4f
u2M

+
1

24

a0 af
u2M

(a20 + a2f )−
1

16

a20 a
2
f

u2M
− 1

2
(v20 + v2f ) + v0 vf − a0 sf + af sf = 0 .(1.16)In the ase of negative initial jerk (i.e. uM = −jM ), the optimal solution an befound by hanging the sign of jM in (1.9), (1.11) and (1.13) and then applyingthe same proedure exposed above. In sake of simpliity the three equationssystem for this ase is omitted.The optimal degenerate aseConsider a positive initial jerk value (i.e. uM = +jM ). A solution of the threeequations system (1.9), (1.11) and (1.13) exists only if the following relationholds (see (1.15))

jM t̄f − af + a0 6= 0 . (1.17)



18 Chapter 1. Minimum-time veloity planningIf (1.17) is not veri�ed, follows that
a0 + jM t̄f = af ,whih orresponds to the optimal degenerate solution expressed by

t1 = t2 = 0 , t̄f =
af − a0
jM

. (1.18)Hene, by virtue of ondition t̄f > 0 the following inequality must hold
af > a0 .The optimal degenerate jerk is

ū(t) = jM , ∀t ∈ [0, t̄f ] . (1.19)Note that solution (1.18) satis�es equation (1.9). Integrating (1.19) one deduesthe aeleration funtion
x3(t) = a0 + jM t , ∀t ∈ [0, t̄f ] .In the same way the optimal veloity funtion is obtained

x2(t) = v0 +

∫ t

0
x3(ξ)dξ = v0 + a0 t+

1

2
jM t2 , ∀t ∈ [0, t̄f ] ,and then the optimal spae funtion is given by

x1(t) =

∫ t

0
x2(ξ)dξ = v0 t+

1

2
a0 t

2 +
1

6
jM t3 , ∀t ∈ [0, t̄f ] .If t = t̄f , by virtue of the boundary onditions (1.3) and (1.4) follows that

v0 + a0 t̄f +
1

2
jM t̄2f = vf , (1.20)and

v0 t̄f +
1

2
a0 t̄

2
f +

1

6
jM t̄3f = sf . (1.21)



1.3. Minimum-time veloity planning with arbitrary boundaryonditions 19By substituting relation (1.18) in (1.20) the relation below is dedued
1

2

a2f − a20
jM

+ v0 − vf = 0 . (1.22)Then, by substituting relation (1.18) in (1.21) the following equation holds
1

6

a2f
j2M
− 2

3

a30
j2M
− 1

2

a20 af
j2M

+
v0 a0
jM

− v0 af
jM

− sf = 0 . (1.23)Relations (1.22) and (1.23) must be satis�ed in the degenerate ase. Note thatthey are exatly the seond and the third equation of system (1.9), (1.11), (1.13)when it has solution (1.18).In ase of initial negative jerk (i.e. uM = −jM ), the optimal degeneratesolution is
ū(t) = −jM , ∀t ∈ [0, t̄f ] ,orresponding to
t1 = t2 = 0 , t̄f =

a0 − af
jM

. (1.24)This degenerate ase emerges with
a0 > af ,and the following relations hold

1

2

a20 − a2f
jM

+ v0 − vf = 0 , (1.25)and
1

6

a2f
j2M
− 2

3

a30
j2M
− 1

2

a20 af
j2M

− v0 a0
jM

+
v0 af
jM

− sf = 0 . (1.26)1.3.3 The minimum-time algorithmThe Minimum-Time Veloity Planning (MTVP) algorithm is presented byexploiting the algebrai solution exposed in subsetion 1.3.2. This algorithmmust veri�es if a positive or a negative jerk degenerate solution exists; after



20 Chapter 1. Minimum-time veloity planningthat, if a degenerate solution was not found it heks the generi ases of ini-tial positive and negative jerk solutions. Hene, the MTVP algorithm an besynthesized as follows:
begin

if af > a0 then

procedure PJDS;

end

if af < a0 then

procedure NJDS;

end

procedure PJS;

procedure NJS;

endThen, the MTVP algorithm is omposed of four separated proedures: thePositive Jerk Degenerate Solution (PJDS), the Negative Jerk Degenerate So-lution (NJDS), the Positive Jerk Solution (PJS) and the Negative Jerk Solu-tion (NJS). Let us desribe these proedures in detail.Proedure PJDSThis proedure starts if af > a0, beause is not possible to have a degener-ate solution with positive initial jerk (i.e. uM = +jM ) if af ≤ a0. If ondi-tions (1.22) and (1.23) are veri�ed the positive jerk degenerate solution (1.18)is imposed and the MTVP algorithm is stopped, otherwise the algorithm ex-eution returns to the main program. The proedure is as follows:
begin

if 1
2

a2
f
−a20
jM

+ v0 − vf = 0 and

1
6

a2
f

j2
M

− 2
3
a30
j2
M

− 1
2
a20 af
j2
M

+ v0 a0
jM
− v0 af

jM
− sf = 0 then
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[t1, t2, t̄f ] = [0, 0,

af−a0
jM

] ;

exit

else

return

endProedure NJDSThis proedure is dual to the PJDS one. If af < a0 and onditions (1.25)and (1.26) are veri�ed, the negative jerk degenerate solution (1.24) is imposedand the main program is stopped.
begin

if 1
2

a20−a
2
f

jM
+ v0 − vf = 0 and

1
6

a2
f

j2
M

− 2
3
a30
j2
M

− 1
2
a20 af
j2
M

− v0 a0
jM

+
v0 af
jM
− sf = 0 then

[t1, t2, t̄f ] = [0, 0,
a0−af
jM

] ;

exit

else

return

endProedure PJSFirst, all the positive real roots of quarti equation (1.16) are omputed andstored in an array T. Then expressions (1.14) and (1.15) are used to deter-mine a feasible solution. If three values of t1, t2, and t̄f satisfying inequalities
0 ≤ t1 ≤ t2 ≤ t̄f are found the minimum-time veloity planning solution isobtained and the main program is stopped.
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begin

Compute the positive real roots of

equation (1.16), T = [tf1, tf2, . . . , tfl] with (l ≤ 4) ;

if T is empty then

return

for i = 1, . . . , l do

t2i =

[

3
4
jM t2

fi
− 1

2
(3 af−a0) tfi+

1
4 jM

(af−a0)
2+vf−v0

]

jM tfi−af+a0
;

if 0 ≤ t2i ≤ tfi then
t1i = t2i − 1

2 t
2
fi +

1
2
af−a0
jM

;

if 0 ≤ t1i ≤ t2i then
[t1, t2, t̄f ] = [t1i, t2i, t3i] ;

exit

else

continue

else

continue

return

endProedure NJSThis proedure is dual to the PJS one. The quarti equation to start with isthe modi�ed (1.16) where jM is substituted by −jM . Then all the positive realsolutions of this equation are omputed and a feasible solution is sought.
begin

In equation (1.16) do the substitution jM ← −jM
and compute the positive real roots,
T = [tf1, tf2, . . . , tfl] with (l ≤ 4) ;
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if T is empty then

return

for i = 1, . . . , l do

t2i =

[

3
4
jM t2

fi
− 1

2
(3 af−a0) tfi+

1
4 jM

(af−a0)
2+vf−v0

]

jM tfi−af+a0
;

if 0 ≤ t2i ≤ tfi then
t1i = t2i − 1

2 t
2
fi +

1
2
af−a0
jM

;

if 0 ≤ t1i ≤ t2i then
[t1, t2, t̄f ] = [t1i, t2i, t3i] ;

exit

else

continue

else

continue

return

end1.3.4 Simulations resultsExample 1: onsider the following data: sf = 3, 25 m, jM = 0, 5 m/s3, v0 =

0 m/s, a0 = 0 m/s2, vf = 2, 25 m/s and af = 1, 5 m/s2. Exploiting theMTVP algorithm desribed in subsetion 1.3.3 the following optimal solutionis obtained:
uM = +jM t1 = 1 s t2 = 3 s t̄f = 7 sThe jerk, aeleration, veloity and spae pro�les, for this ase, are depitedin �gure 1.3.Example 2: let be the ase of: sf = 8, 42 m, jM = 0, 25 m/s3, v0 = 1 m/s,

a0 = 0, 5 m/s2, vf = 2, 75 m/s and af = 0 m/s2. The optimal solution is thefollowing:
uM = +jM t1 = 1 s t2 = t̄f = 4 s
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Figure 1.3: The optimal pro�les of jerk ū(t), aeleration ā(t), veloity v̄(t), andspae s̄(t) for example 1.See �gure 1.4 for the optimal ū(t), ā(t), v̄(t) and s̄(t) pro�les.
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Figure 1.4: The optimal pro�les of jerk ū(t), aeleration ā(t), veloity v̄(t), andspae s̄(t) for example 2.1.4 Minimum-time onstrained veloity planningThis setion explains a proedure whih has appeared for the �rst time in [17℄.The proposed method solves again the minimum-time veloity planning prob-



1.4. Minimum-time onstrained veloity planning 25lem with generi initial and �nal boundary onditions for the veloity andthe aeleration but with onstrains not only on the jerk but on veloity andaeleration too.This minimum-time planning problem is relevant in the ontext of robotiautonomous navigation, where the iterative steering supervisor periodiallyreplans the future mobile robot motion starting from urrent position, veloityand aeleration onditions. The problem is faed through disretization andits solution is based on a sequene of linear programming feasibility heks,depending on motion onstraints and boundary onditions.1.4.1 Problem statement and su�ient onditionThe faed problem is the minimum-time planning of a smooth veloity pro-�le v(t) ∈ PC2([0, tf ]) (see de�nition 2), where tf represents the travellingminimum-time along a given path whose length is equal to sf , respeting givenveloity, aeleration, and jerk onstraints. Formally:
min
v∈PC2

tf , (1.27)suh that
∫ tf

0
v(ξ)dξ = sf , (1.28)

v(0) = v0 , v(tf ) = vf , (1.29)
v̇(0) = a0 , v̇(tf ) = af , (1.30)
|v(t)| ≤ vM , ∀t ∈ [0, tf ] , (1.31)
|v̇(t)| ≤ aM , ∀t ∈ [0, tf ] , (1.32)
|v̈(t)| ≤ jM , ∀t ∈ [0, tf ] , (1.33)where sf , vM , aM , jM ∈ R+ and v0, vf , a0, af ∈ R are given boundary on-ditions. For the speial ase of zero boundary onditions (i.e. v0 = vf = 0,

a0 = af = 0) a losed form solution has been provided by [18℄. Remark that in



26 Chapter 1. Minimum-time veloity planningour ontext of iterative autonomous navigation, it is ruial to onsider generiboundary onditions on initial and �nal veloities and aelerations.Suh as in setion 1.3 the problem is reasted into a minimum-time on-trol problem with respet to a suitable state-spae system. Indeed onsideragain the jerk v̈(t) as the ontrol input u(t) of the asade of three integratorsas depited in �gure 1.1. The system equations are still given by (1.8). Con-straints (1.31), (1.32) and (1.33) will be onsidered as two state onstraintsand an input bound respetively. Hene, problem (1.27)-(1.33) is equivalent to�nding a time-optimal ontrol ū(t) that brings system (1.8) from the initialstate x(0) = [0 v0 a0]
′ to the �nal state x(t̄f ) = [sf vf af ]

′ in minimum time t̄f ,while satisfying the following onstraints
|x2(t)| ≤ vM , ∀t ∈ [0, t̄f ] , (1.34)
|x3(t)| ≤ aM , ∀t ∈ [0, t̄f ] , (1.35)and
|ū(t)| ≤ jM , ∀t ∈ [0, t̄f ] . (1.36)In the ase of onstrained state, it is not guarantee that a time-optimal ontrol

ū(t) exists. The existene of solution ū(t) of problem(1.27)-(1.33) depends onthe values of the initial state x0, the �nal state xf , and it also depends on theonstraints (1.34)-(1.36). To guarantee the existene of the optimal ontrol ū(t),these values must respet four su�ient onditions as stated in the followingresult.Proposition 2 The minimum-time optimal ontrol ū(t), solution of problem(1.27)-(1.33), from initial state x(0) = [0v0 a0]
′ to �nal state x(t̄f ) = [sf vf af ]

′exists if the following su�ient onditions are satis�ed:
|v0| ≤ vM , |vf | ≤ vM , (1.37)
|a0| ≤ aM , |af | ≤ aM , (1.38)if a0 ≥ 0 then v0 +

1

2

a20
jM
≤ vM , (1.39)



1.4. Minimum-time onstrained veloity planning 27if a0 < 0 then v0 −
1

2

a20
jM
≥ 0 , (1.40)if af ≥ 0 then vf −

1

2

a2f
jM
≥ 0 , (1.41)if af < 0 then vf +

1

2

a2f
jM
≤ vM , (1.42)and

sf ≥ sref , (1.43)where sref is a referene distane depending on the problem data whih is de-�ned below by a four-step proedure:1.
s1 :=

v0 |a0|
jM

+
1

3

a30
j2M

and v1 := v0 + sgn(a0)
1

2

a20
jM

.2.
s2 :=

vf |af |
jM

− 1

3

a3f
j2M

and v2 := vf − sgn(af )
1

2

a2f
jM

.3. if √jM |v1 − v2| ≤ aM then
vref := max (v1, v2) ,

sc :=
2 vref

√

jM |v1 − v2|
jM

− [jM |v1 − v2|]3/2
j2M

,else
sc :=

1

2

|v21 − v22 |
aM

+
1

2

aM (v1 + v2)

jM
.4. sref := s1 + sc + s2 .Proof. The argument of the proof uses the equivalene of problem (1.27)-(1.33)with the onstrained ontrol problem (1.34)-(1.36). Spei�ally, it shall befound a ontrol input u(t) that brings the state from [0 v0 a0]

′ to [sf vf af ]
′while satisfying the imposed state onstraints. Obviously, if this input exists,then the optimal one will exists too.



28 Chapter 1. Minimum-time veloity planningConsider the ase a0 ≥ 0. If onditions (1.37), (1.38) and (1.39) on initialstate x(0) hold, it is possible to apply a ontrol funtion u(t) = −jM whihbrings the aeleration x3(t) to zero before the veloity x2(t) exeeds its bound-ary value vM . In fat, if u(t) = −jM with t ∈ [0, t1] (where t1 is the ritialtime where the aeleration beame null) the following result is true
x3(t) = a0 +

∫ t

0
u(ξ)dξ = a0 − jM t . (1.44)But in t = t1 we have x3(t1) = 0, so it is possible to obtain the ritial timevalue

t1 =
a0
jM

. (1.45)Integrating equation (1.44) in [0, t1], it follows that
x2(t) = v0 +

∫ t

0
x3(ξ)dξ = v0 + a0 t−

1

2
jM t2 . (1.46)In t = t1, by substituting relation (1.45) in (1.46), the value of v1 = x2(t1) isobtained

v1 = v0 +
1

2

a20
jM

,then, by virtue of ondition (1.39) we know that v1 ≤ vM and onstraint (1.34)is satis�ed. The traveled spae at time t1 is
s1 =

∫ t1

0
x2(ξ)dξ =

v0 a0
jM

+
1

3

a30
j2M

. (1.47)Consider the ase of af < 0; if onditions (1.37), (1.38) and (1.42) areveri�ed, the �nal state x(tf ) an be reahed by applying the ontrol funtion
u(t) = −jM , with t ∈ [t2, tf ]. The aeleration funtion is given by

x3(t) =

∫ t

t2

u(ξ)dξ = −jM (t− t2) , (1.48)and in t = tf we have x3(tf ) = af , so it is possible to obtain
tf − t2 = −

af
jM

. (1.49)



1.4. Minimum-time onstrained veloity planning 29By integrating equation (1.48) in [t2, tf ], we get
x2(t) = v2 +

∫ tf

t2

x3(ξ) = v2 −
1

2
jM (tf − t2)2 . (1.50)In t = tf , by substituting relation (1.49) in (1.50), the value of v2 = x2(t2) is

v2 = vf +
1

2

a2f
jM

,then, by virtue of ondition (1.42), onstraint (1.34) holds. The traveled spaefor t ∈ [t2, tf ] is
s2 =

∫ tf

t2

x2(ξ)dξ = −
vf af
jM

+
1

3

a3f
j2M

. (1.51)If v1 = v2, the total traveled spae is sf = s1 + s2, where s1 and s2 are givenby (1.47) and (1.51) respetively, then ondition (1.43) is veri�ed.Consider the ase of v1 > v2: by de�ning tc as the time instant when
x3(tc) = −ac, where −ac is the aeleration minimum value, and if ac ≤ aM ,it is possible to interpolate v1 and v2 with the following ontrol jerk funtion:

{

u(t) = −jM t ∈ [t1, tc]

u(t) = jM t ∈ [tc, t2] ,where tc − t1 = t2 − tc. Then, for u(t) = −jM in t ∈ [t1, tc] the aelerationfuntion is given by
x3(t) =

∫ t

t1

u(ξ)dξ = −jM (t− t1) . (1.52)But for t = tc we have x3(tc) = −ac so it is possible to obtain
tc − t1 =

ac
jM

. (1.53)By integrating equation (1.52) one dedues the veloity funtion
x2(t) = v1 +

∫ t

t1

x3(ξ)dξ = v1 −
1

2
jM (t− t1)2 . (1.54)



30 Chapter 1. Minimum-time veloity planningIn t = tc, by substituting (1.53) in (1.54), the veloity is given by
x2(tc) = v1 −

1

2

a2c
jM

.The distane s3 overed in the time-interval [t1, tc] is dedued as follows,
s3 =

∫ tc

t1

x2(ξ)dξ = v1
ac
jM
− 1

6

a3c
j2M

. (1.55)By applying the same proedure in the time-interval [t2, tc], with u(t) = jM ,the following result is obtained
x2(tc) = v2 +

1

2

a2c
jM

,while the traveled spae s4 is given by
s4 = v1

ac
jM
− 5

6

a3c
j2M

.In t = tc we have
v1 −

1

2

a2c
jM

= v2 +
1

2

a2c
jM

, (1.56)and solving equation (1.56) for ac, the following equality holds
ac =

√

jM (v1 − v2) . (1.57)The distane sc, overed in the time-interval [t1, t2], is given by
sc = s3 + s4 =

2 v1
√

jM (v1 − v2)
jM

− [jM (v1 − v2)]3/2
j2M

, (1.58)where ac was substituted with relation (1.57). For the time-interval [0, tf ],the total traveled spae is sf = s1 + sc + s2, where s1, s2 and sc are given byrelations (1.47), (1.51) and (1.58) respetively, then ondition (1.43) is veri�ed.Finally onsider v1 > v2 and ac =
√

jM (v1 − v2) > aM . In this ase itwill exists a time-interval [tc1, tc2], where aeleration x1(t) will be equal to its



1.4. Minimum-time onstrained veloity planning 31minimum value −aM , while the ontrol funtion will be u(t) = 0. In t = tc1and in t = tc2, the veloity values are given by
x2(tc1) = v1 −

1

2

a2M
jM

,and
x2(tc2) = v2 +

1

2

a2M
jM

,respetively. Moreover, in t = tc2 the following relation holds
v2 +

1

2

a2M
jM

= v1 −
1

2

a2M
jM
− aM (tc2 − tc1) . (1.59)From equation (1.59) the following equality is obtained

tc2 − tc1 =
v1 − v2
aM

− aM
jM

. (1.60)The traveled spae in [tc1, tc2] is given by
s5 =

1

2
(v1 + v2) (tc2 − tc1) , (1.61)and by substituting relation (1.60) in (1.61) it is possible to obtain

s5 =
1

2

(v21 − v22)
aM

− 1

2

aM (v1 + v2)

jM
. (1.62)The distane sc overed for t ∈ [t1, t2] is obtained by summing s3 and s5, givenby (1.55) and (1.62) respetively, with s4 = v2 aM

jM
+ 1

6
a3M
j2
M

, and it results to be
sc =

1

2

(v21 − v22)
aM

+
1

2

aM (v1 + v2)

jM
. (1.63)Then, the total traveled spae is sf = s1 + sc + s3 , where s1, s2 and sc aregiven by (1.47), (1.51) and (1.63) respetively, and ondition (1.43) is veri�ed.The other su�ient onditions an be proved in the same way saw above. �



32 Chapter 1. Minimum-time veloity planning1.4.2 An approximated solution using disretizationThis subsetion shows how to �nd a numerially approximated solution ofproblem (1.27)-(1.33) by disretization of system (1.8). The tehnique thatwill be introdued, exploits the result presented by Consolini and Piazzi in [19℄,whih shows that, given a ontinuous-time system, an approximated optimalontrol an be found through the following proedure:1. �nd the disretized system with sampling period Ts;2. �nd the optimal input sequene ū(k);3. use for the ontinuous-time system the input funtion u(t) obtained fromthe disrete-time sequene with a zero-order hold
u(t) = ūTs

(

⌊ t
Ts
⌋
)

,where Ts ∈ R is the sampling period and ∀x ∈ R,
⌊x⌋ = max {z ∈ Z : z ≤ x} ,denotes the integer part of x.As shown in [19℄, when Ts → 0 the approximated solution onverges to theoptimal ontinuous-time solution.The optimal disrete-time ontrol sequene ū(t) an be found by means oflinear programming. In fat, in the disrete-time ase, the onstraints (1.34)-(1.36) an be represented as linear inequalities and the minimum number ofsteps needed for the requested transition an be found through a sequene offeasibility tests of a linear programming problem.The matries of the equivalent disrete-time system are the following ones:Ad = eA Ts =







1 Ts
1
2 T

2
s

0 1 Ts

0 0 1






,



1.4. Minimum-time onstrained veloity planning 33and Bd = f(A, Ts)B =

(
∫ Ts

0
eA τdτ

)

B =







1
6 T

3
s

1
2 T

2
s

Ts






,where Ts is the sampling period. Then, the disrete-time system is

x(k + 1) = Ad x(k) +Bd u(k) , (1.64)whose solution is given by
x(k) = Ak

d x0 +
k−1
∑

j=0

A
k−1−j
d Bd u(j) , (1.65)where

x(k) =







x1(k)

x2(k)

x3(k)






.De�ne the ontrol vetor u ∈ Rkf as follows

u =













u(0)

u(1)...
u(kf − 1)













,from (1.36) it follows that it must be
−uM ·1kf ≤ u ≤ uM ·1kf ,where 1kf denotes the kf -dimensional vetor whose omponents are all equalto 1. The veloity onstraint for disrete-time system is given by

−vM ≤ x2(k) ≤ vM , with k = 0, . . . , kf − 1 . (1.66)



34 Chapter 1. Minimum-time veloity planningFrom equation (1.65), veloity sequene x2(k) an be written as follows
x2(k) = C1 x(k)

= C1



Ak
d x0 +

k−1
∑

j=0

A
k−1−j
d Bd u(j)





= C1A
k
d x0 +

k−1
∑

j=0

C1A
k−1−j
d Bd u(j) , (1.67)where

C1 =
[

0 1 0
]

.By substituting (1.67) in (1.66), the following relation is obtained
−vM −C1A

k
d x0 ≤

k−1
∑

j=0

C1A
k−1−j
d Bd u(j) ≤ vM −C1A

k
d x0 ,with k = 0, . . . , kf − 1. Set vc = vM ·1f , then the inequality on veloity on-straint (1.66) beome

−vc −G1 ≤ H1 u ≤ vc −G1 ,where G1 ∈ R
kf and H1 ∈ R

kf×kf are given by
G1 =



















C1 x0

C1Ad x0

C1A
2
d x0...

C1A
kf−1
d x0



















,and
H1 =





















C1Bd O · · · O

C1AdBd
. . . . . . O

C1A
2
dBd

. . . . . . O... . . . . . . ...
C1A

kf−1
d Bd · · · · · · C1Bd





















.



1.4. Minimum-time onstrained veloity planning 35The aeleration onstraint for disrete-time system (1.64) is given by
−aM ≤ x3(k) ≤ aM , with k = 0, . . . , kf − 1 . (1.68)Set ac = aM ·1f and

C2 =
[

0 0 1
]

,then, onstraint (1.68) is written as
−ac −G2 ≤ H2 u ≤ ac −G2 ,where G2 ∈ R

kf and H2 ∈ R
kf×kf are given by

G2 =



















C2 x0

C2Ad x0

C2A
2
d x0...

C2A
kf−1
d x0



















,and
H2 =





















C2Bd O · · · O

C2AdBd
. . . . . . O

C2A
2
dBd

. . . . . . O... . . . . . . ...
C2A

kf−1
d Bd · · · · · · C2Bd





















.The interpolation ondition on �nal state an be written as follows
xf = x(kf ) =







x1(kf )

x2(kf )

x3(kf )






=







sf

vf

af






. (1.69)From equation (1.65) we have

xf = A
kf
d x0 +

kf−1
∑

j=0

A
kf−1−j
d Bd u(j) , (1.70)



36 Chapter 1. Minimum-time veloity planningthen, by substituting equation (1.70) in (1.69) we obtain the �nal state inter-polation ondition as follows
Heq u = xf −A

kf
d x0 ,where Heq ∈ R

3×kf is given by
Heq =

[

A
kf−1
d Bd A

kf−2
d Bd · · · Bd

]

.In onlusion given a number of steps kf , there exists an input vetor u forwhih the onstraints on veloity, aeleration and jerk, and the �nal interpo-lation ondition are satis�ed if and only if the following linear programmingproblem is feasible






















−uM ·1kf ≤ u ≤ uM ·1kf
−vc −G1 ≤ H1 u ≤ vc −G1

−ac −G2 ≤H2 u ≤ ac −G2

Heq u = xf −A
kf
d x0 .

(1.71)1.4.3 The bisetion algorithmThe minimum number of steps k̄f and the assoiated optimal disrete-timeontrol sequene ū(k), with k = 0, . . . , k̄f − 1, an be determined by means ofa sequene of linear programming feasibility tests, de�ned by (1.71), througha simple bisetion algorithm. The Minimum-Time Control algorithm (MTC)is summarized as follows:
begin

kf ← 1;
l← 0;
while ∽ LPP do

l← kf

kf ← 2 kf

end
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h← kf ;
while h− l > 1 do

kf ← ⌊h+l2 ⌋;
if ∽ LPP then

l← kf ;
else

h← kf ;
end

k∗f ← h;
u∗(k)← u;

endIn MTC algorithm LPP denotes a linear programming proedure that solvesproblem (1.71), whih, if a feasible solution exists, returns the solution se-quene u and the number of steps k; if the problem is feasible it also returnsa Boolean true value.The algorithm performanes strongly depend on the used sampling time.By reduing Ts, whih means sampling the ontinuous-time system with anhigher frequeny, the dimension of the resulting linear programming probleminreases, thus ausing an inrement of the total omputational time. Consid-ering the omputational omplexity, Karmarkar has shown in [20℄ that a linearprogramming problem an be solved by means of an interior-point algorithmwith running time proportional to n3.5, where n is the number of inequalities.In our ase this would means that eah feasibility test would require a timeproportional to n3.5s , where ns is the total number of samples. The omplexityof the bisetion searh, with respet to the minimum number of samples, isgiven by O(log ns), therefore the total omplexity of the proposed algorithm isgiven by O(n3.5s log ns). For more details on the algorithm omplexity see [21℄.1.4.4 Simulations resultsExample 1: onsider the following interpolation onditions and onstraints:



38 Chapter 1. Minimum-time veloity planning� initial state
x0 :=







s0

v0

a0






:=







0

0

0





� �nal state
xf :=







sf

vf

af






:=







2

0

0





� problem onstraints
vM = 0, 65 m/s aM = 0.5 m/s2 jM = 0.5 m/s3The jerk, aeleration, veloity and spae pro�les, obtained by means of theMTC algorithm, are depited in �gure 1.5.
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Figure 1.5: The pseudo-optimal pro�les of jerk ū(t), aeleration ā(t), veloity v̄(t),and spae s̄(t) for example 1.Example 2: onsider the following problem:� initial state
x0 :=







s0

v0

a0






:=







0

0

0
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xf :=







sf

vf

af






:=







2

1

0, 25





� problem onstraints
vM = 1, 5 m/s aM = 0.6 m/s2 jM = 0.5 m/s3The jerk, aeleration, veloity and spae pro�les, obtained in this ase, aredepited in �gure 1.6.
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Figure 1.6: The pseudo-optimal pro�les of jerk ū(t), aeleration ā(t), veloity v̄(t),and spae s̄(t) for example 2.Example 3: the problem data are given by:� initial state
x0 :=







s0

v0

a0






:=







0

1

−0.5





� �nal state
xf :=







sf

vf

af






:=







2, 167

0, 5

0, 5









40 Chapter 1. Minimum-time veloity planning� problem onstraints
vM = 1 m/s aM = 0.5 m/s2 jM = 0.5 m/s3Figure 1.7 shows optimal solution obtained by means of the MTC algorithm.
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Figure 1.7: The pseudo-optimal pro�les of jerk ū(t), aeleration ā(t), veloity v̄(t),and spae s̄(t) for example 3.



Chapter 2Path generation andautonomous parking A goal without a planis just a wish.� Antoine de Saint-ExuperyIn this hapter the problem of the path planning for nonholonomi vehi-les is disussed. The two methods presented in the following are well suitedfor their implementation into the framework of autonomous parking of au-tonomous vehiles.Fist setion proposes a multi-optimization approah to the autonomousparking of ar-like vehiles [22℄. It uses a polynomial urve primitive, the η
3-spline, to build up intrinsially feasible path maneuvers over whih to minimizewith a weighted sum method the total length of parking paths and the mod-uli of the maximum path urvature and urvature derivative. The approahtakes into aount the mandatory onstraint of obstale avoidane and max-imal steering angle and the onstraint of maximal urvature derivative whihis a seletable limit to ensure the desired smoothness of the parking paths.



42 Chapter 2. Path generation and autonomous parkingSimulation results are inluded for a garage parking example.Setion 2.2 addresses the smooth path generation of a truk and trailervehile (f. [23℄). It is shown how the fourth-order geometri ontinuity of thetrailer path (ontinuity of the unit tangent vetor, urvature, and �rst andseond derivatives of urvature) is assoiated to the vehile's smooth ontrolinputs (veloity and steering of the truk). Then, taking into aount the non-holonomi onstraints of the artiulated vehile, the path generation an beperformed by the introdution of the η
4-spline. This is a ninth-order polyno-mial urve primitive that an interpolate given Cartesian points with assoi-ated arbitrary unit tangent vetor, urvature, and �rst and seond derivativesof urvature. The η4-spline depends on a set of eight (eta) parameters that anbe freely hosen to hange the path shape without hanging the interpolationsonditions at the path endpoints. Completeness, minimality, and symmetry ofthe η

4-spline are established. An example on a parking maneuver of the ar-tiulated vehile is presented and the pertinent optimal path planning is alsodisussed.2.1 Multi-optimization of η3-splines for autonomousparkingThis setion proposes a multi-optimization approah to the autonomous park-ing of ar-like vehiles. Fousing on the planning of motion maneuvers of ar-like vehiles, the parking problem an be theoretially introdued as follows:given an initial on�guration and a �nal on�guration of the vehile, �nd a pathjoining the initial and �nal on�gurations suh that: 1) the path is ollision-free, i.e. the vehile on the path avoids any ollision with all the obstales ofthe parking senario (other ars, walls, urbs, et.); 2) the path is feasible (oradmissible), i.e. the vehile on the path satis�es the di�erential onstraints ofthe vehile model (the nonholonomi onstraints) and the atuator onstraints(suh as e.g. the bound on the maximal steering angle of the front wheels).The parking problem without di�erential and atuator onstraints beomes



2.1. Multi-optimization of η3-splines for autonomous parking 43the so-alled piano mover's problem whih is a lassi problem in the motionplanning literature (f. the book [24℄ and the extensive referenes inluded).When the parking problem formulation is omplete with both requirements1) and 2), the approahes exposed in the literature are mainly based on atwo-step proedure: First, a ollision-free path that ignores di�erential (andatuator) onstraints is determined. Then this path is suitably modi�ed inorder to aommodate to the onstraints. In suh a way, the �rst step justrequires to pik up a solution tehnique for the piano mover's problem andin the seond step ad ho smoothing tehniques or loal steering methods aredevised to aomplish a omplete solution.The two-step proedure was �rst proposed by Laumond et al. in [25℄ andsubsequently several variants appeared [26�28℄ (also f. [29℄ and referenesherein inluded).The solution proposed in this setion, �rst addresses the parking problemas a smooth feedforward ontrol problem where the vehile's sought ontrolinputs, the linear veloity and the front wheel steering angle, are C1-signals,i.e. ontinuous time funtions admitting derivatives that are still ontinuous.Then, the introdution of the onept of third-order geometri ontinuity ofCartesian paths and the proedure of dynami path inversion as exposed in [5℄permits the feedforward ontrol problem to be redued to a purely geometriproblem followed by a veloity planning problem. This geometri problem re-gards the searh of a sequene of feasible paths onneting the initial vehileon�guration to the �nal one while satisfying all the the required onstraints(obstale avoidane, maximum steering angle, et.). In this ontext, a path isfeasible if it is a G3-path, i.e. a path that has ontinuity, along the urve, of theunit-tangent vetor, urvature, and derivative of the urvature with respet tothe ar length (f. subsetion 2.1.1).2.1.1 The smooth parking problemWe onsider an autonomous parking problem for the ar-like vehile depited in�gure 2.1. The Cartesian oordinates of the rear-axle middle-point are denoted
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Figure 2.1: The ar-like vehile on the Cartesian plane.by x, y and θ is the vehile orientation angle with respet to the X axis. Thedistane between the rear-axle and the front-axle is l. With the usual modelingassumptions (no-slippage of the wheels, rigid body, et.) the following nonlinearkinemati model of the ar-like vehile an be dedued:










ẋ(t) = v(t) cos θ(t)

ẏ(t) = v(t) sin θ(t)

θ̇(t) = 1
l v(t) tan δ(t) ,

(2.1)where the vehile ontrol inputs are v(t) and δ(t), the veloity of the rear-axlemiddle-point and the steering angle of the front wheels respetively. Reallde�nition 7 of G3-paths, that will be used along this hapter.In order to obtain a smooth motion ontrol, inputs v and δ must be fun-tions with C1 ontinuity, i.e. ontinuous funtions with ontinuous �rst deriva-tives. A onnetion between smooth inputs and paths of the ar-like vehile isestablished by the following result.Proposition 3 Assign any T > 0. If a Cartesian path Γ is generated by thear-like vehile desribed by system (2.1), with inputs v(t), δ(t) ∈ C1([0, T ])where v(t) 6= 0 and |δ(t)| < π
2 ∀t ∈ [0, T ], then Γ is a G3-path. Conversely,



2.1. Multi-optimization of η3-splines for autonomous parking 45given any G3-path Γ there exist inputs v(t), δ(t) ∈ C1([0, T ]) with v(t) 6= 0and |δ(t)| < π
2 ∀t ∈ (0, T ), and initial onditions suh that the path generatedby (2.1) oinides with the given Γ.Proof. It follows from an analogous result presented in [5℄ for uniyle mobilerobots. �Instrumentals to our approah to path planning for the autonomous park-ing of ar-like vehiles are the following onepts of on�guration vetor andorresponding on�guration spae.De�nition 3 The oordinate position (onsidering the middle-point of the rear-axle) and orientation of the vehile with respet to the Cartesian plane {X,Y }and the steering angle δ ompose the on�guration vetor as follows:
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∈ Q , (2.2)where Q .
= R

2 × [0, 2π[× [−δM , +δM ], is the on�guration spae; herein δMis the maximum allowed value of the steering angle.In the parking senario, the oupany area of the ar-like vehile is denotedby A whih is normally a retangle moving in the Cartesian plane {X,Y },referred as the parking spae P. The ar body A oupies a portion area of Pthat depends on the on�guration vetor q, i.e. A = A(q) ⊂ P. In the parkingspae there are also the obstales Bi, i = 1, 2, . . . n, (see �gure 2.2) onsideredas onvex polygons without loss of generality. Reall that a non-onvex polygonan be always deomposed in two or more onvex polygons.The parking problem an be introdued as a smooth feedforward ontrolproblem for model (2.1), i.e. the problem of devising inputs v(t), δ(t) ∈ C1, forwhih the vehile starting from a given on�guration qs = [xs ys θs δs]
′ reahesan assigned �nal or goal on�guration qg = [xg yg θg δg]

′ while avoiding all theobstales and satisfying at any time the onstraint |δ(t)| ≤ δM . The sought
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Figure 2.2: Parking spae P with ar A(q) and obstales Bi, i = 1, . . . , n.feedforward ontrol may admit maneuvers, i.e. hanges of sign in the vehileveloity v(t), so that when the veloity is positive the ar performs a forwardmovement whereas when it is negative we have a ar's bakward movement.On the grounds of proposition 3 and of the (dynami) path inversion on-ept [5℄ introdued in the preedent hapter, the smooth parking feedforwardontrol problem an be redued to a purely geometri problem, to be morespei� a purely Cartesian G3-path planning problem followed by a velo-ity planning on the determined paths. This means determining a sequene of(feasible) G3-paths {Γ1,Γ2, . . .Γh} (h is the number of parking paths) thatthe vehile an exatly follow by applying feedforward inputs v(t), δ(t) where
v(t) ∈ C1 an be freely designed with the onstraint of having zero veloityand zero aeleration at the the start and at the end of eah path Γi. Thesteering input on the path Γi an be simply determined by (f. [5℄ and [30℄)

δ(t) = ± arctan(lκi(s))|s=∫ t
ti
v(ξ)dξ ,for a forward (+) or bakward (-) movement. Herein κi(s) is the urvaturefuntion of ar length s and ti is the time instant at the beginning of Γi.



2.1. Multi-optimization of η3-splines for autonomous parking 47In the following, a path Γ to be followed by the vehile with a forward orbakward movement will be denoted by Γ+ or Γ− respetively. Therefore, a se-quene of paths {Γ1,Γ2, . . .Γh} is atually {Γ+
1 ,Γ

−
2 , . . .Γ

+
h } or {Γ−

1 ,Γ
+
2 , . . .Γ

−
h }if h is odd, and {Γ+

1 ,Γ
−
2 , . . .Γ

−
h } or {Γ−

1 ,Γ
+
2 , . . .Γ

+
h } if h is even. In the intro-dued sequene of paths we see an alternation of forward and bakward paths,i.e. a forward path Γ+

i is followed by a bakward Γ−
i+1 or vieversa. Any pairof subsequent paths {Γ+

i ,Γ−
i+1} or {Γ−

i ,Γ+
i+1} is made of paths that meet eahother at a ommon Cartesian point orresponding to a on�guration vetor qi(i = 1, . . . h − 1) whih is still ommon for the vehile at the end of path Γiand at the start of Γi+1 in ase of no steering at standstill, i.e. the ase when

δ̇(t) = 0 if v(t) = 0.When the vehile parking problem an be solved without maneuvers wehave just one G3-path Γ+
1 or Γ−

1 (h = 1) to determine and optimize (see�gure 2.3). If no solution an be found with one path beause of the obstales
PSfrag replaements
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A(qg)

Γ+
1

Figure 2.3: The vehile from qs to qg with forward path Γ+
1 or bakward Γ−

1 .and the limitation given by the maximum steering angle δM , a solution maybe sought with two hained paths {Γ+
1 ,Γ

−
2 } or {Γ−

1 ,Γ
+
2 } (h = 2). In this asethere is one motion inversion of the vehile or, in other words, one maneuver



48 Chapter 2. Path generation and autonomous parkingto omplete the parking task. On the parking spae, Γ1 and Γ2 meet at a usppoint whose Cartesian oordinates are given by the �rst two omponents ofon�guration vetor q1. In �gure 2.4, the ase of two maneuvers (h = 2) isdepited. When also with h = 2 no solution is found we an try with morepaths. Figure 2.5 shows the ase of three maneuvers h = 3.
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Figure 2.4: The two-paths sequenes {Γ+
1 ,Γ

−
2 } and {Γ−

1 ,Γ
+
2 } for the parkingplanning.The G3-paths Γi, i = 1, . . . , h omposing the sequene {Γ1,Γ2, . . .Γh} mustsatisfy spei� interpolation onditions at the endpoints of eah Γi (f. subse-tion 2.1.2) in order to guarantee the overall feasibility of the planned paths.In partiular onsidering that the vehile starts at the given on�guration

qs = [xs ys θs δs]
′ it follows that the starting point of Γ1 satis�es:� Cartesian oordinates are (xs ys);� diretion angle of the unit-tangent vetor is θs;
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Figure 2.5: The three-paths sequenes {Γ+
1 ,Γ

−
2 ,Γ

+
3 } and {Γ−

1 ,Γ
+
2 ,Γ

−
3 } for theparking planning.� salar urvature κs is given by (f. [5, 31℄)

κs =

{

1
l tan δs if Γ1 = Γ+

1

−1
l tan δs if Γ1 = Γ−

1 ;
(2.3)� the derivative of the salar urvature with respet to the ar length, κ̇san be freely hosen.Analogously, the vehile arrives �nally at the goal on�guration qg =

[xg yg θg δg]
′ for whih the endpoint of Γh satis�es:� Cartesian oordinates are (xg yg);� diretion angle of the unit-tangent vetor is θg;� salar urvature κg is given by

κg =

{

1
l tan δg if Γh = Γ+

h

−1
l tan δg if Γh = Γ−

h ;
(2.4)



50 Chapter 2. Path generation and autonomous parking� the derivative of the salar urvature with respet to the ar length, κ̇gis a free parameter of the planning problem.The smooth parking problem onsidered in this paper an be introdued asfollows.Problem 1 (Multi-optimization of a sequene of G3-paths for thesmooth parking problem) Given the number h of paths, onsider the spae
Fh of all the sequenes of G3-paths {Γ+

1 ,Γ
−
2 , . . .Γh} (or {Γ−

1 ,Γ
+
2 , . . .Γh}) suhthat this sequene:a) is feasible as a whole, i.e. there exist feedforward ontrols v(t), δ(t) ∈ C1 forwhih the vehile of model (2.1) follows the path sequene exatly, andb) onnets the given initial on�guration qs to the �nal on�guration qg.Find the path sequene in Fh that minimizes the indexes� the maximum value of the absolute urvature on the h paths,� the maximum value of the absolute urvature derivative on the h paths,and� the total length of the h paths Γ1,Γ2, . . .Γhsubjet to the following onstraints1) avoidane of all the obstales B1,B2 . . .Bn along the paths Γ1,Γ2, . . .Γh;2) {maximum value of the absolute urvature on the h paths} ≤ κM ;3) {maximum value of the absolute urvature derivative on the h paths}≤ κ̇M ;4) avoidane of steering at standstill;where κM = 1

l tan δM and κ̇M is a freely hosen bound for the absolute valueof the urvature derivative.



2.1. Multi-optimization of η3-splines for autonomous parking 51Remark It is worth noting the di�erenes among the onstraints of prob-lem 1. Constraints 1) and 2) are hard onstraints related to obstale avoidaneand maximal steering angle (whih is a vehile's mehanial onstraint) re-spetively, whereas onstraints 3) and 4) are soft onstraints related to pathsmoothness and parking modality respetively. In partiular, if steering atstandstill is admitted, the fourth onstraint, whih is onsidered in this ex-position, an be removed without hanging the proposed overall approah tothe parking problem.The onstrained multi-optimization of problem 1 is a searh in the in�nite-dimensional spae Fh. In the next subsetion, an approximation sheme basedon η
3-splines will make possible to redue the searh into a �nite-dimensionalspae for whih standard parameter optimization an be used.2.1.2 Shaping paths sequene with η

3-splinesThe η3-splines (f. in [32℄) are an e�etive tool to approximate Cartesian pathswith third-order geometri ontinuity. Indeed, they an interpolate a sequeneof Cartesian points over whih unit-tangent vetor, urvature, and urvaturederivative an be arbitrarily assigned. A single η
3-spline is a seventh-orderpolynomial urve

p(u;η) = [px(u) py(u)]
′ , u ∈ [0, 1] , (2.5)

px(u) =

7
∑

i=0

αiu
i , py(u) =

7
∑

i=0

βiu
i , (2.6)that depends on a six-dimensional vetor η (the eta parameter vetor) andinterpolates the data vetors ca = [xa ya θa κa κ̇a]

′ and cb = [xb yb θb κb κ̇b]
′, atthe urve endpoints p(0;η) and p(1;η) respetively: (xa ya) and (xb yb) arethe Cartesian oordinates of the endpoints, θa and θb are the diretion anglesof the unit-tangent vetors, κa and κb are the salar urvatures, and κ̇a and

κ̇b are the derivatives of the salar urvatures with respet to the ar length.The η is a free vetor in R
2
+×R

4 that an be used to shape the resulting path



52 Chapter 2. Path generation and autonomous parkingwhile maintaining the interpolation onditions at the endpoints. The ompletelosed-form expressions of the η
3-spline are reported in [32℄ and [33℄.Here, we propose to use a simpli�ed version of the η

3-spline that onlydepends on the �rst two omponents of vetor η (atually the most impor-tant ones, f. setion V of [32℄) while the remaining omponents are set tozero. Spei�ally, in this ase η is rede�ned as the two-dimensional vetor
[ηa ηb]

′ ∈ R
2
+ where its positive omponents are the mathematial veloities ofthe urve at the endpoints, i.e. ηa = ‖ṗ(0;η)‖ and ηb = ‖ṗ(1;η)‖. The orre-sponding simpli�ed losed-form expressions of oe�ients αi, βi, i = 0, 1, . . . , 7,appearing in (2.5) and (2.6) are detailed below:

α0 = xa, α1 = ηa cos θa,

α2 = −
1

2
η2aκa sin θa, α3 = −

1

6
η3aκ̇a sin θa,

α4 = 35 (xb − xa)− 20ηa cos θa +

(

5κa +
2

3
ηaκ̇a

)

η2a sin θa − 15ηb cos θb

−
(

5

2
κb −

1

6
ηbκ̇b

)

η2b sin θb,

α5 = −84(xb − xa) + 45ηa cos θa − (10κa + ηaκ̇a)η
2
a sin θa + 39ηb cos θb

+

(

7κb −
1

2
ηbκ̇b

)

η2b sin θb,

α6 = 70(xb − xa)− 36ηa cos θa +

(

15

2
κa +

2

3
ηaκ̇a

)

η2a sin θa − 34ηb cos θb

−
(

13

2
κb −

1

2
ηbκ̇b

)

η2b sin θb,

α7 = −20(xb − xa) + 10ηa cos θa −
(

2κa +
1

6
ηaκ̇a

)

η2a sin θa + 10ηb cos θb

+

(

2κb −
1

6
ηbκ̇b

)

η2b sin θb,

β0 = ya, β1 = ηa sin θa,

β2 =
1

2
η2aκa cos θa, β3 =

1

6
η3aκ̇a cos θa,

β4 = 35 (yb − ya)− 20ηa sin θa −
(

5κa +
2

3
ηaκ̇a

)

η2a cos θa − 15ηb sin θb
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+

(

5

2
κb −

1

6
ηbκ̇b

)

η2b cos θb,

β5 = −84(yb − ya) + 45ηa sin θa + (10κa + ηaκ̇a)η
2
a cos θa + 39ηb sin θb

−
(

7κb −
1

2
ηbκ̇b

)

η2b cos θb,

β6 = 70(yb − ya)− 36ηa sin θa −
(

15

2
κa +

2

3
ηaκ̇a

)

η2a cos θa − 34ηb sin θb

+

(

13

2
κb −

1

2
ηbκ̇b

)

η2b cos θb,

β7 = −20(yb − ya) + 10ηa sin θa +

(

2κa +
1

6
ηaκ̇a

)

η2a cos θa + 10ηb sin θb

−
(

2κb −
1

6
ηbκ̇b

)

η2b cos θb .The in�nite-dimensional spae Fh of problem 1 an be approximated with a�nite-dimensional spae by using η
3-splines. Consider an element of Fh, i.e. asequene of G3-paths {Γ+

1 ,Γ
−
2 , . . . ,Γh} (or {Γ−

1 ,Γ
+
2 , . . . ,Γh}), then eah Γ+

i or
Γ−
i , will be approximated by a single (simpli�ed) η3-spline denoted as p+

i (u;ηi)or p−
i (u;ηi). Hene, the sequene of η3-splines

{p+
1 (u;η1),p

−
2 (u;η2), . . . ,ph(u;ηh)} ,or

{p−
1 (u;η1),p

+
2 (u;η2), . . . ,ph(u;ηh)} ,will be used to set up the multi-optimization for the parking path planning.The simpli�ed spline pi(u;ηi) is de�ned by the interpolating onditions

ca,i = [xa,i ya,i θa,i κa,i κ̇a,i]
′ and cb,i = [xb,i yb,i θb,i κb,i κ̇b,i]

′ at the path end-points and by the parameter vetor ηi = [ηa,i ηb,i]
′.Remark In the proposed approximating sheme, a path Γi is atually ap-proximated by pi ([0, 1];ηi), i.e. the Cartesian image over interval [0, 1] of the

η
3-spline urve pi (u;ηi). In the following, to simplify notation the same sym-bol pi (u;ηi) or even pi is used to denote both the parametri urve and theorresponding path.



54 Chapter 2. Path generation and autonomous parkingThe parking sequene of η3-splines {p1,p2, . . . ,ph} an satis�es the on-ditions a) and b) and the onstraint 4) of problem 1 by a proper assignment ofthe interpolation onditions. These assignments are exempli�ed below for theases h = 1, 2.Case h = 1 with {p+
1 (u;η1)} (one forward movement of the vehile): Thevehile starts at on�guration qs and arrives at on�guration qg (f. (2.3)and (2.4)). Hene, the spline parameters an be set as follows:

p+
1 (u;η1) :
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,

η1 = [z3 z4]
′,where z1, z2 ∈ [−κ̇M , κ̇M ] and z3, z4 ∈ R+ indiate the free variables to beoptimized. These are paked in the vetor z = [z1 z2 z3 z4]

′ that belongs to thesearh spae Z := [−κ̇M , κ̇M ]2 × R
2
+.Case h = 1 with {p−

1 (u;η1)} (one bakward movement of the vehile): Thespline parameters an be set as follows:
p−
1 (u;η1) :
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,

η1 = [z3 z4]
′,where z = [z1 z2 z3 z4]

′ ∈ Z = [−κ̇M , κ̇M ]2 × R
2
+.Case h = 2 with {p+

1 (u;η1),p
−
2 (u;η2)} (one forward movement plus a bak-
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p+
1 (u;η1) :
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η1 = [z5 z6]
′,
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2 (u;η2) :
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,

η2 = [z7 z8]
′,where the free variables are zi, i = 1, . . . 12, and they form the vetor z ∈ Zwith Z := [−κ̇M , κ̇M ]4 × R

4
+ × R

2 × [0, 2π) × [−κM , κM ] whih is a twelve-dimensional searh spae.Case h = 2 with {p−
1 (u;η1),p

+
2 (u;η2)} (one bakward movement plus a aforward one): similarly to the previous ase, all the parameters an be set asfollows
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η1 = [z5 z6]
′,
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p+
2 (u;η2) :
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,

η2 = [z7 z8]
′.When h > 2, the spline parameters an be set up similarly as in the pre-sented ases. Table 2.1 reports the dimension and struture of the searh spae

Z as a funtion of h. In partiular, when the parking is done with h splines,the dimension of the searh spae is 8h − 4: every added spline inreases of 8the dimension of Z.Remark The proposed approximation sheme replaes eah path Γi of se-quene {Γ1,Γ2, . . . ,Γh} with only one η
3-spline to avoid exessive inreasingof the dimension of the searh spae Z. Yet, it would be possible within thesame proposed framework to improve the approximation by using two or more

η
3-splines for eah Γi.2.1.3 Setting up the multi-optimizationIn this setion the multi-optimization of problem 1 is dealt with the sub-stitution of the in�nite-dimensional spae Fh with the �nite-dimensional pa-rameter spae Z introdued in the previous setion. This orresponds to dothe searhing for multi-optimization on the sequenes of simpli�ed η

3-splines
{p1(u;η1),p2(u;η2), . . . ,ph(u;ηh)} instead of the sequenes of G3-paths in-trodued in subsetion 2.1.2.The three indexes to be minimized using the standard weighted sum method[34℄ are (f. problem 1): the maximum value of the urvature modulus on the
h splines, the maximum value of the absolute value of the urvature derivative(with respet to the ar length) on the h splines, and the total length of the
h splines. These indexes are respetively denoted by κmax, κ̇max, and stot anddepend on the parameter vetor z ∈ Z. They an be determined as follows (the



2.1. Multi-optimization of η3-splines for autonomous parking 57h dim(Z) Z1 4 [−κ̇M , κ̇M ]2 × R
2
+2 12 [−κ̇M , κ̇M ]4 × R

4
+ × R

2×

[0, 2π) × [−κM , κM ]3 20 [−κ̇M , κ̇M ]6 × R
6
+ × R

4×

[0, 2π)2 × [−κM , κM ]2... ... ...
h 8h− 4

[−κ̇M , κ̇M ]2h × R
2h
+ × R

2(h−1)×

[0, 2π)h−1 × [−κM , κM ]h−1Table 2.1: Dimension and struture of the searh spae Z.dependenies on z are omitted for simpliity and pi(u;ηi) ≡ [px,i(u) py,i(u)]
′,

i = 1, . . . , h, f. (2.5)):
κmax

.
= max

i=1,...h
κmax,i , (2.7)where (i = 1, . . . , h)

κmax,i
.
= max

u∈[0,1]
|κi(u)| ,and

κi(u) =
ṗx,i(u)p̈y,i(u)− p̈x,i(u)ṗy,i(u)

(ṗ2x,i(u) + ṗ2y,i(u))
3
2

,is the salar urvature of spline pi(u;ηi);
κ̇max

.
= max

i=1,...h
κ̇max,i , (2.8)where (i = 1, . . . , h)

κ̇max,i
.
= max

u∈[0,1]

∣

∣

∣

∣

dκi
ds

(u)

∣

∣

∣

∣

,
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dκi
ds

(u) =
ṗx,i

...
p y,i −

...
p x,iṗy,i

(ṗ2x,i + ṗ2y,i)
2
− 3

(ṗx,ip̈y,i − p̈x,iṗy,i)(ṗx,ip̈x,i + ṗy,ip̈y,i)

(ṗ2x,i + ṗ2y,i)
3

,is the derivative of the urvature of spline pi(u;ηi) with respet to the arlength (for brevity the dependeny on u is omitted in the right side of theabove relation);
stot

.
=

h
∑

i

stot,i , (2.9)where
stot,i

.
=

∫ 1

0
[ṗ2x,i(ξ) + ṗ2y,i(ξ)]

1/2dξ .The onstraint of obstale avoidane is dealt with the onept of oupanyspan of the vehile along a path planning:De�nition 4 The oupany span of the vehile along the spline sequene
{p1,p2, . . . ,ph} is the set de�ned as

S .
=

n
⋃

i=1

Si ,where
Si .= {p ∈ P : p ∈ A(q) , q1 = px,i(u), q2 = py,i(u),

q3 = arg(ṗx,i(u) + jṗy,i(u)) , u ∈ [0, 1]} .Note that the oupany span depends on z ∈ Z, i.e. S ≡ S(z). De�nethe obstale region O as the union of all the obstales, i.e. O .
= ∪ni=1Bi andthe vehile avoids all the obstales along a path planning if and only if theintersetion of S(z) and O is the empty set (f. onstraint (2.11) below).Now the nonlinear onstrained multiobjetive optimization problem for thegeometri planning of autonomous parking an be stated as follows:Problem 2 (Multi-optimization of a sequene of η

3-splines for thesmooth parking problem) Given the number h of paths, onsider the param-eter spae Z that de�nes the sequenes {p+
1 ,p

−
2 , . . . ,ph} (or {p−

1 ,p
+
2 , . . . ,ph})



2.1. Multi-optimization of η3-splines for autonomous parking 59aording to the interpolating sheme exposed in setion 2.1.3. Then, the posedproblem is (λ1, λ2, λ3 ≥ 0 and λ1 + λ2 + λ3 = 1):
min
z∈Z

λ1κmax(z) + λ2κ̇max(z) + λ3stot(z) , (2.10)subjet to
S(z) ∩ O = ∅ , (2.11)
κmax(z) ≤ κM , (2.12)
κ̇max(z) ≤ κ̇M . (2.13)The oe�ients λ1, λ2, and λ3 of the omposite index to be minimizedin (2.10) an be freely hosen in order to weight the smoothness of the resultingmaneuver paths (whih is related to low values of both κmax and κ̇max) versusthe minimization of stot, the total length of the parking paths.Remark Note that the possible onstraint of avoiding steering at vehile'sstandstill does not appear in the onstraints (2.12)-(2.13) beause it is plainlyenfored by proper assignment of the geometri interpolating onditions on the

η
3-splines.Obstale avoidane onstraint (2.11) an be equivalently redued to anequality onstraint by omputing the maximal ollision area of the vehilealong the spline sequene: ma .

= max
i=1,...,h

mai , (2.14)mai .= max
u∈[0,1]

{area (A(q) ∩ O) : q1 = px,i(u),

q2 = py,i(u), q3 = arg(ṗx,i(u) + jṗy,i(u))} .Constraint (2.11) is therefore equivalent toma(z) = 0 ,and in suh a way problem 2 beomes a onstrained minimization problem forwhih a standard penalty method [35℄ an take into aount all the onstraints



60 Chapter 2. Path generation and autonomous parkingso as to redue the whole multi-optimization to the minimization of just oneindex. In a real-time senario for autonomous parking, fast loal minimizationalgorithms an be then implemented to solve problem 2 provided that the fol-lowing data is readily available: (1) the number h of splines; (2) the maneuversequene to prefer {p+
1 ,p

−
2 , . . . ,ph} or {p−

1 ,p
+
2 , . . . ,ph}; (3) an initial esti-mate of the parameter vetor z. Reasonably, this data an be determined byusing look-up tables that an be onstruted o�-line by extensive optimizationssuh as those based on methods of stohasti global multi-objetive optimiza-tion [36℄.2.1.4 Simulation resultsExample 1: Firstly, an example of garage parking maneuver in a onstrainedenvironment is onsidered for a standard ompat ar with wheelbase andmaximum steering angle of the front wheels l = 2.3 m and δM = 0.464 rad.Hene, the maximum urvature of the ar paths is κM = 1

l tan δM = 0.218 m−1.The allowed maximum absolute value of the urvature derivative with respetto the ar length is hosen as κ̇M = 2.50 m−2. The origin of the Cartesianplane P is hosen to be inside the parking lot that the ar has to reah. Thear has start on�guration
qs = [xs ys θs δs]

′ = [7 − 6 3π/4 0]′ ,and the �nal goal on�guration, whih orresponds to a front ar parking mode(i.e. the ar an only reah the goal on�guration with a forward �nal motionbeause of the surrounding obstales (f. �gure 2.6), is
qg = [xg yg θg δg] = [0.7 0 π 0]′ .The multi-optimizations for solving this parking problem are set up withweights λ1 = 0.5, λ2 = 0.2, and λ3 = 0.3. All the possible spline sequenesto be onsidered up to three splines are the following (the arguments of the
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η
3-splines are omitted for ompatness):

h = 1 : {p+
1 }, {p−

1 };
h = 2 : {p+

1 , p
−
2 }, {p−

1 , p
+
2 };

h = 3 : {p+
1 , p

−
2 , p

+
3 }, {p−

1 , p
+
2 , p

−
3 }.The sequenes {p−

1 }, {p+
1 , p

−
2 }, {p−

1 , p
+
2 , p

−
3 } have to be disarded due tothe fat that the last spline has to be overed with a ar's forward move-ment (front ar parking). Hene the topologially possible sequenes are: {p+

1 },
{p−

1 , p
+
2 }, {p+

1 , p
−
2 , p

+
3 }. Parking with {p+

1 } is not feasible beause the multi-optimization (2.10) fails to satisfy all the required onstraints (2.11)-(2.13).Instead, both sequenes {p−
1 , p

+
2 } and {p+

1 , p
−
2 , p

+
3 } lead to feasible parkingmaneuvers.For the two splines maneuver the multi-optimization of {p−

1 , p
+
2 } leads toa Pareto optimal solution

z̄ ∈ Z = [−2.5, 2.5]4 × R
4
+ × R

2 × [0, 2π) × [−0.218, 0.218] ,for whih κmax(z̄) = 0.143 m−1, κ̇max(z̄) = 0.260 m−2, stot(z̄) = 22.8 m. Thissolution is depited with graphi simulation in �gure 2.6. Plots of urvatureand urvature derivative are reported in �gure 2.7.For the three splines maneuver the multi-optimization of {p+
1 , p

−
2 , p

+
3 }leads to solution

z̄ ∈ Z = [−2.5, 2.5]6 × R
6
+ × R

4 × [0, 2π)2 × [−0.218, 0.218]2 ,for whih κmax(z̄) = 0.168 m−1, κ̇max(z̄) = 0.704 m−2, stot(z̄) = 25 m. Thissolution is depited �gure 2.8, while urvature and urvature derivative arereported in �gure 2.9.Example 2: As seond example, a parallel parking maneuver in a onstrainedenvironment is onsidered with the same data for the dynami model and forthe onstraints, given for the preedent example. The ar has start and �nalon�gurations
qs = [xs ys θs δs]

′ = [−2.5 2.5 π 0]′ ,
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Figure 2.6: Optimal parking with two-spline maneuver {p−
1 ,p

+
2 } in example 1.
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Figure 2.7: Plots of urvature and urvature derivative as funtions of the arlength along the entire optimal spline maneuver {p−
1 ,p

+
2 } in example 1.
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Figure 2.8: Optimal parking with three-spline maneuver {p+
1 ,p

−
2 ,p

+
3 } in ex-ample 1.
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Figure 2.9: Plots of urvature and urvature derivative as funtions of the arlength along the entire optimal spline maneuver {p+
1 ,p

−
2 ,p

+
3 } in example 1.
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Figure 2.10: Optimal parking with three-spline maneuver {p+
1 ,p

−
2 ,p

+
3 } in ex-ample 2.
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Figure 2.11: Plots of urvature and urvature derivative as funtions of the arlength along the entire optimal spline maneuver {p+
1 ,p

−
2 ,p

+
3 } in example 2.



2.2. Path generation for a truk and trailer vehile 65and
qg = [xg yg θg δg] = [0 0 π 0]′ ,respetively. Setting λ1 = 0.3, λ2 = 0.2, and λ3 = 0.5, sequene {p+

1 , p
−
2 , p

+
3 }is the �rst one results to be feasible. The optimal solution

z̄ ∈ Z = [−2.5, 2.5]6 × R
6
+ × R

4 × [0, 2π)2 × [−0.218, 0.218]2 .for the sequene {p+
1 , p

−
2 , p

+
3 } gives the results: κmax(z̄) = 0.165m−1, κ̇max(z̄) =

0.551 m−2, stot(z̄) = 17.9 m. This solution is depited with graphi simulationin �gure 2.10. Plots of urvature and urvature derivative are reported in �g-ure 2.11.2.2 Path generation for a truk and trailer vehileIn this setion a method for the smooth path generation of a truk and trailervehile is presented. The advantages and potentialities in ahieving full orpartial autonomy in the guidane of automated vehiles are a strong motivationto improve urrent tehnologies and methodologies. Fousing on the motionautomation of artiulated vehiles, the present work addresses the need togenerate high quality drive paths for an automated truk and trailer vehile.This need an arise in a variety of appliations (e.g. in industry, agriulture,mining, et. [37, 38℄).Considering the usual kinemati model of a truk and trailer vehile, thissetion presents a new trajetory generation method in whih the feedforward(i.e. open-loop) ontrol an steer the vehile from an initial on�guration toa �nal one, while permitting free shaping of the trailer path onneting theseon�gurations. With this method, the feedforward ontrols, i.e. the truk velo-ity and the steering angle of the front wheels, are smooth C1-signals, the initialand �nal on�gurations are arbitrary and the onneting path is modeled byusing a new urve primitive, the η
4-spline.The problem of nonholonomi trajetory generation for an n-trailer ve-hile (i.e. an artiulated vehile onsisting of a truk towing n trailers) was



66 Chapter 2. Path generation and autonomous parkingonsidered and solved in [39℄ by using three distint lasses of ontrol inputs:sinusoids, piee-wise onstants, and polynomials. This method relies on, by o-ordinate transformations, the onversion of the n-trailer system into a Goursatnormal form and then into the orresponding hained form [40℄ for whih theontrollability problem (i.e. the problem of steering between system on�gura-tions) is solved by feedforward ontrol. Then, by reversing the transformationsthe atual system inputs are obtained; however in this reversing singularitiesmay appear so that the desired ontrol is not guaranteed to be obtained in allplanning ases. Moreover, the method does not aount for any �exibility indiret shaping or modeling the Cartesian paths of the trailers and the truk.This setion proposes a path generation methodology for the smooth feed-forward ontrol of the truk and trailer vehile within the framework of path-veloity deomposition [3℄. A result presented in the following subsetions(proposition 4) shows that the path generated by the vehile trailer is a G4-path [32, 33℄ (i.e. a path whih has fourth-order geometri ontinuity) if andonly if, exluding kinemati singularities, the veloity and the steering fun-tions of the truk are C1-funtions.Fourth-order geometri ontinuity aounts for the ontinuity along theurve of the path itself, the unit tangent vetor, the urvature, and the �rst andseond order urvature derivatives with respet to the ar length. Therefore,when pursuing the smooth feedforward ontrol of the artiulated vehile, pathplanning an be pertinently done with G4-paths. This naturally leads to thepolynomial G4-interpolating problem on the Cartesian plane.The setion presents a omplete solution to this interpolating problem. Thesolution is the η
4-spline whih is a ninth-order polynomial urve interpolat-ing Cartesian points with assoiated arbitrary G4-data (unit tangent vetor,urvature, �rst and seond derivatives of urvature). The η4-spline generalizesthe η2-spline and η

3-spline previously presented in the preedent setions. The
η
4-spline is a urve primitive that depends on set of 8 parameters, whih anbe freely hosen to modify the path shape without hanging the interpolationonditions at the path endpoints.



2.2. Path generation for a truk and trailer vehile 672.2.1 Smooth feedforward ontrol of the truk and trailer ve-hileConsider a truk an trailer vehile with the trailer supposed to be joined to thetruk at the midpoint of its rear axle. See �gure 2.12 where a shemati planview of the artiulated vehile on a Cartesian frame {x, y} is depited. WePSfrag replaements
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Figure 2.12: Shemati of a truk and trailer vehile.indiate with ouple (x1, y1) the oordinates of the axle midpoint of the trailerand with θ1 its orientation angle with respet to the x axis. The truk atuatesthe motion by the veloity v of the rear wheels and by the steering angle δof the front wheels. The distane between the front axle and the rear axle ofthe truk is d0, whereas the distane between the trailer axle and the rear axleof the truk is d1. With the usual modeling assumptions of rigid body of thetruk and the trailer and of no-slippage of the wheels, the following nonlinearkinemati model of the artiulated vehile an be dedued






















ẋ1 = v cos(θ0 − θ1) cos θ1
ẏ1 = v cos(θ0 − θ1) sin θ1
θ̇0 = v

d0
tan δ

θ̇1 = v
d1

sin(θ0 − θ1) .

(2.15)



68 Chapter 2. Path generation and autonomous parkingWe saw in the preedent setions that in this ontext it is onvenient to usethe extended state of model (2.15), or on�guration of the artiulated vehile,whih is de�ned as the state plus the inputs and their derivatives:
(x1, y1, θ0, θ1, v, v̇, δ, δ̇) . (2.16)The following de�nition will be used along this setion:De�nition 5 (Gk-urve, k ≥ 2) A urve p(u), with u ∈ [u0, u1], has k-th order geometri ontinuity, and we say p(u) is a Gk-urve, if p(u) is a

Gk−1-urve, dk

duk
p(u) ∈ PC([u0, u1]), and the (k − 2)-th order derivative ofthe urvature with respet to the ar length is ontinuous along the urve, i.e.

dk−2

dsk−2κ(u) ∈ C0([u0, u1]).The Gk-ontinuity of urves an be naturally extended to Cartesian paths asfollows:De�nition 6 (Gk-paths) A given set of points of a Cartesian plane is a Gk-path if there exists a parametri Gk-urve whose image is the given path.We stated above that, in order to obtain a smooth vehile motion, inputs v(t)and δ(t) must be C1-funtions. Suh a ontinuity of these vehile inputs islinked to the fourth-order geometri ontinuity of the trailer path as stated bythe following proposition.Proposition 4 Assign any tf > 0. For model (2.15), onsider smooth inputs
v(t), δ(t) ∈ C1([0, tf ]), with v(t) 6= 0, |δ(t)| < π

2 and initial onditions suh that
|θ0(t) − θ1(t)| < π

2 , ∀t ∈ [0, tf ]. Then the path generated by model (2.15), i.e.
[

x1

y1

]

([0, tf ]), is a G4-path. Conversely, given a G4-path Γ there exist smoothinputs v(t), δ(t) ∈ C1([0, tf ]) with v(t) 6= 0, |δ(t)| < π
2 , ∀t ∈ [0, tf ] and initialonditions for whih |θ0(t)− θ1(t)| < π

2 , ∀t ∈ [0, tf ] and the path generated bysystem (2.15) oinides with the given Γ, i.e. [ x1

y1

]

([0, tf ]) ≡ Γ.



2.2. Path generation for a truk and trailer vehile 69Proof. Let us demonstrate the �rst part of the proposition. The solution of thedi�erential equations (2.15) leads to trajetory [x1(t) y1(t)]
′, t ∈ [0, tf ] whihis a regular Cartesian urve. Indeed, its derivative [ẋ1(t) ẏ1(t)]T never vanishesover [0, tf ] beause v(t) 6= 0 and |θ0(t)− θ1(t)| < π

2 , ∀t ∈ [0, tf ].The unit tangent vetor of urve [x1(t) y1(t)]
′ an be expressed as

τ (t) =
[ẋ1(t) ẏ1(t)]

′

√

ẋ21(t) + ẏ21(t)
= sgn(v(t))

[

cos θ1(t)

sin θ1(t)

]

. (2.17)Hene, the unit tangent vetor τ is ontinuous over the trailer urve beause
θ1(t) is ontinuous in [0, tf ].As known from the theory of planar urves [41℄, the salar urvature κ isgiven by the derivative of the tangent angle θ1 with respet to the ar length
s, where s = ∫ t0 (ẋ21(ξ) + ẏ21(ξ))

1
2dξ. It an be expressed as follows

κ =
dθ1
ds

=
dθ1
dt

1
ds
dt

= θ̇1
1

(ẋ21 + ẏ21)
1
2

=
v

d1
sin(θ0 − θ1)

1

|v| cos(θ0 − θ1)

= sgn(v)
1

d1
tan(θ0 − θ1) . (2.18)For the ontinuity of the state variables θ0 and θ1, urvature κ is ontinuousin [0, tf ] too. The derivative of the salar urvature κ is given by

dκ

ds
=

1

d1 cos3(θ0 − θ1)

[

1

d0
tan δ − 1

d1
sin(θ0 − θ1)

]

. (2.19)The urvature derivative dκ
ds is then ontinuous along the urve beause θ0, θ1and δ are ontinuous in [0, tf ]. Finally, the seond derivative of the urvaturean be expressed as follows

d2κ

ds2
=

δ̇

|v|d0d1 cos2 δ cos4(θ0 − θ1)
− sgn(v)

1
d0

tan δ − 1
d1

sin(θ0 − θ1)
d21 cos

3(θ0 − θ1)

+sgn(v)
3
[

1
d0

tan δ − 1
d1

sin(θ0 − θ1)
]2

sin(θ0 − θ1)
d1 cos5(θ0 − θ1)

.

(2.20)



70 Chapter 2. Path generation and autonomous parkingAgain, from the ontinuity of the state variables θ0 and θ1 and from the hy-pothesis v, δ ∈ C1([0, tf ]), the seond derivative of the urvature with respetto the ar length is ontinuous in [0, tf ]. This shows that urve [x1(t) y1(t)]
′ isa G4-urve, hene the image [ x1

y1

]

([0, tf ]) is a G4-path.In order to prove the onverse part of the proposition, onsider the G4-urve p(s), where s is the ar length on Γ and p([0, sf ]) ≡ Γ with sf being thetotal ar length of Γ. We hoose the following initial onditions






















[

x1(0)

y1(0)

]

= p(0)

θ0(0) = arg dp
ds (0) + arctan(d1κ(0))

θ1(0) = arg dp
ds (0) ,

(2.21)where dp
ds (s) and κ(s) are the unit tangent vetor and the urvature of p(s)respetively.Also onsider any v1(t) ∈ C1([0, tf ]) suh that v1(t) > 0, ∀t ∈ [0, tf ] and

∫ tf

0
v1(ξ)dξ = sf .Then de�ne the ontrol inputs as

v(t) = v1(t)
[

1 + d21κ
2(s)

]
1
2

∣

∣

∣

s=
∫ t
0 v1(ξ)dξ

(2.22)and
δ(t) = arctan

[

d0κ

(1 + d21κ
2)

1
2

+
d0d1

dκ
ds

(1 + d21κ
2)

3
2

]∣

∣

∣

∣

∣

s=
∫ t

0
v1(ξ)dξ

. (2.23)Obviously, v(t) 6= 0, ∀t ∈ [0, tf ] and v(t) ∈ C1([0, tf ]) beause v1 ∈ C1([0, tf ])and κ ∈ C1([0, sf ]). Moreover, |δ(t)| < π
2 , ∀t ∈ [0, tf ] and δ(t) ∈ C1([0, tf ])beause κ ∈ C2([0, sf ]) (indeed p(s) is a G4-urve).Expliit solutions of system (2.15) an be given for θ0 and θ1 as follows:

θ0(t) = θ0(0) +

∫ t

0

v(r)

d0
tan δ(r) dr , (2.24)

θ1(t) = θ0(t)− arctan [d1κ(s)]|s=∫ t

0
v1(ξ)dξ

. (2.25)



2.2. Path generation for a truk and trailer vehile 71Straightforwardly, solution (2.24) satis�es the third equation of system (2.15).By expliit derivation of solution (2.25) and some omputations the fourthequation of system (2.15) is also veri�ed and
θ̇1(t) = v1(t)κ(s)|s=∫ t

0
v1(ξ)dξ

, t ∈ [0, tf ] . (2.26)From (2.25) evidently the inequality |θ0(t) − θ1(t)| < π
2 , ∀t ∈ [0, tf ] follows.The last point to prove is

[

x1(t)

y1(t)

]

= p(s)|s=∫ t
0
v1(ξ) dξ

, t ∈ [0, tf ] . (2.27)First note that
θ1(t) = arg

dp

ds

∣

∣

∣

∣

s=
∫ t
0 v1(ξ) dξ

, (2.28)and reall that
κ =

d

ds
(arg τ ) , (2.29)beause θ1(0) = arg dp

ds (0) (f. onditions (2.21)) and the derivatives of bothsides of (2.28) oinide (f. (2.29) and (2.26)):
d

dt
arg

dp

ds

∣

∣

∣

∣

s=
∫ t

0
v1(ξ) dξ

=
d

ds
arg

dp

ds

∣

∣

∣

∣

s=
∫ t

0
v1(ξ) dξ

· ds
dt

= κ(s)|s=∫ t
0 v1(ξ) dξ

· v1(t) = θ̇1(t) .In turn, identity (2.27) holds beause [x1(0) y1(0)]′ = p(0) (f. onditions (2.21))and derivatives of the sides of (2.27) are equal to eah other. Indeed, by virtueof (2.22) and (2.25)
v1(t) = v(t) cos(θ0(t)− θ1(t)) ,
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d

dt
p(s)

∣

∣

∣

∣

s=
∫ t

0
v1(ξ)dξ

=
dp

ds

∣

∣

∣

∣

s=
∫ t

0
v1(ξ) dξ

· ds
dt

=

[

cos arg dp
ds

sin arg dp
ds

]∣

∣

∣

∣

∣

s=
∫ t
0 v1(ξ)dξ

· v1(t)

=

[

cos θ1(t)

sin θ1(t)

]

v(t) cos(θ0(t)− θ1(t)) =
[

ẋ1(t)

ẏ1(t)

]

,the last equality being derived from the �rst two equations of system (2.15).
� The provided proof of proposition 4 is fully onstrutive. Indeed, it pro-vides the dynami path inversion proedure to determine the feedforward in-verse ontrol to drive the artiulated vehile from a given on�guration to atarget on�guration, along a G4-path. This path an be any desired G4-pathprovided that the path endpoints have Cartesian oordinates, unit tangent ve-tor, urvature, and �rst and seond derivatives of urvature in aordane withthe urrent vehile on�guration (f. (2.17)-(2.20)). Hene, the generation ofa G4-path for the artiulated vehile must ensure interpolating onditions atthe endpoints up to the seond derivative of the urvature. This is the problemthat is addressed, in a polynomial setting, in the next subsetion.2.2.2 The η

4-splinesConsidered the result relative to the smooth feedforward ontrol of the trukand trailer vehile as exposed in the previous setion (proposition 4), the fol-lowing interpolation problem in the Cartesian plane is introdued.Problem 3 Determine the minimal order polynomial urve whih interpolatestwo given endpoints pA = [xA yA]
′ and pB = [xB yB]

′ with assoiated unittangent vetors de�ned by angles θA and θB, salar urvatures κA and κB,urvature derivatives κ̇A, κ̇B and seond-order derivatives of the urvature κ̈A,
κ̈B (both derivatives are de�ned with respet to the ar length) (see �gure 2.13).



2.2. Path generation for a truk and trailer vehile 73Assume that interpolating data pA, pB ∈ R
2, θA, θB ∈ [0, 2π), κA, κB ∈ R,

κ̇A, κ̇B ∈ R and κ̈A, κ̈B ∈ R an be arbitrarily assigned.PSfrag replaements
x

y

pA, κA, κ̇A, κ̈A

pB , κB , κ̇B , κ̈B

θA

θB

Figure 2.13: The polynomial G4-interpolating problem.The provisional solution for the above interpolating problem is given by aninth-order polynomial urve p(u) = [α(u) β(u)]′, u ∈ [0, 1] de�ned as follows
α(u) =

9
∑

i=0

αiu
i, (2.30)

β(u) =

9
∑

i=0

βiu
i, (2.31)where oe�ients αi, βi i = 0, . . . , 9 are to be determined aording to theabove interpolating problem. As known from the theory of planar urves, theunit tangent vetor τ and urvature κ an be expressed as

τ (u) =
[α̇ β̇]′

(α̇+ β̇)1/2
, (2.32)

κ(u) =
α̇β̈ − α̈β̇
(α̇+ β̇)3/2

. (2.33)



74 Chapter 2. Path generation and autonomous parkingDedution of the �rst and seond derivative of the urvature κ with respet tothe ar length leads to the following formulae:
dκ

ds
(u) =

(α̇
...
β − ...

αβ̇)(α̇2 + β̇2)− 3(α̇β̈ − α̈β̇)(α̇α̈+ β̇β̈)

(α̇2 + β̇2)3
, (2.34)

d2κ

ds2
(u) =

[

(α̇
....
β − ....

α β̇ + α̈
...
β − ...

αβ̈)(α̇2 + β̇2)2 − 7(α̇
...
β − ...

αβ̇)(α̇α̈+ β̇β̈)

(α̇2 + β̇2)− 3(α̇β̈ − α̈β̇)(α̈2 + β̈2 + α̇
...
α + β̇

...
β )(α̇2 + β̇2)

+ 18(α̇β̈ − α̈β̇)(α̇α̈+ β̇β̈)2
] 1

(α̇2 + β̇2)5
. (2.35)The imposition of the G4-interpolating onditions of the above problem on theendpoints of p(u) leads to the following relations:

p(0) = pA , (2.36)
p(1) = pB , (2.37)
ṗ(0) = η1

[

cos θA

sin θA

]

, (2.38)
ṗ(1) = η2

[

cos θB

sin θB

]

, (2.39)
κ(0) = κA , (2.40)
κ(1) = κB , (2.41)
dκ

ds
(0) = κ̇A , (2.42)

dκ

ds
(1) = κ̇B , (2.43)

d2κ

ds2
(0) = κ̈A , (2.44)

d2κ

ds2
(1) = κ̈B . (2.45)Note that relation (2.38) and (2.39), whih ensure the interpolation of theunit tangent vetors, are well posed provided that η1 and η2 are any positiveparameters.



2.2. Path generation for a truk and trailer vehile 75Relations (2.36)-(2.45) form a nonlinear algebrai system of 14 equationsin the 20 unknowns αi, βi. Hene this system may admit a solution set with6 degrees of freedom. This solution set an be parametrized aording to theintrodution of further 6 real parameters η3, . . . , η8 de�ned as follows:
〈p̈(0) ,

[

cos θA

sin θA

]

〉 = η3 , (2.46)
〈p̈(1) ,

[

cos θB

sin θB

]

〉 = η4 , (2.47)
〈...p(0) , [cos θA

sin θA

]

〉 = η5 , (2.48)
〈...p(1) , [cos θB

sin θB

]

〉 = η6 , (2.49)
〈....p (0) ,

[

cos θA

sin θA

]

〉 = η7 , (2.50)
〈....p (1) ,

[

cos θB

sin θB

]

〉 = η8 . (2.51)Equations (2.36)-(2.45) and (2.46)-(2.51) form an algebrai system of 20 equa-tions in the 20 unknowns αi, βi, i = 0, . . . , 9 that depends on the real parame-ters η1, η2 ∈ R+ and η3, . . . , η8 ∈ R. This parameters an be paked to form theeta vetor η := [η1 . . . η8]
′ belonging to the parameter spae H := R

2
+ × R

6.From equations (2.36) and (2.38) we determine
α0 = xA , β0 = yA ,

α1 = η1 cos θA , β1 = η1 sin θA .
(2.52)Equations (2.37) and (2.39) lead to the linear equations

α(1) =

9
∑

i=0

αi = xB , β(1) =

9
∑

i=0

βi = yB , (2.53)
α̇(1) =

9
∑

i=1

i αi = η2 cos θB , β̇(1) =
9
∑

i=1

i βi = η2 sin θB . (2.54)



76 Chapter 2. Path generation and autonomous parkingFrom equation (2.40) and solution α1, β1 given by (2.52) we obtain
−2η1 sin θAα2 + 2η1 cos θAβ2 = η31κA , (2.55)and from (2.46)

2 cos θAα2 + 2 sin θAβ2 = η3 . (2.56)Equations (2.55) and (2.56) give the solutions
α2 =

1

2
η3 cos θA −

1

2
η21κA sin θA , (2.57)

β2 =
1

2
η3 sin θA −

1

2
η21κA cos θA . (2.58)Taking into aount relation (2.34), equation (2.42) beomes

(6α1β3 − 6β1α3)η
2
1 − 12(α1β2 − α2β1)(α1α2 + β1β2) = η61κ̇A , (2.59)and from (2.48) we obtain
6 cos θAα3 + 6 sin θAβ3 = η5 . (2.60)By substitution of solutions (2.52), (2.57), and (2.58), equations (2.59), (2.60)form a linear algebrai system in the unknowns α3, β3 whih has a uniquesolution beause the determinant of its oe�ient matrix is equal to 6η31 andit di�ers from zero on the assumption η1 > 0. This solution is given by

α3 = −
(

1

2
η1η3κA +

1

6
η31κ̇A

)

sin θA +
1

6
η5 cos θA , (2.61)

β3 =

(

1

2
η1η3κA +

1

6
η31κ̇A

)

cos θA +
1

6
η5 sin θA . (2.62)Using relation (2.35), equation (2.44) beomes

12(2α1β4 − 2α4β1 + α2β3 − α3β2)η
4
1 − 84(α1β3 − α3β1)(α1α2 + β1β2)η

2
1

−12(α1β2 − α2β1)(2α
2
2 + 2β22 + 3α1α3 + 3β1β3)η

2
1

+144(α1β2 − α2β1)(α1α2 + β1β2)
2 = η101 κ̈A , (2.63)



2.2. Path generation for a truk and trailer vehile 77and from (2.50) we have
24 cos θAα4 + 24 sin θAβ4 = η7 . (2.64)By substitution of solutions (2.52), (2.57), (2.58), (2.61), and (2.62), the aboveequations (2.63), (2.64) are a linear algebrai system in the unknowns α4, β4.There exists a unique solution given by

α4 = −
(

1

6
η1η5κA +

1

4
η21η3κ̇A +

1

8
η41κ

3
A +

1

24
η41κ̈A

− 1

8
η3κA

)

sin θA +
1

24
η7 cos θA ,

(2.65)
β4 =

(

1

6
η1η5κA +

1

4
η21η3κ̇A +

1

8
η41κ

3
A +

1

24
η41κ̈A

+
1

8
η3κA

)

cos θA +
1

24
η7 sin θA ,

(2.66)beause the oe�ient matrix of system (2.63), (2.64) is nonsingular (the de-terminant of this matrix is 24η51 whih di�ers from zero beause η1 > 0). Bysubstituting relations (2.54) into equation (2.41) we obtain
η2 cos θB β̈(1) − η2 sin θB α̈(1) = η32κB , (2.67)and from (2.47)

cos θB α̈(1) + sin θB β̈(1) = η4 . (2.68)The linear system given by equations (2.67) and (2.68) admits the uniquesolution (its oe�ient matrix is nonsingular beause it is equal to −η2 thatdi�ers from zero by assumption):
α̈(1) = η4 cos θB − η22κB sin θB, (2.69)
β̈(1) = η4 sin θB + η22κB cos θB. (2.70)Using relations (2.54), (2.69), (2.70) into equation (2.43) we have

η32 cos θB
...
β (1)− η32 sin θB

...
α(1) = η62κ̇B + 3η42η4κB (2.71)



78 Chapter 2. Path generation and autonomous parkingand from (2.49)
cos θB

...
α(1) + sin θB

...
β (1) = η6. (2.72)The determinant of oe�ient matrix of linear equations (2.71), (2.72) is −η32so that the following unique solution holds:...

α(1) = η6 cos θB −
(

η32κ̇B + 3η2η4κB
)

sin θB , (2.73)...
β (1) = η6 sin θB +

(

η32κ̇B + 3η2η4κB
)

cos θB . (2.74)By substituting relations (2.54), (2.69), (2.70), (2.73), (2.74) into equation (2.45)we obtain
η52 cos θB

....
β (1) − η52 sin θB

....
α (1) =

η102 κ̈B + 3η42κ
3
B + 3η24κB + 4η2η6κB + 6η22η4κ̇B .

(2.75)and from (2.51)
cos θB

....
α (1) + sin θB

....
β (1) = η8 . (2.76)Again, the pair of linear equations (2.75) and (2.76) admits a unique solution(the determinant of the oe�ient matrix is −η52) whih is reported below:....

α (1) = η8 cos θB −
[

3
(

η24κB + η42κ
3
B

)

+ 4η2η4κB + 6η22η4κ̇B + η52κ̈B
]

sin θB ,(2.77)....
β (1) = η8 sin θB +

[

3
(

η24κB + η42κ
3
B

)

+ 4η2η4κB + 6η22η4κ̇B + η52κ̈B
]

cos θB .(2.78)By olleting the relations de�ning α(1), α̇(1), α̈(1), ...α(1), and ....α (1) (f. (2.53),(2.54), (2.69), (2.73), (2.77)) the following linear system in the unknowns α5,
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α6, α7, α8, is α9 is obtained:










































































α5 + α6 + α7 + α8 + α9 = xB − α0 − α1 − α2 − α3 − α4

5α5 + 6α6 + 7α7 + 8α8 + 9α9 = η2 cos θB − α1 − 2α2 − 3α3 − 4α4

20α5 + 30α6 + 42α7 + 56α8 + 72α9 = η4 cos θB − η22κB sin θB

− 2α2 − 6α3 − 12α4

60α5 + 120α6 + 210α7 + 336α8 + 504α9 = η6 cos θB

−
(

η32κ̇B + 3η2η4κB
)

sin θB − 6α3 − 24α4

120α5 + 360α6 + 840α7 + 1680α8 + 3024α9 = η8 cos θB

−
[

η52κ̈B + 3
(

η42κ
3
B + η24κB

)

+ 4η2η4κB + 6η22η4κ̇B
]

cos θB − 24α4 .

(2.79)
Similarly, by olleting the relations de�ning β(1), β̇(1), β̈(1), ...β (1), and ....

β (1)(f. (2.53), (2.54), (2.70), (2.74), (2.78)) the following linear system in theunknowns β5, β6, β7, β8, and β9 holds:










































































β5 + β6 + β7 + β8 + β9 = yB − β0 − β1 − β2 − β3 − β4
5β5 + 6β6 + 7β7 + 8β8 + 9β9 = η2 sin θB − β1 − 2β2 − 3β3 − 4β4

20β5 + 30β6 + 42β7 + 56β8 + 72β9 = η4 sin θB + η22κB cos θB

− 2β2 − 6β3 − 12β4

60β5 + 120β6 + 210β7 + 336β8 + 504β9 = η6 sin θB

+
(

η32κ̇B + 3η2η4κB
)

cos θB − 6β3 − 24β4

120β5 + 360β6 + 840β7 + 1680β8 + 3024β9 = η8 sin θB

+
[

η52κ̈B + 3
(

η42κ
3
B + η24κB

)

+ 4η2η4κB + 6η22η4κ̇B
]

sin θB − 24β4 .

(2.80)
The above linear systems (2.79), (2.80) have the same oe�ient matrix whosedeterminant is 288. Hene, a unique solution an be dedued for all the un-knowns. The expliit expressions of all oe�ients αi, βi, i = 0, . . . , 9 are notreported for brevity (see [23℄ for more details). The resulting polynomial urveis denoted by p(u; η) and it is alled η

4-spline.Proposition 5 (Completeness) The η
4-spline p(u;η) satis�es any givenset of interpolating data pA, θA, κA, κ̇A, κ̈A and pB, θB, κB, κ̇B, κ̈B for



80 Chapter 2. Path generation and autonomous parkingall η ∈ H. Conversely, given any ninth-order polynomial urve q(u), u ∈ [0, 1]with q̇(0) 6= 0 and q̇(1) 6= 0 whih satis�es a given set of interpolating ondi-tions pA, θA, κA, κ̇A, κ̈A and pB, θB, κB, κ̇B, κ̈B, there exists a parametervetor η ∈ H suh that p(u;η) oinides with q(u).Proof. It has been shown that system (2.36)-(2.51) is equivalent to a linearsystem whose oe�ient matrix is nonsingular, provided that η1 > 0 and η2 >
0. Hene, the solution provided by the η

4-spline is unique and satis�es anygiven set of interpolating data pA, θA, κA, κ̇A, κ̈A and pB , θB , κB , κ̇B , κ̈Bfor all η ∈ H. De�ne η1 := ‖q̇(0)‖ and η2 := ‖q̇(1)‖, so that η1, η2 > 0 byhypothesis. De�ne τA := [cos θA sin θA]
′, τB := [cos θB sin θB]

′ and set theparameters η3, . . . , η8 aording to
η3 := 〈q̈(0) , τA〉, η5 := 〈

...
q (0) , τA〉, η7 := 〈

....
q (0) , τA〉,

η4 := 〈q̈(1) , τB〉, η6 := 〈
...
q (1) , τB〉, η8 := 〈

....
q (1) , τB〉.Having de�ned all the eta parameters, onsider the algebrai system (2.36)-(2.51) with the given set of interpolating onditions pA, θA, κA, κ̇A, κ̈A and pB ,

θB, κB , κ̇B , κ̈B . The unknowns are the oe�ients of a ninth-order polynomialurve p(u). Hene, there exists a unique solution, the η
4-spline p(u;η), thatmust oinides with q(u). �Property 1 (Minimality) The η

4-spline p(u;η) is the minimal order poly-nomial urve interpolating any arbitrarily given set of data pA,pB ∈ R
2,

θA, θB ∈ [0, 2π), κA, κB ∈ R, κ̇A, κ̇B ∈ R, and κ̈A, κ̈B ∈ R.Proof. Proposition 5 shows that the η
4-spline p(u;η) is the family of all poly-nomial urves, till to the ninth order, interpolating any given G4-data. Hene,if an eighth or lower order polynomial urve interpolating any assigned set ofboundary ondition exists, it must oinide with p(u;η) for some appropri-ate η ∈ H. Consider the following boundary onditions (leading to a so-alledlane-hange path):

pA = [0 0]′,pB = [2 1]′, θA = θB = 0, κA = κB = 0,

κ̇A = κ̇B = 0, κ̈A = κ̈B = 0,



2.2. Path generation for a truk and trailer vehile 81and evaluate the η
4-spline using its oe�ients (f. [23℄):

α(u;η) = η1u+
1

2
η3u

2 +
1

6
η5u

3 +
1

24
η7u

4 +

[

252− 70η1 − 56η2 −
35

2
η3

+
21

2
η4 −

5

2
η5 − η6 −

5

24
η7 +

1

24
η8

]

u5 +

[

−840 + 224η1 + 196η2 +
105

2
η3

−77

2
η4 +

20

3
η5 +

23

6
η6 +

5

12
η7 −

1

6
η8

]

u6 + [1080 − 280η1 − 260η2 − 63η3

+53η4 −
15

2
η5 −

11

2
η6 −

5

12
η7 +

1

4
η8

]

u7 + [−630 + 160η1 + 155η2 + 35η3

−65

2
η4 + 4η5 +

7

2
η6 +

5

24
η7 −

1

6
η8

]

u8 + [140− 35η1 − 35η2

−15

2
η3 +

15

2
η4 −

5

6
η5 −

5

6
η6 −

1

24
η7 +

1

24
η8

]

u9 ,

β(u;η) = 126u5 − 420u6 + 540u7 − 315u8 + 70u9 .Evidently, β(u;η) is a strit ninth-order polynomial that does non depend on
η. Thus, it is not possible to interpolate the given data with an eighth or lowerorder polynomial urve. �Proposition 5 and property 1 make evident that the found η

4-spline is theomplete solution the posed G4-interpolating problem. The η
4-spline presentitself as a family of polynomial urves parametrized by eta parameters η1, . . . , η8.A relevant property of this parametrization is the symmetry.Property 2 (Symmetry) Assume η1 = η2 = v ∈ R+, η3 = −η4 = w ∈ R,

η5 = η6 = z ∈ R, η7 = −η8 = t ∈ R and de�ne η = [v v w − w z z t − t]′.Moreover, onsider θA = θB = θ ∈ [0, 2π), κA = −κB = κ ∈ R, κ̇A = κ̇B =

κ̇ ∈ R, κ̈A = −κ̈B = κ̈ ∈ R. Then, for any pA and pB, urve p(u;η) satis�esthe following symmetry relation
p(u;η) = pA + pB − p(1− u;η) (2.81)

∀u ∈ [0, 1], ∀v ∈ R+, ∀w, z, t ∈ R, ∀θ ∈ [0, 2π), and ∀κ, κ̇, κ̈ ∈ R.
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Figure 2.14: Symmetry of the η
4-spline.Proof. It is always possible to �nd d1, d2 ∈ R suh that (f. �gure 2.14)

pB = pA + d1

[

cos θ

sin θ

]

+ d2

[

− sin θ

cos θ

]

.Curve p(u; η), evaluated by means of its oe�ients and the assigned inter-polating onditions, an be expressed as
p(u;η) =

[

xA

yA

]

+ v

[

cos θ

sin θ

]

u+

[

cos θ − sin θ

sin θ cos θ

]{

1

2

[

w

κv2

]

u2

+
1

6

[

z

κ̇v3 + 3κvw

]

u3 +
1

24

[

t

κ̈v4 + 6κ̇v2w + 4κvz + 3κw2 + 3κ3v4

]

u4

+

[

126d1 − 126v − 28w

126d2 − 1

4
κ̈v4 − 7

2
κ̇v3 − 3

2
κ̇v2w − 28κv2

− 7

2
z − 1

4
t

− 3

4
κw2 − κvz − 21

2
κvw − 3

4
κ3v4

]

u5

+

[

−420d1 + 420v + 91w

−420d2 + 7

12
κ̈v4 + 21

2
κ̇v3 + 7

2
κ̇v2w + 91κv2

+ 21

2
z + 7

12
t

+ 7

4
κw2 + 7

3
κvz + 63

2
κvw + 7

4
κ3v4

]

u6

+

[

540d1 − 540v − 116w

540d2 − 2

3
κ̈v4 − 13κ̇v3 − 4κ̇v2w − 116κv2

−13z − 2

3
t

−2κw2 − 8

3
κvz − 39κvw − 2κ3v4

]

u7
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+

[

−315d1 + 315v + 135

2
w

−315d2 + 3

8
κ̈v4 + 15

2
κ̇v3 + 9

4
κ̇v2w + 135

2
κv2

+ 15

2
z + 3

8
t

+ 9

8
κw2 + 3

2
κvz + 45

2
κvw + 9

8
κ3v4

]

u8

+

[

70d1 − 70v − 15w

70d2 − 1

12
κ̈v4 − 5

3
κ̇v3 − 1

2
κ̇v2w − 15κv2

− 5

3
z − 1

12
t

− 1

4
κw2 − 1

3
κvz − 5κvw − 1

4
κ3v4

]

u9

}

,(2.82)Now, use (2.82) to evaluate p(u;η)+p(1−u;η). Some algebrai manipulationsare required to obtain
p(u;η) + p(1− u;η) = 2

[

xA

yA

]

+

[

cos θ − sin θ

sin θ cos θ

] [

d1

d2

]

= pA + pB ,and onlude that, evidently, (2.81) holds ∀u ∈ [0, 1], ∀v ∈ R+, ∀w, z, t ∈ R,
∀θ ∈ [0, 2π), and ∀κ, κ̇, κ̈ ∈ R. �A variety of urve primitives (irular ar, lotoids, ubi spirals, et.) anbe approximated by the η

4-spline (as shown in [32,33℄ for the η
3-spline). Thesigni�ant ase relative to the line segment primitive, as illustrated by propertybelow.Property 3 (Line segment generation) Let be given any pair of Cartesianpoint pA, pB with pA 6= pB. De�ne θ := arg(pB − pA) and set θA = θB = θ,

κA = κB = 0, κ̇A = κ̇B = 0, κ̈A = κ̈B = 0. Then, p(u; η) is a line segment
∀η ∈ H.Proof. De�ne d := ‖pB − pA‖. Hene

pB = pA + d

[

cos θ

sin θ

]

,and the η
4-spline with the assigned interpolating ondition an be expressedas follows

p(u;η) =

[

xA

yA

]

+ f(u;η)

[

cos θ

sin θ

]

, (2.83)
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f(u;η) = η1u+

1

2
η3u

2 +
1

6
η5u

3 +
1

24
η7u

4 +

[

126d − 70η1 − 56η2 −
35

2
η3

+
21

2
η4 −

5

2
η5 − η6 −

5

24
η7 +

1

24
η8

]

u5 +

[

−420d + 224η1 + 196η2 +
105

2
η3

− 77

2
η4 +

20

3
η5 +

23

6
η6 +

5

12
η7 −

1

6
η8

]

u6 + [540d − 280η1 − 260η2 − 63η3

+ 53η4 −
15

2
η5 −

11

2
η6 −

5

12
η7 +

1

4
η8

]

u7 + [−315d+ 160η1 + 155η2 + 35η3

− 65

2
η4 + 4η5 +

7

2
η6 +

5

24
η7 −

1

6
η8

]

u8 +

[

70d − 35η1 − 35η2 −
15

2
η3

+
15

2
η4 −

5

6
η5 −

5

6
η6 −

1

24
η7 +

1

24
η8

]

u9.It is easy to verify that f(0;η) = 0 and f(1;η) = d. Thus, equation (2.83)proves that p(u;η) belongs to the segment line joining pA with pB ∀η ∈ H. �2.2.3 A path planning exampleConsider a parking maneuver for an automated truk and trailer vehile inan unobstruted environment. The omposed vehile starts from the initialon�guration
(x1, y1, θ0, θ1, v, v̇, δ, δ̇) = (18, 3,

3

4
π,
π

2
, 0, 0,

π

12
, 0) ,and with a forward movement reahes the �nal on�guration (0, 0π, π, 0, 0, 0, 0)(as usual, Cartesian oordinates are expressed in meters [m℄ and angles inradians [rad℄). The truk vehile has wheelbase d0 = 3 m and the distanebetween the trailer axle and the truk joint is d1 = 4 m. The path of the trailerat the endpoints must have [xA yA]

′ = [18 3]′, θA = π
2 and [xB yB]

′ = [0 0]′,
θB = π.From formulae (2.18), (2.19) we also dedue that κA = −0.25 m−1, κ̇A =

0.1882 m−2 and κB = 0, κ̇B = 0. The seond derivatives of urvature at theendpoints, κ̈A and κ̈B , an be freely hosen aording to relation (2.20) beause



2.2. Path generation for a truk and trailer vehile 85the truk and trailer is at rest in the initial and �nal on�gurations (v = 0 and
δ̇ = 0). Hene, the parking path whih refers to the trailer axis midpoint anbe planned using an η

4-spline p(u,η) with the above determined interpolatingonditions. The atual shape of this η
4-spline depends on 10 free parame-ters (κ̈A, κ̈B ∈ R, η1, η2 ∈ R+, η3, . . . , η8 ∈ R) and this gives a signi�ant�exibility in ahieving a satisfatory parking maneuver. The most importantparameters in�uening the path shape are κ̈A, κ̈B and �urve veloities� η1, η2(f. (2.38), (2.39)). See �gures 2.15, 2.16, 2.17, and 2.18 whih depit familiesof paths aording to the following settings. For all η4-spline families we have
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Figure 2.15: The η
4-spline with κ̈A varying in [−3, 3].

η3 = · · · = η8 = 0 and κ̈A ∈ [−3, 3], κ̈B = 0, η1 = η2 = 10 (�gure 2.15),
κ̈A = 0, κ̈B ∈ [−3, 3], η1 = η2 = 10 (�gure 2.16), κ̈A = κ̈B = 0, η1 ∈ [4, 25],
η2 = 10 (�gure 2.17), and κ̈A = κ̈B = 0, η1 = 10, η2 ∈ [4, 25] (�gure 2.18).The other shaping parameters are η3, η4, the urve aeleration projetedon the unit tangent vetors at the endpoints of the η4-spline (f. (2.46), (2.47)),
η5, η6, the urve jerk at the urve endpoints (f. (2.48), (2.49)), and η7, η8, theurve jerk derivatives at the path endpoints (f. (2.50), (2.51)).The freedom in seleting the free parameters leads to pose an optimal pathplanning problem. A sensible index to minimize is the maximum of the steering
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Figure 2.16: The η
4-spline with κ̈B varying in [−3, 3].
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Figure 2.17: The η
4-spline with η1 varying in [4, 25].angle modulus over the whole maneuver path:

min
κ̈A,κ̈B∈R, η∈H

δmax , (2.84)where δmax := maxs∈[0, sf ] |δ(s)|, and sf denotes the total length of the η
4-spline. The steering angle as a funtion of the urvilinear absissa, δ(s) an be
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Figure 2.18: The η
4-spline with η2 varying in [4, 25].uniquely determined by relations (2.18) and (2.19):

δ(s) = arctan

[

d0
(1 + d21κ

2(s))1/2
κ(s) +

d0d1
(1 + d21κ

2(s))3/2
dκ

ds
(s)

]

. (2.85)The above formula (2.85), whih is a generalization of the well-known relation
δ(s) = arctan [d0κ(s)] for ar-like vehiles without trailers, is the basis of thedynami path inversion approah to the feedforward of the truk and trailervehile [5℄. The optimal minimax problem (2.84) an be redued to a standardminimization by a sweeping disretization over u ∈ [0, 1], the urve parameterof spline p(u;η). Using loal optimization, the following results have beenobtained: the optimal maximum steering is δ̄max = 0.6197 rad (orrespondingto 35°.51) whih is arhived with ¨̄κA = −0.0783 m−2, ¨̄κB = −0.124 m−2,
η̄1 = 35.14, η̄2 = 22.73, η̄3 = 70.40, η̄4 = −0.5326, η̄5 = −1367, η̄6 = −17.42,
η̄7 = 7013, and η̄8 = 214.6. The orresponding length of the η

4-spline is s̄f =

25.74 m. These results are depited in �gures 2.19 and 2.20. In partiular,�gure 2.20 reports both the optimal path of the trailer and the orrespondingpath of the truk.It is useful for real-time appliations to redue the omputational burdenassoiated to problem (2.84). This an be ahieved by adopting the heuristi
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Figure 2.19: The optimal steering δ̄(s) for problem (2.84).
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Figure 2.20: The optimal maneuver paths for problem (2.84).



2.2. Path generation for a truk and trailer vehile 89of setting to zero all the eta parameters from η3 to η8 [30, 32, 33℄. In suh away, the onsidered problem beomes
min

κ̈A,κ̈B∈R, η1>0, η2>0
δmax . (2.86)The found solution for problem (2.86) is δ̄max = 0.7309 (or 41°.88) whihorresponds to the parameters ¨̄κA = −0.0353 m−2, ¨̄κB = −0.0825 m−2, η̄1 =

30.33, and η̄2 = 17.31; the total spline length is s̄f = 24.20 m (see �gures 2.21and 2.22).
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Figure 2.21: The optimal steering δ̄(s) for problem (2.86).Another index whih an be appropriately minimized is the total splinelength sf and also onsidering the previous index δmax, it emerges a multi-objetive optimization that an be posed as follows:
min

κ̈A,κ̈B∈R, η∈H
{λ1δmax + λ2sf} (2.87)where λ1, λ2 ≥ 0 and λ1 + λ2 = 1. The weight oe�ients λ1 and λ2 an befreely hosen to set a trade-o� between δmax and sf . For example by hoos-ing λ1 = 0.95 and λ2 = 0.05, the found solution for (2.87) is the following:

λ1δ̄max + λ2s̄f = 1.836 with δ̄max = 0.6761 (or 38°.74), s̄f = 23.88 m. Theorresponding optimal parameters are ¨̄κA = −0.0642 m−2, ¨̄κB = −0.1401 m−2,
η̄1 = 28.14, η̄2 = 23.18, η̄3 = 19.28, η̄4 = 1.054, η̄5 = −737.7, η̄6 = −18.08,
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Figure 2.22: The optimal maneuver paths for problem (2.86).
η̄7 = 885.3, and η̄8 = 346.3. It is worth noting that the optimal distane s̄fof multi-optimization (2.87) is redued (that is, improved) of 7.2% with re-spet to the s̄f of the single optimization (2.84) whereas δ̄max of (2.87) isinreased of 9.1% with respet to the δ̄max of (2.84). This may be useful as faras the inreasing of δ̄max is ompatible with the mehanial limit of the trukand trailer steering angle. As previously done for the single optimization, thesimpli�ed multi-optimization problem is

min
κ̈A,κ̈B∈R, η1>0, η2>0

{λ1δmax + λ2sf} . (2.88)With λ1 = 0.95 and λ2 = 0.05 the solution of (2.88) is λ1δ̄max+ λ2s̄f = 1.873with δ̄max = 0.7564 (or 43°.34), s̄f = 23.09 m. The orresponding parametersare ¨̄κA = −0.0341 m−2, ¨̄κB = −0.1069 m−2, η̄1 = 26.05, and η̄2 = 15.78 (see�gures 2.23 and 2.24).
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Figure 2.23: The optimal steering δ̄(s) for multi-optimization problem (2.88)
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Figure 2.24: The optimal maneuver paths for multi-optimization prob-lem (2.88)





Chapter 3
Time-optimal dynami pathinversion Strong lives are motivatedby dynami purposes� Kenneth HildebrandNowadays, the handling of materials and parts through Automati GuidedVehiles (AGVs) is of inreasing importane in the automation and logistisof fatories and warehouses. The absene of human intervention in the normaloperations of the AGVs permits to optimize by design the performanes andspei�ally to pursue a motion planning to ahieve fastest movements with fullrespet of all the pertinent onstraints [42, 43℄. Considering the more generalsenario of trajetory planning of wheeled mobile robots, the basi problem ofminimum-time planning between two robot on�gurations has been addressedwith 1) unobstruted environments and 2) obstruted environments with obsta-le to be avoided (respetively f. [44℄ and [45℄ and referenes therein reported).The former ase has been mainly dealt with the Pontryagin Maximum Priniple(PMP) whereas with the latter, that is more di�ult, a variety of sub-optimal



94 Chapter 3. Time-optimal dynami path inversionor approximating tehniques has been proposed e.g. potential funtions, sam-pling methods suh as Probabilisti Road Maps (PRMs), Rapidly-ExploringDense Trees (RDTs), et. Fousing on the speial ase of time-optimal (orminimum-time) trajetory planning on spei�, desired paths, the use of thepath-veloity deomposition [3℄ permits to redue the planning to a suitableoptimal veloity problem. This was the approah pursued by Prado et al. [46℄who presented a sub-optimal method based on path segmentation to ahieve asmooth veloity planning suitable for both stati and dynami environments.This hapter presents a solution for the problem of time-optimal traje-tory planning of an AGV on a given feasible path while respeting veloity,aeleration and jerk onstraints. Moreover, this planning must onnet twoarbitrary dynami on�gurations of the AGV, i.e. at the start and at the endof the planning the AGV may not be at rest. A key to solve the problem is toreast it as a dynami path inversion problem.3.1 Introdution to dynami inversionThe dynami inversion tehnique has been reently developed for the synthesisof high performane ontrol systems [47, 48℄. The idea behind this method isthe inversion of the dynamial system in order to �nd an input that generatesthe desired output. Figure 3.1 shows a possible ontrol sheme based on systeminversion, whih is essentially an open-loop ontrol.
Inverse System

        Model

Desired

Output
Input OutputPSfrag replaements ΣFigure 3.1: Dynami inversion based ontrol.In many ases, one the desired output is known in advane, it is possi-ble to perform a stable inversion, i.e. to determine a orresponding bounded



3.1. Introdution to dynami inversion 95(nonausal) input. The atual ontrol system design an be entered on afeedforward/feedbak sheme (see �gure 3.2) where the feedforward ontrol isdetermined through stable inversion and a feedbak regulator handles modelingand signal errors [49℄. The majority of the works pursuing this approah dealswith nonlinear and nonminimum-phase systems and the emphasis is on algo-rithmi proedures to perform a stable inversion on a given output funtion.
Inverse System

        Model
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Output
Input Output
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PSfrag replaements Σ

Figure 3.2: Feedforward/feedbak ontrol sheme.3.1.1 Input-output dynami path inversionFor a wide lass of dynami systems, the inversion problem an also be posed asa stable dynami input-output path inversion. Dynami path inversion, whihwas introdued in [5℄, is the problem, given a desired path on the outputspae, of �nding the ontrol inputs that generate the desired path. We saidabove that it is a variant of the more studied dynami (signal) inversion whihis the problem of �nding the ontrol inputs that generate the desired signaloutputs [49�51℄.The idea is to onsider the output signal y(t) as a funtion parametrizationof a path Γ in the output spae R
p. For a given time interval [0, T ], the path

Γ is de�ned as the image of output funtion (i.e. Γ = y([0, t1])). This probleman be formally stated as follows:



96 Chapter 3. Time-optimal dynami path inversionProblem 4 Given a path Γ ⊂ R
p and a traveling time T > 0, �nd initialonditions and input u(t) for whih the system output y(t) satis�es

y([0, T ]) = ΓThis problem is quite general and espeially relevant for the motion ontrol ofnonholonomi wheeled vehiles, and it has a strong onnetion with di�erential�atness [52, 53℄.Roughly speaking, a system with n salar inputs is said to be di�erentially�at if there exist n outputs y1, . . . , yn for whih the system variables (i.e.the states and the inputs) an be algebraially expressed as funtions of theoutputs and their derivatives, till a �nite order. A more rigorously de�nitionof the �atness, is given in the next hapter. When the system is di�erentially�at, the dynami path inversion problem is relatively easy to solve.3.2 Time-optimal dynami path inversion for an au-tomati guided vehileThis setion presents the work appeared in [31℄, whih faes time-optimal tra-jetory planning of an automati guided vehile (AGV) on a given feasiblepath while respeting veloity, aeleration and jerk onstraints. A theoretialresult shows the onnetion, for the AGV, between the geometri ontinuity ofits paths and the smoothness of its ontrol inputs (linear veloity and steeringangle of the AGV motor wheel). The solution hene proposed for the optimalplanning is based on a dynami path inversion algorithm, for whih �rst theoptimal veloity pro�le is determined and then the optimal steering signal isderived from a geometrial onstrution.3.2.1 Kinemati model and problem statementA typial wheeled automati guided vehile has forks for handling materials,two passive wheels and a motor wheel. See �gure 3.3 where a shemati plan
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Figure 3.3: A wheeled AGV on a Cartesian plane.view of an AGV and a Cartesian referene frame are depited. As usual, x and
y indiate the Cartesian oordinates of the AGV rear-axle middle-point and θis the vehile orientation angle with respet of the x-axis. The motion of theAGV is atuated by the forward motor wheel whose linear veloity is v and δis the steering angle; l is the distane between the rear-axle and the forwardwheel's hub. With the usual modeling assumptions of no-slippage, rigid bodyand nonholonomi onstraints the following nonlinear kinemati model of theAGV an be dedued [54℄:











ẋ(t) = v(t) cos θ(t) cos δ(t)

ẏ(t) = v(t) sin θ(t) cos δ(t)

θ̇(t) = 1
l v(t) sin δ(t) .

(3.1)The linear veloity v and the steering angle δ are the AGV ontrol inputs. Thefollowing de�nition will be used along this hapter:De�nition 7 A Cartesian path Γ has third order geometri ontinuity, andwe say Γ is a G3-path, if its salar urvature is ontinuous and the derivativewith respet to the ar length of the urvature is ontinuous on the path too(for more details see [5℄).



98 Chapter 3. Time-optimal dynami path inversionIn order to obtain a smooth motion ontrol, inputs v and δ must be fun-tions with C1 ontinuity, i.e. they are ontinuous funtions with ontinuousderivatives. A onnetions between smooth inputs and paths of the AGV isestablished by proposition below (reall proposition 3).Proposition 6 Assign any T > 0. If a Cartesian path Γ is generated by theAGV with inputs v(t), δ(t) ∈ C1([0, T ]) where v(t) 6= 0 and |δ(t)| < π
2 , ∀t ∈

[0, T ], then Γ is a G3-path. Conversely, given any G3-path Γ then exist inputs
v(t), δ(t) ∈ C1([0, T ]) with v(t) 6= 0 and |δ(t)| < π

2 , ∀t ∈ [0, T ], and initialonditions suh that the path generated by the AGV oinides with the given Γ.Proof. proposition above an be dedued by a similar result proposed by Guar-ino Lo Biano et al. in [5℄. �Instrumental to our approah to optimal motion ontrol of AGVs is thede�nition of an "extended state" of system (3.1) that also omprises the ontrolfuntions and their �rst derivatives:
{

x(t), y(t), θ(t), v(t), v̇(t), δ(t), δ̇(t)
}

.Then, the following time-optimal dynami path inversion (TOPI) problem anbe posed.Problem 5 (TOPI problem) Given an assigned G3-path Γ, determine theontrol funtions v(t), δ(t) ∈ PC2 (see de�nition 2) suh that system (3.1)travels exatly on path Γ in minimum-time t̄f from initial extended state (attime t = 0)
A :=

{

xA, yA, θA, vA, v̇A, δA, δ̇A

}

,to �nal extended state (at time t = t̄f )
B :=

{

xB , yB , θB, vB , v̇B , δB , δ̇B

}

,satisfying the following onstraints
0 ≤ v(t) ≤ vM , ∀t ∈ [0, t̄f ] ,
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|v̇(t)| ≤ aM , ∀t ∈ [0, t̄f ] ,

|v̈(t)| ≤ jM , ∀t ∈ [0, t̄f ] ,where vM , aM , jM > 0 are given bounds.Hene, in order to give a solution to TOPI problem, it is preliminarilyneessary to determine a desired G3-path that satis�es the interpolating datadedued from the extended states A and B [32℄. Let us introdue the followingrelations
vr(t) = v(t) cos δ(t) , (3.2)

v̇r(t) = v̇(t) cos δ(t) − v(t) δ̇(t) sin δ(t) , (3.3)
ω(t) =

1

l
v(t) sin δ(t) , (3.4)

ω̇(t) =
1

l
v̇(t) sin δ(t) +

1

l
v(t) ˙δ(t) cos δ(t) , (3.5)where vr(t) and v̇r(t) denote the linear veloity and aeleration of the AGVrear-axle middle-point, and ω(t) and ω̇(t) denote the angular veloity andaeleration of the AGV. From [5℄, the urvature and its derivative with respetto the arlength, kA and k̇A in t = 0, and kB and k̇B in t = t̄f , are given by

kA =
ωA
vrA

, k̇A =
ω̇A vrA − ωA v̇rA

v3rA
, (3.6)and

kB =
ωB
vrB

, k̇B =
ω̇B vrB − ωB v̇rB

v3rB
, (3.7)where ωA = ω(0), vrA = vr(0), ωB = ω(t̄f ) and vrB = vr(t̄f ). By substitutingrelations (3.2)-(3.5) in (3.6)-(3.7), the following equations are obtained

kA =
1

l
tan δA , (3.8)

k̇A =
1

l

δ̇A
vA cos3 δA

, (3.9)and
kB =

1

l
tan δB , (3.10)



100 Chapter 3. Time-optimal dynami path inversion
k̇B =

1

l

δ̇B
vB cos3 δB

. (3.11)On the extended states A and B we impose the assumptions
|δA| < π/2 , and |δB | < π/2 .Therefore, relations (3.9) and (3.11) indiate that there exist two de�nite for-bidden ases

{vA = 0} ∧ {δ̇A 6= 0} , {vB = 0} ∧ {δ̇B 6= 0} ,whih are onsidered as further assumptions on the TOPI problem. On theother hand if vA = 0 and δ̇A = 0 and similarly vB = 0 and δ̇B = 0, then k̇Aand k̇B an be arbitrarily assigned and this improves the design freedom inshaping the Γ path for the AGV.Hene, the G3-path Γ must satisfy at the endpoints the interpolations on-ditions shown in �gure 3.4, i.e. the initial and �nal Cartesian points of Γ have
(xA, yA) and (xB , yB) as oordinates, θA and θB as unit-tangent diretions, kAand kB as urvatures, k̇A and k̇B as urvature derivatives respetively.PSfrag replaementsY

X
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xB, yB , kB , k̇B
Γ

Figure 3.4: The interpolations onditions at the endpoints of path Γ.



3.2. Time-optimal dynami path inversion for an automati guidedvehile 101This interpolation problem an be easily solved using the η3-splines [32,33℄,introdued in the preedent hapter, whih are seventh-order polynomial urveswith free design parameters (the η vetor) to shape the desired path interoursebetween the endpoints.Remark In the following subsetions, path Γ denotes the Cartesian path gen-erated by the rear-axle middle-point, i.e. by (x(t), y(t)). Below another relevantpath of the AGV, denoted by Γf , is introdued. Γf is the path generated bythe AGV forward motor wheel.3.2.2 The dynami path inversion algorithmThe time-optimal ontrol funtions v̄(t) and δ̄(t), whih permit the AGV tofollow the given path Γ in minimum-time, will be obtained by a dynami pathinversion proedure.Note that funtions v̄(t) and δ̄(t), solution of the TOPI problem, are as-soiated to the atuated motor wheel of the AGV (see �gure 3.3), so that theinversion proedure will need to determine the path Γf of the forward wheelwhih is geometrially linked to Γ. Knowledge of Γf and its total distane
sf allows to apply the path-veloity deomposition method [3℄ to the TOPIproblem so that the veloity v̄(t) will be omputed independently from δ̄(t)by setting the minimum-time onstrained veloity planning disussed in se-tion 1.4. Then the optimal steering δ̄(t) will be determined by exploiting thegeometri properties of model (3.1) relative to paths Γ and Γf .The dynami path inversion algorithm an be then desribed in the follow-ing three steps:1. Determine the path Γf of the forward wheel. Consider the followingparametrization of path Γ (as ustomary using η

3-splines)
p(u) : [0, 1]→ R

2

u→ p(u) .



102 Chapter 3. Time-optimal dynami path inversionThe unit tangent vetor τ (u) of Γ is given by
τ (u) =

ṗ(u)

‖ṗ(u)‖ ,and a parametrization of path Γf an be obtained as follows
pf (u) = p(u) + l τ (u), u ∈ [0, 1], (3.12)where l is the distane between the rear-axle middle point and the forwardwheel. Figure 3.5 depits the geometri relation between paths Γ and Γf .
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Figure 3.5: Geometri onstrution of the forward path Γf .Compute the total distane sf to be travelled by the forward wheel on
Γf :

sf =

∫ 1

0
‖ṗf (u)‖du . (3.13)2. Determine the minimum-time veloity v̄(t) by solving the onstrainedproblem widely exposed in setion 1.4.



3.2. Time-optimal dynami path inversion for an automati guidedvehile 1033. Determine the optimal steering funtion δ̄(t) by solving the followingequation system:
{

∫ t
0 v̄(ξ)dξ =

∫ u
0 ‖ṗf (ξ)‖dξ

δ̄(t) = arg τ f (u)− arg τ (u) .
(3.14)The geometrial meaning of this determination is depited in �gure 3.6.
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Γ ΓfFigure 3.6: Geometrial interpretation of equation system (3.14).Remark The veloity planning problem leads to a smooth veloity pro�le (seesetion 1.4) that is easy to implement on an atuator drive beause veloity andaeleration are ontinuous and the jerk (the time-derivative of aeleration) islimited and onstrained as desired (by setting the bound jM ). Also note thatthe onstraint v(t) ≥ 0 imposes that the automati guided vehile does not gobakward on the desired path.3.2.3 ExampleConsider an AGV with l = 1.1 m, the distane between the motor wheel andthe rear-axle, and onstraints on the atuation of the motor wheel given by
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vM = 3 m/s, aM = 1 m/s2, and jM = 0.5 m/s3.It is desired a minimum-time transition between the extended states A and
B given by (measures are expressed in m, m/s, m/s2, rad, rad/s):

A =
{

xA, yA, θA, vA, aA, δA, δ̇A

}

= {0, 0, 0, 1,−1, 0, 0} .

B =
{

xB, yB , θB , vB , aB , δB , δ̇B

}

= {16, 8, 0, 3, 0, 0, 0} .The desired Cartesian path Γ between (xA, yA) and (xB , yB) is an S-shapedpath that an be easily determined by interpolation with the η
3-splines [32℄.The interpolation data are (θA, kA, k̇A) and (θB, kB , k̇B) for whih θA = 0 and

θB = 0 from the assigned extended states A and B and kA = 0, k̇A = 0 and
kB = 0, k̇B = 0 as it follows from relations (3.8)-(3.11).Path Γ is then an η

3-spline, a seventh order polynomial urve, whose freeparameters are hosen aording to the heuristi rule suggested in [30, 32℄:
η = (η1, η2, η3, η4, η5, η6) = (d, d, 0, 0, 0, 0) ,where d = ‖(xA − xB, yA − yB)‖ = 17.89 is the Eulidean distane between

(xA, yA) and (xB , yB). Path Γ is the blue one depited in �gure 3.7.To determine the time-optimal ontrols v̄(t) and δ̄(t) whih are the solutionto the TOPI problem we use the dynami path inversion algorithm desribedin three steps in subsetion 3.2.2.Step 1: The path Γf of the forward motor wheel is omputed aordingto (3.12). It is depited in �gure 3.7. The length of Γf is sf = 19.12 m a-ording to (3.13).Step 2: The existene of the time-optimal veloity is guaranteed by the ful-�lment of the su�ient onditions of proposition 2. Indeed, onditions (1.37)and (1.38) are immediately satis�ed. Beause aA < 0 and aB ≥ 0, we hek on-ditions (1.40) and (1.41) respetively: vA+ 1
2
a2
A

jM
= 0 ≥ 0 and vB− 1

2
a2
B

jM
= 3 ≥ 0.Appliation of the four-step proedure of proposition 2 determines sref = 8.17m so that the last inequality (1.43) is also satis�ed: sf ≥ sref . Hene, sine
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Chapter 4
Replanning methods for thetrajetory traking It is a bad plan that admitsof no modi�ation.� Publilius SyrusAs known, a fundamental problem in ontrol theory for automation is out-put traking [56℄. Given a desired signal or referene on the output variable ofa ontrolled dynamial system, the problem is to appropriately manipulate theinput of the system in suh a way that the atual output follows as lose as pos-sible the desired referene. The lassi solution approah presribes the designof a feedbak ontroller that an asymptotially zero the traking error [57�59℄.When the desired output is known in advane, an alternative traking ontrolstrategy is inversion-based ontrol. It is a feedforward/feedbak strategy wherethe feedforward is determined by stable input-output inversion and the feed-bak is ativated by a ontroller whose input is the error between the referenestate and the atual state [49, 50, 60℄. A variant of this strategy onsiders theappliation of a feedbak ontroller �rst to redue the e�ets of unmodeled



108 Chapter 4. Replanning methods for the trajetory trakingdynamis or unertainties on the ontrolled system and then the losed-loopdynamis is inverted by the stable inversion proedure [61℄.Both the lassi approah to output traking and the newer inversion-basedone expet the ontinuous-time availability of the measured output or the mea-sured state of the ontrolled system. However, there are ases where ontinuous-time or high-frequeny revelation of the system state or output is not possibleor not eonomial and only low-frequeny feedbak is pratiable. The result-ing ontrol framework is then an hybrid feedforward/feedbak sheme wherethe ontrolled system is ommanded by feedforward (i.e. open-loop) inputsthat are periodially updated to ompensate or redue the traking error. Thisparadigm has been pioneered in [62,63℄ for the robust stabilization of nonlineardriftless and hained systems; an appliation was also proposed for the lanefollowing ontrol of a vision-based autonomous ar [30℄.In the �rst setion, within the framework of hybrid feedforward/feedbakontrol shemes we propose a trajetory traking problem of a WMR modeledby a uniyle model a�eted by norm-bound noise (f. [64℄). Given a desired,feasible Cartesian trajetory to be traked by the WMR, the proposed ontrolsheme uses a reursive onvex replanning method to ompute a new referenetrajetory whenever the WMR's state is real-time available at a frequenyassigned by the replanning time period T (f. setion 4.1.1). Then, this newreferene trajetory that is still feasible is used to generate the feedforward in-verse ommand veloities that help in reduing the traking errors (see �gure4.5). If the replanning period T is su�iently small relative to the noise magni-tude, expliit losed-form bounds on the global traking error are provided (f.orollary 1). In suh a way a "pratial" traking onvergene to the desiredtrajetory is ahieved.Seond setion presents the output traking of a nonlinear �at system af-feted by additive noise on its state derivative (f. [65, 66℄). More spei�ally,we onsider a ontrolled system whose performane output is a �at output ofthe system itself [67℄. A desired output signal is sought on the atual outputby using a feedforward inverse input that is periodially updated using the



4.1. Reursive onvex replanning 109observation of the full system state aquired at intervals of period T . The pro-posed method is atually an iterative output replanning that uses the desiredoutput trajetory and the updated state to replan an output trajetory whoseinverse input helps in reduing the traking error. This iterative replanning ex-ploits the Hermite interpolating polynomials to ahieve an overall arbitrarilysmooth input and a traking error that an be made arbitrarily small undermild assumptions if the sampling period T is su�iently small.Notation: If x is a Cl(R,Rn) funtion, x(l) denotes the derivative of x of order l,
x(t+0 ) and x(t−0 ) denotes, respetively, limx→t+0

x(t) and limx→t−0
x(t). For anyvetor v ∈ R

n, (v)i denotes its i-th omponent.4.1 Reursive onvex replanningThis setion onsiders the Cartesian trajetory traking of wheeled mobilerobots to be performed by an hybrid ontrol sheme with feedforward inverseontrol and a state feedabak that is only updated periodially and relies on areursive onvex replanning of the referene trajetory. This approah appliedto the standard uniyle model is shown to maintain its e�ay also in preseneof noise or unmodeled robot dynamis. Expliit, su�ient onditions are pro-vided to ensure global boundedness of the traking error. Finally, experimentalresults are presented using Lego Mindstorm mobile robots.4.1.1 Trajetory traking for the uniyleHere, the reursive traking approah disussed in this setion is presentedin the ase of the kinemati uniyle. Consider the following model for theuniyle (see �gure 4.1)










(

ẋ

ẏ

)

= v(t)

(

cos θ

sin θ

)

+ η(t)

θ̇ = ω(t) + ηθ(t) ,

(4.1)



110 Chapter 4. Replanning methods for the trajetory trakingwhere (x, y) ∈ R
2 is the position of the enter of the uniyle, θ is the ori-entation angle and v, ω are the veloity ontrol inputs, and set z = (x, y, θ).Funtions η and ηθ are noise terms that satisfy the bounds ∀t ∈ R

{

‖η(t)‖ ≤ N ,

|ηθ(t)| ≤ Nθ .
(4.2)When the noise terms are not present, (i.e. N = 0 and Nθ = 0) system (4.1)is alled the nominal uniyle.PSfrag replaements
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Figure 4.1: Shemati of a uniyle mobile robot.Consider a referene trajetory γ0 de�ned as follows.Assumption 1 Let γ0 : R+ → R
2 be a referene trajetory with C3 ontinuitysuh that:a) 0 < Vm ≤ ‖γ̇0(t)‖ ≤ VM ,b) ‖γ̈0(t)‖ ≤ AM .Exat traking of γ0 is ahieved when, ∀t ≥ 0,

(

x(t)

y(t)

)

= γ0(t) .



4.1. Reursive onvex replanning 111The following straightforward result haraterizes ompletely the exat trak-ing problem for the nominal uniyle.Property 4 Exat traking is ahieved for the nominal uniyle (4.1), i.e.
(

x(t)

y(t)

)

= γ0(t) , ∀t ≥ 0 ,if and only if the following onditions hold:a) ( x(0)

y(0)

)

= γ0(0) ,b) v(0)( cos θ(0)

sin θ(0)

)

= γ̇0(0) ,) v(t) = ‖γ̇0(t)‖,∀t ≥ 0 ,d) ω(t) = d
dt arg(γ̇0(t)) ,∀t ≥ 0 .Conditions a), b) imply that the initial onditions must be suh that at theinitial time the uniyle lies at the beginning of the urve with orientationangle parallel to the tangent vetor to the urve γ0. Conditions ), d) atuallyde�ne the ontrols that must be used to exatly trak the given referene.These ontrols are feedforward veloity input signals beause depend only onthe referene γ0.Remark Having hosen a C3-trajetory referene, i.e. a trajetory funtionthat is ontinuous with its derivatives till to the third order, we obtain bymeans of ) and d) smooth veloities v(t), ω(t) with ontinuous aelerations,i.e. v, ω ∈ C1(R+). A weaker ondition to still ensure ontinuous aelerationsis to assume γ0 ∈ C2(R+) and γ0 is a G3-urve, i.e. a urve with third order ge-ometri ontinuity (ontinuity along the urve of the tangent vetor, urvature,and derivative of the urvature with respet to the ar length) [5℄.Obviously, using feedforward ontrol only, de�ned by ) and d), the trak-ing error may grow unbounded if N > 0, Nθ > 0. In order to keep the error



112 Chapter 4. Replanning methods for the trajetory trakingbounded one may use ontinuous-time feedbak ontrol. In this setion anotherapproah is onsidered, based on an idea similar to iterative steering (see [4℄).The method onsists in using at all times the feedforward ontrols given by ),d) but the referene trajetory is periodially replanned. When t ∈ [0, T ], γ0 isused as referene trajetory, for t ∈ [T, 2T ] a di�erent urve γ1 is used and, ingeneral the referene trajetory γi is used for t ∈ [iT, (i+1)T ]. Eah referenes
γi is de�ned reursively with respet to γi−1 in suh a way to keep the trak-ing error limited. Before explaining in detail the overall feedforward/feedbakstrategy, the replanning operator to be used to onstrut eah referene γi from
γi−1 is de�ned as follows:De�nition 8 (Replanning Operator) Let be given a (urrent) referene tra-jetory γ : [t0,+∞) → R

2 and a robot's state z0 = (x0, y0, θ0). De�ne a newreferene trajetory γz0,t0,γ : [t0,+∞)→ R
2 aording to the onvex replanning:

γz0,t0,γ(t) = λ(t− t0) [(x0, y0) +R(eθ(t0))(γ(t) − γ(t0))]
+(1− λ(t− t0)) γ(t) ,

(4.3)where� λ : R+ → [0, 1] is a monotone dereasing C3-funtion with λ(0) = 1,
Diλ(0) = 0, i = 1, 2, 3 and limt→+∞ λ(t) = 0;� R(x) =

[

cos x − sinx

sinx cos x

] is the rotation matrix;� eθ(t0) = θ0 − arg γ̇(t0) is the heading angle error at time t0.The urve γ1 = γz0,t0,γ0 is a C3-funtion and enjoys the following properties
γ1(t0) = (x0, y0) ,

arg γ̇1(t0) = θ0 ,

lim
t→∞

γ1(t)− γ0(t) = 0 .



4.1. Reursive onvex replanning 113In other words, trajetory γ1 at t0 is equal to ( x0

y0

) and its derivative hasthe diretion given by θ0. Asymptotially γ1 onverges to γ0 and the rateof onvergene is ontrolled by the monotone dereasing funtion λ. Remarkthat the replanned urve γ1 is determined trough a linear onvex ombination,weighted by λ(t), of funtion γ0 and another trajetory obtained by rotatingand translating γ0 itself, as depited in �gure 4.2. For instane, one may hoose
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Figure 4.2: Convex replanning.
λ using C3-transition polynomials [48℄ and setting the transition time equalsto 2T :

λ(t) = 1− 35

(

t

2T

)4

+ 84

(

t

2T

)5

− 70

(

t

2T

)6

+ 20

(

t

2T

)7

, t ∈ [0, 2T ] , (4.4)
λ(t) = 0, t > 2T .The graph of this funtion is reported in �gure 4.3.The motion ontrol method an be summarized as follows (it is assumedthat a), b) of property 4 hold).
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T 2TFigure 4.3: The C3-transition polynomial λ(t).1) For t ∈ [0, T ], where T > 0 is the replanning time, the ontrol funtions aregiven by ), d) (in property 4)2) For t ∈ [iT, (i+1)T ], with i = 1, 2, . . . , the ontrol veloities are de�ned by
u(t) = ‖γ̇i(t)‖ , (4.5)

ω(t) =
d

dt
arg(γ̇i(t)) , (4.6)where γi(t) is the trajetory determined via the onvex replanning oper-ator (4.3):

γi = γz(iT ),iT,γi−1
. (4.7)That is, for t ∈ [iT, (i + 1)T ], an open loop ontrol is applied, thatwould drive the nominal system from state ( x(iT )

y(iT )

) with orientation
θ(iT ), to referene trajetory γi−1. Therefore the referene trajetory γi isde�ned reursively with respet to trajetory γi−1, as shown in �gure 4.4.
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Figure 4.4: Reursive generation of referene trajetories.The overall ontrol sheme is depited in �gure 4.5 where the ReursiveConvex Replanning Operator blok takes are of the iterative trajetory gen-eration and the Inverse Control Operator blok omputes the atual ontrolby means of di�erential relations (4.5),(4.6).
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Figure 4.5: The hybrid feedforward/feedbak sheme for the trajetory trakingof wheeled mobile robots.The ontrol method just outlined draws on the idea of iterative state steer-ing (see [4℄), the main di�erene lies in the fat that eah replanned trajetoryis de�ned reursively with respet to the previous one. With respet to theiterative state steering, this method has the following signi�ant di�erenes:� if the noise funtions η and ηθ a�eting system (4.1) are zero during time



116 Chapter 4. Replanning methods for the trajetory trakinginterval [iT, (i+1)T ] the replanned trajetory oinides with the previousone, i.e. γi+1 = γ1. No replanning is atually performed in absene ofnoise.� The replanning does not a�et the ontrol smoothness as ω and v re-main C1-funtions, linear and angular aelerations remain ontinuous.Atually, these ontrol funtions ould be made arbitrarily regular byhoosing su�iently regular referene γ0 and funtion λ.� Even if a diret omparison is di�ult, the su�ient onditions for ap-plying this method are somehow weaker than the one appearing in [4℄sine it is not required that the traking error dereases in norm afterthe replanning time T (see () of assumption 1 in [4℄).In this setion, this method will be analyzed, onditions will be found thatallow keeping the traking error limited and bounds will be provided. Theproblem that will be solved is therefore the following.Problem 6 Find onditions on trajetory γ0, replanning time T and noisemagnitude that guarantee that the traking error is bounded, and �nd an esti-mate on the error norm.In setion 2.1.2, this problem will be onsidered for a general lass of sys-tems that inludes the uniyle model (4.1). The main result of this work(proposition 7), when applied to the ase of the uniyle vehile with funtion
λ de�ned as in (4.5), brings to the following result.Corollary 1 Consider ontrol laws given by (4.5) and (4.6) and let λ(t) begiven by (4.4). If T < 32

83Nθ
then the following bounds hold

‖γ̇i(t)− γ̇0(t)‖ ≤ V̄2 :=
83
32 T Nθ VM +

(

T
2

2
Nθ + T N

)

1− 83
32 T Nθ

, (4.8)
‖γi(t)− γ0(t)‖ ≤

(

1 +
T

4

)

T Nθ(V̄2 + VM ) +
T

2
N . (4.9)



4.1. Reursive onvex replanning 117This result means that if the produt of the replanning time T and the noisebound Nθ is su�iently small, then the di�erene between the replanned urves
γi and the referene urve γ0 is bounded (the traking error has similar bounds).Obviously, the provided bounds grow as the replanning time T inreases andderease with the noise bounds N , Nθ. Exat traking is guaranteed only when
N = 0 and Nθ = 0.4.1.2 Reursive traking in a general settingIn this subsetion we introdue the reursive traking problem in a more generalsetting and present a tehnial result (proposition 7) whih will permit to �ndtraking bounds for the ase of the uniyle vehile disussed in setion 4.1.1.Consider system

{

ż(t) = f(z(t), u(t)) + η(t)

z(t0) = z0 ,
(4.10)where z(t) ∈ R

n, u(t) ∈ R
m and η is a noise term that satis�es the followingonstrain
‖η(t)‖ ≤ N ∀t ∈ R , (4.11)with N ∈ R+. As in the ase of the uniyle, when N = 0, the system aboveis alled the nominal system (4.10). De�ne as feasible trajetory a referenefuntion whih an be exatly traked by the nominal system (4.10):De�nition 9 A ontinuous funtion γ0 : R → R

n is a feasible trajetoryfor (4.10) with ontrol u0, if the following di�erential equation is satis�ed
γ̇0(t) = f(γ0(t), u0(t)), t ≥ 0 . (4.12)The following is the fundamental assumption for de�ning a reursive iterativetraking. For every feasible system trajetory γ, every initial state z̄ and time

t̄, it is assumed that there exists a feasible replanned trajetory that bringsasymptotially the state from z̄ to the referene γ.



118 Chapter 4. Replanning methods for the trajetory trakingAssumption 2 If γ0 is a feasible trajetory for (4.10) then ∀z̄ ∈ R
n and t̄ ∈ Rthere exist ontinuous funtions uz̄,t̄,γ0 : [t̄,+∞)→ R

m and γz̄,t̄,γ0 : [t̄,+∞)→
R
n, suh that

{

γ̇z̄,t̄,γ0(t) = f(γz̄,t̄,γ0(t), uz̄,t̄,γ0(t))

γz̄,t̄,γ0(t̄) = z̄ ,
(4.13)and

lim
t→+∞

γz̄,t̄,γ0(t)− γ0(t) = 0 . (4.14)Assumption 2 allows de�ning a reursive iterative ontrol (as has been donein the ase of the uniyle vehile in setion 4.1.1) in the following way.Control Law: Given a referene trajetory γ0, the ontrol funtion ū forsystem (4.1) is de�ned as follows
ū(t) = u0(t), if t ∈ [0, T ]

ū(t) = uz(iT ),iT,γi−1
(t) if t ∈ [iT, (i + 1)T ] ,

(4.15)where
ż(t) = f(z(t), ū(t))

γi(t) = γz(iT ),iT,γi−1
(t), i > 0 .

(4.16)The following de�nes a partiular lass of positive de�nite operators, similarto Lyapunov funtions.De�nition 10 Let n be a positive integer, then U : Rn → R, is a seminorm ifthe following onditions hold1. V (0) = 0 ;2. V (z) ≥ 0,∀z ∈ R
n ;3. V (z1 + z2) ≤ V (z1) + V (z2), ∀z1, z2 ∈ Rn .Moreover V = (V1, V2, . . . , Vl) : Rn → R

l is a vetor of seminorms if eahomponent Vi is a seminorm.Notation: for any relational operator <R and x, y ∈ R
n, x <R y means xi <R

yi, i = 1, . . . , n.



4.1. Reursive onvex replanning 119De�nition 11 Given a funtion ϕ : R+ → R+ and a seminorm U , we saythat system (4.10) is (U,ϕ)-bounded, if, when γ̄ is a feasible trajetory withontrol ū and z is the solution of the following system
{

ż(t) = f(z(t), ū(t)) + η(t)

z(t0) = γ̄(t0) ,then, ∀t ≥ t0
U(z(t)− γ̄(t)) ≤ ϕ(t− t0) . (4.17)The following proposition is the main result of this setion.Proposition 7 Let V be a vetor of seminorms and U a seminorm, γ0 afeasible trajetory for (4.10), with ontrol funtion u0. Let z(t) and γi be de�nedaording to (4.15), (4.16). Let funtion Φ : Rl × R× R

l → R
l be suh that

V (γ̄z0,t0,γ(t)− γ(t)) ≤ Φ(U(z(t0)− γ(t0)), t− t0,W (γ − γ0)) , (4.18)and Φ is monotone inreasing with respet to eah omponent of the argument
W , de�ned as W (γ) = supt∈R V (γ(t)). Moreover, assume that there exists afuntion ϕ(t), suh that (4.10) is (U,ϕ)-bounded. If there exists V̄ ∈ R

l suhthat
V̄ ≥

+∞
∑

k=1

Φ(ϕ(T ), t− kT, V̄ ) , (4.19)then, ∀t ∈ R and ∀i ∈ N,
V (γi(t)− γ0(t)) ≤ V̄ . (4.20)Proof. Proposition 7 an be proved by indution as follows. Consider �rst i = 0,in this ase inequality (4.20) holds sine, by 1) of de�nition 10,

V (γ0(t)− γ0(t)) = V (0) = 0 ≤ V̄ .



120 Chapter 4. Replanning methods for the trajetory trakingMoreover assume that (4.20) is veri�ed for i = 0, 1, . . . , l− 1, then from (4.18)and 2) of de�nition 10 the following relation is obtained
V (γl(t)− γ0(t)) = V

(

l
∑

k=1

(γk(t)− γk−1(t))

)

≤
l
∑

k=1

V (γk(t)− γk−1(t))

≤
l
∑

k=1

Φ (U(z(k T )− γk−1(k T )), t− k T,W (γk−1(t)− γ0(t))) . (4.21)From (4.17), with γ̄ = γk−1 and t0 = (k − 1)T , ∀k = 1, . . . , l, the followinginequality holds
U(z(k T )− γ(k T )) ≤ ϕ(T ) .Sine by the indutive hypothesis relation (4.20) is true for i = 0, 1, . . . , l − 1,

∀t ∈ R :

W (γk−1(t)− γ0(t)) ≤ V̄ ,therefore, the following inequality is obtained
V (γl(t)− γ0(t)) ≤

l
∑

k=1

Φ(ϕ(T ), t− k T, V̄ ) . (4.22)and �nally, ombining (4.22) and (4.19), it follows that
V (γi(t)− γ0(t)) ≤ V̄ .

�Remark that instead of �nding separately a funtion Φ and ϕ whih sat-isfy (4.18) and (4.17), one an �nd diretly the omposite funtion Φ(ϕ(T ), t−
t0,W (γ−γ0)) whih appears in (4.19), as will be done for the uniyle vehile.The idea behind proposition (7) is the following. The key element for �ndingbounds for trajetories γi de�ned in (4.16) onsists in �nding the funtion
Φ(ϕ(T ), t− t0,W (γ−γ0)), whih provides bounds on the norm at time t of thedi�erene of a urve replanned at t0 with the previous one (γ), as a funtion ofthe replanning time T , the time elapsed sine the parameterization (t− t0) andthe maximum value of the norms of the di�erene between γ and the refereneurve γ0.



4.1. Reursive onvex replanning 1214.1.3 Appliation to the traking problem for the uniyleIn this subsetion proposition 7 is applied to the traking problem for theuniyle vehile, introdued in setion 4.1.1.The following lemma estimates the error on the feed-forward ontrol ofsystem (4.1) aused by the noise terms.Lemma 1 Consider system (4.1), assume that a) and b) in property 4 holdand that the ontrols u and ω are given by ) and d). Then the followinginequalities hold
|θ(t)− arg(γ0(t))| ≤ Nθt , (4.23)

∥

∥

∥

∥

∥

(

x(t)

y(t)

)

− γ0(t)
∥

∥

∥

∥

∥

≤ t2

2
NθVM +Nt . (4.24)Proof. De�ne eθ(t) = θ(t) − arg(γ̇0(t)) and e(t) =

(

x(t)

y(t)

)

− γ0(t), then
ėθ(t) = ηθ(t) and |ėθ(t)| ≤ Nθ, from whih (4.23) is obtained. Moreover ė =

v

(

cos θ(t)− cos(arg γ̇(t))

sin θ(t)− sin(arg γ̇(t))

)

+ η and ‖ė(t)‖ ≤ VM
√
2
√
1− cos eθ +N . Sine

cos x ≥ 1− x2

2 , then ‖ė(t)‖ ≤ VM t2Nθ

2 +Nt, from whih (4.24) follows. �The following result represents the diret appliation of proposition 7 tothe ase of the uniyle.Proposition 8 Consider system (4.1), where the ontrol u is de�ned by (4.5)-(4.6) and the referene funtion γ0 satis�es assumption 1. Moreover supposethat
χ = TNθ

[

+∞
∑

i=0

λ(iT ) +

+∞
∑

i=0

|λ̇(iT )|iT
]

< 1 .De�ne
V̄2 = (1− χ)−1

(

TNθVMTNθ

(

+∞
∑

i=1

λ(T i) + λ̇(T i)Ti

)

+

(

TNθ

2
+NT

) +∞
∑

i=0

λ(Ti)

)

,

(4.25)
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V̄1 =

(

T

2

2

Nθ(V̄2 + VM ) +NT

) +∞
∑

i=1

λ(T i) + TNθ(V̄2 + VM )
+∞
∑

i=1

λ(T i) , (4.26)
V̄3 =

(

1− TNθ

+∞
∑

i=0

λ(iT )

)−1{

T Nθ (V̄2 + VM )

(

+∞
∑

i=1

λ̈(iT ) + λ̇(iT )

)

+AM T Nθ

+∞
∑

i=1

λ(iT ) +

(

T

2

2

Nθ + T N

) +∞
∑

i=1

λ̈(iT )

}

, (4.27)and suppose that the following ondition is veri�ed
Vm < V̄2 ,then the following inequalities hold, ∀i ∈ N and ∀t ≥ iT ,

‖γi(t)− γ0(t)‖ ≤ V̄1 , (4.28)
‖γ̇i(t)− γ̇0(t)‖ ≤ V̄2 , (4.29)
‖γ̈i(t)− γ̈0(t)‖ ≤ V̄3 . (4.30)Moreover the ontrols de�ned by (4.5) and (4.6) satisfy the following bounds,

∀i ∈ N, ∀t ≥ iT ,
u(t) ∈ [Vm − V̄2, VM + V̄2] , (4.31)
‖ω(t)‖ ≤ AM + V̄3

Vm − V̄2
. (4.32)Proof. Sine, input funtions u(t), ω(t) de�ned in (4.5) and (4.6) are C1 andrespetively C0, then the extended state z = {x, y, θ, ẋ, ẏ, ẍ, ÿ} is well de�ned.Set V = (V1, V2, V3) with V1 = ‖(x, y)‖, V2 = ‖(ẋ, ẏ)‖ and V3 = ‖(ẍ, ÿ)‖.Remark that V satis�es de�nition 10. In order to use proposition 7, we nowde�ne the funtion Φ = (Φ1,Φ2,Φ3) suh that (4.18) holds. To de�ne Φ1,onsider the following bound

V1(γz(t0),t0,γ − γ) = ‖λ(t− t0) {R(eθ(t0)) [γ(t) − γ(t0)]
+γ(t0) + eγ(t0)}+ [1− λ(t− t0)] γ(t)− γ(t)‖

= ‖λ(t− t0) {[R(eθ(t0))− I] [γ(t) − γ(t0)] + eγ(t0)}‖ ,



4.1. Reursive onvex replanning 123together with ‖R(θ(t0))− I‖ ≤ |eθ(t0)| and
‖γ(t)− γ(t0)‖ ≤ (t− t0) sup

t≥t0

‖γ̇(t)‖ ≤ (t− t0)
[

VM + sup
t≥t0

‖γ̇(t)− γ̇0(t)‖
]

≤ (t− t0) [VM +W2(γ − γ0)] .Therefore, by lemma 1, we �nd the bound
V1(γz(t0),t0,γ − γ) ≤ λ(t− t0) {|eθ(t0)| (t− t0)[W2(γ − γ0) + VM ] + |eγ(t0)|}

≤ Φ1(T, t− t0,W (γ − γ0)) .Analogously
V2(γz(t0),t0,γ − γ) = ‖λ̇(t− t0) {[R(eθ(t0))− I][γ(t) − γ(t0)] + eγ(t0)}+ γ̇(t)

{λ(t− t0) [R(eθ(t0))− I]}‖ ≤ Φ2(T, t− t0,W (γ − γ0)) .Finally
V3(γz(t0),t0,γ − γ) = ‖λ̈(t− t0) {[R(eθ(t0))− I][γ(t) − γ(t0) + eγ(t0)]}
+λ̇(t− t0) [R(eθ(t0))− I]γ̇(t) + γ̈(t) {1 + λ(t− t0) [R(eθ(t0)− I]}
+γ̇(t) λ̈(t− t0) [R(eθ(t0)− I]− γ̈(t)‖ ≤ Φ3(T, t− t0,W (γ − γ0)) .From (4.25), (4.26) and (4.27) it follows that, for k = 1, 2, 3

V̄k ≥
+∞
∑

i=1

Φk(T, iT, V̄k) ,and, by (4.20) of proposition 7, relations (4.28), (4.29) and (4.30) hold. More-over, ∀t ∈ [iT, (i+ 1)T ]

u(t) = ‖γ̇i(t)‖ = ‖γ̇0(t) + γ̇i(t)− γ̇0(t)‖

∈
[

Vm − sup
t≥iT
{‖γ̇i(t)− γ̇0(t)‖}, VM + sup

t≥iT
{‖γ̇i(t)− γ̇0(t)‖}

]

⊂
[

Vm − V̄2, VM + V̄2
]

,



124 Chapter 4. Replanning methods for the trajetory trakinghene (4.31) holds. Furthermore,
|ω(t)| = | d

dt
arg(γ̇i(t))| ≤

|det[γ̈i(t), γ̇i(t)]|
‖γ̇i(t)‖2

≤ ‖γ̈i(t)‖‖γ̇i(t)‖

≤ ‖γ̈0(t)‖+ supt≥iT {‖γ̈i(t)− γ̈0(t)‖}
‖γ̇0(t)‖ − supt≥iT {‖γ̇i(t)− γ̇0(t)‖}

≤ AM + V̄2
Vm − V̄2

,therefore (4.32) holds and the proof of proposition 8 is omplete. �Corollary 1 follows from proposition 8 when λ is given by (4.4).4.1.4 Simulation resultsThe method presented in subsetion 4.1.1 has been ompared with the on-troller for the uniyle presented in [68, p.809℄. We have assumed that thestate is measured only at regular intervals T = 1 s, whih represents also thereplanning time for our algorithm. The state appearing in the feedbak ontrollaw presented in [68℄ is obtained through a disontinuous open loop observerwhih is updated at eah observation time. The gain in this ontroller havebeen set to have ontrols signals of magnitude similar to the method of se-tion 4.1.1. As referene trajetory we have onsidered a periodi spline followedwith onstant speed 1 m/s. The noise bounds appearing in (4.2) are given by
N = 0.5

√
2 and Nθ = 0.5. The obtained results are presented in �gures 4.6and 4.7. The two methods showed a similar performane in terms of trakingerror. However, the ontrol method presented in this setion has the advantageof providing overall ontinuous input signals whereas the ontrol signals of thelassi ontroller are disontinuous (even if this is a onsequene of having useda disontinuous observer). Our method has the advantage of guaranteeing anarbitrary lass of ontinuity in the input signals. Moreover, it is not an ad hosolution for the uniyle, sine it an be applied in priniple to any systemsatisfying the onditions presented in setion 4.1.2.
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b)Figure 4.6: a) The robot trajetory and b) the ontrol inputs for the reursivemethod.

−4 −3 −2 −1 0 1 2 3 4
−6

−4

−2

0

2

4

6

8

a) 0 5 10 15 20
−0.5

0

0.5

1

1.5

2

2.5

v(t)

ω(t)

b)Figure 4.7: a) The robot trajetory and b) the ontrol inputs for the methodpresented by Samson.



126 Chapter 4. Replanning methods for the trajetory traking4.1.5 Experimental resultsWe have implemented an experimental setting for the method presented insetion 4.1.1. A mobile robot built with Lego Mindstorm NXT pieeshas beenused. The tration is provided by two front wheels, a passive rear astor wheelis used to prevent the robot from falling over. The inputs variable are ωl and ωr,the angular veloity of left and right wheels. Set v = rωl+ωr

2 and ω = r
L
ωl−ωr

2 ,where r is the driving wheels radius and L is the distane between the twowheels. After this substitution this di�erential drive robots an be desribedwith the uniyle model (4.1).Two red markers of di�erent sizes have been plaed on the robot and thesystem state (x, y, θ) is measured ten times per seond through a Unibrain�rewire amera, using standard omputer vision tehniques. A personal om-puter running MATLAB ontains a systems observer for �nding the robot stateand implements the reursive ontroller presented in (4.5), (4.6) and (4.7). Theontrol signals are omputed and sent to the wheeled robot via Bluetooth. Thereplanning time has been set to T = 0.8 s. This experimental setting is hara-terized by some di�ulties, in partiular the Bluetooth transmission introduesin the ontrol loop a delay of 80 ms, and the wheels oasionally experimentslippage.Figure 4.8-a) shows the experimental results obtained when the referenetrajetory is a irle of radius equal to 30 m, followed with a onstant speedof 0.2 m/s. The red line represents the referene trajetory γ0 and the blueline the robot observed position. In the middle of the test the robot has beenmoved with a rod to test the robustness of the ontroller, this explain the largetransient error present in the �gure. In �gure 4.8-b), the norm of the (x, y)omponent of the traking error is showed; the spike on time t = 40 it is dueto the test of the robustness of the ontroller.Figure 4.9-a) shows another experiment where the desired trajetory is aspline whih has been reparameterized with onstant speed 0.15 m/s. The as-soiated traking error is shown in �gure 4.9-b). Remark that the evaluationof funtions γi in (4.7) require the use of a reursive funtion. If funtion λ
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128 Chapter 4. Replanning methods for the trajetory trakingreahes 0 in �nite time τ , then the maximum order of reursion is given bythe ratio τ
T (reall that T is the replanning time). Sine the order of reur-sion is deterministi, the proposed ontrol law an be implemented in a realtime ontroller. Parameter T must be arefully hosen. In fat, on one hand,by (4.8), (4.9), reduing T improves the traking performanes. On the otherhand, it inreases the ratio τ

T , the number of reursions needed to implementthe ontroller and the omputational e�ort.4.2 Iterative output replanning for �at systemsThe setion onsiders the output traking problem for nonlinear systems whoseperformane output is also a �at output of the system itself. A desired out-put signal is sought on the atual performane output by using a feedforwardinverse input that is periodially updated with disrete-time feedbak of thesampled state of the system. The proposed method is based on an iterative out-put replanning that uses the desired output trajetory and the sampled state toreplan an output trajetory whose inverse input helps in reduing the trakingerror. This iterative replanning exploits the Hermite interpolating polynomialsto ahieve an overall arbitrarily smooth input and a traking error that anbe made arbitrarily small if the state sampling period is su�iently small andmild assumptions are onsidered. Some simulation results are presented for theases of an uniyle and a one-trailer system a�eted by additive noise.4.2.1 Problem statementConsider the nonlinear ontrolled system
ẋ = f(x, u) , (4.33)with x ∈ C(R,Rn), u ∈ C(R,Rm). System (4.33) is �at if there exists anoutput funtion y suh that the system state x(t) and the input u(t) an bewritten as a funtion of y and its derivatives up to a �nite order, evaluated attime t. More preisely the following de�nition an be given (see [52℄).



4.2. Iterative output replanning for �at systems 129De�nition 12 System (4.33) is �at if there exist a �at output y of dimension
m, two integers r and s and mappings ψ from R

n×R
m(s+1) to R

m, of rank min a suitably hosen output subset, and (φ0, φ1) from R
m(r+2) to R

n × R
m, ofrank m+ n in a suitable open subset, suh that

y = (y1, . . . , ym) = ψ(x, u, u̇, . . . , u(s)) , (4.34)implies that
x = φ0(y, ẏ, . . . , y

(r)) ,

u = φ1(y, ẏ, . . . , y
(r+1)) ,

(4.35)the di�erential equation dφ0
dt = f(φ0, φ1) being identially satis�ed.In this way, funtion φ0 represents the state x with the output y and itsderivatives up to the order r. Funtion φ1 represents the input u with theoutput and its derivatives up to the order r + 1.For simpliity, for a Cn funtion f we use the notation f̄n = (f, f (1), . . . , f (n)),to denote the ordered set ontaining funtion f and its time derivatives up tothe order n.If φ1 is su�iently regular, di�erentiating (4.35), one obtains funtions φi,suh that, for any i ≥ 1

u(i−1) = φi(ȳ
r+i) , (4.36)i.e., the input derivatives an be expressed as a funtion of the output andits derivatives. Similarly, if ψ is su�iently regular, di�erentiating (4.34), oneobtains funtions ψi, suh that, for any i ≥ 0

y(i) = ψi(x, ū
s+i) , (4.37)with ψ0 = ψ, where ψ is given in (4.34). Combining (4.36) and (4.37), thefollowing identity holds ∀i ≥ 1

u(i−1) = φi(ψ0(x, ū
s), . . . , ψr+i(x, ū

(s+r+i))) . (4.38)It is well known that traking and motion planning problems an be easilysolved for �at systems, see for instane hapter 7 of [52℄. In this setion we study



130 Chapter 4. Replanning methods for the trajetory trakingthe traking problem for system (4.33), in presene of a bounded disturbaneadded to the nominal veloity of the state:
ẋ(t) = f(x(t), u(t)) + η(t) , (4.39)where η is a disturbane signal suh that
‖η(t)‖ ≤ N, ∀t ∈ R . (4.40)The performane output of system (4.39) is given by

y = ψ(x, u) . (4.41)We assume that y is a �at output for system (4.39) when no noise is present(i.e., η = 0). In this ase, from (4.34) and (4.35), it follows that the outputsignal y satis�es
y = ψ(φ0(ȳ

r), φ1(ȳ
r+1)) . (4.42)Note that the form (4.39) may be restritive sine the disturbane η enters asa pure additive term. This form does not inlude, for instane, ases in whiha disturbane multiplies the state x or the input u.We assume that the full system state is aquired periodially, with a sam-pling period equal to T > 0. In this way, the feedbak ontrol relies on thedisrete-time observed sequene x(kT ), k ∈ N. For instane, this assumptionis reasonable when the system state is obtained through a amera, using om-puter vision tehniques. In this ase, a sampling time of T = 0.1 seonds wouldbe a typial situation.We study an iterative output replanning tehnique for ontrolling sys-tem (4.39), based on Hermite interpolating polynomials, similar in spirit tothe iterative state steering method presented in [4℄. Roughly speaking, themethod is the following. A su�iently regular referene output trajetory ydis assigned in advane. During eah time interval [kT, (k + 1)T [, a replannedoutput yp is omputed suh that



4.2. Iterative output replanning for �at systems 1311. yp orresponds through (4.35) to an initial state whih is the same as
x(kT ), i.e.

x(kT ) = φ0(yp(kT ), ẏp(kT ), . . . , y
(r)
p (kT )) .2. the replanned output yp onverges to the desired one yd at time (k+1)T ,i.e., yp((k + 1)T ) = yd((k + 1)T ).The ontrol is given aording to (4.35), ∀t ∈ [kT, (k + 1)T [, by

u(t) = φ1(yp(t), ẏp(t), . . . , y
(r+1)
p (t)) .Sine the system is a�eted by additive noise and in interval [kT, (k + 1)T [open loop ontrol is used, at time (k + 1)T the system output y((k + 1)T ) isdi�erent from yd((k + 1)T ). Hene, the above step is repeated, �nding a newreplanned trajetory yp, that would drive the output of the nominal system to

yd at time (k+2)T . Again, for the presene of noise, at time (k+2)T the atualsystem output is di�erent from the referene trajetory and a new trajetoryis replanned. Sine the replanned trajetories onverge to the referene yd, thesystem output is driven towards the desired output and the traking error iskept limited despite the presene of a disturbane. This method is illustratedin �gure 4.10, while �gure 4.11 shows the orresponding ontrol sheme.We prove that the traking error an be made arbitrarily small if the replan-ning time T is hosen su�iently small. Moreover, we show that the replannedoutput yp an be hosen in suh a way to have an arbitrary degree of ontinuityon the resulting input funtion.4.2.2 An Hermite interpolation problemConsider the following problem.Problem 7 (Replanning problem) Given �at system (4.33), an output ref-erene trajetory, yd ∈ Cr+l(R,Rm), an initial state x0 ∈ R
n and initial valuesfor the input and its derivatives u0, u(1)0 , . . . , u

(l−1)
0 , �nd an output referenetrajetory yp ∈ Cr+l(R,Rm) suh that the following properties hold
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4.2. Iterative output replanning for �at systems 133a) φ0(ȳrp(0)) = x0, i.e., x0 is the initial state of the system trajetory that has
yp as output,b) u(i)0 = φi+1(ȳ

r+i+1
p (0)), i = 0, . . . , l − 1 i.e., u(i)0 is the initial value of the

i-th derivative of the ontrol for the system trajetory whih has yp asoutput,) yp(t) = yd(t), ∀t ≥ T , where T is a given positive onstant, i.e. funtion yponverges to yd at time T .For any l ∈ N, let Ψ0,Ψ1, . . . ,Ψr+l, be vetors in R
m and set matrix Ψ =

(Ψ0,Ψ1, . . . ,Ψr+l). Consider the interpolation problem of determining a fun-tion πΨ,T ∈ Cr+l([0, T ],Rm) that satis�es the two onditions
di

dti
πΨ,T (0) = Ψi, i = 0, . . . , r + l , (4.43)

di

dti
πΨ,T (T ) = 0, i = 0, . . . , r + l . (4.44)Condition (4.43) requires that funtion πΨ,T have the �rst r + l derivativesequal to the olumns of Ψ at time t = 0, while ondition (4.44) requires thatall derivatives up to the (r + l)-th be equal to 0 at time t = T .This problem belongs to the lass of Hermite interpolation problems, whihhave been widely studied in interpolation literature. Its solution an be writtenin the form

(πΨ,T )i(t) =

r+l
∑

k=0

AT,k(t) (Ψk)i , (4.45)where the Hermite interpolation funtion AT,k is the minimum degree polyno-mial that satis�es onditions
di

dti
AT,k(0) = δi−k,

di

dti
AT,k(T ) = 0 ,where

δi =

{

1 if i = 0 ,

0 otherwise.



134 Chapter 4. Replanning methods for the trajetory trakingThese polynomials have degree 2(r+ l+1) and an be omputed in losed formusing a result presented in [69℄:
AT,k(t) = (t− T )r+l+1 t

k

k!

r−k+l
∑

i=0

(−t)i
i!

(r + i+ l)!

(−T )r+l+i+1 (r + l)!
. (4.46)These polynomials satisfy the following inequality, ∀t ∈ [0, T ]

|AT,k(t)| ≤
T k

k!

r−k+l
∑

i=0

(r + i+ l)!

i!(r + l)!
.Expression (4.45) implies that, for any T̃ > 0, there exists a onstant C, suhthat, ∀T ∈ [0, T̃ ], ∀t ∈ [0, T ]

|πΨ,T (t)| ≤ C‖Ψ‖ . (4.47)Figure 4.12 shows some of the Hermite polynomials AT,k. We use Hermite poly-
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A1,2Figure 4.12: The �rst three Hermite polynomials for r + l = 4 and T = 1.nomials for de�ning the replanned trajetory yp. To this end, de�ne funtion
ψ̄ : Rn × R

m(r+l+1) → R
m×(r+l+1)

(z, v, v1, . . . , vr+l) ; (Φ0,Φ1, . . . ,Φr+l) ,
(4.48)



4.2. Iterative output replanning for �at systems 135suh that
Φk = ψk(z, v0, v1, . . . , vk) , k = 0, . . . , r + l , (4.49)where ψk is de�ned in (4.37). In this way Φk represents the k-th derivative ofthe output obtained when the system state is z and the input and its derivativesare given by vi, i = 0, . . . , k. Finally de�ne the referene trajetory yp as follows
yp(t) =

{

yd(t) + πΨ,T (t) if 0 ≤ t < T

yd(t) if t ≥ T ,where
Ψ = ψ̄(x0, u

(0)
0 , . . . , u

(r+l)
0 )− ȳr+ld (0) . (4.50)Funtion yp solves the replanning problem, sine1. it belongs to Cr+l,2. it satis�es properties a) and b) beause of onditions (4.43) and (4.50),3. it satis�es property ) beause of ondition (4.44).Remark In this way, x0 represents the initial state orresponding to outputfuntion yp and u0, u

(1)
0 , . . . , u

(r+l)
0 represent the initial input and the initialinput derivatives up to the degree r + l.The use of Hermite interpolation allows to de�ne replanned trajetories thatorresponds to arbitrary onditions on the initial state, the initial input andits derivatives.4.2.3 Iterative ontrol lawUsing the replanning method desribed in the previous setions, the ontrollaw for system (4.39) is de�ned as follows
u(t) = φ1(ȳ

r+1
p (t)) , (4.51)where φ1 is given in (4.35) and, for t ∈]kT, (k + 1)T ]

yp(t) = yd(t) + πΨ(k),T (t− kT ) , (4.52)



136 Chapter 4. Replanning methods for the trajetory trakingwith
Ψ(0) = ψ̄(x0, u0, u

(1)
0 , . . . , u

(r+l)
0 )− ȳr+ld (0) , (4.53)and, for k > 0,

Ψ(k) = ψ̄(x(kT−), ūr+l(kT−))− ȳr+ld (kT ) . (4.54)In (4.53), x0 represents the initial state x(0) and the assigned onstants u0,
u
(1)
0 , . . . , u

(r+l)
0 are the initial ontrol input with its derivatives. In other words,in time interval ]kT, (k+1)T ] it is used the ontrol funtion u that would drivethe nominal system (4.33) along the referene trajetory yp(t). This traje-tory is omputed by adding the polynomial funtion πΨ(k),T to the referenetrajetory yd. In this way the replanned trajetory yp satis�es the propertiesa) φ0(ȳrp(kT )) = x(kT ), i.e. x(kT ) is the value at time kT of the state traje-tory that orresponds to yp,b) ȳr+lp ((k+1)T−) = ȳr+ld ((k+1)T ), i.e. the replanned trajetory is the sameas the desired trajetory at time (k + 1)T .4.2.4 Main resultsA relevant property is that the resulting ontrol funtion u is C l−1 ontinuousas shown in the following proposition.Proposition 9 The ontrol funtion u de�ned in (4.51) belongs to lass C l−1.Proof. Sine yp is of lass Cr+l in the open sets ]kT, (k+1)T [ aording to (4.36),the ontrol funtion belongs to C l−1 in the the union of intervals ]kT, (k+1)T [,

k ∈ N. It remains to prove C l−1 ontinuity on kT , k ∈ N. Sine system (4.33) is�at, by de�nition (4.51) and taking into aount (4.36) it follows that, ∀k ∈ N,
u(i)(kT+) = φi+1(ȳp

r+i+1(kT+)), i = 0, . . . , l − 1 ,moreover, by onditions (4.37), (4.54)
y(i)p (kT+) = ψi(x(kT

−), ūs+i(kT−)), i = 0, . . . , l ,



4.2. Iterative output replanning for �at systems 137therefore by (4.38), u(i)(kT+) = u(i)(kT−), ∀i = 0, . . . , l − 1, ∀k ∈ N, whihproves C l−1 ontinuity. �Remark With regards to proposition 9, it is worth noting that integer l is, inpratie, a free parameter provided that a su�iently smooth desired trajetory
yd ∈ Cr+l is designed. Consequently, this implies that the ontrol input of theproposed method an be hosen as smooth as neessary or desired.The main result of this paper requires the following Lipshitz assumptionon funtion (4.33).Assumption 3 Given �at system (4.33), there exist onstants 0 < Lf , Lψ ∈ Rfor whih ∀x1, x2 ∈ R

n, u ∈ R
m

‖f(x1, u)− f(x2, u)‖ ≤ Lf‖x1 − x2‖ ,and the assoiated funtion ψ̄ (see (4.48)) satis�es the following ondition,
∀x1, x2 ∈ R

n and u0, . . . , ur+l ∈ R
m

‖ψ̄(x1, u0, . . . , ur+l)− ψ̄(x2, u0, . . . , ur+l)‖ ≤ Lψ‖x1 − x2‖ .The following theorem states that it is always possible to hoose a replanningtime T , su�iently small, suh that the output traking error is lower thanany given positive onstant ǫ.Theorem 4 Let ẋ(t) = f(x(t), u(t)) be a ontrol system with �at output (4.41),suh that assumption 3 is satis�ed. Let yd ∈ Cr+l(R,Rm) be a referene tra-jetory for the �at output ψ. Consider the di�erential system
{

ẋ(t) = f(x(t), u(t)) + η(t)

x(0) = x0 ,
(4.55)where ‖η(t)‖ ≤ N , ∀t ∈ R, and the initial state x0 is suh that there exists aninitial ontrol u0 for whih yd(0) = ψ(x0, u0). Then, for any ǫ > 0, there exists

T > 0 suh that the solution of (4.55) with ontrol funtion u given by (4.51)satis�es
‖ψ(x(t), u(t)) − yd(t)‖ ≤ ǫ, ∀t ≥ 0 .



138 Chapter 4. Replanning methods for the trajetory trakingThe following lemma will be used in the proof of theorem 4.Lemma 2 Let Lf ∈ R be suh that ∀x1, x2 ∈ R
n and ∀t ∈ R

‖f(x1, t)− f(x2, t)‖ ≤ Lf ‖x1 − x2‖ , (4.56)and let x and xr be the solutions of
{

ẋ(t) = f(x, t) + η(t)

x(0) = x0 ,
and {

ẋr(t) = f(xr, t)

xr(0) = x0 ,with x0 ∈ R
n and ‖η(t)‖ ≤ N , ∀t ∈ R. Then

‖x(t)− xr(t)‖ ≤
eLf t − 1

Lf
N . (4.57)Proof. By hypothesis (4.56) the following di�erential inequality is satis�ed

d‖x(t) − xr(t)‖
dt

≤ ‖f(x(t), t) + η(t)− f(xr(t), t)‖ ≤ Lf‖x(t)− xr(t)‖+N .Inequality (4.57) follows from the Comparison Lemma, solving the orrespond-ing linear di�erential equation in the variable ‖x− xr‖. �Proof of theorem 4. For any k ∈ N, ∀t ∈ [kT, (k + 1)T [, let xr be the solutionof the following di�erential system
{

ẋr(t) = f(xr(t), u(t))

xr(kT ) = x(kT ) ,
(4.58)where the ontrol u is given by (4.51). System f(x, u) is �at and by de�nition 12the assoiated funtion φ0 satis�es the di�erential equation

dφ0(ȳ
r
p)

dt
(t) = f(φ0(ȳ

r
p(t)), φ1(ȳ

r+1
p (t))) . (4.59)By onstrution, the replanned trajetory yp satis�es x(kT ) = φ0(ȳ

r
p(kT )).Sine u is de�ned by (4.51), di�erential equation (4.58) an be rewritten as

{

ẋr(t) = f(xr(t), φ1(ȳ
r+1
p (t)))

xr(kT ) = x(kT ) .



4.2. Iterative output replanning for �at systems 139Hene, for t ∈ [kT, (k + 1)T )[, xr(t) is the solution of the same di�erentialequation (4.59) as φ0, therefore xr(t) = φ0(ȳ
r
p(t)). Consequently, by (4.42),

ψ(xr(t), u(t)) = ψ(φ0(ȳ
r
p), φ1(ȳ

r+1
p )) = yp(t).Moreover, using lemma 2,

‖y(t)− yp(t)‖ = ‖ψ(x, u) − ψ(xr, u)‖ ≤ Lψ‖x− xr‖ ≤ Lψ
eLfT − 1

Lf
N .Set T1 su�iently small suh that Lψ eLfT1−1

Lf
N ≤ ǫ

2 , so that ‖y(t)−yp(t)‖ ≤ ǫ
2 ,

∀t > 0.Remark that, ∀k ∈ N,
‖ψ̄(x(kT ), ūr+l(kT )) − ψ̄(xr(kT ), ūr+l(kT ))‖

≤ Lψ‖x(kT )− xr(kT )‖ ≤ Lψ
eLfT − 1

Lf
N ,therefore, by (4.47) and assumption 3, ∀t ∈ [kT, (k + 1)T [

‖yp(t)− yd(t)‖ = ‖πψ̄(x(kT ),u(kT ),...,u(r+l)(kT ))−ȳr+l
d

(kT ),T (t)‖

≤ C‖ψ̄(x(kT ), u(kT ), . . . , u(r+l)(kT ))− ȳr+ld (kT )‖

= CLψ‖x(kT )− xr(kT )‖ ≤ CLψ
eLfT − 1

Lf
N .Choose then T2 suh that CLψ eLfT2−1

Lf
N ≤ ǫ

2 , so that ‖yp(t) − yd(t)‖ ≤ ǫ
2 ,

∀t > 0. Finally set T = min{T1, T2}, then the thesis holds sine, ∀t > 0,
‖y(t)− yd(t)‖ ≤ ‖y(t)− yp(t)‖+ ‖yp(t)− yd(t)‖ ≤ ǫ. �4.2.5 Simulation results for the ase of a uniyleThis setion shows some simulation results obtained by applying the methodpresented in the above subsetions to a uniyle system illustrated in �gure 4.1.Here, the uniyle kinematis (4.1) of setion 4.1 is proposed again with theonly substitution of y with z.











(

ẋ

ż

)

= v(t)

(

cos θ

sin θ

)

+ η(t)

θ̇ = ω(t) + ηθ(t) ,

(4.60)



140 Chapter 4. Replanning methods for the trajetory trakingIn this example we want that the uniyle follows a C2 urve with ontinuousontrol inputs v(t), ω(t) ∈ C0. We have assumed that the state is periodiallymeasured with sample time T = 1 s. The performane output is given by
y = (x, z), whih is a �at output with r = 1 for the nominal uniyle (4.60). Inorder to obtain a C0 ontrol input, by proposition 9 we set l = 1. In this waythe Hermite interpolating polynomials (4.46) have degree 2(r + l + 1) = 6.As referene trajetory we have onsidered a periodi spline yd followedwith onstant speed 1 m/s. The noise bounds appearing in (4.2) are given by
N = 0.5

√
2 and Nθ = 0.5. The obtained result is presented in �gure 4.13. Theontrol inputs and the error funtions are depited in �gure 4.14 and 4.15,where the position error e(t) and the angular error eθ(t) are de�ned as follows

e(t) =

(

x(t)

z(t)

)

− yd(t) ,

eθ(t) = θ(t)− arg ẏd(t).

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

8

Figure 4.13: Simulation results for uniyle system with the iterative replanningmethod.Figure (4.16) shows the referene trajetory yd, the replanned one yp andthe atual uniyle output y.
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Figure 4.14: The ontrol inputs for the iterative replanning method applied tothe uniyle system.
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Figure 4.15: The error funtions for the iterative replanning method appliedto the uniyle system.
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Figure 4.16: The referene trajetory yd, the replanned one yp and the atualuniyle output y, for the uniyle example.Comparison with a well known methodThe proposed method has been ompared with the same one used for theomparison in subsetion 4.1.5 (f. [68, p.809℄), with an observation time setto be T = 1 s. The gains in the Samson's ontroller have been set to obtainontrol signals of magnitude similar to the introdued method. The resultsobtained with this method are shown in �gures 4.17, 4.18 and 4.19.The two methods shows a similar performane in terms of traking error.However, the ontrol method presented in this setion has the advantage of pro-viding input signals of an arbitrary degree of ontinuity, whereas the ontrolsignals of the lassi ontroller are disontinuous (even if this is a onsequeneof having used a disontinuous observer). Moreover, the iterative output re-planning method has the advantage of being appliable to any system with a�at performane output.
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Figure 4.17: Simulation results for the uniyle with the Samson's method.
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Figure 4.18: The ontrol inputs for the Samson's method applied to the uniylesystem.
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eγ(t)

eθ(t)Figure 4.19: The error funtions for the Samson's method applied to the uni-yle system.4.2.6 Simulation results for the ase of a one-trailer systemThe iterative output replanning method has been applied to a truk and trailer,or one trailer, system (see setion 2.2). With respet to the oordinates (x, z)of the middle point of the trailer rear axle, the well-known equations for thissystem are given by






















ẋ = v cos θ1 cos(θ0 − θ1) + ηx(t)

ż = v sin θ1 cos(θ0 − θ1) + ηz(t)

θ̇0 = ω + ηθ0(t)

θ̇1 = v
d sin(θ0 − θ1) + ηθ1(t) ,where θ0 and θ1 are the orientation angles of the pulling truk and of the trailerrespetively, and d represents the distane between the rear point (x, z) of thetrailer and the joint point on the truk. The ontrol input funtion v is thetruk longitudinal veloity while ω represent its angular veloity. As shownin [53℄, this system is �at (r = 2) with respet to the performane output

y = (x, z). In this ase to limit the degree of the interpolation polynomials, wehave hosen l = 0, obtaining therefore a disontinuous ontrol by proposition 9.



4.2. Iterative output replanning for �at systems 145In this simulation, the noise terms have been hosen suh that |ηx(t)|, |ηz(t)|,
|ηθ0(t)|, |ηθ1(t)| ≤ 0.2. The value of the distane d is set to be equal to 1 m.Truk pulling a trailerAs referene trajetory yd we have onsidered the same C2 periodi splineused for the uniyle example, haraterized by a positive onstant speed of 1m/s. The obtained results are presented in �gures 4.20, 4.21 and 4.22, where
eθ(t) = θ1(t)− arg ẏd(t).

Figure 4.20: Traking results for the one-trailer system on a periodi spline, inthe truk pulling trailer ase.As in the ase of the uniyle, the iterative output replanning method showsa good performane in terms of traking error.Truk pushing a trailerAs known, the trajetory traking of trailer system in reverse gear is moredi�ult than in forward driving, beause it is unstable (see [70℄). The referenetrajetory is again the periodi spline used in the previous examples, with thedi�erene, in this ase, of being haraterized by a onstant negative speed of
−1 m/s. The obtained results are presented in �gures 4.23, 4.24 and 4.25.
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Figure 4.21: The ontrol inputs for the iterative replanning method applied tothe one-trailer system, in the truk pulling trailer ase.
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b)Figure 4.22: a) The error funtions for the iterative replanning method appliedto the one-trailer system, in the truk pulling trailer ase and b) a lose up ofit on a smaller time interval.
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Figure 4.23: Traking results for the one-trailer system on a periodi spline, inthe truk pushing trailer ase.
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Figure 4.24: The ontrol inputs for the iterative replanning method applied tothe one-trailer system, in the truk pushing trailer ase.
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b)Figure 4.25: a) The error funtions for the iterative replanning method appliedto the one-trailer system, in the truk pushing trailer ase and b) a lose up ofit on a smaller time interval.Also in this ase, the iterative output replanning method shows a goodperformane in terms of traking error.



ConlusionsThe thesis has presented some methods useful for the optimal planning andontrol for the motion of autonomous wheeled vehiles. In partiular, the ex-posed tehniques may be applied to the wide lass of �at systems (f. de�nition12). Results an be summarized as an hybrid feedforward/feedbak ontrolsheme, whose purpose is to guarantee a robust and highly performing ontrol.High performanes are reahed out with the planning of time-optimal andontinuous veloity pro�les and geometrially ontinuous paths, that lead toa ontinuous steering input signal. This means that a smooth and optimalmotion of the wheeled vehile an be attained and, in suh a way, the vehileautonomous navigation an perform agile and event-driven maneuvers.Robustness is ahieved by means of iterative trajetory replanning proe-dures, whih guarantee the traking of the planned trajetory in the preseneof noise. It has been proved the existene, for the proposed trajetory planningmethods, of losed-form bounds on the traking error.Simulation and experimental results obtained during this researh point outthat the presented methods may be well suited for a real-time implementationprovided that some of the required optimizations are done o�-line. Indeed,optimal veloity pro�les and paths an be generated in real-time using fast loaloptimization routines based on look-up tables built with o�-line optimization.
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