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eleration ā(t), velo
ity v̄(t), andspa
e s̄(t) for example 2. . . . . . . . . . . . . . . . . . . . . . . . 241.5 The pseudo-optimal pro�les of jerk ū(t), a
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Introdu
tionThis thesis presents some results obtained during my PhD 
ourse Dottorato inTe
nologie dell'Informazione, at the Università di Parma, Dipartimento di In-gegneria dell'Informazione, in the three years period 2009-2012. The work hasbeen fo
used on the problem of the time-optimal motion 
ontrol of wheeled au-tonomous systems, su
h as uni
y
le robots, automati
 guided vehi
les (AGVs),
ar-like vehi
les and tru
k and trailer (or one-trailer) systems.The aim is to obtain a 
ontrol that provides a smooth motion of the un-manned vehi
le in minimum-time. In order to do that, it is ne
essary to plana path with an appropriate geometri
 
ontinuity, and two time-optimal inputsignals of velo
ity and steering angle 
ontinuous with their derivatives. More-over, a feedba
k 
ontroller must be adopted to guarantee the robustness of theoverall 
ontrol s
heme. Final result of the thesis 
an be viewed as the synthesisof various methods for hybrid feedforward/feedba
k 
ontrol for a wide 
lassof wheeled mobile robots. Figure 1 presents a 
on
eptual s
heme that sum-marizes the idea behind the hybrid feedforward/feedba
k 
ontrol, whi
h is the�nal result of the work done along the three years of study and resear
h.Path planning and velo
ity planning 
an be 
ompletely independent to ea
hother, on 
ondition that:1) the planned path has an appropriate geometri
 
ontinuity and satis�esgeometri
 interpolating 
onditions at the path endpoints, and2) the velo
ity is a C1-fun
tion satisfying interpolating 
onditions (on dis-tan
e, velo
ity and a

elerations) at the endpoints of the planned time-



2 Introdu
tioninterval.
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Figure 1: The overall ar
hite
ture for the optimal motion 
ontrol of the wheeledvehi
le.Indeed, given a su�
iently smooth path, a dynami
 inversion pro
edure 
an beapplied to determine the feedforward 
ontrol inputs of the autonomous vehi
lestill maintaining freedom in the planning of velo
ity input.Hen
e, the thesis �rst shows some methods that permit to plan a pathand optimal input signals whi
h lead to a minimum-time smooth motion for avariety of automati
 guided systems in nominal 
onditions (i.e. no noise a�e
tsthe systems). Se
ondly, it is shown how guarantee the tra
king of the plannedtraje
tory by means of a feedba
k 
ontrol, when the system is a�e
ted byadditive noise.The very �rst part of the thesis (
hapter 1) fa
es the time-optimal velo
ityplanning with arbitrary boundary 
onditions for an automati
 guided vehi
le.Initially, only a 
onstraint on the maximum value of the jerk (i.e. the velo
-ity se
ond derivative) is 
onsidered. The addressed minimum-time planningproblem has been re
ast into an input-
onstrained minimum-time rea
hability
ontrol problem with respe
t to a suitable state-spa
e system, where the 
on-trol input is a
tually the sought jerk of the velo
ity planning. By virtue of the



Introdu
tion 3well-known Pontryagin's Maximum Prin
iple the optimal input-
onstrained
ontrol is then a bang-bang fun
tion. An algebrai
 approa
h to obtain thisoptimal solution has been devised and a new algorithm to 
ompute the bang-bang jerk pro�le is exposed. This problem has been re
onsidered introdu
ing
onstraints also on the maximum values of the velo
ity and a

eleration. Inthis 
ase the Pontryagin's Maximum Prin
iple does not ensure the existen
eof the time-optimal 
ontrol. Su�
ient 
onditions, guaranteeing the existen
eof a solution to the minimum-time 
onstrained planning problem, are exposed.The time-optimal 
ontrol is not a 
lassi
 bang-bang fun
tion, but it shall be ageneralized bang-bang. The problem has been fa
ed through dis
retization andthe obtained solution is based on a sequen
e of linear programming feasibility
he
ks, depending on motion 
onstraints and boundary 
onditions.Chapter 2 presents two methods for the path planning of 
ar-like and onetrailer vehi
les. It is shown how plan paths with an appropriate geometri

ontinuity by resolving a geometri
 interpolation. In parti
ular, the geometri
interpolation problem, whi
h has in�nite dimension, has been re
ast into apolynomial interpolation problem (a �nite dimension problem), by means of the
η-splines. The shaping of this kind of spline depends on a ve
tor of parameters
alled �eta�, and on the boundary 
onditions. It is then presented a multi-optimization pro
ess to optimally 
hoose these free parameters, with the aimto plan traje
tory that respe
t bounds on 
urvature and 
urvature derivative,ensuring avoidan
e of the obsta
les in the �real� workspa
e. In the 
ase of the
ar-like vehi
le, appli
ations to the autonomous parking problem are presented.In 
hapter 3, the dynami
 path inversion blo
k (
f. �gure 1) is outlined byintrodu
ing a pro
edure that permits to obtain a minimum-time steering 
on-trol input for an automati
 guided vehi
le (AGV). One 
an 
onsider to havejust planned a path and a time-optimal velo
ity pro�le exploiting the te
h-niques introdu
ed in the �rst two 
hapter. The optimal steering input signalfor the AGV is obtained with a dynami
 inversion on the planned path, basedon some geometri
 properties of the path itself, and of the AGV kinemati
 sys-tem. Similar pro
edure 
an be easily determined for the other vehi
les, su
h as



4 Introdu
tionthe 
ar-like and the one-trailer.Finally, 
hapter 4 proposes two methods for the traje
tory tra
king for au-tonomous systems a�e
ted by additive noise. Both methods are thought for
ases where 
ontinuous-time or high-frequen
y revelation of the system stateor output is not possible or not e
onomi
al and only low-frequen
y feedba
kis pra
ti
able. The implemented solutions to this traje
tory tra
king problem,relies on iterative replanning methods to 
ompute a new referen
e traje
tory,used to generate the feedforward inverse 
ommand velo
ities that help in re-du
ing the tra
king errors. For both te
hniques expli
it 
losed-form bounds onthe tra
king error are provided.



Chapter 1Minimum-time velo
ityplanning Plans are only good intentions unlessthey immediately degenerate into hard work� Peter Dru
kerIn the wide �eld of vehi
les autonomous navigation, signi�
ant resear
he�orts have been dedi
ated to the problem of optimal motion planning. Theproblem of motion planning for autonomous guided vehi
les is a well knownand studied issue in roboti
s, see for example the re
ent books [1℄ and [2℄.This 
hapter propose te
hniques for minimum-time velo
ity planning with ar-bitrary boundary 
onditions, 
onsidering two di�erent 
ases: one with only
onstraint on the maximum absolute value of the jerk (i.e the velo
ity se
ondderivative), and one with 
onstraints also on the maximum absolute value ofthe a

eleration and velo
ity. The minimum-time velo
ity planning is 
ast inthe 
ontext of the so-
alled path-velo
ity de
omposition [3℄ using the iterativesteering navigation te
hnique [4, 5℄.The �rst two se
tions brie�y introdu
e the optimal 
ontrol theory, with



6 Chapter 1. Minimum-time velo
ity planningparti
ular attention to the linear time-optimal problem. For more details onthis arguments see, for example, books [6, 7℄.The third se
tion presents a pro
edure for the synthesis of a velo
ity C1-fun
tion that permits in minimum-time and with a bounded jerk to interpolategiven velo
ity and a

eleration at the time planning interval endpoints and totravel a given distan
e. The 
ondition on the maximum jerk value permits toobtain a smooth velo
ity pro�le [8℄. The addressed minimum-time planningproblem will be re
ast into an input-
onstrained minimum-time rea
hability
ontrol problem with respe
t to a suitable state-spa
e system, where the 
ontrolinput is a
tually the sought jerk of the velo
ity planning. By virtue of the well-known Pontryagin's Maximum Prin
iple the optimal input-
onstrained 
ontrolis then a bang-bang fun
tion.Finally, a solution for the 
onstrained minimum-time velo
ity planning ispresented. In this 
ase, the time-optimal solution is not a 
lassi
 bang-bangfun
tion, but it shall be a generalized bang-bang fun
tion [9℄. The minimum-time transition is obtained by dis
retizing the 
ontinuous-time model and for-mulating an equivalent dis
rete-time optimization problem solved by meansof linear programming te
hniques. More pre
isely, boundary 
onditions andproblem 
onstraints are expressed by linear inequalities on a 
olumn ve
tor
u, representing the input signal (i.e the jerk) at sampling times. Hen
e, theminimum-time planning problem is reformulated as a feasibility test for a linearprogramming problem, and the minimum number of steps required to 
ompletethe given transition 
an be found through a simple bise
tion algorithm. The useof linear programming te
hniques for solving minimum-time problems for lin-ear dis
rete-time systems subje
t to bounded inputs dates ba
k to Zadeh [10℄.Subsequently, many 
ontributions have appeared fo
using on various improve-ments. For example a faster algorithm is proposed in [11℄. For what 
on
ernstime-optimal 
ontrol for 
ontinuous-time systems, a related result, under dif-ferent hypotheses, is presented in [12℄.



1.1. Optimal 
ontrol theory 71.1 Optimal 
ontrol theoryOptimal 
ontrol is the pro
ess of determining 
ontrol and state traje
tories fora dynami
 system over a period of time, in order to minimize a performan
eindex. The method is 
losely related in its origins to the theory of 
al
ulus ofvariations and it is largely due to the work of Ri
hard Bellman [13℄, and LevPontryagin et al. [14℄. Optimal 
ontrol and its rami�
ations have found appli-
ations in many di�erent �elds, in
luding aerospa
e, pro
ess 
ontrol, roboti
s,bioengineering, e
onomi
s, and it 
ontinues to be an a
tive resear
h area within
ontrol theory.1.1.1 Problem statement and notationConsider optimal problems de�ned by the 
onstraint set C, a subset of thetangent bundle of a smooth manifold M , and a 
ost fun
tion f , that is a real-valued fun
tion having C as its domain. A traje
tory of C is an absolutely
ontinuous 
urve x(t) ∈M su
h that dx
dt (t) ∈ C for almost all t in the domainof x. The total 
ost of x is de�ned as

∫ T

0
f

(

dx

dt
(t)

)

dt ,where [0, T ] denotes the domain of x. Given any two points x0 and xf in M ,the optimal traje
tory of C is the one whi
h 
onne
ts x0 to xf and whose total
ost is minimal among all su
h traje
tories of C.The 
onsidered sets C admit se
tions of the form ξ = F (π(ξ), u1, . . . , um),where (u1, . . . , um) takes values in a �xed set U ∈ R
m, π indi
ates the naturalproje
tion from TM onto M , and ξ is an arbitrary point of C. Then, thetraje
tory velo
ity dx

dt is parametrized by the 
ontrols u1, . . . , um, and its total
ost 
an be expressed as
∫ T

0
c(x(t), u(t))dt =

∫ T

0
f ◦ F (x(t), u(t))dt .In a given se
tion of C, the traje
tories of C that 
onne
ts two given points

x0 and xf in a �nite time T , 
oin
ide with the solution 
urves x(t) of the



8 Chapter 1. Minimum-time velo
ity planningdi�erential system










dx
dt = F (x(t), u(t), . . . , um(t))

x(0) = x0

x(T ) = xf .Under suitable smoothness assumptions on F , ea
h 
ontrol fun
tion u(t) deter-mine a unique solution 
urve, so the problem of �nding the optimal traje
toriesof C is 
onverted to one of �nding the 
ontrols that give rise to the optimaltraje
tory and that is an optimal 
ontrol problem.We shall need additional notation. For any matrix C, C ′ indi
ates its trans-pose, while span(C) represents the set of all the eigenvalues of C. For any ve
torspa
e E, its dual is denoted by E∗.E 
an be regarded as a subspa
e of (E∗)∗through the 
orresponden
e e → g(e) for any e ∈ E and g ∈ E∗. When E is�nite-dimensional, E = (E∗)∗. Re
all that a linear mapping L : E → E∗ issaid to be symmetri
 if L is equal to its dual mapping L∗.1.2 Linear time-optimal problemThe pro
ess of transferring one state into another along a traje
tory of a givendi�erential system su
h that the time of transfer is minimal is known as theminimal-time problem, and it is one of the basi
 
on
erns of optimal 
ontroltheory. Consider the linear time-invariant system,
dx

dt
= Ax+Bu , (1.1)with x ∈M ⊂ R

n and u ∈ Uc ⊂ R
m, where A and B are 
onstant matri
es oforder n×n and n×m respe
tively. Let system (1.1) be de�ned in a real, �nite-dimensional ve
tor spa
e M in whi
h the 
ontrol fun
tions are restri
ted toa 
ompa
t and 
onvex neighborhood Uc of the origin, in a �nite-dimensional
ontrol spa
e U , and also assume that (1.1) is 
ontrollable and that 
ontrolfun
tions are measurable. A traje
tory is de�ned by the pair (x, u), in whi
h

x is an absolutely 
ontinuous 
urve of some time interval [0, T ], T > 0, thatsatis�es (1.1) almost everywhere in [0, T ].



1.2. Linear time-optimal problem 9De�nition 1 A traje
tory (x, u) is 
alled time-optimal on an interval [0, T ] iffor any other traje
tory (y, v) of (1.1) de�ned on its interval [0, S], for whi
h
y(0) = x(0) and y(S) = x(T ), S is larger than or equal to T .Theorem 1 For any time-optimal traje
tory (x, u) on an interval [0, T ]a) the terminal point x(T ) belongs to the boundary ∂A(x(0), T ) of the set ofrea
hable points from x(0) at t = T of system (1.1);b) any point b that belongs to the boundary of the set rea
hable from the originat time T is the terminal point of a time-optimal traje
tory on the interval

[0, T ].Proof. If x(T ) belonged to the interior of A(x(0), T ), then x(T ) would alsobelong to the interior of A(x(0), T − ǫ), for some ǫ > 0, whi
h is not possible,be
ause that would violate the time optimality of (x, u) on the time-interval
[0, T ]. This argument proves part a).To prove b), note that for any T > 0, points on the boundary of A(0, T )
annot be rea
hed in a time shorter than T . On the other hand A(0, T ) is 
om-pa
t for ea
h T > 0. Therefor, for ea
h b on ∂A(0, T ) there exists a traje
tory
(x, u) de�ned on the time-interval [0, T ] su
h that x(0) = 0 and x(T ) = b. Itfollows by the foregoing argument that (x, u) is time-optimal on [0, T ]. �1.2.1 The maximum prin
ipleFor the minimum-time 
ontrol problems, the Pontryagin maximum prin
ipleprovides the ne
essary and the su�
ient 
onditions for optimality. The readeris re
ommended to 
onsult [6, pp. 305�306℄ for the proof of the theorem andother details.Theorem 2 (Pontryagin's Maximum Prin
iple) Any time-optimal traje
-tory (x̄, ū) on an interval [0, T ] is the proje
tion of an integral 
urve (x̄, p̄, ū) ofthe Hamiltonian ve
tor �eld ~H asso
iated with H(x, p, u) = −p0+p(Ax+Bu),with p0 equal to either 0 or 1, su
h that
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ity planninga) H(x̄(t), p̄(t), ū(t)) = maxu∈Uc H(x̄(t), p̄(t), u) for almost all t in [0, T ];b) H(x̄(t), p̄(t), ū(t)) = 0 almost everywhere in [0, T ];
) p̄(t) 6= 0 for any t, if p0 = 0.Proof. See [6, pp. 305�306℄. �Remark The following remarks are helpful for 
larify some important aspe
tsand 
onsequen
es of the maximum prin
iple:1. H should be regarded as a fun
tion on T ∗M = M ×M∗ parametrizedby both the 
hoi
e of a 
ontrol fun
tion and the value of p0.2. Assume that u(t) is a given measurable 
ontrol fun
tion with values in Uc.Ea
h integral 
urve σ(t) = (x(t), p(t)) of the Hamiltonian ve
tor �eld ~Hasso
iated with H(x, p, u(t)) = −p0 + p(Ax+Bu(t)), when expressed in
anoni
al 
oordinates, satis�es the following pair of di�erential equations:
dx

dt
= Ax(t) +Bu(t) ,

dp

dt
= −A∗p(t) .3. The maximality 
ondition a) of theorem 2 is equivalent to p̄(t)Bū(t) =

maxu∈Uc p̄(t)Bu for almost all t in [0, T ].1.2.2 Bang-bang prin
iple for s
alar systemsThe bang-bang prin
iple says that the optimal 
ontrols take the most advan-tage of possible 
ontrol a
tion at ea
h instant. The name is motivated by theparti
ular 
ase of a 
ontrol spa
e given by the interval Uc = [u−, u+], whereoptimal 
ontrols must swit
h between the minimal and maximal values u− and
u+. There are various theorems that make this prin
iple rigorous. Here, thesimplest one is reported, as Sontag stated in [7, pp. 436�437℄.Theorem 3 (Weak bang-bang) Assume that the matrix pair (A,B) is 
on-trollable. Let ū be a 
ontrol steering system (1.1) from an initial state x0 to a�nal state xf in minimal time T > 0. Then, ū ∈ ∂Uc for almost t in [0, T ].



1.2. Linear time-optimal problem 11Proof. The proof dire
tly derives from the appli
ation of the Pontryagin's max-imum prin
iple (see [7, pp. 436�437℄). �Thanks to theorem 2 it is possible to state that the time-optimal 
ontrol
ū is unique and it is also possible determine its stru
ture (for a more rigoroustreatment see [7℄ and [15℄).We spe
ialize now to single input systems (m = 1), and write b instead of
B in (1.1). In general Uc = [u−, u+], but we will take, in order to simplify theexposition, u− = −1 and u+ = 1. Assume that the pair (A, b) is 
ontrollable.For ea
h two states x0 and xf , there is a unique time-optimal 
ontrol ū steering
x0 to xf , and there is a nonzero ve
tor γ ∈ R

n su
h that
ū(t) = sgn(γ′e−tAb) , (1.2)for all t /∈ Sγ,T , where

Sγ,T =
{

t ∈ [0, T ] : γ′e−tAb = 0
}

,is a �nite set. This means that the optimal 
ontrol ū is a pie
ewise 
onstantfun
tion, whi
h swit
hes between values −1 and 1. The following propositionpermits to determine the number of swit
hings in the 
ase of system matrix Ahas only real eigenvalues.Proposition 1 Suppose that the matrix A has only n real eigenvalues,i.e.
span(A) ∈ R .Then, for ea
h γ, b and T , Sγ,T as at most n− 1 elements, whereby any time-optimal 
ontrol for system (1.1) as no more than n− 1 swit
hings.Proof. This proposition derives dire
tly from the appli
ation of the Pontrya-gin's maximum prin
iple to the time-optimal 
ontrol of a s
alar system. Reader
an �nd several proofs of this proposition (see, for example [7, 15℄).



12 Chapter 1. Minimum-time velo
ity planning1.3 Minimum-time velo
ity planning with arbitraryboundary 
onditionsThis se
tion introdu
es and explains the approa
h presented in [16℄, whi
hsolves the minimum-time velo
ity planning problem with arbitrary boundary
onditions and a 
onstraint on the maximum jerk value. The obtained optimal-time solution, based on Pontryagin's Maximum Prin
iple, is a smooth planningwith 
ontinuous velo
ities and a

elerations. The devised algebrai
 algorithmto solve this minimum-time planning problem is well suited to be implementedwithin the framework of path-velo
ity de
omposition for autonomous naviga-tion.1.3.1 Problem statement and the stru
ture of the optimal so-lutionThe following de�nition will be used along this paper.De�nition 2 A fun
tion f : R → R, t→ f(t) has a PC2 
ontinuity, and wewrite f(t) ∈ PC2 ifa) f(t) ∈ C1(R) ,b) f(t) ∈ C2(R− {t1, t2, . . . }) ,
) ∃ limt→t−i
D2f(t) , ∃ limt→t+i

D2f(t) , i = 1, 2, . . .where {t1, t2, . . . } is a set of dis
ontinuity instants.The problem is to plan a minimum-time smooth velo
ity pro�le v(t) ∈ PC2while a given 
onstraint on the maximum jerk value jM is guaranteed andthe initial and �nal 
onditions on the velo
ity and a

eleration are arbitrarilyassigned. Formally:
min
v∈PC2

tf , (1.3)su
h that
∫ tf

0
v(ξ)dξ = sf , (1.4)
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v(0) = v0 , v(tf ) = vf , (1.5)
v̇(0) = a0 , v̇(tf ) = af , (1.6)
|v̈(t)| ≤ jM , ∀t ∈ [0, tf ] , (1.7)where sf > 0, jM > 0 and v0, vf , a0, af ∈ R are arbitrary velo
ity anda

eleration boundary 
onditions. sf is the total length of the path and tf isthe travelling time to 
omplete this path. The solution of the above problemis v̄(t) ∈ PC2 with asso
iated minimum-time t̄f .The minimum-time planning problem (1.3)-(1.7) 
an be easily re
ast to aninput-
onstrained minimum-time 
ontrol problem with respe
t to a suitablestate-spa
e system. Indeed 
onsider the jerk v̈(t) as the 
ontrol input u(t) of a
as
ade of three integrators as depi
ted in �gure 1.1.PSfrag repla
ements

1
s

1
s

1
s

u(t) v̇(t) v(t) s(t)

Figure 1.1: The system model for velo
ity planning.Introdu
ing the state x(t) as the 
olumn ve
tor
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


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


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




,the system is represented by the di�erential equation

ẋ(t) = Ax(t) +Bu(t) =







0 1 0

0 0 1

0 0 0






x(t) +







0

0

1






u(t) . (1.8)Hen
e, problem (1.3)-(1.7) is equivalent to �nd a time-optimal 
ontrol ū(t)that brings system (1.8) from the initial state x(0) = [0v0 a0]

′ to the �nal state
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ity planning
x(t̄f ) = [sf vf af ]

′ in minimum time t̄f , while satisfying the input 
onstraint
|ū(t)| ≤ jM , ∀t ∈ [0, t̄f ] .In se
tions 1.2.1 and 1.2.2 it has been exposed that the Pontryagin's maxi-mum prin
iple gives a ne
essary and su�
ient 
ondition for this 
lass of prob-lems. Moreover, it has been shown that in the 
ase of a linear s
alar systemthe time-optimal 
ontrol ū(t) is a bang-bang fun
tion. In our 
ase it will be apie
ewise 
onstant fun
tion that swit
hes between the −jM and +jM . Finally,another information on the optimal 
ontrol stru
ture is obtained from propo-sition 1. Considering that system (1.8) has three null eigenvalues we dedu
e,by virtue of proposition 1, that the time-optimal jerk ū(t) has at most twoswit
hing instants. Hen
e, the general stru
ture of the optimal ū(t) is depi
tedin �gure 1.2 where uM ∈ {−jM ,+jM} and 0 ≤ t1 ≤ t2 ≤ t̄f with t̄f > 0.PSfrag repla
ements ū(t)

uM

−uM

t1 t2 t̄f t

Figure 1.2: An example of the minimum-time 
ontrol (jerk) pro�le.1.3.2 The algebrai
 solutionIt has been shown above the stru
ture of the time-optimal 
ontrol ū(t). Inthe following, an algebrai
 approa
h will be exposed to exa
tly determine thisoptimal jerk pro�le.



1.3. Minimum-time velo
ity planning with arbitrary boundary
onditions 15Exploiting the boundary 
onditions (1.3)-(1.6), the problem is to �nd theswit
hing time values t1 and t2, the minimum time t̄f and the sign of the jerkinitial value ū(0), while satisfying the 
onstraint 0 ≤ t1 ≤ t2 ≤ t̄f with t̄f >

0. From the boundary 
ondition (1.6) on the �nal a

eleration value we knowthat
a0 +

∫ t̄f

0
ū(ξ)dξ = af .Integrating the optimal jerk pro�le on the three intervals, the following relationis obtained

a0 +

∫ t1

0
uMdξ +

∫ t2

t1

(−uM )dξ +

∫ t̄f

t2

uMdξ = af ,and �nally a �rst linear equation in t1, t2 and t̄f is found
2 uM t1 − 2 uM t2 + uM t̄f = af − a0 . (1.9)The a

eleration pro�le x3(t) is obtained by integrating the optimal jerk a
-
ording to
x3(t) = a0 +

∫ t

0
ū(ξ)dξ , ∀t ∈ [0, t̄f ] ,that results in the following equation

x3(t) =











a0 + uM t t ∈ [0, t1]

a0 + 2 uM t1 − uM t t ∈ [t1, t2]

a0 + 2 uM t1 − 2 uM t2 + uM t t ∈ [t2, t̄f ] .

(1.10)Now, by virtue of the boundary 
ondition (1.5), the following relation is de-du
ed
v0 +

∫ t̄f

0
x3(ξ)dξ = vf ,hen
e, from (1.10), one obtains

v0 +

∫ t1

0
(a0 + uM ξ)dξ +

∫ t2

t1

(a0 + 2 uM t1 − uM ξ)dξ

+

∫ t̄f

t2

(a0 + 2 uM t1 − 2 uM t2 + uM ξ)dξ = vf .
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ity planningFinally, a quadrati
 equation in t1, t2 and t̄f is found
−uM t21 + 2 uM t1 t̄f + uM t22 − 2 uM t2 t̄f +

1

2
uM t̄2f + a0 t̄f = vf − v0 . (1.11)Integrating the a

eleration fun
tion x3(t) as follows

x2(t) = v0 +

∫ t

0
x3(ξ)dξ , ∀t ∈ [0, t̄f ] ,the velo
ity pro�le x2(t) is obtained

x2(t) =











































v0 + a0 t+
1
2 uM t2 t ∈ [0, t1]

v0 + a0 t+ 2 uM t1 t− uM t21 − 1
2 uM t2 t ∈ [t1, t2]

1
2 uM t2 − uM t21 + uM t22 + 2 uM t1 t

−2 uM t2 t+ a0 t+ v0 t ∈ [t2, t̄f ] .

(1.12)
By virtue of the boundary 
ondition (1.4), the following relation holds

∫ t̄f

0
x2(ξ)dξ = sf ,then, from (1.12), we dedu
e

∫ t1

0
(v0 + a0 ξ +

1

2
uM ξ2)dξ +

∫ t2

t1

(v0 + a0 ξ + 2 uM t1 ξ − uM t21

−1

2
uM ξ2)dξ +

∫ t̄f

t2

(
1

2
uM ξ2 − uM t21 + uM t22 + 2 uM t1 ξ

−2 uM t2 ξ + a0 ξ + v0)dξ = sf .Finally, the last 
ubi
 equation in t1, t2 and t̄f is given by
1

3
uM t31 − uM t21 t̄f + uM t1 t̄

2
f −

1

3
uM t32 + uM t22 t̄f − uM t2 t̄

2
f

+
1

6
uM t̄3f +

1

2
a0 t̄

2
f + v0 t̄f = sf .

(1.13)



1.3. Minimum-time velo
ity planning with arbitrary boundary
onditions 17The time-optimal velo
ity pro�le is planned by solving the nonlinear algebrai
system given by equations (1.9), (1.11) and (1.13).Here, we 
onsider the 
ase of positive initial jerk (i.e. uM = +jM ). Fromequation (1.9) follows
t1 = t2 −

1

2
t̄2f +

1

2

af − a0
jM

. (1.14)By substituting relation (1.14) in (1.11) the relation below holds
t2 =

[

3
4 jM t̄2f − 1

2 (3 af − a0) t̄f + 1
4 jM

(af − a0)2 + vf − v0
]

jM t̄f − af + a0
. (1.15)By substitution of (1.14) and (1.15) in (1.13), a quarti
 equation in t̄f unknownis obtained

1

32
u2M t43 +

1

8
uM (a0 − af ) t33 +

(

1

2
uM (v0 + vf )−

1

16
(a20 + a2f )−

3

8
a0 af

)

t23

+

(

1

8

a0 af
uM

(a0 − af )−
1

24

a30 − a3f
uM

+ a0 vf − af v0 − uM sf

)

t3 −
1

96

a40 + a4f
u2M

+
1

24

a0 af
u2M

(a20 + a2f )−
1

16

a20 a
2
f

u2M
− 1

2
(v20 + v2f ) + v0 vf − a0 sf + af sf = 0 .(1.16)In the 
ase of negative initial jerk (i.e. uM = −jM ), the optimal solution 
an befound by 
hanging the sign of jM in (1.9), (1.11) and (1.13) and then applyingthe same pro
edure exposed above. In sake of simpli
ity the three equationssystem for this 
ase is omitted.The optimal degenerate 
aseConsider a positive initial jerk value (i.e. uM = +jM ). A solution of the threeequations system (1.9), (1.11) and (1.13) exists only if the following relationholds (see (1.15))

jM t̄f − af + a0 6= 0 . (1.17)
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ity planningIf (1.17) is not veri�ed, follows that
a0 + jM t̄f = af ,whi
h 
orresponds to the optimal degenerate solution expressed by

t1 = t2 = 0 , t̄f =
af − a0
jM

. (1.18)Hen
e, by virtue of 
ondition t̄f > 0 the following inequality must hold
af > a0 .The optimal degenerate jerk is

ū(t) = jM , ∀t ∈ [0, t̄f ] . (1.19)Note that solution (1.18) satis�es equation (1.9). Integrating (1.19) one dedu
esthe a

eleration fun
tion
x3(t) = a0 + jM t , ∀t ∈ [0, t̄f ] .In the same way the optimal velo
ity fun
tion is obtained

x2(t) = v0 +

∫ t

0
x3(ξ)dξ = v0 + a0 t+

1

2
jM t2 , ∀t ∈ [0, t̄f ] ,and then the optimal spa
e fun
tion is given by

x1(t) =

∫ t

0
x2(ξ)dξ = v0 t+

1

2
a0 t

2 +
1

6
jM t3 , ∀t ∈ [0, t̄f ] .If t = t̄f , by virtue of the boundary 
onditions (1.3) and (1.4) follows that

v0 + a0 t̄f +
1

2
jM t̄2f = vf , (1.20)and

v0 t̄f +
1

2
a0 t̄

2
f +

1

6
jM t̄3f = sf . (1.21)
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ity planning with arbitrary boundary
onditions 19By substituting relation (1.18) in (1.20) the relation below is dedu
ed
1

2

a2f − a20
jM

+ v0 − vf = 0 . (1.22)Then, by substituting relation (1.18) in (1.21) the following equation holds
1

6

a2f
j2M
− 2

3

a30
j2M
− 1

2

a20 af
j2M

+
v0 a0
jM

− v0 af
jM

− sf = 0 . (1.23)Relations (1.22) and (1.23) must be satis�ed in the degenerate 
ase. Note thatthey are exa
tly the se
ond and the third equation of system (1.9), (1.11), (1.13)when it has solution (1.18).In 
ase of initial negative jerk (i.e. uM = −jM ), the optimal degeneratesolution is
ū(t) = −jM , ∀t ∈ [0, t̄f ] ,
orresponding to
t1 = t2 = 0 , t̄f =

a0 − af
jM

. (1.24)This degenerate 
ase emerges with
a0 > af ,and the following relations hold

1

2

a20 − a2f
jM

+ v0 − vf = 0 , (1.25)and
1

6

a2f
j2M
− 2

3

a30
j2M
− 1

2

a20 af
j2M

− v0 a0
jM

+
v0 af
jM

− sf = 0 . (1.26)1.3.3 The minimum-time algorithmThe Minimum-Time Velo
ity Planning (MTVP) algorithm is presented byexploiting the algebrai
 solution exposed in subse
tion 1.3.2. This algorithmmust veri�es if a positive or a negative jerk degenerate solution exists; after
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ity planningthat, if a degenerate solution was not found it 
he
ks the generi
 
ases of ini-tial positive and negative jerk solutions. Hen
e, the MTVP algorithm 
an besynthesized as follows:
begin

if af > a0 then

procedure PJDS;

end

if af < a0 then

procedure NJDS;

end

procedure PJS;

procedure NJS;

endThen, the MTVP algorithm is 
omposed of four separated pro
edures: thePositive Jerk Degenerate Solution (PJDS), the Negative Jerk Degenerate So-lution (NJDS), the Positive Jerk Solution (PJS) and the Negative Jerk Solu-tion (NJS). Let us des
ribe these pro
edures in detail.Pro
edure PJDSThis pro
edure starts if af > a0, be
ause is not possible to have a degener-ate solution with positive initial jerk (i.e. uM = +jM ) if af ≤ a0. If 
ondi-tions (1.22) and (1.23) are veri�ed the positive jerk degenerate solution (1.18)is imposed and the MTVP algorithm is stopped, otherwise the algorithm ex-e
ution returns to the main program. The pro
edure is as follows:
begin

if 1
2

a2
f
−a20
jM

+ v0 − vf = 0 and

1
6

a2
f

j2
M

− 2
3
a30
j2
M

− 1
2
a20 af
j2
M

+ v0 a0
jM
− v0 af

jM
− sf = 0 then
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[t1, t2, t̄f ] = [0, 0,

af−a0
jM

] ;

exit

else

return

endPro
edure NJDSThis pro
edure is dual to the PJDS one. If af < a0 and 
onditions (1.25)and (1.26) are veri�ed, the negative jerk degenerate solution (1.24) is imposedand the main program is stopped.
begin

if 1
2

a20−a
2
f

jM
+ v0 − vf = 0 and

1
6

a2
f

j2
M

− 2
3
a30
j2
M

− 1
2
a20 af
j2
M

− v0 a0
jM

+
v0 af
jM
− sf = 0 then

[t1, t2, t̄f ] = [0, 0,
a0−af
jM

] ;

exit

else

return

endPro
edure PJSFirst, all the positive real roots of quarti
 equation (1.16) are 
omputed andstored in an array T. Then expressions (1.14) and (1.15) are used to deter-mine a feasible solution. If three values of t1, t2, and t̄f satisfying inequalities
0 ≤ t1 ≤ t2 ≤ t̄f are found the minimum-time velo
ity planning solution isobtained and the main program is stopped.
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begin

Compute the positive real roots of

equation (1.16), T = [tf1, tf2, . . . , tfl] with (l ≤ 4) ;

if T is empty then

return

for i = 1, . . . , l do

t2i =

[

3
4
jM t2

fi
− 1

2
(3 af−a0) tfi+

1
4 jM

(af−a0)
2+vf−v0

]

jM tfi−af+a0
;

if 0 ≤ t2i ≤ tfi then
t1i = t2i − 1

2 t
2
fi +

1
2
af−a0
jM

;

if 0 ≤ t1i ≤ t2i then
[t1, t2, t̄f ] = [t1i, t2i, t3i] ;

exit

else

continue

else

continue

return

endPro
edure NJSThis pro
edure is dual to the PJS one. The quarti
 equation to start with isthe modi�ed (1.16) where jM is substituted by −jM . Then all the positive realsolutions of this equation are 
omputed and a feasible solution is sought.
begin

In equation (1.16) do the substitution jM ← −jM
and compute the positive real roots,
T = [tf1, tf2, . . . , tfl] with (l ≤ 4) ;
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if T is empty then

return

for i = 1, . . . , l do

t2i =

[

3
4
jM t2

fi
− 1

2
(3 af−a0) tfi+

1
4 jM

(af−a0)
2+vf−v0

]

jM tfi−af+a0
;

if 0 ≤ t2i ≤ tfi then
t1i = t2i − 1

2 t
2
fi +

1
2
af−a0
jM

;

if 0 ≤ t1i ≤ t2i then
[t1, t2, t̄f ] = [t1i, t2i, t3i] ;

exit

else

continue

else

continue

return

end1.3.4 Simulations resultsExample 1: 
onsider the following data: sf = 3, 25 m, jM = 0, 5 m/s3, v0 =

0 m/s, a0 = 0 m/s2, vf = 2, 25 m/s and af = 1, 5 m/s2. Exploiting theMTVP algorithm des
ribed in subse
tion 1.3.3 the following optimal solutionis obtained:
uM = +jM t1 = 1 s t2 = 3 s t̄f = 7 sThe jerk, a

eleration, velo
ity and spa
e pro�les, for this 
ase, are depi
tedin �gure 1.3.Example 2: let be the 
ase of: sf = 8, 42 m, jM = 0, 25 m/s3, v0 = 1 m/s,

a0 = 0, 5 m/s2, vf = 2, 75 m/s and af = 0 m/s2. The optimal solution is thefollowing:
uM = +jM t1 = 1 s t2 = t̄f = 4 s
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Figure 1.3: The optimal pro�les of jerk ū(t), a
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e s̄(t) for example 1.See �gure 1.4 for the optimal ū(t), ā(t), v̄(t) and s̄(t) pro�les.
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Figure 1.4: The optimal pro�les of jerk ū(t), a

eleration ā(t), velo
ity v̄(t), andspa
e s̄(t) for example 2.1.4 Minimum-time 
onstrained velo
ity planningThis se
tion explains a pro
edure whi
h has appeared for the �rst time in [17℄.The proposed method solves again the minimum-time velo
ity planning prob-
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onstrained velo
ity planning 25lem with generi
 initial and �nal boundary 
onditions for the velo
ity andthe a

eleration but with 
onstrains not only on the jerk but on velo
ity anda

eleration too.This minimum-time planning problem is relevant in the 
ontext of roboti
autonomous navigation, where the iterative steering supervisor periodi
allyreplans the future mobile robot motion starting from 
urrent position, velo
ityand a

eleration 
onditions. The problem is fa
ed through dis
retization andits solution is based on a sequen
e of linear programming feasibility 
he
ks,depending on motion 
onstraints and boundary 
onditions.1.4.1 Problem statement and su�
ient 
onditionThe fa
ed problem is the minimum-time planning of a smooth velo
ity pro-�le v(t) ∈ PC2([0, tf ]) (see de�nition 2), where tf represents the travellingminimum-time along a given path whose length is equal to sf , respe
ting givenvelo
ity, a

eleration, and jerk 
onstraints. Formally:
min
v∈PC2

tf , (1.27)su
h that
∫ tf

0
v(ξ)dξ = sf , (1.28)

v(0) = v0 , v(tf ) = vf , (1.29)
v̇(0) = a0 , v̇(tf ) = af , (1.30)
|v(t)| ≤ vM , ∀t ∈ [0, tf ] , (1.31)
|v̇(t)| ≤ aM , ∀t ∈ [0, tf ] , (1.32)
|v̈(t)| ≤ jM , ∀t ∈ [0, tf ] , (1.33)where sf , vM , aM , jM ∈ R+ and v0, vf , a0, af ∈ R are given boundary 
on-ditions. For the spe
ial 
ase of zero boundary 
onditions (i.e. v0 = vf = 0,

a0 = af = 0) a 
losed form solution has been provided by [18℄. Remark that in
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ity planningour 
ontext of iterative autonomous navigation, it is 
ru
ial to 
onsider generi
boundary 
onditions on initial and �nal velo
ities and a

elerations.Su
h as in se
tion 1.3 the problem is re
asted into a minimum-time 
on-trol problem with respe
t to a suitable state-spa
e system. Indeed 
onsideragain the jerk v̈(t) as the 
ontrol input u(t) of the 
as
ade of three integratorsas depi
ted in �gure 1.1. The system equations are still given by (1.8). Con-straints (1.31), (1.32) and (1.33) will be 
onsidered as two state 
onstraintsand an input bound respe
tively. Hen
e, problem (1.27)-(1.33) is equivalent to�nding a time-optimal 
ontrol ū(t) that brings system (1.8) from the initialstate x(0) = [0 v0 a0]
′ to the �nal state x(t̄f ) = [sf vf af ]

′ in minimum time t̄f ,while satisfying the following 
onstraints
|x2(t)| ≤ vM , ∀t ∈ [0, t̄f ] , (1.34)
|x3(t)| ≤ aM , ∀t ∈ [0, t̄f ] , (1.35)and
|ū(t)| ≤ jM , ∀t ∈ [0, t̄f ] . (1.36)In the 
ase of 
onstrained state, it is not guarantee that a time-optimal 
ontrol

ū(t) exists. The existen
e of solution ū(t) of problem(1.27)-(1.33) depends onthe values of the initial state x0, the �nal state xf , and it also depends on the
onstraints (1.34)-(1.36). To guarantee the existen
e of the optimal 
ontrol ū(t),these values must respe
t four su�
ient 
onditions as stated in the followingresult.Proposition 2 The minimum-time optimal 
ontrol ū(t), solution of problem(1.27)-(1.33), from initial state x(0) = [0v0 a0]
′ to �nal state x(t̄f ) = [sf vf af ]

′exists if the following su�
ient 
onditions are satis�ed:
|v0| ≤ vM , |vf | ≤ vM , (1.37)
|a0| ≤ aM , |af | ≤ aM , (1.38)if a0 ≥ 0 then v0 +

1

2

a20
jM
≤ vM , (1.39)
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ity planning 27if a0 < 0 then v0 −
1

2

a20
jM
≥ 0 , (1.40)if af ≥ 0 then vf −

1

2

a2f
jM
≥ 0 , (1.41)if af < 0 then vf +

1

2

a2f
jM
≤ vM , (1.42)and

sf ≥ sref , (1.43)where sref is a referen
e distan
e depending on the problem data whi
h is de-�ned below by a four-step pro
edure:1.
s1 :=

v0 |a0|
jM

+
1

3

a30
j2M

and v1 := v0 + sgn(a0)
1

2

a20
jM

.2.
s2 :=

vf |af |
jM

− 1

3

a3f
j2M

and v2 := vf − sgn(af )
1

2

a2f
jM

.3. if √jM |v1 − v2| ≤ aM then
vref := max (v1, v2) ,

sc :=
2 vref

√

jM |v1 − v2|
jM

− [jM |v1 − v2|]3/2
j2M

,else
sc :=

1

2

|v21 − v22 |
aM

+
1

2

aM (v1 + v2)

jM
.4. sref := s1 + sc + s2 .Proof. The argument of the proof uses the equivalen
e of problem (1.27)-(1.33)with the 
onstrained 
ontrol problem (1.34)-(1.36). Spe
i�
ally, it shall befound a 
ontrol input u(t) that brings the state from [0 v0 a0]

′ to [sf vf af ]
′while satisfying the imposed state 
onstraints. Obviously, if this input exists,then the optimal one will exists too.
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ity planningConsider the 
ase a0 ≥ 0. If 
onditions (1.37), (1.38) and (1.39) on initialstate x(0) hold, it is possible to apply a 
ontrol fun
tion u(t) = −jM whi
hbrings the a

eleration x3(t) to zero before the velo
ity x2(t) ex
eeds its bound-ary value vM . In fa
t, if u(t) = −jM with t ∈ [0, t1] (where t1 is the 
riti
altime where the a

eleration be
ame null) the following result is true
x3(t) = a0 +

∫ t

0
u(ξ)dξ = a0 − jM t . (1.44)But in t = t1 we have x3(t1) = 0, so it is possible to obtain the 
riti
al timevalue

t1 =
a0
jM

. (1.45)Integrating equation (1.44) in [0, t1], it follows that
x2(t) = v0 +

∫ t

0
x3(ξ)dξ = v0 + a0 t−

1

2
jM t2 . (1.46)In t = t1, by substituting relation (1.45) in (1.46), the value of v1 = x2(t1) isobtained

v1 = v0 +
1

2

a20
jM

,then, by virtue of 
ondition (1.39) we know that v1 ≤ vM and 
onstraint (1.34)is satis�ed. The traveled spa
e at time t1 is
s1 =

∫ t1

0
x2(ξ)dξ =

v0 a0
jM

+
1

3

a30
j2M

. (1.47)Consider the 
ase of af < 0; if 
onditions (1.37), (1.38) and (1.42) areveri�ed, the �nal state x(tf ) 
an be rea
hed by applying the 
ontrol fun
tion
u(t) = −jM , with t ∈ [t2, tf ]. The a

eleration fun
tion is given by

x3(t) =

∫ t

t2

u(ξ)dξ = −jM (t− t2) , (1.48)and in t = tf we have x3(tf ) = af , so it is possible to obtain
tf − t2 = −

af
jM

. (1.49)
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ity planning 29By integrating equation (1.48) in [t2, tf ], we get
x2(t) = v2 +

∫ tf

t2

x3(ξ) = v2 −
1

2
jM (tf − t2)2 . (1.50)In t = tf , by substituting relation (1.49) in (1.50), the value of v2 = x2(t2) is

v2 = vf +
1

2

a2f
jM

,then, by virtue of 
ondition (1.42), 
onstraint (1.34) holds. The traveled spa
efor t ∈ [t2, tf ] is
s2 =

∫ tf

t2

x2(ξ)dξ = −
vf af
jM

+
1

3

a3f
j2M

. (1.51)If v1 = v2, the total traveled spa
e is sf = s1 + s2, where s1 and s2 are givenby (1.47) and (1.51) respe
tively, then 
ondition (1.43) is veri�ed.Consider the 
ase of v1 > v2: by de�ning tc as the time instant when
x3(tc) = −ac, where −ac is the a

eleration minimum value, and if ac ≤ aM ,it is possible to interpolate v1 and v2 with the following 
ontrol jerk fun
tion:

{

u(t) = −jM t ∈ [t1, tc]

u(t) = jM t ∈ [tc, t2] ,where tc − t1 = t2 − tc. Then, for u(t) = −jM in t ∈ [t1, tc] the a

elerationfun
tion is given by
x3(t) =

∫ t

t1

u(ξ)dξ = −jM (t− t1) . (1.52)But for t = tc we have x3(tc) = −ac so it is possible to obtain
tc − t1 =

ac
jM

. (1.53)By integrating equation (1.52) one dedu
es the velo
ity fun
tion
x2(t) = v1 +

∫ t

t1

x3(ξ)dξ = v1 −
1

2
jM (t− t1)2 . (1.54)
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ity planningIn t = tc, by substituting (1.53) in (1.54), the velo
ity is given by
x2(tc) = v1 −

1

2

a2c
jM

.The distan
e s3 
overed in the time-interval [t1, tc] is dedu
ed as follows,
s3 =

∫ tc

t1

x2(ξ)dξ = v1
ac
jM
− 1

6

a3c
j2M

. (1.55)By applying the same pro
edure in the time-interval [t2, tc], with u(t) = jM ,the following result is obtained
x2(tc) = v2 +

1

2

a2c
jM

,while the traveled spa
e s4 is given by
s4 = v1

ac
jM
− 5

6

a3c
j2M

.In t = tc we have
v1 −

1

2

a2c
jM

= v2 +
1

2

a2c
jM

, (1.56)and solving equation (1.56) for ac, the following equality holds
ac =

√

jM (v1 − v2) . (1.57)The distan
e sc, 
overed in the time-interval [t1, t2], is given by
sc = s3 + s4 =

2 v1
√

jM (v1 − v2)
jM

− [jM (v1 − v2)]3/2
j2M

, (1.58)where ac was substituted with relation (1.57). For the time-interval [0, tf ],the total traveled spa
e is sf = s1 + sc + s2, where s1, s2 and sc are given byrelations (1.47), (1.51) and (1.58) respe
tively, then 
ondition (1.43) is veri�ed.Finally 
onsider v1 > v2 and ac =
√

jM (v1 − v2) > aM . In this 
ase itwill exists a time-interval [tc1, tc2], where a

eleration x1(t) will be equal to its
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ity planning 31minimum value −aM , while the 
ontrol fun
tion will be u(t) = 0. In t = tc1and in t = tc2, the velo
ity values are given by
x2(tc1) = v1 −

1

2

a2M
jM

,and
x2(tc2) = v2 +

1

2

a2M
jM

,respe
tively. Moreover, in t = tc2 the following relation holds
v2 +

1

2

a2M
jM

= v1 −
1

2

a2M
jM
− aM (tc2 − tc1) . (1.59)From equation (1.59) the following equality is obtained

tc2 − tc1 =
v1 − v2
aM

− aM
jM

. (1.60)The traveled spa
e in [tc1, tc2] is given by
s5 =

1

2
(v1 + v2) (tc2 − tc1) , (1.61)and by substituting relation (1.60) in (1.61) it is possible to obtain

s5 =
1

2

(v21 − v22)
aM

− 1

2

aM (v1 + v2)

jM
. (1.62)The distan
e sc 
overed for t ∈ [t1, t2] is obtained by summing s3 and s5, givenby (1.55) and (1.62) respe
tively, with s4 = v2 aM

jM
+ 1

6
a3M
j2
M

, and it results to be
sc =

1

2

(v21 − v22)
aM

+
1

2

aM (v1 + v2)

jM
. (1.63)Then, the total traveled spa
e is sf = s1 + sc + s3 , where s1, s2 and sc aregiven by (1.47), (1.51) and (1.63) respe
tively, and 
ondition (1.43) is veri�ed.The other su�
ient 
onditions 
an be proved in the same way saw above. �
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ity planning1.4.2 An approximated solution using dis
retizationThis subse
tion shows how to �nd a numeri
ally approximated solution ofproblem (1.27)-(1.33) by dis
retization of system (1.8). The te
hnique thatwill be introdu
ed, exploits the result presented by Consolini and Piazzi in [19℄,whi
h shows that, given a 
ontinuous-time system, an approximated optimal
ontrol 
an be found through the following pro
edure:1. �nd the dis
retized system with sampling period Ts;2. �nd the optimal input sequen
e ū(k);3. use for the 
ontinuous-time system the input fun
tion u(t) obtained fromthe dis
rete-time sequen
e with a zero-order hold
u(t) = ūTs

(

⌊ t
Ts
⌋
)

,where Ts ∈ R is the sampling period and ∀x ∈ R,
⌊x⌋ = max {z ∈ Z : z ≤ x} ,denotes the integer part of x.As shown in [19℄, when Ts → 0 the approximated solution 
onverges to theoptimal 
ontinuous-time solution.The optimal dis
rete-time 
ontrol sequen
e ū(t) 
an be found by means oflinear programming. In fa
t, in the dis
rete-time 
ase, the 
onstraints (1.34)-(1.36) 
an be represented as linear inequalities and the minimum number ofsteps needed for the requested transition 
an be found through a sequen
e offeasibility tests of a linear programming problem.The matri
es of the equivalent dis
rete-time system are the following ones:Ad = eA Ts =







1 Ts
1
2 T

2
s

0 1 Ts

0 0 1






,



1.4. Minimum-time 
onstrained velo
ity planning 33and Bd = f(A, Ts)B =

(
∫ Ts

0
eA τdτ

)

B =







1
6 T

3
s

1
2 T

2
s

Ts






,where Ts is the sampling period. Then, the dis
rete-time system is

x(k + 1) = Ad x(k) +Bd u(k) , (1.64)whose solution is given by
x(k) = Ak

d x0 +
k−1
∑

j=0

A
k−1−j
d Bd u(j) , (1.65)where

x(k) =







x1(k)

x2(k)

x3(k)






.De�ne the 
ontrol ve
tor u ∈ Rkf as follows

u =













u(0)

u(1)...
u(kf − 1)













,from (1.36) it follows that it must be
−uM ·1kf ≤ u ≤ uM ·1kf ,where 1kf denotes the kf -dimensional ve
tor whose 
omponents are all equalto 1. The velo
ity 
onstraint for dis
rete-time system is given by

−vM ≤ x2(k) ≤ vM , with k = 0, . . . , kf − 1 . (1.66)
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ity planningFrom equation (1.65), velo
ity sequen
e x2(k) 
an be written as follows
x2(k) = C1 x(k)

= C1



Ak
d x0 +

k−1
∑

j=0

A
k−1−j
d Bd u(j)





= C1A
k
d x0 +

k−1
∑

j=0

C1A
k−1−j
d Bd u(j) , (1.67)where

C1 =
[

0 1 0
]

.By substituting (1.67) in (1.66), the following relation is obtained
−vM −C1A

k
d x0 ≤

k−1
∑

j=0

C1A
k−1−j
d Bd u(j) ≤ vM −C1A

k
d x0 ,with k = 0, . . . , kf − 1. Set vc = vM ·1f , then the inequality on velo
ity 
on-straint (1.66) be
ome

−vc −G1 ≤ H1 u ≤ vc −G1 ,where G1 ∈ R
kf and H1 ∈ R

kf×kf are given by
G1 =



















C1 x0

C1Ad x0

C1A
2
d x0...

C1A
kf−1
d x0



















,and
H1 =





















C1Bd O · · · O

C1AdBd
. . . . . . O

C1A
2
dBd

. . . . . . O... . . . . . . ...
C1A

kf−1
d Bd · · · · · · C1Bd





















.
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ity planning 35The a

eleration 
onstraint for dis
rete-time system (1.64) is given by
−aM ≤ x3(k) ≤ aM , with k = 0, . . . , kf − 1 . (1.68)Set ac = aM ·1f and

C2 =
[

0 0 1
]

,then, 
onstraint (1.68) is written as
−ac −G2 ≤ H2 u ≤ ac −G2 ,where G2 ∈ R

kf and H2 ∈ R
kf×kf are given by

G2 =



















C2 x0

C2Ad x0

C2A
2
d x0...

C2A
kf−1
d x0



















,and
H2 =





















C2Bd O · · · O

C2AdBd
. . . . . . O

C2A
2
dBd

. . . . . . O... . . . . . . ...
C2A

kf−1
d Bd · · · · · · C2Bd





















.The interpolation 
ondition on �nal state 
an be written as follows
xf = x(kf ) =







x1(kf )

x2(kf )

x3(kf )






=







sf

vf

af






. (1.69)From equation (1.65) we have

xf = A
kf
d x0 +

kf−1
∑

j=0

A
kf−1−j
d Bd u(j) , (1.70)
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ity planningthen, by substituting equation (1.70) in (1.69) we obtain the �nal state inter-polation 
ondition as follows
Heq u = xf −A

kf
d x0 ,where Heq ∈ R

3×kf is given by
Heq =

[

A
kf−1
d Bd A

kf−2
d Bd · · · Bd

]

.In 
on
lusion given a number of steps kf , there exists an input ve
tor u forwhi
h the 
onstraints on velo
ity, a

eleration and jerk, and the �nal interpo-lation 
ondition are satis�ed if and only if the following linear programmingproblem is feasible






















−uM ·1kf ≤ u ≤ uM ·1kf
−vc −G1 ≤ H1 u ≤ vc −G1

−ac −G2 ≤H2 u ≤ ac −G2

Heq u = xf −A
kf
d x0 .

(1.71)1.4.3 The bise
tion algorithmThe minimum number of steps k̄f and the asso
iated optimal dis
rete-time
ontrol sequen
e ū(k), with k = 0, . . . , k̄f − 1, 
an be determined by means ofa sequen
e of linear programming feasibility tests, de�ned by (1.71), througha simple bise
tion algorithm. The Minimum-Time Control algorithm (MTC)is summarized as follows:
begin

kf ← 1;
l← 0;
while ∽ LPP do

l← kf

kf ← 2 kf

end
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h← kf ;
while h− l > 1 do

kf ← ⌊h+l2 ⌋;
if ∽ LPP then

l← kf ;
else

h← kf ;
end

k∗f ← h;
u∗(k)← u;

endIn MTC algorithm LPP denotes a linear programming pro
edure that solvesproblem (1.71), whi
h, if a feasible solution exists, returns the solution se-quen
e u and the number of steps k; if the problem is feasible it also returnsa Boolean true value.The algorithm performan
es strongly depend on the used sampling time.By redu
ing Ts, whi
h means sampling the 
ontinuous-time system with anhigher frequen
y, the dimension of the resulting linear programming problemin
reases, thus 
ausing an in
rement of the total 
omputational time. Consid-ering the 
omputational 
omplexity, Karmarkar has shown in [20℄ that a linearprogramming problem 
an be solved by means of an interior-point algorithmwith running time proportional to n3.5, where n is the number of inequalities.In our 
ase this would means that ea
h feasibility test would require a timeproportional to n3.5s , where ns is the total number of samples. The 
omplexityof the bise
tion sear
h, with respe
t to the minimum number of samples, isgiven by O(log ns), therefore the total 
omplexity of the proposed algorithm isgiven by O(n3.5s log ns). For more details on the algorithm 
omplexity see [21℄.1.4.4 Simulations resultsExample 1: 
onsider the following interpolation 
onditions and 
onstraints:
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ity planning� initial state
x0 :=







s0

v0

a0






:=







0

0

0





� �nal state
xf :=







sf

vf

af






:=







2

0

0





� problem 
onstraints
vM = 0, 65 m/s aM = 0.5 m/s2 jM = 0.5 m/s3The jerk, a

eleration, velo
ity and spa
e pro�les, obtained by means of theMTC algorithm, are depi
ted in �gure 1.5.
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Figure 1.5: The pseudo-optimal pro�les of jerk ū(t), a

eleration ā(t), velo
ity v̄(t),and spa
e s̄(t) for example 1.Example 2: 
onsider the following problem:� initial state
x0 :=







s0

v0

a0






:=







0

0

0









1.4. Minimum-time 
onstrained velo
ity planning 39� �nal state
xf :=







sf

vf

af






:=







2

1

0, 25





� problem 
onstraints
vM = 1, 5 m/s aM = 0.6 m/s2 jM = 0.5 m/s3The jerk, a

eleration, velo
ity and spa
e pro�les, obtained in this 
ase, aredepi
ted in �gure 1.6.
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Figure 1.6: The pseudo-optimal pro�les of jerk ū(t), a

eleration ā(t), velo
ity v̄(t),and spa
e s̄(t) for example 2.Example 3: the problem data are given by:� initial state
x0 :=







s0

v0

a0






:=







0

1

−0.5





� �nal state
xf :=







sf

vf

af






:=







2, 167

0, 5

0, 5









40 Chapter 1. Minimum-time velo
ity planning� problem 
onstraints
vM = 1 m/s aM = 0.5 m/s2 jM = 0.5 m/s3Figure 1.7 shows optimal solution obtained by means of the MTC algorithm.
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Figure 1.7: The pseudo-optimal pro�les of jerk ū(t), a

eleration ā(t), velo
ity v̄(t),and spa
e s̄(t) for example 3.



Chapter 2Path generation andautonomous parking A goal without a planis just a wish.� Antoine de Saint-ExuperyIn this 
hapter the problem of the path planning for nonholonomi
 vehi-
les is dis
ussed. The two methods presented in the following are well suitedfor their implementation into the framework of autonomous parking of au-tonomous vehi
les.Fist se
tion proposes a multi-optimization approa
h to the autonomousparking of 
ar-like vehi
les [22℄. It uses a polynomial 
urve primitive, the η
3-spline, to build up intrinsi
ally feasible path maneuvers over whi
h to minimizewith a weighted sum method the total length of parking paths and the mod-uli of the maximum path 
urvature and 
urvature derivative. The approa
htakes into a

ount the mandatory 
onstraint of obsta
le avoidan
e and max-imal steering angle and the 
onstraint of maximal 
urvature derivative whi
his a sele
table limit to ensure the desired smoothness of the parking paths.



42 Chapter 2. Path generation and autonomous parkingSimulation results are in
luded for a garage parking example.Se
tion 2.2 addresses the smooth path generation of a tru
k and trailervehi
le (
f. [23℄). It is shown how the fourth-order geometri
 
ontinuity of thetrailer path (
ontinuity of the unit tangent ve
tor, 
urvature, and �rst andse
ond derivatives of 
urvature) is asso
iated to the vehi
le's smooth 
ontrolinputs (velo
ity and steering of the tru
k). Then, taking into a

ount the non-holonomi
 
onstraints of the arti
ulated vehi
le, the path generation 
an beperformed by the introdu
tion of the η
4-spline. This is a ninth-order polyno-mial 
urve primitive that 
an interpolate given Cartesian points with asso
i-ated arbitrary unit tangent ve
tor, 
urvature, and �rst and se
ond derivativesof 
urvature. The η4-spline depends on a set of eight (eta) parameters that 
anbe freely 
hosen to 
hange the path shape without 
hanging the interpolations
onditions at the path endpoints. Completeness, minimality, and symmetry ofthe η

4-spline are established. An example on a parking maneuver of the ar-ti
ulated vehi
le is presented and the pertinent optimal path planning is alsodis
ussed.2.1 Multi-optimization of η3-splines for autonomousparkingThis se
tion proposes a multi-optimization approa
h to the autonomous park-ing of 
ar-like vehi
les. Fo
using on the planning of motion maneuvers of 
ar-like vehi
les, the parking problem 
an be theoreti
ally introdu
ed as follows:given an initial 
on�guration and a �nal 
on�guration of the vehi
le, �nd a pathjoining the initial and �nal 
on�gurations su
h that: 1) the path is 
ollision-free, i.e. the vehi
le on the path avoids any 
ollision with all the obsta
les ofthe parking s
enario (other 
ars, walls, 
urbs, et
.); 2) the path is feasible (oradmissible), i.e. the vehi
le on the path satis�es the di�erential 
onstraints ofthe vehi
le model (the nonholonomi
 
onstraints) and the a
tuator 
onstraints(su
h as e.g. the bound on the maximal steering angle of the front wheels).The parking problem without di�erential and a
tuator 
onstraints be
omes



2.1. Multi-optimization of η3-splines for autonomous parking 43the so-
alled piano mover's problem whi
h is a 
lassi
 problem in the motionplanning literature (
f. the book [24℄ and the extensive referen
es in
luded).When the parking problem formulation is 
omplete with both requirements1) and 2), the approa
hes exposed in the literature are mainly based on atwo-step pro
edure: First, a 
ollision-free path that ignores di�erential (anda
tuator) 
onstraints is determined. Then this path is suitably modi�ed inorder to a

ommodate to the 
onstraints. In su
h a way, the �rst step justrequires to pi
k up a solution te
hnique for the piano mover's problem andin the se
ond step ad ho
 smoothing te
hniques or lo
al steering methods aredevised to a

omplish a 
omplete solution.The two-step pro
edure was �rst proposed by Laumond et al. in [25℄ andsubsequently several variants appeared [26�28℄ (also 
f. [29℄ and referen
esherein in
luded).The solution proposed in this se
tion, �rst addresses the parking problemas a smooth feedforward 
ontrol problem where the vehi
le's sought 
ontrolinputs, the linear velo
ity and the front wheel steering angle, are C1-signals,i.e. 
ontinuous time fun
tions admitting derivatives that are still 
ontinuous.Then, the introdu
tion of the 
on
ept of third-order geometri
 
ontinuity ofCartesian paths and the pro
edure of dynami
 path inversion as exposed in [5℄permits the feedforward 
ontrol problem to be redu
ed to a purely geometri
problem followed by a velo
ity planning problem. This geometri
 problem re-gards the sear
h of a sequen
e of feasible paths 
onne
ting the initial vehi
le
on�guration to the �nal one while satisfying all the the required 
onstraints(obsta
le avoidan
e, maximum steering angle, et
.). In this 
ontext, a path isfeasible if it is a G3-path, i.e. a path that has 
ontinuity, along the 
urve, of theunit-tangent ve
tor, 
urvature, and derivative of the 
urvature with respe
t tothe ar
 length (
f. subse
tion 2.1.1).2.1.1 The smooth parking problemWe 
onsider an autonomous parking problem for the 
ar-like vehi
le depi
ted in�gure 2.1. The Cartesian 
oordinates of the rear-axle middle-point are denoted
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Figure 2.1: The 
ar-like vehi
le on the Cartesian plane.by x, y and θ is the vehi
le orientation angle with respe
t to the X axis. Thedistan
e between the rear-axle and the front-axle is l. With the usual modelingassumptions (no-slippage of the wheels, rigid body, et
.) the following nonlinearkinemati
 model of the 
ar-like vehi
le 
an be dedu
ed:










ẋ(t) = v(t) cos θ(t)

ẏ(t) = v(t) sin θ(t)

θ̇(t) = 1
l v(t) tan δ(t) ,

(2.1)where the vehi
le 
ontrol inputs are v(t) and δ(t), the velo
ity of the rear-axlemiddle-point and the steering angle of the front wheels respe
tively. Re
allde�nition 7 of G3-paths, that will be used along this 
hapter.In order to obtain a smooth motion 
ontrol, inputs v and δ must be fun
-tions with C1 
ontinuity, i.e. 
ontinuous fun
tions with 
ontinuous �rst deriva-tives. A 
onne
tion between smooth inputs and paths of the 
ar-like vehi
le isestablished by the following result.Proposition 3 Assign any T > 0. If a Cartesian path Γ is generated by the
ar-like vehi
le des
ribed by system (2.1), with inputs v(t), δ(t) ∈ C1([0, T ])where v(t) 6= 0 and |δ(t)| < π
2 ∀t ∈ [0, T ], then Γ is a G3-path. Conversely,



2.1. Multi-optimization of η3-splines for autonomous parking 45given any G3-path Γ there exist inputs v(t), δ(t) ∈ C1([0, T ]) with v(t) 6= 0and |δ(t)| < π
2 ∀t ∈ (0, T ), and initial 
onditions su
h that the path generatedby (2.1) 
oin
ides with the given Γ.Proof. It follows from an analogous result presented in [5℄ for uni
y
le mobilerobots. �Instrumentals to our approa
h to path planning for the autonomous park-ing of 
ar-like vehi
les are the following 
on
epts of 
on�guration ve
tor and
orresponding 
on�guration spa
e.De�nition 3 The 
oordinate position (
onsidering the middle-point of the rear-axle) and orientation of the vehi
le with respe
t to the Cartesian plane {X,Y }and the steering angle δ 
ompose the 
on�guration ve
tor as follows:

q
.
=













q1

q2

q3

q4













.
=













x

y

θ

δ













∈ Q , (2.2)where Q .
= R

2 × [0, 2π[× [−δM , +δM ], is the 
on�guration spa
e; herein δMis the maximum allowed value of the steering angle.In the parking s
enario, the o

upan
y area of the 
ar-like vehi
le is denotedby A whi
h is normally a re
tangle moving in the Cartesian plane {X,Y },referred as the parking spa
e P. The 
ar body A o

upies a portion area of Pthat depends on the 
on�guration ve
tor q, i.e. A = A(q) ⊂ P. In the parkingspa
e there are also the obsta
les Bi, i = 1, 2, . . . n, (see �gure 2.2) 
onsideredas 
onvex polygons without loss of generality. Re
all that a non-
onvex polygon
an be always de
omposed in two or more 
onvex polygons.The parking problem 
an be introdu
ed as a smooth feedforward 
ontrolproblem for model (2.1), i.e. the problem of devising inputs v(t), δ(t) ∈ C1, forwhi
h the vehi
le starting from a given 
on�guration qs = [xs ys θs δs]
′ rea
hesan assigned �nal or goal 
on�guration qg = [xg yg θg δg]

′ while avoiding all theobsta
les and satisfying at any time the 
onstraint |δ(t)| ≤ δM . The sought
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Figure 2.2: Parking spa
e P with 
ar A(q) and obsta
les Bi, i = 1, . . . , n.feedforward 
ontrol may admit maneuvers, i.e. 
hanges of sign in the vehi
levelo
ity v(t), so that when the velo
ity is positive the 
ar performs a forwardmovement whereas when it is negative we have a 
ar's ba
kward movement.On the grounds of proposition 3 and of the (dynami
) path inversion 
on-
ept [5℄ introdu
ed in the pre
edent 
hapter, the smooth parking feedforward
ontrol problem 
an be redu
ed to a purely geometri
 problem, to be morespe
i�
 a purely Cartesian G3-path planning problem followed by a velo
-ity planning on the determined paths. This means determining a sequen
e of(feasible) G3-paths {Γ1,Γ2, . . .Γh} (h is the number of parking paths) thatthe vehi
le 
an exa
tly follow by applying feedforward inputs v(t), δ(t) where
v(t) ∈ C1 
an be freely designed with the 
onstraint of having zero velo
ityand zero a

eleration at the the start and at the end of ea
h path Γi. Thesteering input on the path Γi 
an be simply determined by (
f. [5℄ and [30℄)

δ(t) = ± arctan(lκi(s))|s=∫ t
ti
v(ξ)dξ ,for a forward (+) or ba
kward (-) movement. Herein κi(s) is the 
urvaturefun
tion of ar
 length s and ti is the time instant at the beginning of Γi.



2.1. Multi-optimization of η3-splines for autonomous parking 47In the following, a path Γ to be followed by the vehi
le with a forward orba
kward movement will be denoted by Γ+ or Γ− respe
tively. Therefore, a se-quen
e of paths {Γ1,Γ2, . . .Γh} is a
tually {Γ+
1 ,Γ

−
2 , . . .Γ

+
h } or {Γ−

1 ,Γ
+
2 , . . .Γ

−
h }if h is odd, and {Γ+

1 ,Γ
−
2 , . . .Γ

−
h } or {Γ−

1 ,Γ
+
2 , . . .Γ

+
h } if h is even. In the intro-du
ed sequen
e of paths we see an alternation of forward and ba
kward paths,i.e. a forward path Γ+

i is followed by a ba
kward Γ−
i+1 or vi
eversa. Any pairof subsequent paths {Γ+

i ,Γ−
i+1} or {Γ−

i ,Γ+
i+1} is made of paths that meet ea
hother at a 
ommon Cartesian point 
orresponding to a 
on�guration ve
tor qi(i = 1, . . . h − 1) whi
h is still 
ommon for the vehi
le at the end of path Γiand at the start of Γi+1 in 
ase of no steering at standstill, i.e. the 
ase when

δ̇(t) = 0 if v(t) = 0.When the vehi
le parking problem 
an be solved without maneuvers wehave just one G3-path Γ+
1 or Γ−

1 (h = 1) to determine and optimize (see�gure 2.3). If no solution 
an be found with one path be
ause of the obsta
les
PSfrag repla
ements
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A(qg)

Γ+
1

Figure 2.3: The vehi
le from qs to qg with forward path Γ+
1 or ba
kward Γ−

1 .and the limitation given by the maximum steering angle δM , a solution maybe sought with two 
hained paths {Γ+
1 ,Γ

−
2 } or {Γ−

1 ,Γ
+
2 } (h = 2). In this 
asethere is one motion inversion of the vehi
le or, in other words, one maneuver



48 Chapter 2. Path generation and autonomous parkingto 
omplete the parking task. On the parking spa
e, Γ1 and Γ2 meet at a 
usppoint whose Cartesian 
oordinates are given by the �rst two 
omponents of
on�guration ve
tor q1. In �gure 2.4, the 
ase of two maneuvers (h = 2) isdepi
ted. When also with h = 2 no solution is found we 
an try with morepaths. Figure 2.5 shows the 
ase of three maneuvers h = 3.
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Figure 2.4: The two-paths sequen
es {Γ+
1 ,Γ

−
2 } and {Γ−

1 ,Γ
+
2 } for the parkingplanning.The G3-paths Γi, i = 1, . . . , h 
omposing the sequen
e {Γ1,Γ2, . . .Γh} mustsatisfy spe
i�
 interpolation 
onditions at the endpoints of ea
h Γi (
f. subse
-tion 2.1.2) in order to guarantee the overall feasibility of the planned paths.In parti
ular 
onsidering that the vehi
le starts at the given 
on�guration

qs = [xs ys θs δs]
′ it follows that the starting point of Γ1 satis�es:� Cartesian 
oordinates are (xs ys);� dire
tion angle of the unit-tangent ve
tor is θs;
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Figure 2.5: The three-paths sequen
es {Γ+
1 ,Γ

−
2 ,Γ

+
3 } and {Γ−

1 ,Γ
+
2 ,Γ

−
3 } for theparking planning.� s
alar 
urvature κs is given by (
f. [5, 31℄)

κs =

{

1
l tan δs if Γ1 = Γ+

1

−1
l tan δs if Γ1 = Γ−

1 ;
(2.3)� the derivative of the s
alar 
urvature with respe
t to the ar
 length, κ̇s
an be freely 
hosen.Analogously, the vehi
le arrives �nally at the goal 
on�guration qg =

[xg yg θg δg]
′ for whi
h the endpoint of Γh satis�es:� Cartesian 
oordinates are (xg yg);� dire
tion angle of the unit-tangent ve
tor is θg;� s
alar 
urvature κg is given by

κg =

{

1
l tan δg if Γh = Γ+

h

−1
l tan δg if Γh = Γ−

h ;
(2.4)



50 Chapter 2. Path generation and autonomous parking� the derivative of the s
alar 
urvature with respe
t to the ar
 length, κ̇gis a free parameter of the planning problem.The smooth parking problem 
onsidered in this paper 
an be introdu
ed asfollows.Problem 1 (Multi-optimization of a sequen
e of G3-paths for thesmooth parking problem) Given the number h of paths, 
onsider the spa
e
Fh of all the sequen
es of G3-paths {Γ+

1 ,Γ
−
2 , . . .Γh} (or {Γ−

1 ,Γ
+
2 , . . .Γh}) su
hthat this sequen
e:a) is feasible as a whole, i.e. there exist feedforward 
ontrols v(t), δ(t) ∈ C1 forwhi
h the vehi
le of model (2.1) follows the path sequen
e exa
tly, andb) 
onne
ts the given initial 
on�guration qs to the �nal 
on�guration qg.Find the path sequen
e in Fh that minimizes the indexes� the maximum value of the absolute 
urvature on the h paths,� the maximum value of the absolute 
urvature derivative on the h paths,and� the total length of the h paths Γ1,Γ2, . . .Γhsubje
t to the following 
onstraints1) avoidan
e of all the obsta
les B1,B2 . . .Bn along the paths Γ1,Γ2, . . .Γh;2) {maximum value of the absolute 
urvature on the h paths} ≤ κM ;3) {maximum value of the absolute 
urvature derivative on the h paths}≤ κ̇M ;4) avoidan
e of steering at standstill;where κM = 1

l tan δM and κ̇M is a freely 
hosen bound for the absolute valueof the 
urvature derivative.



2.1. Multi-optimization of η3-splines for autonomous parking 51Remark It is worth noting the di�eren
es among the 
onstraints of prob-lem 1. Constraints 1) and 2) are hard 
onstraints related to obsta
le avoidan
eand maximal steering angle (whi
h is a vehi
le's me
hani
al 
onstraint) re-spe
tively, whereas 
onstraints 3) and 4) are soft 
onstraints related to pathsmoothness and parking modality respe
tively. In parti
ular, if steering atstandstill is admitted, the fourth 
onstraint, whi
h is 
onsidered in this ex-position, 
an be removed without 
hanging the proposed overall approa
h tothe parking problem.The 
onstrained multi-optimization of problem 1 is a sear
h in the in�nite-dimensional spa
e Fh. In the next subse
tion, an approximation s
heme basedon η
3-splines will make possible to redu
e the sear
h into a �nite-dimensionalspa
e for whi
h standard parameter optimization 
an be used.2.1.2 Shaping paths sequen
e with η

3-splinesThe η3-splines (
f. in [32℄) are an e�e
tive tool to approximate Cartesian pathswith third-order geometri
 
ontinuity. Indeed, they 
an interpolate a sequen
eof Cartesian points over whi
h unit-tangent ve
tor, 
urvature, and 
urvaturederivative 
an be arbitrarily assigned. A single η
3-spline is a seventh-orderpolynomial 
urve

p(u;η) = [px(u) py(u)]
′ , u ∈ [0, 1] , (2.5)

px(u) =

7
∑

i=0

αiu
i , py(u) =

7
∑

i=0

βiu
i , (2.6)that depends on a six-dimensional ve
tor η (the eta parameter ve
tor) andinterpolates the data ve
tors ca = [xa ya θa κa κ̇a]

′ and cb = [xb yb θb κb κ̇b]
′, atthe 
urve endpoints p(0;η) and p(1;η) respe
tively: (xa ya) and (xb yb) arethe Cartesian 
oordinates of the endpoints, θa and θb are the dire
tion anglesof the unit-tangent ve
tors, κa and κb are the s
alar 
urvatures, and κ̇a and

κ̇b are the derivatives of the s
alar 
urvatures with respe
t to the ar
 length.The η is a free ve
tor in R
2
+×R

4 that 
an be used to shape the resulting path



52 Chapter 2. Path generation and autonomous parkingwhile maintaining the interpolation 
onditions at the endpoints. The 
omplete
losed-form expressions of the η
3-spline are reported in [32℄ and [33℄.Here, we propose to use a simpli�ed version of the η

3-spline that onlydepends on the �rst two 
omponents of ve
tor η (a
tually the most impor-tant ones, 
f. se
tion V of [32℄) while the remaining 
omponents are set tozero. Spe
i�
ally, in this 
ase η is rede�ned as the two-dimensional ve
tor
[ηa ηb]

′ ∈ R
2
+ where its positive 
omponents are the mathemati
al velo
ities ofthe 
urve at the endpoints, i.e. ηa = ‖ṗ(0;η)‖ and ηb = ‖ṗ(1;η)‖. The 
orre-sponding simpli�ed 
losed-form expressions of 
oe�
ients αi, βi, i = 0, 1, . . . , 7,appearing in (2.5) and (2.6) are detailed below:

α0 = xa, α1 = ηa cos θa,

α2 = −
1

2
η2aκa sin θa, α3 = −

1

6
η3aκ̇a sin θa,

α4 = 35 (xb − xa)− 20ηa cos θa +

(

5κa +
2

3
ηaκ̇a

)

η2a sin θa − 15ηb cos θb

−
(

5

2
κb −

1

6
ηbκ̇b

)

η2b sin θb,

α5 = −84(xb − xa) + 45ηa cos θa − (10κa + ηaκ̇a)η
2
a sin θa + 39ηb cos θb

+

(

7κb −
1

2
ηbκ̇b

)

η2b sin θb,

α6 = 70(xb − xa)− 36ηa cos θa +

(

15

2
κa +

2

3
ηaκ̇a

)

η2a sin θa − 34ηb cos θb

−
(

13

2
κb −

1

2
ηbκ̇b

)

η2b sin θb,

α7 = −20(xb − xa) + 10ηa cos θa −
(

2κa +
1

6
ηaκ̇a

)

η2a sin θa + 10ηb cos θb

+

(

2κb −
1

6
ηbκ̇b

)

η2b sin θb,

β0 = ya, β1 = ηa sin θa,

β2 =
1

2
η2aκa cos θa, β3 =

1

6
η3aκ̇a cos θa,

β4 = 35 (yb − ya)− 20ηa sin θa −
(

5κa +
2

3
ηaκ̇a

)

η2a cos θa − 15ηb sin θb
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+

(

5

2
κb −

1

6
ηbκ̇b

)

η2b cos θb,

β5 = −84(yb − ya) + 45ηa sin θa + (10κa + ηaκ̇a)η
2
a cos θa + 39ηb sin θb

−
(

7κb −
1

2
ηbκ̇b

)

η2b cos θb,

β6 = 70(yb − ya)− 36ηa sin θa −
(

15

2
κa +

2

3
ηaκ̇a

)

η2a cos θa − 34ηb sin θb

+

(

13

2
κb −

1

2
ηbκ̇b

)

η2b cos θb,

β7 = −20(yb − ya) + 10ηa sin θa +

(

2κa +
1

6
ηaκ̇a

)

η2a cos θa + 10ηb sin θb

−
(

2κb −
1

6
ηbκ̇b

)

η2b cos θb .The in�nite-dimensional spa
e Fh of problem 1 
an be approximated with a�nite-dimensional spa
e by using η
3-splines. Consider an element of Fh, i.e. asequen
e of G3-paths {Γ+

1 ,Γ
−
2 , . . . ,Γh} (or {Γ−

1 ,Γ
+
2 , . . . ,Γh}), then ea
h Γ+

i or
Γ−
i , will be approximated by a single (simpli�ed) η3-spline denoted as p+

i (u;ηi)or p−
i (u;ηi). Hen
e, the sequen
e of η3-splines

{p+
1 (u;η1),p

−
2 (u;η2), . . . ,ph(u;ηh)} ,or

{p−
1 (u;η1),p

+
2 (u;η2), . . . ,ph(u;ηh)} ,will be used to set up the multi-optimization for the parking path planning.The simpli�ed spline pi(u;ηi) is de�ned by the interpolating 
onditions

ca,i = [xa,i ya,i θa,i κa,i κ̇a,i]
′ and cb,i = [xb,i yb,i θb,i κb,i κ̇b,i]

′ at the path end-points and by the parameter ve
tor ηi = [ηa,i ηb,i]
′.Remark In the proposed approximating s
heme, a path Γi is a
tually ap-proximated by pi ([0, 1];ηi), i.e. the Cartesian image over interval [0, 1] of the

η
3-spline 
urve pi (u;ηi). In the following, to simplify notation the same sym-bol pi (u;ηi) or even pi is used to denote both the parametri
 
urve and the
orresponding path.



54 Chapter 2. Path generation and autonomous parkingThe parking sequen
e of η3-splines {p1,p2, . . . ,ph} 
an satis�es the 
on-ditions a) and b) and the 
onstraint 4) of problem 1 by a proper assignment ofthe interpolation 
onditions. These assignments are exempli�ed below for the
ases h = 1, 2.Case h = 1 with {p+
1 (u;η1)} (one forward movement of the vehi
le): Thevehi
le starts at 
on�guration qs and arrives at 
on�guration qg (
f. (2.3)and (2.4)). Hen
e, the spline parameters 
an be set as follows:

p+
1 (u;η1) :















































ca,1 =

















xs

ys

θs
1
l tan δs

z1

















, cb,1 =

















xg

yg

θg
1
l tan δg

z2

















,

η1 = [z3 z4]
′,where z1, z2 ∈ [−κ̇M , κ̇M ] and z3, z4 ∈ R+ indi
ate the free variables to beoptimized. These are pa
ked in the ve
tor z = [z1 z2 z3 z4]

′ that belongs to thesear
h spa
e Z := [−κ̇M , κ̇M ]2 × R
2
+.Case h = 1 with {p−

1 (u;η1)} (one ba
kward movement of the vehi
le): Thespline parameters 
an be set as follows:
p−
1 (u;η1) :















































ca,1 =

















xs

ys

θs + π

−1
l tan δs

z1

















, cb,1 =

















xg

yg

θg + π

−1
l tan δg

z2

















,

η1 = [z3 z4]
′,where z = [z1 z2 z3 z4]

′ ∈ Z = [−κ̇M , κ̇M ]2 × R
2
+.Case h = 2 with {p+

1 (u;η1),p
−
2 (u;η2)} (one forward movement plus a ba
k-
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an be set as follows
p+
1 (u;η1) :















































ca,1 =

















xs

ys

θs
1
l tan δs

z1

















, cb,1 =

















z9

z10

z11

z12

z2

















,

η1 = [z5 z6]
′,

p−
2 (u;η2) :















































ca,2 =

















z9

z10

z11 + π

−z12
z3

















, cb,2 =

















xg

yg

θg + π

−1
l tan δg

z4

















,

η2 = [z7 z8]
′,where the free variables are zi, i = 1, . . . 12, and they form the ve
tor z ∈ Zwith Z := [−κ̇M , κ̇M ]4 × R

4
+ × R

2 × [0, 2π) × [−κM , κM ] whi
h is a twelve-dimensional sear
h spa
e.Case h = 2 with {p−
1 (u;η1),p

+
2 (u;η2)} (one ba
kward movement plus a aforward one): similarly to the previous 
ase, all the parameters 
an be set asfollows

p−
1 (u;η1) :















































ca,1 =

















xs

ys

θs + π

−1
l tan δs

z1

















, cb,1 =

















z9

z10

z11

z12

z2

















,

η1 = [z5 z6]
′,
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p+
2 (u;η2) :















































ca,2 =

















z9

z10

z11 + π

−z12
z3

















, cb,2 =

















xg

yg

θg
1
l tan δg

z4

















,

η2 = [z7 z8]
′.When h > 2, the spline parameters 
an be set up similarly as in the pre-sented 
ases. Table 2.1 reports the dimension and stru
ture of the sear
h spa
e

Z as a fun
tion of h. In parti
ular, when the parking is done with h splines,the dimension of the sear
h spa
e is 8h − 4: every added spline in
reases of 8the dimension of Z.Remark The proposed approximation s
heme repla
es ea
h path Γi of se-quen
e {Γ1,Γ2, . . . ,Γh} with only one η
3-spline to avoid ex
essive in
reasingof the dimension of the sear
h spa
e Z. Yet, it would be possible within thesame proposed framework to improve the approximation by using two or more

η
3-splines for ea
h Γi.2.1.3 Setting up the multi-optimizationIn this se
tion the multi-optimization of problem 1 is dealt with the sub-stitution of the in�nite-dimensional spa
e Fh with the �nite-dimensional pa-rameter spa
e Z introdu
ed in the previous se
tion. This 
orresponds to dothe sear
hing for multi-optimization on the sequen
es of simpli�ed η

3-splines
{p1(u;η1),p2(u;η2), . . . ,ph(u;ηh)} instead of the sequen
es of G3-paths in-trodu
ed in subse
tion 2.1.2.The three indexes to be minimized using the standard weighted sum method[34℄ are (
f. problem 1): the maximum value of the 
urvature modulus on the
h splines, the maximum value of the absolute value of the 
urvature derivative(with respe
t to the ar
 length) on the h splines, and the total length of the
h splines. These indexes are respe
tively denoted by κmax, κ̇max, and stot anddepend on the parameter ve
tor z ∈ Z. They 
an be determined as follows (the
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2
+2 12 [−κ̇M , κ̇M ]4 × R

4
+ × R

2×

[0, 2π) × [−κM , κM ]3 20 [−κ̇M , κ̇M ]6 × R
6
+ × R

4×

[0, 2π)2 × [−κM , κM ]2... ... ...
h 8h− 4

[−κ̇M , κ̇M ]2h × R
2h
+ × R

2(h−1)×

[0, 2π)h−1 × [−κM , κM ]h−1Table 2.1: Dimension and stru
ture of the sear
h spa
e Z.dependen
ies on z are omitted for simpli
ity and pi(u;ηi) ≡ [px,i(u) py,i(u)]
′,

i = 1, . . . , h, 
f. (2.5)):
κmax

.
= max

i=1,...h
κmax,i , (2.7)where (i = 1, . . . , h)

κmax,i
.
= max

u∈[0,1]
|κi(u)| ,and

κi(u) =
ṗx,i(u)p̈y,i(u)− p̈x,i(u)ṗy,i(u)

(ṗ2x,i(u) + ṗ2y,i(u))
3
2

,is the s
alar 
urvature of spline pi(u;ηi);
κ̇max

.
= max

i=1,...h
κ̇max,i , (2.8)where (i = 1, . . . , h)

κ̇max,i
.
= max

u∈[0,1]

∣

∣

∣

∣

dκi
ds

(u)

∣

∣

∣

∣

,
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dκi
ds

(u) =
ṗx,i

...
p y,i −

...
p x,iṗy,i

(ṗ2x,i + ṗ2y,i)
2
− 3

(ṗx,ip̈y,i − p̈x,iṗy,i)(ṗx,ip̈x,i + ṗy,ip̈y,i)

(ṗ2x,i + ṗ2y,i)
3

,is the derivative of the 
urvature of spline pi(u;ηi) with respe
t to the ar
length (for brevity the dependen
y on u is omitted in the right side of theabove relation);
stot

.
=

h
∑

i

stot,i , (2.9)where
stot,i

.
=

∫ 1

0
[ṗ2x,i(ξ) + ṗ2y,i(ξ)]

1/2dξ .The 
onstraint of obsta
le avoidan
e is dealt with the 
on
ept of o

upan
yspan of the vehi
le along a path planning:De�nition 4 The o

upan
y span of the vehi
le along the spline sequen
e
{p1,p2, . . . ,ph} is the set de�ned as

S .
=

n
⋃

i=1

Si ,where
Si .= {p ∈ P : p ∈ A(q) , q1 = px,i(u), q2 = py,i(u),

q3 = arg(ṗx,i(u) + jṗy,i(u)) , u ∈ [0, 1]} .Note that the o

upan
y span depends on z ∈ Z, i.e. S ≡ S(z). De�nethe obsta
le region O as the union of all the obsta
les, i.e. O .
= ∪ni=1Bi andthe vehi
le avoids all the obsta
les along a path planning if and only if theinterse
tion of S(z) and O is the empty set (
f. 
onstraint (2.11) below).Now the nonlinear 
onstrained multiobje
tive optimization problem for thegeometri
 planning of autonomous parking 
an be stated as follows:Problem 2 (Multi-optimization of a sequen
e of η

3-splines for thesmooth parking problem) Given the number h of paths, 
onsider the param-eter spa
e Z that de�nes the sequen
es {p+
1 ,p

−
2 , . . . ,ph} (or {p−

1 ,p
+
2 , . . . ,ph})
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ording to the interpolating s
heme exposed in se
tion 2.1.3. Then, the posedproblem is (λ1, λ2, λ3 ≥ 0 and λ1 + λ2 + λ3 = 1):
min
z∈Z

λ1κmax(z) + λ2κ̇max(z) + λ3stot(z) , (2.10)subje
t to
S(z) ∩ O = ∅ , (2.11)
κmax(z) ≤ κM , (2.12)
κ̇max(z) ≤ κ̇M . (2.13)The 
oe�
ients λ1, λ2, and λ3 of the 
omposite index to be minimizedin (2.10) 
an be freely 
hosen in order to weight the smoothness of the resultingmaneuver paths (whi
h is related to low values of both κmax and κ̇max) versusthe minimization of stot, the total length of the parking paths.Remark Note that the possible 
onstraint of avoiding steering at vehi
le'sstandstill does not appear in the 
onstraints (2.12)-(2.13) be
ause it is plainlyenfor
ed by proper assignment of the geometri
 interpolating 
onditions on the

η
3-splines.Obsta
le avoidan
e 
onstraint (2.11) 
an be equivalently redu
ed to anequality 
onstraint by 
omputing the maximal 
ollision area of the vehi
lealong the spline sequen
e: m
a .

= max
i=1,...,h

m
ai , (2.14)m
ai .= max
u∈[0,1]

{area (A(q) ∩ O) : q1 = px,i(u),

q2 = py,i(u), q3 = arg(ṗx,i(u) + jṗy,i(u))} .Constraint (2.11) is therefore equivalent tom
a(z) = 0 ,and in su
h a way problem 2 be
omes a 
onstrained minimization problem forwhi
h a standard penalty method [35℄ 
an take into a

ount all the 
onstraints



60 Chapter 2. Path generation and autonomous parkingso as to redu
e the whole multi-optimization to the minimization of just oneindex. In a real-time s
enario for autonomous parking, fast lo
al minimizationalgorithms 
an be then implemented to solve problem 2 provided that the fol-lowing data is readily available: (1) the number h of splines; (2) the maneuversequen
e to prefer {p+
1 ,p

−
2 , . . . ,ph} or {p−

1 ,p
+
2 , . . . ,ph}; (3) an initial esti-mate of the parameter ve
tor z. Reasonably, this data 
an be determined byusing look-up tables that 
an be 
onstru
ted o�-line by extensive optimizationssu
h as those based on methods of sto
hasti
 global multi-obje
tive optimiza-tion [36℄.2.1.4 Simulation resultsExample 1: Firstly, an example of garage parking maneuver in a 
onstrainedenvironment is 
onsidered for a standard 
ompa
t 
ar with wheelbase andmaximum steering angle of the front wheels l = 2.3 m and δM = 0.464 rad.Hen
e, the maximum 
urvature of the 
ar paths is κM = 1

l tan δM = 0.218 m−1.The allowed maximum absolute value of the 
urvature derivative with respe
tto the ar
 length is 
hosen as κ̇M = 2.50 m−2. The origin of the Cartesianplane P is 
hosen to be inside the parking lot that the 
ar has to rea
h. The
ar has start 
on�guration
qs = [xs ys θs δs]

′ = [7 − 6 3π/4 0]′ ,and the �nal goal 
on�guration, whi
h 
orresponds to a front 
ar parking mode(i.e. the 
ar 
an only rea
h the goal 
on�guration with a forward �nal motionbe
ause of the surrounding obsta
les (
f. �gure 2.6), is
qg = [xg yg θg δg] = [0.7 0 π 0]′ .The multi-optimizations for solving this parking problem are set up withweights λ1 = 0.5, λ2 = 0.2, and λ3 = 0.3. All the possible spline sequen
esto be 
onsidered up to three splines are the following (the arguments of the
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η
3-splines are omitted for 
ompa
tness):

h = 1 : {p+
1 }, {p−

1 };
h = 2 : {p+

1 , p
−
2 }, {p−

1 , p
+
2 };

h = 3 : {p+
1 , p

−
2 , p

+
3 }, {p−

1 , p
+
2 , p

−
3 }.The sequen
es {p−

1 }, {p+
1 , p

−
2 }, {p−

1 , p
+
2 , p

−
3 } have to be dis
arded due tothe fa
t that the last spline has to be 
overed with a 
ar's forward move-ment (front 
ar parking). Hen
e the topologi
ally possible sequen
es are: {p+

1 },
{p−

1 , p
+
2 }, {p+

1 , p
−
2 , p

+
3 }. Parking with {p+

1 } is not feasible be
ause the multi-optimization (2.10) fails to satisfy all the required 
onstraints (2.11)-(2.13).Instead, both sequen
es {p−
1 , p

+
2 } and {p+

1 , p
−
2 , p

+
3 } lead to feasible parkingmaneuvers.For the two splines maneuver the multi-optimization of {p−

1 , p
+
2 } leads toa Pareto optimal solution

z̄ ∈ Z = [−2.5, 2.5]4 × R
4
+ × R

2 × [0, 2π) × [−0.218, 0.218] ,for whi
h κmax(z̄) = 0.143 m−1, κ̇max(z̄) = 0.260 m−2, stot(z̄) = 22.8 m. Thissolution is depi
ted with graphi
 simulation in �gure 2.6. Plots of 
urvatureand 
urvature derivative are reported in �gure 2.7.For the three splines maneuver the multi-optimization of {p+
1 , p

−
2 , p

+
3 }leads to solution

z̄ ∈ Z = [−2.5, 2.5]6 × R
6
+ × R

4 × [0, 2π)2 × [−0.218, 0.218]2 ,for whi
h κmax(z̄) = 0.168 m−1, κ̇max(z̄) = 0.704 m−2, stot(z̄) = 25 m. Thissolution is depi
ted �gure 2.8, while 
urvature and 
urvature derivative arereported in �gure 2.9.Example 2: As se
ond example, a parallel parking maneuver in a 
onstrainedenvironment is 
onsidered with the same data for the dynami
 model and forthe 
onstraints, given for the pre
edent example. The 
ar has start and �nal
on�gurations
qs = [xs ys θs δs]

′ = [−2.5 2.5 π 0]′ ,
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Figure 2.6: Optimal parking with two-spline maneuver {p−
1 ,p

+
2 } in example 1.
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Figure 2.7: Plots of 
urvature and 
urvature derivative as fun
tions of the ar
length along the entire optimal spline maneuver {p−
1 ,p

+
2 } in example 1.
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Figure 2.9: Plots of 
urvature and 
urvature derivative as fun
tions of the ar
length along the entire optimal spline maneuver {p+
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−
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+
3 } in example 1.
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+
3 } in example 2.
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k and trailer vehi
le 65and
qg = [xg yg θg δg] = [0 0 π 0]′ ,respe
tively. Setting λ1 = 0.3, λ2 = 0.2, and λ3 = 0.5, sequen
e {p+

1 , p
−
2 , p

+
3 }is the �rst one results to be feasible. The optimal solution

z̄ ∈ Z = [−2.5, 2.5]6 × R
6
+ × R

4 × [0, 2π)2 × [−0.218, 0.218]2 .for the sequen
e {p+
1 , p

−
2 , p

+
3 } gives the results: κmax(z̄) = 0.165m−1, κ̇max(z̄) =

0.551 m−2, stot(z̄) = 17.9 m. This solution is depi
ted with graphi
 simulationin �gure 2.10. Plots of 
urvature and 
urvature derivative are reported in �g-ure 2.11.2.2 Path generation for a tru
k and trailer vehi
leIn this se
tion a method for the smooth path generation of a tru
k and trailervehi
le is presented. The advantages and potentialities in a
hieving full orpartial autonomy in the guidan
e of automated vehi
les are a strong motivationto improve 
urrent te
hnologies and methodologies. Fo
using on the motionautomation of arti
ulated vehi
les, the present work addresses the need togenerate high quality drive paths for an automated tru
k and trailer vehi
le.This need 
an arise in a variety of appli
ations (e.g. in industry, agri
ulture,mining, et
. [37, 38℄).Considering the usual kinemati
 model of a tru
k and trailer vehi
le, thisse
tion presents a new traje
tory generation method in whi
h the feedforward(i.e. open-loop) 
ontrol 
an steer the vehi
le from an initial 
on�guration toa �nal one, while permitting free shaping of the trailer path 
onne
ting these
on�gurations. With this method, the feedforward 
ontrols, i.e. the tru
k velo
-ity and the steering angle of the front wheels, are smooth C1-signals, the initialand �nal 
on�gurations are arbitrary and the 
onne
ting path is modeled byusing a new 
urve primitive, the η
4-spline.The problem of nonholonomi
 traje
tory generation for an n-trailer ve-hi
le (i.e. an arti
ulated vehi
le 
onsisting of a tru
k towing n trailers) was
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onsidered and solved in [39℄ by using three distin
t 
lasses of 
ontrol inputs:sinusoids, pie
e-wise 
onstants, and polynomials. This method relies on, by 
o-ordinate transformations, the 
onversion of the n-trailer system into a Goursatnormal form and then into the 
orresponding 
hained form [40℄ for whi
h the
ontrollability problem (i.e. the problem of steering between system 
on�gura-tions) is solved by feedforward 
ontrol. Then, by reversing the transformationsthe a
tual system inputs are obtained; however in this reversing singularitiesmay appear so that the desired 
ontrol is not guaranteed to be obtained in allplanning 
ases. Moreover, the method does not a

ount for any �exibility indire
t shaping or modeling the Cartesian paths of the trailers and the tru
k.This se
tion proposes a path generation methodology for the smooth feed-forward 
ontrol of the tru
k and trailer vehi
le within the framework of path-velo
ity de
omposition [3℄. A result presented in the following subse
tions(proposition 4) shows that the path generated by the vehi
le trailer is a G4-path [32, 33℄ (i.e. a path whi
h has fourth-order geometri
 
ontinuity) if andonly if, ex
luding kinemati
 singularities, the velo
ity and the steering fun
-tions of the tru
k are C1-fun
tions.Fourth-order geometri
 
ontinuity a

ounts for the 
ontinuity along the
urve of the path itself, the unit tangent ve
tor, the 
urvature, and the �rst andse
ond order 
urvature derivatives with respe
t to the ar
 length. Therefore,when pursuing the smooth feedforward 
ontrol of the arti
ulated vehi
le, pathplanning 
an be pertinently done with G4-paths. This naturally leads to thepolynomial G4-interpolating problem on the Cartesian plane.The se
tion presents a 
omplete solution to this interpolating problem. Thesolution is the η
4-spline whi
h is a ninth-order polynomial 
urve interpolat-ing Cartesian points with asso
iated arbitrary G4-data (unit tangent ve
tor,
urvature, �rst and se
ond derivatives of 
urvature). The η4-spline generalizesthe η2-spline and η

3-spline previously presented in the pre
edent se
tions. The
η
4-spline is a 
urve primitive that depends on set of 8 parameters, whi
h 
anbe freely 
hosen to modify the path shape without 
hanging the interpolation
onditions at the path endpoints.



2.2. Path generation for a tru
k and trailer vehi
le 672.2.1 Smooth feedforward 
ontrol of the tru
k and trailer ve-hi
leConsider a tru
k an trailer vehi
le with the trailer supposed to be joined to thetru
k at the midpoint of its rear axle. See �gure 2.12 where a s
hemati
 planview of the arti
ulated vehi
le on a Cartesian frame {x, y} is depi
ted. WePSfrag repla
ements

x1
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v
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Figure 2.12: S
hemati
 of a tru
k and trailer vehi
le.indi
ate with 
ouple (x1, y1) the 
oordinates of the axle midpoint of the trailerand with θ1 its orientation angle with respe
t to the x axis. The tru
k a
tuatesthe motion by the velo
ity v of the rear wheels and by the steering angle δof the front wheels. The distan
e between the front axle and the rear axle ofthe tru
k is d0, whereas the distan
e between the trailer axle and the rear axleof the tru
k is d1. With the usual modeling assumptions of rigid body of thetru
k and the trailer and of no-slippage of the wheels, the following nonlinearkinemati
 model of the arti
ulated vehi
le 
an be dedu
ed






















ẋ1 = v cos(θ0 − θ1) cos θ1
ẏ1 = v cos(θ0 − θ1) sin θ1
θ̇0 = v

d0
tan δ

θ̇1 = v
d1

sin(θ0 − θ1) .

(2.15)
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edent se
tions that in this 
ontext it is 
onvenient to usethe extended state of model (2.15), or 
on�guration of the arti
ulated vehi
le,whi
h is de�ned as the state plus the inputs and their derivatives:
(x1, y1, θ0, θ1, v, v̇, δ, δ̇) . (2.16)The following de�nition will be used along this se
tion:De�nition 5 (Gk-
urve, k ≥ 2) A 
urve p(u), with u ∈ [u0, u1], has k-th order geometri
 
ontinuity, and we say p(u) is a Gk-
urve, if p(u) is a

Gk−1-
urve, dk

duk
p(u) ∈ PC([u0, u1]), and the (k − 2)-th order derivative ofthe 
urvature with respe
t to the ar
 length is 
ontinuous along the 
urve, i.e.

dk−2

dsk−2κ(u) ∈ C0([u0, u1]).The Gk-
ontinuity of 
urves 
an be naturally extended to Cartesian paths asfollows:De�nition 6 (Gk-paths) A given set of points of a Cartesian plane is a Gk-path if there exists a parametri
 Gk-
urve whose image is the given path.We stated above that, in order to obtain a smooth vehi
le motion, inputs v(t)and δ(t) must be C1-fun
tions. Su
h a 
ontinuity of these vehi
le inputs islinked to the fourth-order geometri
 
ontinuity of the trailer path as stated bythe following proposition.Proposition 4 Assign any tf > 0. For model (2.15), 
onsider smooth inputs
v(t), δ(t) ∈ C1([0, tf ]), with v(t) 6= 0, |δ(t)| < π

2 and initial 
onditions su
h that
|θ0(t) − θ1(t)| < π

2 , ∀t ∈ [0, tf ]. Then the path generated by model (2.15), i.e.
[

x1

y1

]

([0, tf ]), is a G4-path. Conversely, given a G4-path Γ there exist smoothinputs v(t), δ(t) ∈ C1([0, tf ]) with v(t) 6= 0, |δ(t)| < π
2 , ∀t ∈ [0, tf ] and initial
onditions for whi
h |θ0(t)− θ1(t)| < π

2 , ∀t ∈ [0, tf ] and the path generated bysystem (2.15) 
oin
ides with the given Γ, i.e. [ x1

y1

]

([0, tf ]) ≡ Γ.
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k and trailer vehi
le 69Proof. Let us demonstrate the �rst part of the proposition. The solution of thedi�erential equations (2.15) leads to traje
tory [x1(t) y1(t)]
′, t ∈ [0, tf ] whi
his a regular Cartesian 
urve. Indeed, its derivative [ẋ1(t) ẏ1(t)]T never vanishesover [0, tf ] be
ause v(t) 6= 0 and |θ0(t)− θ1(t)| < π

2 , ∀t ∈ [0, tf ].The unit tangent ve
tor of 
urve [x1(t) y1(t)]
′ 
an be expressed as

τ (t) =
[ẋ1(t) ẏ1(t)]

′

√

ẋ21(t) + ẏ21(t)
= sgn(v(t))

[

cos θ1(t)

sin θ1(t)

]

. (2.17)Hen
e, the unit tangent ve
tor τ is 
ontinuous over the trailer 
urve be
ause
θ1(t) is 
ontinuous in [0, tf ].As known from the theory of planar 
urves [41℄, the s
alar 
urvature κ isgiven by the derivative of the tangent angle θ1 with respe
t to the ar
 length
s, where s = ∫ t0 (ẋ21(ξ) + ẏ21(ξ))

1
2dξ. It 
an be expressed as follows

κ =
dθ1
ds

=
dθ1
dt

1
ds
dt

= θ̇1
1

(ẋ21 + ẏ21)
1
2

=
v

d1
sin(θ0 − θ1)

1

|v| cos(θ0 − θ1)

= sgn(v)
1

d1
tan(θ0 − θ1) . (2.18)For the 
ontinuity of the state variables θ0 and θ1, 
urvature κ is 
ontinuousin [0, tf ] too. The derivative of the s
alar 
urvature κ is given by

dκ

ds
=

1

d1 cos3(θ0 − θ1)

[

1

d0
tan δ − 1

d1
sin(θ0 − θ1)

]

. (2.19)The 
urvature derivative dκ
ds is then 
ontinuous along the 
urve be
ause θ0, θ1and δ are 
ontinuous in [0, tf ]. Finally, the se
ond derivative of the 
urvature
an be expressed as follows

d2κ

ds2
=

δ̇

|v|d0d1 cos2 δ cos4(θ0 − θ1)
− sgn(v)

1
d0

tan δ − 1
d1

sin(θ0 − θ1)
d21 cos

3(θ0 − θ1)

+sgn(v)
3
[

1
d0

tan δ − 1
d1

sin(θ0 − θ1)
]2

sin(θ0 − θ1)
d1 cos5(θ0 − θ1)

.

(2.20)
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ontinuity of the state variables θ0 and θ1 and from the hy-pothesis v, δ ∈ C1([0, tf ]), the se
ond derivative of the 
urvature with respe
tto the ar
 length is 
ontinuous in [0, tf ]. This shows that 
urve [x1(t) y1(t)]
′ isa G4-
urve, hen
e the image [ x1

y1

]

([0, tf ]) is a G4-path.In order to prove the 
onverse part of the proposition, 
onsider the G4-
urve p(s), where s is the ar
 length on Γ and p([0, sf ]) ≡ Γ with sf being thetotal ar
 length of Γ. We 
hoose the following initial 
onditions






















[

x1(0)

y1(0)

]

= p(0)

θ0(0) = arg dp
ds (0) + arctan(d1κ(0))

θ1(0) = arg dp
ds (0) ,

(2.21)where dp
ds (s) and κ(s) are the unit tangent ve
tor and the 
urvature of p(s)respe
tively.Also 
onsider any v1(t) ∈ C1([0, tf ]) su
h that v1(t) > 0, ∀t ∈ [0, tf ] and

∫ tf

0
v1(ξ)dξ = sf .Then de�ne the 
ontrol inputs as

v(t) = v1(t)
[

1 + d21κ
2(s)

]
1
2

∣

∣

∣

s=
∫ t
0 v1(ξ)dξ

(2.22)and
δ(t) = arctan

[

d0κ

(1 + d21κ
2)

1
2

+
d0d1

dκ
ds

(1 + d21κ
2)

3
2

]∣

∣

∣

∣

∣

s=
∫ t

0
v1(ξ)dξ

. (2.23)Obviously, v(t) 6= 0, ∀t ∈ [0, tf ] and v(t) ∈ C1([0, tf ]) be
ause v1 ∈ C1([0, tf ])and κ ∈ C1([0, sf ]). Moreover, |δ(t)| < π
2 , ∀t ∈ [0, tf ] and δ(t) ∈ C1([0, tf ])be
ause κ ∈ C2([0, sf ]) (indeed p(s) is a G4-
urve).Expli
it solutions of system (2.15) 
an be given for θ0 and θ1 as follows:

θ0(t) = θ0(0) +

∫ t

0

v(r)

d0
tan δ(r) dr , (2.24)

θ1(t) = θ0(t)− arctan [d1κ(s)]|s=∫ t

0
v1(ξ)dξ

. (2.25)



2.2. Path generation for a tru
k and trailer vehi
le 71Straightforwardly, solution (2.24) satis�es the third equation of system (2.15).By expli
it derivation of solution (2.25) and some 
omputations the fourthequation of system (2.15) is also veri�ed and
θ̇1(t) = v1(t)κ(s)|s=∫ t

0
v1(ξ)dξ

, t ∈ [0, tf ] . (2.26)From (2.25) evidently the inequality |θ0(t) − θ1(t)| < π
2 , ∀t ∈ [0, tf ] follows.The last point to prove is

[

x1(t)

y1(t)

]

= p(s)|s=∫ t
0
v1(ξ) dξ

, t ∈ [0, tf ] . (2.27)First note that
θ1(t) = arg

dp

ds

∣

∣

∣

∣

s=
∫ t
0 v1(ξ) dξ

, (2.28)and re
all that
κ =

d

ds
(arg τ ) , (2.29)be
ause θ1(0) = arg dp

ds (0) (
f. 
onditions (2.21)) and the derivatives of bothsides of (2.28) 
oin
ide (
f. (2.29) and (2.26)):
d

dt
arg

dp

ds

∣

∣

∣

∣

s=
∫ t

0
v1(ξ) dξ

=
d

ds
arg

dp

ds

∣

∣

∣

∣

s=
∫ t

0
v1(ξ) dξ

· ds
dt

= κ(s)|s=∫ t
0 v1(ξ) dξ

· v1(t) = θ̇1(t) .In turn, identity (2.27) holds be
ause [x1(0) y1(0)]′ = p(0) (
f. 
onditions (2.21))and derivatives of the sides of (2.27) are equal to ea
h other. Indeed, by virtueof (2.22) and (2.25)
v1(t) = v(t) cos(θ0(t)− θ1(t)) ,
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d

dt
p(s)

∣

∣

∣

∣

s=
∫ t

0
v1(ξ)dξ

=
dp

ds

∣

∣

∣

∣

s=
∫ t

0
v1(ξ) dξ

· ds
dt

=

[

cos arg dp
ds

sin arg dp
ds

]∣

∣

∣

∣

∣

s=
∫ t
0 v1(ξ)dξ

· v1(t)

=

[

cos θ1(t)

sin θ1(t)

]

v(t) cos(θ0(t)− θ1(t)) =
[

ẋ1(t)

ẏ1(t)

]

,the last equality being derived from the �rst two equations of system (2.15).
� The provided proof of proposition 4 is fully 
onstru
tive. Indeed, it pro-vides the dynami
 path inversion pro
edure to determine the feedforward in-verse 
ontrol to drive the arti
ulated vehi
le from a given 
on�guration to atarget 
on�guration, along a G4-path. This path 
an be any desired G4-pathprovided that the path endpoints have Cartesian 
oordinates, unit tangent ve
-tor, 
urvature, and �rst and se
ond derivatives of 
urvature in a

ordan
e withthe 
urrent vehi
le 
on�guration (
f. (2.17)-(2.20)). Hen
e, the generation ofa G4-path for the arti
ulated vehi
le must ensure interpolating 
onditions atthe endpoints up to the se
ond derivative of the 
urvature. This is the problemthat is addressed, in a polynomial setting, in the next subse
tion.2.2.2 The η

4-splinesConsidered the result relative to the smooth feedforward 
ontrol of the tru
kand trailer vehi
le as exposed in the previous se
tion (proposition 4), the fol-lowing interpolation problem in the Cartesian plane is introdu
ed.Problem 3 Determine the minimal order polynomial 
urve whi
h interpolatestwo given endpoints pA = [xA yA]
′ and pB = [xB yB]

′ with asso
iated unittangent ve
tors de�ned by angles θA and θB, s
alar 
urvatures κA and κB,
urvature derivatives κ̇A, κ̇B and se
ond-order derivatives of the 
urvature κ̈A,
κ̈B (both derivatives are de�ned with respe
t to the ar
 length) (see �gure 2.13).



2.2. Path generation for a tru
k and trailer vehi
le 73Assume that interpolating data pA, pB ∈ R
2, θA, θB ∈ [0, 2π), κA, κB ∈ R,

κ̇A, κ̇B ∈ R and κ̈A, κ̈B ∈ R 
an be arbitrarily assigned.PSfrag repla
ements
x
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Figure 2.13: The polynomial G4-interpolating problem.The provisional solution for the above interpolating problem is given by aninth-order polynomial 
urve p(u) = [α(u) β(u)]′, u ∈ [0, 1] de�ned as follows
α(u) =

9
∑

i=0

αiu
i, (2.30)

β(u) =

9
∑

i=0

βiu
i, (2.31)where 
oe�
ients αi, βi i = 0, . . . , 9 are to be determined a

ording to theabove interpolating problem. As known from the theory of planar 
urves, theunit tangent ve
tor τ and 
urvature κ 
an be expressed as

τ (u) =
[α̇ β̇]′

(α̇+ β̇)1/2
, (2.32)

κ(u) =
α̇β̈ − α̈β̇
(α̇+ β̇)3/2

. (2.33)
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tion of the �rst and se
ond derivative of the 
urvature κ with respe
t tothe ar
 length leads to the following formulae:
dκ

ds
(u) =

(α̇
...
β − ...

αβ̇)(α̇2 + β̇2)− 3(α̇β̈ − α̈β̇)(α̇α̈+ β̇β̈)

(α̇2 + β̇2)3
, (2.34)

d2κ

ds2
(u) =

[

(α̇
....
β − ....

α β̇ + α̈
...
β − ...

αβ̈)(α̇2 + β̇2)2 − 7(α̇
...
β − ...

αβ̇)(α̇α̈+ β̇β̈)

(α̇2 + β̇2)− 3(α̇β̈ − α̈β̇)(α̈2 + β̈2 + α̇
...
α + β̇

...
β )(α̇2 + β̇2)

+ 18(α̇β̈ − α̈β̇)(α̇α̈+ β̇β̈)2
] 1

(α̇2 + β̇2)5
. (2.35)The imposition of the G4-interpolating 
onditions of the above problem on theendpoints of p(u) leads to the following relations:

p(0) = pA , (2.36)
p(1) = pB , (2.37)
ṗ(0) = η1

[

cos θA

sin θA

]

, (2.38)
ṗ(1) = η2

[

cos θB

sin θB

]

, (2.39)
κ(0) = κA , (2.40)
κ(1) = κB , (2.41)
dκ

ds
(0) = κ̇A , (2.42)

dκ

ds
(1) = κ̇B , (2.43)

d2κ

ds2
(0) = κ̈A , (2.44)

d2κ

ds2
(1) = κ̈B . (2.45)Note that relation (2.38) and (2.39), whi
h ensure the interpolation of theunit tangent ve
tors, are well posed provided that η1 and η2 are any positiveparameters.
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le 75Relations (2.36)-(2.45) form a nonlinear algebrai
 system of 14 equationsin the 20 unknowns αi, βi. Hen
e this system may admit a solution set with6 degrees of freedom. This solution set 
an be parametrized a

ording to theintrodu
tion of further 6 real parameters η3, . . . , η8 de�ned as follows:
〈p̈(0) ,

[

cos θA

sin θA

]

〉 = η3 , (2.46)
〈p̈(1) ,

[

cos θB

sin θB

]

〉 = η4 , (2.47)
〈...p(0) , [cos θA

sin θA

]

〉 = η5 , (2.48)
〈...p(1) , [cos θB

sin θB

]

〉 = η6 , (2.49)
〈....p (0) ,

[

cos θA

sin θA

]

〉 = η7 , (2.50)
〈....p (1) ,

[

cos θB

sin θB

]

〉 = η8 . (2.51)Equations (2.36)-(2.45) and (2.46)-(2.51) form an algebrai
 system of 20 equa-tions in the 20 unknowns αi, βi, i = 0, . . . , 9 that depends on the real parame-ters η1, η2 ∈ R+ and η3, . . . , η8 ∈ R. This parameters 
an be pa
ked to form theeta ve
tor η := [η1 . . . η8]
′ belonging to the parameter spa
e H := R

2
+ × R

6.From equations (2.36) and (2.38) we determine
α0 = xA , β0 = yA ,

α1 = η1 cos θA , β1 = η1 sin θA .
(2.52)Equations (2.37) and (2.39) lead to the linear equations

α(1) =

9
∑

i=0

αi = xB , β(1) =

9
∑

i=0

βi = yB , (2.53)
α̇(1) =

9
∑

i=1

i αi = η2 cos θB , β̇(1) =
9
∑

i=1

i βi = η2 sin θB . (2.54)



76 Chapter 2. Path generation and autonomous parkingFrom equation (2.40) and solution α1, β1 given by (2.52) we obtain
−2η1 sin θAα2 + 2η1 cos θAβ2 = η31κA , (2.55)and from (2.46)

2 cos θAα2 + 2 sin θAβ2 = η3 . (2.56)Equations (2.55) and (2.56) give the solutions
α2 =

1

2
η3 cos θA −

1

2
η21κA sin θA , (2.57)

β2 =
1

2
η3 sin θA −

1

2
η21κA cos θA . (2.58)Taking into a

ount relation (2.34), equation (2.42) be
omes

(6α1β3 − 6β1α3)η
2
1 − 12(α1β2 − α2β1)(α1α2 + β1β2) = η61κ̇A , (2.59)and from (2.48) we obtain
6 cos θAα3 + 6 sin θAβ3 = η5 . (2.60)By substitution of solutions (2.52), (2.57), and (2.58), equations (2.59), (2.60)form a linear algebrai
 system in the unknowns α3, β3 whi
h has a uniquesolution be
ause the determinant of its 
oe�
ient matrix is equal to 6η31 andit di�ers from zero on the assumption η1 > 0. This solution is given by

α3 = −
(

1

2
η1η3κA +

1

6
η31κ̇A

)

sin θA +
1

6
η5 cos θA , (2.61)

β3 =

(

1

2
η1η3κA +

1

6
η31κ̇A

)

cos θA +
1

6
η5 sin θA . (2.62)Using relation (2.35), equation (2.44) be
omes

12(2α1β4 − 2α4β1 + α2β3 − α3β2)η
4
1 − 84(α1β3 − α3β1)(α1α2 + β1β2)η

2
1

−12(α1β2 − α2β1)(2α
2
2 + 2β22 + 3α1α3 + 3β1β3)η

2
1

+144(α1β2 − α2β1)(α1α2 + β1β2)
2 = η101 κ̈A , (2.63)
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k and trailer vehi
le 77and from (2.50) we have
24 cos θAα4 + 24 sin θAβ4 = η7 . (2.64)By substitution of solutions (2.52), (2.57), (2.58), (2.61), and (2.62), the aboveequations (2.63), (2.64) are a linear algebrai
 system in the unknowns α4, β4.There exists a unique solution given by

α4 = −
(

1

6
η1η5κA +

1

4
η21η3κ̇A +

1

8
η41κ

3
A +

1

24
η41κ̈A

− 1

8
η3κA

)

sin θA +
1

24
η7 cos θA ,

(2.65)
β4 =

(

1

6
η1η5κA +

1

4
η21η3κ̇A +

1

8
η41κ

3
A +

1

24
η41κ̈A

+
1

8
η3κA

)

cos θA +
1

24
η7 sin θA ,

(2.66)be
ause the 
oe�
ient matrix of system (2.63), (2.64) is nonsingular (the de-terminant of this matrix is 24η51 whi
h di�ers from zero be
ause η1 > 0). Bysubstituting relations (2.54) into equation (2.41) we obtain
η2 cos θB β̈(1) − η2 sin θB α̈(1) = η32κB , (2.67)and from (2.47)

cos θB α̈(1) + sin θB β̈(1) = η4 . (2.68)The linear system given by equations (2.67) and (2.68) admits the uniquesolution (its 
oe�
ient matrix is nonsingular be
ause it is equal to −η2 thatdi�ers from zero by assumption):
α̈(1) = η4 cos θB − η22κB sin θB, (2.69)
β̈(1) = η4 sin θB + η22κB cos θB. (2.70)Using relations (2.54), (2.69), (2.70) into equation (2.43) we have

η32 cos θB
...
β (1)− η32 sin θB

...
α(1) = η62κ̇B + 3η42η4κB (2.71)
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cos θB

...
α(1) + sin θB

...
β (1) = η6. (2.72)The determinant of 
oe�
ient matrix of linear equations (2.71), (2.72) is −η32so that the following unique solution holds:...

α(1) = η6 cos θB −
(

η32κ̇B + 3η2η4κB
)

sin θB , (2.73)...
β (1) = η6 sin θB +

(

η32κ̇B + 3η2η4κB
)

cos θB . (2.74)By substituting relations (2.54), (2.69), (2.70), (2.73), (2.74) into equation (2.45)we obtain
η52 cos θB

....
β (1) − η52 sin θB

....
α (1) =

η102 κ̈B + 3η42κ
3
B + 3η24κB + 4η2η6κB + 6η22η4κ̇B .

(2.75)and from (2.51)
cos θB

....
α (1) + sin θB

....
β (1) = η8 . (2.76)Again, the pair of linear equations (2.75) and (2.76) admits a unique solution(the determinant of the 
oe�
ient matrix is −η52) whi
h is reported below:....

α (1) = η8 cos θB −
[

3
(

η24κB + η42κ
3
B

)

+ 4η2η4κB + 6η22η4κ̇B + η52κ̈B
]

sin θB ,(2.77)....
β (1) = η8 sin θB +

[

3
(

η24κB + η42κ
3
B

)

+ 4η2η4κB + 6η22η4κ̇B + η52κ̈B
]

cos θB .(2.78)By 
olle
ting the relations de�ning α(1), α̇(1), α̈(1), ...α(1), and ....α (1) (
f. (2.53),(2.54), (2.69), (2.73), (2.77)) the following linear system in the unknowns α5,
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α6, α7, α8, is α9 is obtained:










































































α5 + α6 + α7 + α8 + α9 = xB − α0 − α1 − α2 − α3 − α4

5α5 + 6α6 + 7α7 + 8α8 + 9α9 = η2 cos θB − α1 − 2α2 − 3α3 − 4α4

20α5 + 30α6 + 42α7 + 56α8 + 72α9 = η4 cos θB − η22κB sin θB

− 2α2 − 6α3 − 12α4

60α5 + 120α6 + 210α7 + 336α8 + 504α9 = η6 cos θB

−
(

η32κ̇B + 3η2η4κB
)

sin θB − 6α3 − 24α4

120α5 + 360α6 + 840α7 + 1680α8 + 3024α9 = η8 cos θB

−
[

η52κ̈B + 3
(

η42κ
3
B + η24κB

)

+ 4η2η4κB + 6η22η4κ̇B
]

cos θB − 24α4 .

(2.79)
Similarly, by 
olle
ting the relations de�ning β(1), β̇(1), β̈(1), ...β (1), and ....

β (1)(
f. (2.53), (2.54), (2.70), (2.74), (2.78)) the following linear system in theunknowns β5, β6, β7, β8, and β9 holds:










































































β5 + β6 + β7 + β8 + β9 = yB − β0 − β1 − β2 − β3 − β4
5β5 + 6β6 + 7β7 + 8β8 + 9β9 = η2 sin θB − β1 − 2β2 − 3β3 − 4β4

20β5 + 30β6 + 42β7 + 56β8 + 72β9 = η4 sin θB + η22κB cos θB

− 2β2 − 6β3 − 12β4

60β5 + 120β6 + 210β7 + 336β8 + 504β9 = η6 sin θB

+
(

η32κ̇B + 3η2η4κB
)

cos θB − 6β3 − 24β4

120β5 + 360β6 + 840β7 + 1680β8 + 3024β9 = η8 sin θB

+
[

η52κ̈B + 3
(

η42κ
3
B + η24κB

)

+ 4η2η4κB + 6η22η4κ̇B
]

sin θB − 24β4 .

(2.80)
The above linear systems (2.79), (2.80) have the same 
oe�
ient matrix whosedeterminant is 288. Hen
e, a unique solution 
an be dedu
ed for all the un-knowns. The expli
it expressions of all 
oe�
ients αi, βi, i = 0, . . . , 9 are notreported for brevity (see [23℄ for more details). The resulting polynomial 
urveis denoted by p(u; η) and it is 
alled η

4-spline.Proposition 5 (Completeness) The η
4-spline p(u;η) satis�es any givenset of interpolating data pA, θA, κA, κ̇A, κ̈A and pB, θB, κB, κ̇B, κ̈B for



80 Chapter 2. Path generation and autonomous parkingall η ∈ H. Conversely, given any ninth-order polynomial 
urve q(u), u ∈ [0, 1]with q̇(0) 6= 0 and q̇(1) 6= 0 whi
h satis�es a given set of interpolating 
ondi-tions pA, θA, κA, κ̇A, κ̈A and pB, θB, κB, κ̇B, κ̈B, there exists a parameterve
tor η ∈ H su
h that p(u;η) 
oin
ides with q(u).Proof. It has been shown that system (2.36)-(2.51) is equivalent to a linearsystem whose 
oe�
ient matrix is nonsingular, provided that η1 > 0 and η2 >
0. Hen
e, the solution provided by the η

4-spline is unique and satis�es anygiven set of interpolating data pA, θA, κA, κ̇A, κ̈A and pB , θB , κB , κ̇B , κ̈Bfor all η ∈ H. De�ne η1 := ‖q̇(0)‖ and η2 := ‖q̇(1)‖, so that η1, η2 > 0 byhypothesis. De�ne τA := [cos θA sin θA]
′, τB := [cos θB sin θB]

′ and set theparameters η3, . . . , η8 a

ording to
η3 := 〈q̈(0) , τA〉, η5 := 〈

...
q (0) , τA〉, η7 := 〈

....
q (0) , τA〉,

η4 := 〈q̈(1) , τB〉, η6 := 〈
...
q (1) , τB〉, η8 := 〈

....
q (1) , τB〉.Having de�ned all the eta parameters, 
onsider the algebrai
 system (2.36)-(2.51) with the given set of interpolating 
onditions pA, θA, κA, κ̇A, κ̈A and pB ,

θB, κB , κ̇B , κ̈B . The unknowns are the 
oe�
ients of a ninth-order polynomial
urve p(u). Hen
e, there exists a unique solution, the η
4-spline p(u;η), thatmust 
oin
ides with q(u). �Property 1 (Minimality) The η

4-spline p(u;η) is the minimal order poly-nomial 
urve interpolating any arbitrarily given set of data pA,pB ∈ R
2,

θA, θB ∈ [0, 2π), κA, κB ∈ R, κ̇A, κ̇B ∈ R, and κ̈A, κ̈B ∈ R.Proof. Proposition 5 shows that the η
4-spline p(u;η) is the family of all poly-nomial 
urves, till to the ninth order, interpolating any given G4-data. Hen
e,if an eighth or lower order polynomial 
urve interpolating any assigned set ofboundary 
ondition exists, it must 
oin
ide with p(u;η) for some appropri-ate η ∈ H. Consider the following boundary 
onditions (leading to a so-
alledlane-
hange path):

pA = [0 0]′,pB = [2 1]′, θA = θB = 0, κA = κB = 0,

κ̇A = κ̇B = 0, κ̈A = κ̈B = 0,



2.2. Path generation for a tru
k and trailer vehi
le 81and evaluate the η
4-spline using its 
oe�
ients (
f. [23℄):

α(u;η) = η1u+
1

2
η3u

2 +
1

6
η5u

3 +
1

24
η7u

4 +

[

252− 70η1 − 56η2 −
35

2
η3

+
21

2
η4 −

5

2
η5 − η6 −

5

24
η7 +

1

24
η8

]

u5 +

[

−840 + 224η1 + 196η2 +
105

2
η3

−77

2
η4 +

20

3
η5 +

23

6
η6 +

5

12
η7 −

1

6
η8

]

u6 + [1080 − 280η1 − 260η2 − 63η3

+53η4 −
15

2
η5 −

11

2
η6 −

5

12
η7 +

1

4
η8

]

u7 + [−630 + 160η1 + 155η2 + 35η3

−65

2
η4 + 4η5 +

7

2
η6 +

5

24
η7 −

1

6
η8

]

u8 + [140− 35η1 − 35η2

−15

2
η3 +

15

2
η4 −

5

6
η5 −

5

6
η6 −

1

24
η7 +

1

24
η8

]

u9 ,

β(u;η) = 126u5 − 420u6 + 540u7 − 315u8 + 70u9 .Evidently, β(u;η) is a stri
t ninth-order polynomial that does non depend on
η. Thus, it is not possible to interpolate the given data with an eighth or lowerorder polynomial 
urve. �Proposition 5 and property 1 make evident that the found η

4-spline is the
omplete solution the posed G4-interpolating problem. The η
4-spline presentitself as a family of polynomial 
urves parametrized by eta parameters η1, . . . , η8.A relevant property of this parametrization is the symmetry.Property 2 (Symmetry) Assume η1 = η2 = v ∈ R+, η3 = −η4 = w ∈ R,

η5 = η6 = z ∈ R, η7 = −η8 = t ∈ R and de�ne η = [v v w − w z z t − t]′.Moreover, 
onsider θA = θB = θ ∈ [0, 2π), κA = −κB = κ ∈ R, κ̇A = κ̇B =

κ̇ ∈ R, κ̈A = −κ̈B = κ̈ ∈ R. Then, for any pA and pB, 
urve p(u;η) satis�esthe following symmetry relation
p(u;η) = pA + pB − p(1− u;η) (2.81)

∀u ∈ [0, 1], ∀v ∈ R+, ∀w, z, t ∈ R, ∀θ ∈ [0, 2π), and ∀κ, κ̇, κ̈ ∈ R.
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ements

x

y

θ

xA

yA
pA

pB

d1

d2

p(u;η)

p(1− u;η)

Figure 2.14: Symmetry of the η
4-spline.Proof. It is always possible to �nd d1, d2 ∈ R su
h that (
f. �gure 2.14)

pB = pA + d1

[

cos θ

sin θ

]

+ d2

[

− sin θ

cos θ

]

.Curve p(u; η), evaluated by means of its 
oe�
ients and the assigned inter-polating 
onditions, 
an be expressed as
p(u;η) =

[

xA

yA

]

+ v

[

cos θ

sin θ

]

u+

[

cos θ − sin θ

sin θ cos θ

]{

1

2

[

w

κv2

]

u2

+
1

6

[

z

κ̇v3 + 3κvw

]

u3 +
1

24

[

t

κ̈v4 + 6κ̇v2w + 4κvz + 3κw2 + 3κ3v4

]

u4

+

[

126d1 − 126v − 28w

126d2 − 1

4
κ̈v4 − 7

2
κ̇v3 − 3

2
κ̇v2w − 28κv2

− 7

2
z − 1

4
t

− 3

4
κw2 − κvz − 21

2
κvw − 3

4
κ3v4

]

u5

+

[

−420d1 + 420v + 91w

−420d2 + 7

12
κ̈v4 + 21

2
κ̇v3 + 7

2
κ̇v2w + 91κv2

+ 21

2
z + 7

12
t

+ 7

4
κw2 + 7

3
κvz + 63

2
κvw + 7

4
κ3v4

]

u6

+

[

540d1 − 540v − 116w

540d2 − 2

3
κ̈v4 − 13κ̇v3 − 4κ̇v2w − 116κv2

−13z − 2

3
t

−2κw2 − 8

3
κvz − 39κvw − 2κ3v4

]

u7
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+

[

−315d1 + 315v + 135

2
w

−315d2 + 3

8
κ̈v4 + 15

2
κ̇v3 + 9

4
κ̇v2w + 135

2
κv2

+ 15

2
z + 3

8
t

+ 9

8
κw2 + 3

2
κvz + 45

2
κvw + 9

8
κ3v4

]

u8

+

[

70d1 − 70v − 15w

70d2 − 1

12
κ̈v4 − 5

3
κ̇v3 − 1

2
κ̇v2w − 15κv2

− 5

3
z − 1

12
t

− 1

4
κw2 − 1

3
κvz − 5κvw − 1

4
κ3v4

]

u9

}

,(2.82)Now, use (2.82) to evaluate p(u;η)+p(1−u;η). Some algebrai
 manipulationsare required to obtain
p(u;η) + p(1− u;η) = 2

[

xA

yA

]

+

[

cos θ − sin θ

sin θ cos θ

] [

d1

d2

]

= pA + pB ,and 
on
lude that, evidently, (2.81) holds ∀u ∈ [0, 1], ∀v ∈ R+, ∀w, z, t ∈ R,
∀θ ∈ [0, 2π), and ∀κ, κ̇, κ̈ ∈ R. �A variety of 
urve primitives (
ir
ular ar
, 
lotoids, 
ubi
 spirals, et
.) 
anbe approximated by the η

4-spline (as shown in [32,33℄ for the η
3-spline). Thesigni�
ant 
ase relative to the line segment primitive, as illustrated by propertybelow.Property 3 (Line segment generation) Let be given any pair of Cartesianpoint pA, pB with pA 6= pB. De�ne θ := arg(pB − pA) and set θA = θB = θ,

κA = κB = 0, κ̇A = κ̇B = 0, κ̈A = κ̈B = 0. Then, p(u; η) is a line segment
∀η ∈ H.Proof. De�ne d := ‖pB − pA‖. Hen
e

pB = pA + d

[

cos θ

sin θ

]

,and the η
4-spline with the assigned interpolating 
ondition 
an be expressedas follows

p(u;η) =

[

xA

yA

]

+ f(u;η)

[

cos θ

sin θ

]

, (2.83)
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tion
f(u;η) = η1u+

1

2
η3u

2 +
1

6
η5u

3 +
1

24
η7u

4 +

[

126d − 70η1 − 56η2 −
35

2
η3

+
21

2
η4 −

5

2
η5 − η6 −

5

24
η7 +

1

24
η8

]

u5 +

[

−420d + 224η1 + 196η2 +
105

2
η3

− 77

2
η4 +

20

3
η5 +

23

6
η6 +

5

12
η7 −

1

6
η8

]

u6 + [540d − 280η1 − 260η2 − 63η3

+ 53η4 −
15

2
η5 −

11

2
η6 −

5

12
η7 +

1

4
η8

]

u7 + [−315d+ 160η1 + 155η2 + 35η3

− 65

2
η4 + 4η5 +

7

2
η6 +

5

24
η7 −

1

6
η8

]

u8 +

[

70d − 35η1 − 35η2 −
15

2
η3

+
15

2
η4 −

5

6
η5 −

5

6
η6 −

1

24
η7 +

1

24
η8

]

u9.It is easy to verify that f(0;η) = 0 and f(1;η) = d. Thus, equation (2.83)proves that p(u;η) belongs to the segment line joining pA with pB ∀η ∈ H. �2.2.3 A path planning exampleConsider a parking maneuver for an automated tru
k and trailer vehi
le inan unobstru
ted environment. The 
omposed vehi
le starts from the initial
on�guration
(x1, y1, θ0, θ1, v, v̇, δ, δ̇) = (18, 3,

3

4
π,
π

2
, 0, 0,

π

12
, 0) ,and with a forward movement rea
hes the �nal 
on�guration (0, 0π, π, 0, 0, 0, 0)(as usual, Cartesian 
oordinates are expressed in meters [m℄ and angles inradians [rad℄). The tru
k vehi
le has wheelbase d0 = 3 m and the distan
ebetween the trailer axle and the tru
k joint is d1 = 4 m. The path of the trailerat the endpoints must have [xA yA]

′ = [18 3]′, θA = π
2 and [xB yB]

′ = [0 0]′,
θB = π.From formulae (2.18), (2.19) we also dedu
e that κA = −0.25 m−1, κ̇A =

0.1882 m−2 and κB = 0, κ̇B = 0. The se
ond derivatives of 
urvature at theendpoints, κ̈A and κ̈B , 
an be freely 
hosen a

ording to relation (2.20) be
ause
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k and trailer vehi
le 85the tru
k and trailer is at rest in the initial and �nal 
on�gurations (v = 0 and
δ̇ = 0). Hen
e, the parking path whi
h refers to the trailer axis midpoint 
anbe planned using an η

4-spline p(u,η) with the above determined interpolating
onditions. The a
tual shape of this η
4-spline depends on 10 free parame-ters (κ̈A, κ̈B ∈ R, η1, η2 ∈ R+, η3, . . . , η8 ∈ R) and this gives a signi�
ant�exibility in a
hieving a satisfa
tory parking maneuver. The most importantparameters in�uen
ing the path shape are κ̈A, κ̈B and �
urve velo
ities� η1, η2(
f. (2.38), (2.39)). See �gures 2.15, 2.16, 2.17, and 2.18 whi
h depi
t familiesof paths a

ording to the following settings. For all η4-spline families we have
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Figure 2.15: The η
4-spline with κ̈A varying in [−3, 3].

η3 = · · · = η8 = 0 and κ̈A ∈ [−3, 3], κ̈B = 0, η1 = η2 = 10 (�gure 2.15),
κ̈A = 0, κ̈B ∈ [−3, 3], η1 = η2 = 10 (�gure 2.16), κ̈A = κ̈B = 0, η1 ∈ [4, 25],
η2 = 10 (�gure 2.17), and κ̈A = κ̈B = 0, η1 = 10, η2 ∈ [4, 25] (�gure 2.18).The other shaping parameters are η3, η4, the 
urve a

eleration proje
tedon the unit tangent ve
tors at the endpoints of the η4-spline (
f. (2.46), (2.47)),
η5, η6, the 
urve jerk at the 
urve endpoints (
f. (2.48), (2.49)), and η7, η8, the
urve jerk derivatives at the path endpoints (
f. (2.50), (2.51)).The freedom in sele
ting the free parameters leads to pose an optimal pathplanning problem. A sensible index to minimize is the maximum of the steering
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Figure 2.16: The η
4-spline with κ̈B varying in [−3, 3].
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Figure 2.17: The η
4-spline with η1 varying in [4, 25].angle modulus over the whole maneuver path:

min
κ̈A,κ̈B∈R, η∈H

δmax , (2.84)where δmax := maxs∈[0, sf ] |δ(s)|, and sf denotes the total length of the η
4-spline. The steering angle as a fun
tion of the 
urvilinear abs
issa, δ(s) 
an be
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Figure 2.18: The η
4-spline with η2 varying in [4, 25].uniquely determined by relations (2.18) and (2.19):

δ(s) = arctan

[

d0
(1 + d21κ

2(s))1/2
κ(s) +

d0d1
(1 + d21κ

2(s))3/2
dκ

ds
(s)

]

. (2.85)The above formula (2.85), whi
h is a generalization of the well-known relation
δ(s) = arctan [d0κ(s)] for 
ar-like vehi
les without trailers, is the basis of thedynami
 path inversion approa
h to the feedforward of the tru
k and trailervehi
le [5℄. The optimal minimax problem (2.84) 
an be redu
ed to a standardminimization by a sweeping dis
retization over u ∈ [0, 1], the 
urve parameterof spline p(u;η). Using lo
al optimization, the following results have beenobtained: the optimal maximum steering is δ̄max = 0.6197 rad (
orrespondingto 35°.51) whi
h is ar
hived with ¨̄κA = −0.0783 m−2, ¨̄κB = −0.124 m−2,
η̄1 = 35.14, η̄2 = 22.73, η̄3 = 70.40, η̄4 = −0.5326, η̄5 = −1367, η̄6 = −17.42,
η̄7 = 7013, and η̄8 = 214.6. The 
orresponding length of the η

4-spline is s̄f =

25.74 m. These results are depi
ted in �gures 2.19 and 2.20. In parti
ular,�gure 2.20 reports both the optimal path of the trailer and the 
orrespondingpath of the tru
k.It is useful for real-time appli
ations to redu
e the 
omputational burdenasso
iated to problem (2.84). This 
an be a
hieved by adopting the heuristi
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Figure 2.19: The optimal steering δ̄(s) for problem (2.84).
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Figure 2.20: The optimal maneuver paths for problem (2.84).
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k and trailer vehi
le 89of setting to zero all the eta parameters from η3 to η8 [30, 32, 33℄. In su
h away, the 
onsidered problem be
omes
min

κ̈A,κ̈B∈R, η1>0, η2>0
δmax . (2.86)The found solution for problem (2.86) is δ̄max = 0.7309 (or 41°.88) whi
h
orresponds to the parameters ¨̄κA = −0.0353 m−2, ¨̄κB = −0.0825 m−2, η̄1 =

30.33, and η̄2 = 17.31; the total spline length is s̄f = 24.20 m (see �gures 2.21and 2.22).
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Figure 2.21: The optimal steering δ̄(s) for problem (2.86).Another index whi
h 
an be appropriately minimized is the total splinelength sf and also 
onsidering the previous index δmax, it emerges a multi-obje
tive optimization that 
an be posed as follows:
min

κ̈A,κ̈B∈R, η∈H
{λ1δmax + λ2sf} (2.87)where λ1, λ2 ≥ 0 and λ1 + λ2 = 1. The weight 
oe�
ients λ1 and λ2 
an befreely 
hosen to set a trade-o� between δmax and sf . For example by 
hoos-ing λ1 = 0.95 and λ2 = 0.05, the found solution for (2.87) is the following:

λ1δ̄max + λ2s̄f = 1.836 with δ̄max = 0.6761 (or 38°.74), s̄f = 23.88 m. The
orresponding optimal parameters are ¨̄κA = −0.0642 m−2, ¨̄κB = −0.1401 m−2,
η̄1 = 28.14, η̄2 = 23.18, η̄3 = 19.28, η̄4 = 1.054, η̄5 = −737.7, η̄6 = −18.08,
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Figure 2.22: The optimal maneuver paths for problem (2.86).
η̄7 = 885.3, and η̄8 = 346.3. It is worth noting that the optimal distan
e s̄fof multi-optimization (2.87) is redu
ed (that is, improved) of 7.2% with re-spe
t to the s̄f of the single optimization (2.84) whereas δ̄max of (2.87) isin
reased of 9.1% with respe
t to the δ̄max of (2.84). This may be useful as faras the in
reasing of δ̄max is 
ompatible with the me
hani
al limit of the tru
kand trailer steering angle. As previously done for the single optimization, thesimpli�ed multi-optimization problem is

min
κ̈A,κ̈B∈R, η1>0, η2>0

{λ1δmax + λ2sf} . (2.88)With λ1 = 0.95 and λ2 = 0.05 the solution of (2.88) is λ1δ̄max+ λ2s̄f = 1.873with δ̄max = 0.7564 (or 43°.34), s̄f = 23.09 m. The 
orresponding parametersare ¨̄κA = −0.0341 m−2, ¨̄κB = −0.1069 m−2, η̄1 = 26.05, and η̄2 = 15.78 (see�gures 2.23 and 2.24).
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Figure 2.23: The optimal steering δ̄(s) for multi-optimization problem (2.88)
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Figure 2.24: The optimal maneuver paths for multi-optimization prob-lem (2.88)





Chapter 3
Time-optimal dynami
 pathinversion Strong lives are motivatedby dynami
 purposes� Kenneth HildebrandNowadays, the handling of materials and parts through Automati
 GuidedVehi
les (AGVs) is of in
reasing importan
e in the automation and logisti
sof fa
tories and warehouses. The absen
e of human intervention in the normaloperations of the AGVs permits to optimize by design the performan
es andspe
i�
ally to pursue a motion planning to a
hieve fastest movements with fullrespe
t of all the pertinent 
onstraints [42, 43℄. Considering the more generals
enario of traje
tory planning of wheeled mobile robots, the basi
 problem ofminimum-time planning between two robot 
on�gurations has been addressedwith 1) unobstru
ted environments and 2) obstru
ted environments with obsta-
le to be avoided (respe
tively 
f. [44℄ and [45℄ and referen
es therein reported).The former 
ase has been mainly dealt with the Pontryagin Maximum Prin
iple(PMP) whereas with the latter, that is more di�
ult, a variety of sub-optimal



94 Chapter 3. Time-optimal dynami
 path inversionor approximating te
hniques has been proposed e.g. potential fun
tions, sam-pling methods su
h as Probabilisti
 Road Maps (PRMs), Rapidly-ExploringDense Trees (RDTs), et
. Fo
using on the spe
ial 
ase of time-optimal (orminimum-time) traje
tory planning on spe
i�
, desired paths, the use of thepath-velo
ity de
omposition [3℄ permits to redu
e the planning to a suitableoptimal velo
ity problem. This was the approa
h pursued by Prado et al. [46℄who presented a sub-optimal method based on path segmentation to a
hieve asmooth velo
ity planning suitable for both stati
 and dynami
 environments.This 
hapter presents a solution for the problem of time-optimal traje
-tory planning of an AGV on a given feasible path while respe
ting velo
ity,a

eleration and jerk 
onstraints. Moreover, this planning must 
onne
t twoarbitrary dynami
 
on�gurations of the AGV, i.e. at the start and at the endof the planning the AGV may not be at rest. A key to solve the problem is tore
ast it as a dynami
 path inversion problem.3.1 Introdu
tion to dynami
 inversionThe dynami
 inversion te
hnique has been re
ently developed for the synthesisof high performan
e 
ontrol systems [47, 48℄. The idea behind this method isthe inversion of the dynami
al system in order to �nd an input that generatesthe desired output. Figure 3.1 shows a possible 
ontrol s
heme based on systeminversion, whi
h is essentially an open-loop 
ontrol.
Inverse System

        Model

Desired

Output
Input OutputPSfrag repla
ements ΣFigure 3.1: Dynami
 inversion based 
ontrol.In many 
ases, on
e the desired output is known in advan
e, it is possi-ble to perform a stable inversion, i.e. to determine a 
orresponding bounded
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tion to dynami
 inversion 95(non
ausal) input. The a
tual 
ontrol system design 
an be 
entered on afeedforward/feedba
k s
heme (see �gure 3.2) where the feedforward 
ontrol isdetermined through stable inversion and a feedba
k regulator handles modelingand signal errors [49℄. The majority of the works pursuing this approa
h dealswith nonlinear and nonminimum-phase systems and the emphasis is on algo-rithmi
 pro
edures to perform a stable inversion on a given output fun
tion.
Inverse System

        Model

Desired

Output
Input Output

+

Observation

K

+

+ -

PSfrag repla
ements Σ

Figure 3.2: Feedforward/feedba
k 
ontrol s
heme.3.1.1 Input-output dynami
 path inversionFor a wide 
lass of dynami
 systems, the inversion problem 
an also be posed asa stable dynami
 input-output path inversion. Dynami
 path inversion, whi
hwas introdu
ed in [5℄, is the problem, given a desired path on the outputspa
e, of �nding the 
ontrol inputs that generate the desired path. We saidabove that it is a variant of the more studied dynami
 (signal) inversion whi
his the problem of �nding the 
ontrol inputs that generate the desired signaloutputs [49�51℄.The idea is to 
onsider the output signal y(t) as a fun
tion parametrizationof a path Γ in the output spa
e R
p. For a given time interval [0, T ], the path

Γ is de�ned as the image of output fun
tion (i.e. Γ = y([0, t1])). This problem
an be formally stated as follows:
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 path inversionProblem 4 Given a path Γ ⊂ R
p and a traveling time T > 0, �nd initial
onditions and input u(t) for whi
h the system output y(t) satis�es

y([0, T ]) = ΓThis problem is quite general and espe
ially relevant for the motion 
ontrol ofnonholonomi
 wheeled vehi
les, and it has a strong 
onne
tion with di�erential�atness [52, 53℄.Roughly speaking, a system with n s
alar inputs is said to be di�erentially�at if there exist n outputs y1, . . . , yn for whi
h the system variables (i.e.the states and the inputs) 
an be algebrai
ally expressed as fun
tions of theoutputs and their derivatives, till a �nite order. A more rigorously de�nitionof the �atness, is given in the next 
hapter. When the system is di�erentially�at, the dynami
 path inversion problem is relatively easy to solve.3.2 Time-optimal dynami
 path inversion for an au-tomati
 guided vehi
leThis se
tion presents the work appeared in [31℄, whi
h fa
es time-optimal tra-je
tory planning of an automati
 guided vehi
le (AGV) on a given feasiblepath while respe
ting velo
ity, a

eleration and jerk 
onstraints. A theoreti
alresult shows the 
onne
tion, for the AGV, between the geometri
 
ontinuity ofits paths and the smoothness of its 
ontrol inputs (linear velo
ity and steeringangle of the AGV motor wheel). The solution hen
e proposed for the optimalplanning is based on a dynami
 path inversion algorithm, for whi
h �rst theoptimal velo
ity pro�le is determined and then the optimal steering signal isderived from a geometri
al 
onstru
tion.3.2.1 Kinemati
 model and problem statementA typi
al wheeled automati
 guided vehi
le has forks for handling materials,two passive wheels and a motor wheel. See �gure 3.3 where a s
hemati
 plan
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ements
Y

X

θ

y

x

l

vr

v

δ

Figure 3.3: A wheeled AGV on a Cartesian plane.view of an AGV and a Cartesian referen
e frame are depi
ted. As usual, x and
y indi
ate the Cartesian 
oordinates of the AGV rear-axle middle-point and θis the vehi
le orientation angle with respe
t of the x-axis. The motion of theAGV is a
tuated by the forward motor wheel whose linear velo
ity is v and δis the steering angle; l is the distan
e between the rear-axle and the forwardwheel's hub. With the usual modeling assumptions of no-slippage, rigid bodyand nonholonomi
 
onstraints the following nonlinear kinemati
 model of theAGV 
an be dedu
ed [54℄:











ẋ(t) = v(t) cos θ(t) cos δ(t)

ẏ(t) = v(t) sin θ(t) cos δ(t)

θ̇(t) = 1
l v(t) sin δ(t) .

(3.1)The linear velo
ity v and the steering angle δ are the AGV 
ontrol inputs. Thefollowing de�nition will be used along this 
hapter:De�nition 7 A Cartesian path Γ has third order geometri
 
ontinuity, andwe say Γ is a G3-path, if its s
alar 
urvature is 
ontinuous and the derivativewith respe
t to the ar
 length of the 
urvature is 
ontinuous on the path too(for more details see [5℄).
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 path inversionIn order to obtain a smooth motion 
ontrol, inputs v and δ must be fun
-tions with C1 
ontinuity, i.e. they are 
ontinuous fun
tions with 
ontinuousderivatives. A 
onne
tions between smooth inputs and paths of the AGV isestablished by proposition below (re
all proposition 3).Proposition 6 Assign any T > 0. If a Cartesian path Γ is generated by theAGV with inputs v(t), δ(t) ∈ C1([0, T ]) where v(t) 6= 0 and |δ(t)| < π
2 , ∀t ∈

[0, T ], then Γ is a G3-path. Conversely, given any G3-path Γ then exist inputs
v(t), δ(t) ∈ C1([0, T ]) with v(t) 6= 0 and |δ(t)| < π

2 , ∀t ∈ [0, T ], and initial
onditions su
h that the path generated by the AGV 
oin
ides with the given Γ.Proof. proposition above 
an be dedu
ed by a similar result proposed by Guar-ino Lo Bian
o et al. in [5℄. �Instrumental to our approa
h to optimal motion 
ontrol of AGVs is thede�nition of an "extended state" of system (3.1) that also 
omprises the 
ontrolfun
tions and their �rst derivatives:
{

x(t), y(t), θ(t), v(t), v̇(t), δ(t), δ̇(t)
}

.Then, the following time-optimal dynami
 path inversion (TOPI) problem 
anbe posed.Problem 5 (TOPI problem) Given an assigned G3-path Γ, determine the
ontrol fun
tions v(t), δ(t) ∈ PC2 (see de�nition 2) su
h that system (3.1)travels exa
tly on path Γ in minimum-time t̄f from initial extended state (attime t = 0)
A :=

{

xA, yA, θA, vA, v̇A, δA, δ̇A

}

,to �nal extended state (at time t = t̄f )
B :=

{

xB , yB , θB, vB , v̇B , δB , δ̇B

}

,satisfying the following 
onstraints
0 ≤ v(t) ≤ vM , ∀t ∈ [0, t̄f ] ,
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|v̇(t)| ≤ aM , ∀t ∈ [0, t̄f ] ,

|v̈(t)| ≤ jM , ∀t ∈ [0, t̄f ] ,where vM , aM , jM > 0 are given bounds.Hen
e, in order to give a solution to TOPI problem, it is preliminarilyne
essary to determine a desired G3-path that satis�es the interpolating datadedu
ed from the extended states A and B [32℄. Let us introdu
e the followingrelations
vr(t) = v(t) cos δ(t) , (3.2)

v̇r(t) = v̇(t) cos δ(t) − v(t) δ̇(t) sin δ(t) , (3.3)
ω(t) =

1

l
v(t) sin δ(t) , (3.4)

ω̇(t) =
1

l
v̇(t) sin δ(t) +

1

l
v(t) ˙δ(t) cos δ(t) , (3.5)where vr(t) and v̇r(t) denote the linear velo
ity and a

eleration of the AGVrear-axle middle-point, and ω(t) and ω̇(t) denote the angular velo
ity anda

eleration of the AGV. From [5℄, the 
urvature and its derivative with respe
tto the ar
length, kA and k̇A in t = 0, and kB and k̇B in t = t̄f , are given by

kA =
ωA
vrA

, k̇A =
ω̇A vrA − ωA v̇rA

v3rA
, (3.6)and

kB =
ωB
vrB

, k̇B =
ω̇B vrB − ωB v̇rB

v3rB
, (3.7)where ωA = ω(0), vrA = vr(0), ωB = ω(t̄f ) and vrB = vr(t̄f ). By substitutingrelations (3.2)-(3.5) in (3.6)-(3.7), the following equations are obtained

kA =
1

l
tan δA , (3.8)

k̇A =
1

l

δ̇A
vA cos3 δA

, (3.9)and
kB =

1

l
tan δB , (3.10)
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k̇B =

1

l

δ̇B
vB cos3 δB

. (3.11)On the extended states A and B we impose the assumptions
|δA| < π/2 , and |δB | < π/2 .Therefore, relations (3.9) and (3.11) indi
ate that there exist two de�nite for-bidden 
ases

{vA = 0} ∧ {δ̇A 6= 0} , {vB = 0} ∧ {δ̇B 6= 0} ,whi
h are 
onsidered as further assumptions on the TOPI problem. On theother hand if vA = 0 and δ̇A = 0 and similarly vB = 0 and δ̇B = 0, then k̇Aand k̇B 
an be arbitrarily assigned and this improves the design freedom inshaping the Γ path for the AGV.Hen
e, the G3-path Γ must satisfy at the endpoints the interpolations 
on-ditions shown in �gure 3.4, i.e. the initial and �nal Cartesian points of Γ have
(xA, yA) and (xB , yB) as 
oordinates, θA and θB as unit-tangent dire
tions, kAand kB as 
urvatures, k̇A and k̇B as 
urvature derivatives respe
tively.PSfrag repla
ementsY

X

xA, yA, kA, k̇A

θA

θB
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Γ

Figure 3.4: The interpolations 
onditions at the endpoints of path Γ.
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 guidedvehi
le 101This interpolation problem 
an be easily solved using the η3-splines [32,33℄,introdu
ed in the pre
edent 
hapter, whi
h are seventh-order polynomial 
urveswith free design parameters (the η ve
tor) to shape the desired path inter
oursebetween the endpoints.Remark In the following subse
tions, path Γ denotes the Cartesian path gen-erated by the rear-axle middle-point, i.e. by (x(t), y(t)). Below another relevantpath of the AGV, denoted by Γf , is introdu
ed. Γf is the path generated bythe AGV forward motor wheel.3.2.2 The dynami
 path inversion algorithmThe time-optimal 
ontrol fun
tions v̄(t) and δ̄(t), whi
h permit the AGV tofollow the given path Γ in minimum-time, will be obtained by a dynami
 pathinversion pro
edure.Note that fun
tions v̄(t) and δ̄(t), solution of the TOPI problem, are as-so
iated to the a
tuated motor wheel of the AGV (see �gure 3.3), so that theinversion pro
edure will need to determine the path Γf of the forward wheelwhi
h is geometri
ally linked to Γ. Knowledge of Γf and its total distan
e
sf allows to apply the path-velo
ity de
omposition method [3℄ to the TOPIproblem so that the velo
ity v̄(t) will be 
omputed independently from δ̄(t)by setting the minimum-time 
onstrained velo
ity planning dis
ussed in se
-tion 1.4. Then the optimal steering δ̄(t) will be determined by exploiting thegeometri
 properties of model (3.1) relative to paths Γ and Γf .The dynami
 path inversion algorithm 
an be then des
ribed in the follow-ing three steps:1. Determine the path Γf of the forward wheel. Consider the followingparametrization of path Γ (as 
ustomary using η

3-splines)
p(u) : [0, 1]→ R

2

u→ p(u) .
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 path inversionThe unit tangent ve
tor τ (u) of Γ is given by
τ (u) =

ṗ(u)

‖ṗ(u)‖ ,and a parametrization of path Γf 
an be obtained as follows
pf (u) = p(u) + l τ (u), u ∈ [0, 1], (3.12)where l is the distan
e between the rear-axle middle point and the forwardwheel. Figure 3.5 depi
ts the geometri
 relation between paths Γ and Γf .
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Figure 3.5: Geometri
 
onstru
tion of the forward path Γf .Compute the total distan
e sf to be travelled by the forward wheel on
Γf :

sf =

∫ 1

0
‖ṗf (u)‖du . (3.13)2. Determine the minimum-time velo
ity v̄(t) by solving the 
onstrainedproblem widely exposed in se
tion 1.4.
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 guidedvehi
le 1033. Determine the optimal steering fun
tion δ̄(t) by solving the followingequation system:
{

∫ t
0 v̄(ξ)dξ =

∫ u
0 ‖ṗf (ξ)‖dξ

δ̄(t) = arg τ f (u)− arg τ (u) .
(3.14)The geometri
al meaning of this determination is depi
ted in �gure 3.6.
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Γ ΓfFigure 3.6: Geometri
al interpretation of equation system (3.14).Remark The velo
ity planning problem leads to a smooth velo
ity pro�le (seese
tion 1.4) that is easy to implement on an a
tuator drive be
ause velo
ity anda

eleration are 
ontinuous and the jerk (the time-derivative of a

eleration) islimited and 
onstrained as desired (by setting the bound jM ). Also note thatthe 
onstraint v(t) ≥ 0 imposes that the automati
 guided vehi
le does not goba
kward on the desired path.3.2.3 ExampleConsider an AGV with l = 1.1 m, the distan
e between the motor wheel andthe rear-axle, and 
onstraints on the a
tuation of the motor wheel given by
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vM = 3 m/s, aM = 1 m/s2, and jM = 0.5 m/s3.It is desired a minimum-time transition between the extended states A and
B given by (measures are expressed in m, m/s, m/s2, rad, rad/s):

A =
{

xA, yA, θA, vA, aA, δA, δ̇A

}

= {0, 0, 0, 1,−1, 0, 0} .

B =
{

xB, yB , θB , vB , aB , δB , δ̇B

}

= {16, 8, 0, 3, 0, 0, 0} .The desired Cartesian path Γ between (xA, yA) and (xB , yB) is an S-shapedpath that 
an be easily determined by interpolation with the η
3-splines [32℄.The interpolation data are (θA, kA, k̇A) and (θB, kB , k̇B) for whi
h θA = 0 and

θB = 0 from the assigned extended states A and B and kA = 0, k̇A = 0 and
kB = 0, k̇B = 0 as it follows from relations (3.8)-(3.11).Path Γ is then an η

3-spline, a seventh order polynomial 
urve, whose freeparameters are 
hosen a

ording to the heuristi
 rule suggested in [30, 32℄:
η = (η1, η2, η3, η4, η5, η6) = (d, d, 0, 0, 0, 0) ,where d = ‖(xA − xB, yA − yB)‖ = 17.89 is the Eu
lidean distan
e between

(xA, yA) and (xB , yB). Path Γ is the blue one depi
ted in �gure 3.7.To determine the time-optimal 
ontrols v̄(t) and δ̄(t) whi
h are the solutionto the TOPI problem we use the dynami
 path inversion algorithm des
ribedin three steps in subse
tion 3.2.2.Step 1: The path Γf of the forward motor wheel is 
omputed a

ordingto (3.12). It is depi
ted in �gure 3.7. The length of Γf is sf = 19.12 m a
-
ording to (3.13).Step 2: The existen
e of the time-optimal velo
ity is guaranteed by the ful-�lment of the su�
ient 
onditions of proposition 2. Indeed, 
onditions (1.37)and (1.38) are immediately satis�ed. Be
ause aA < 0 and aB ≥ 0, we 
he
k 
on-ditions (1.40) and (1.41) respe
tively: vA+ 1
2
a2
A

jM
= 0 ≥ 0 and vB− 1

2
a2
B

jM
= 3 ≥ 0.Appli
ation of the four-step pro
edure of proposition 2 determines sref = 8.17m so that the last inequality (1.43) is also satis�ed: sf ≥ sref . Hen
e, sin
e
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[m℄Figure 3.7: The planned path Γ and the asso
iated forward path Γf of theAGV.the 
onstrained minimum-time velo
ity problem has solution, the TOPI prob-lem has solution too by virtue of the path dynami
 inversion algorithm ofsubse
tion 3.2.2.The approximated determination of v̄(t) is gained with the pro
edure de-tailed in subse
tion 1.4.2 and its pro�le is shown in �gure 3.8. It has been
hosen the sampling time T = 0.01 s and the linear programming routine hasrun using MOSEK [55℄. The resulting minimum-time for the transition of theAGV from A to B along Γ is t̄f = 10.64 s.Step 3: The optimal steering 
ontrol δ̄(t) is determined by solving (3.14)with a sweeping dis
retization on parameter u ∈ [0, 1]. The result is shown in�gure 3.9. Many simulations of the motion of the AGV have been performed.In parti
ular, the minimum-time transition of the AGV between the extendedstatesA and B along Γ has been simulated by using the found v̄(t) and δ̄(t). Theadopted approximations are good enough to ensure a tra
king of the plannedtraje
tory with negligible errors.
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Chapter 4
Replanning methods for thetraje
tory tra
king It is a bad plan that admitsof no modi�
ation.� Publilius SyrusAs known, a fundamental problem in 
ontrol theory for automation is out-put tra
king [56℄. Given a desired signal or referen
e on the output variable ofa 
ontrolled dynami
al system, the problem is to appropriately manipulate theinput of the system in su
h a way that the a
tual output follows as 
lose as pos-sible the desired referen
e. The 
lassi
 solution approa
h pres
ribes the designof a feedba
k 
ontroller that 
an asymptoti
ally zero the tra
king error [57�59℄.When the desired output is known in advan
e, an alternative tra
king 
ontrolstrategy is inversion-based 
ontrol. It is a feedforward/feedba
k strategy wherethe feedforward is determined by stable input-output inversion and the feed-ba
k is a
tivated by a 
ontroller whose input is the error between the referen
estate and the a
tual state [49, 50, 60℄. A variant of this strategy 
onsiders theappli
ation of a feedba
k 
ontroller �rst to redu
e the e�e
ts of unmodeled



108 Chapter 4. Replanning methods for the traje
tory tra
kingdynami
s or un
ertainties on the 
ontrolled system and then the 
losed-loopdynami
s is inverted by the stable inversion pro
edure [61℄.Both the 
lassi
 approa
h to output tra
king and the newer inversion-basedone expe
t the 
ontinuous-time availability of the measured output or the mea-sured state of the 
ontrolled system. However, there are 
ases where 
ontinuous-time or high-frequen
y revelation of the system state or output is not possibleor not e
onomi
al and only low-frequen
y feedba
k is pra
ti
able. The result-ing 
ontrol framework is then an hybrid feedforward/feedba
k s
heme wherethe 
ontrolled system is 
ommanded by feedforward (i.e. open-loop) inputsthat are periodi
ally updated to 
ompensate or redu
e the tra
king error. Thisparadigm has been pioneered in [62,63℄ for the robust stabilization of nonlineardriftless and 
hained systems; an appli
ation was also proposed for the lanefollowing 
ontrol of a vision-based autonomous 
ar [30℄.In the �rst se
tion, within the framework of hybrid feedforward/feedba
k
ontrol s
hemes we propose a traje
tory tra
king problem of a WMR modeledby a uni
y
le model a�e
ted by norm-bound noise (
f. [64℄). Given a desired,feasible Cartesian traje
tory to be tra
ked by the WMR, the proposed 
ontrols
heme uses a re
ursive 
onvex replanning method to 
ompute a new referen
etraje
tory whenever the WMR's state is real-time available at a frequen
yassigned by the replanning time period T (
f. se
tion 4.1.1). Then, this newreferen
e traje
tory that is still feasible is used to generate the feedforward in-verse 
ommand velo
ities that help in redu
ing the tra
king errors (see �gure4.5). If the replanning period T is su�
iently small relative to the noise magni-tude, expli
it 
losed-form bounds on the global tra
king error are provided (
f.
orollary 1). In su
h a way a "pra
ti
al" tra
king 
onvergen
e to the desiredtraje
tory is a
hieved.Se
ond se
tion presents the output tra
king of a nonlinear �at system af-fe
ted by additive noise on its state derivative (
f. [65, 66℄). More spe
i�
ally,we 
onsider a 
ontrolled system whose performan
e output is a �at output ofthe system itself [67℄. A desired output signal is sought on the a
tual outputby using a feedforward inverse input that is periodi
ally updated using the



4.1. Re
ursive 
onvex replanning 109observation of the full system state a
quired at intervals of period T . The pro-posed method is a
tually an iterative output replanning that uses the desiredoutput traje
tory and the updated state to replan an output traje
tory whoseinverse input helps in redu
ing the tra
king error. This iterative replanning ex-ploits the Hermite interpolating polynomials to a
hieve an overall arbitrarilysmooth input and a tra
king error that 
an be made arbitrarily small undermild assumptions if the sampling period T is su�
iently small.Notation: If x is a Cl(R,Rn) fun
tion, x(l) denotes the derivative of x of order l,
x(t+0 ) and x(t−0 ) denotes, respe
tively, limx→t+0

x(t) and limx→t−0
x(t). For anyve
tor v ∈ R

n, (v)i denotes its i-th 
omponent.4.1 Re
ursive 
onvex replanningThis se
tion 
onsiders the Cartesian traje
tory tra
king of wheeled mobilerobots to be performed by an hybrid 
ontrol s
heme with feedforward inverse
ontrol and a state feedaba
k that is only updated periodi
ally and relies on are
ursive 
onvex replanning of the referen
e traje
tory. This approa
h appliedto the standard uni
y
le model is shown to maintain its e�
a
y also in presen
eof noise or unmodeled robot dynami
s. Expli
it, su�
ient 
onditions are pro-vided to ensure global boundedness of the tra
king error. Finally, experimentalresults are presented using Lego Mindstorm mobile robots.4.1.1 Traje
tory tra
king for the uni
y
leHere, the re
ursive tra
king approa
h dis
ussed in this se
tion is presentedin the 
ase of the kinemati
 uni
y
le. Consider the following model for theuni
y
le (see �gure 4.1)










(

ẋ

ẏ

)

= v(t)

(

cos θ

sin θ

)

+ η(t)

θ̇ = ω(t) + ηθ(t) ,

(4.1)



110 Chapter 4. Replanning methods for the traje
tory tra
kingwhere (x, y) ∈ R
2 is the position of the 
enter of the uni
y
le, θ is the ori-entation angle and v, ω are the velo
ity 
ontrol inputs, and set z = (x, y, θ).Fun
tions η and ηθ are noise terms that satisfy the bounds ∀t ∈ R

{

‖η(t)‖ ≤ N ,

|ηθ(t)| ≤ Nθ .
(4.2)When the noise terms are not present, (i.e. N = 0 and Nθ = 0) system (4.1)is 
alled the nominal uni
y
le.PSfrag repla
ements
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Figure 4.1: S
hemati
 of a uni
y
le mobile robot.Consider a referen
e traje
tory γ0 de�ned as follows.Assumption 1 Let γ0 : R+ → R
2 be a referen
e traje
tory with C3 
ontinuitysu
h that:a) 0 < Vm ≤ ‖γ̇0(t)‖ ≤ VM ,b) ‖γ̈0(t)‖ ≤ AM .Exa
t tra
king of γ0 is a
hieved when, ∀t ≥ 0,

(

x(t)

y(t)

)

= γ0(t) .



4.1. Re
ursive 
onvex replanning 111The following straightforward result 
hara
terizes 
ompletely the exa
t tra
k-ing problem for the nominal uni
y
le.Property 4 Exa
t tra
king is a
hieved for the nominal uni
y
le (4.1), i.e.
(

x(t)

y(t)

)

= γ0(t) , ∀t ≥ 0 ,if and only if the following 
onditions hold:a) ( x(0)

y(0)

)

= γ0(0) ,b) v(0)( cos θ(0)

sin θ(0)

)

= γ̇0(0) ,
) v(t) = ‖γ̇0(t)‖,∀t ≥ 0 ,d) ω(t) = d
dt arg(γ̇0(t)) ,∀t ≥ 0 .Conditions a), b) imply that the initial 
onditions must be su
h that at theinitial time the uni
y
le lies at the beginning of the 
urve with orientationangle parallel to the tangent ve
tor to the 
urve γ0. Conditions 
), d) a
tuallyde�ne the 
ontrols that must be used to exa
tly tra
k the given referen
e.These 
ontrols are feedforward velo
ity input signals be
ause depend only onthe referen
e γ0.Remark Having 
hosen a C3-traje
tory referen
e, i.e. a traje
tory fun
tionthat is 
ontinuous with its derivatives till to the third order, we obtain bymeans of 
) and d) smooth velo
ities v(t), ω(t) with 
ontinuous a

elerations,i.e. v, ω ∈ C1(R+). A weaker 
ondition to still ensure 
ontinuous a

elerationsis to assume γ0 ∈ C2(R+) and γ0 is a G3-
urve, i.e. a 
urve with third order ge-ometri
 
ontinuity (
ontinuity along the 
urve of the tangent ve
tor, 
urvature,and derivative of the 
urvature with respe
t to the ar
 length) [5℄.Obviously, using feedforward 
ontrol only, de�ned by 
) and d), the tra
k-ing error may grow unbounded if N > 0, Nθ > 0. In order to keep the error
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tory tra
kingbounded one may use 
ontinuous-time feedba
k 
ontrol. In this se
tion anotherapproa
h is 
onsidered, based on an idea similar to iterative steering (see [4℄).The method 
onsists in using at all times the feedforward 
ontrols given by 
),d) but the referen
e traje
tory is periodi
ally replanned. When t ∈ [0, T ], γ0 isused as referen
e traje
tory, for t ∈ [T, 2T ] a di�erent 
urve γ1 is used and, ingeneral the referen
e traje
tory γi is used for t ∈ [iT, (i+1)T ]. Ea
h referen
es
γi is de�ned re
ursively with respe
t to γi−1 in su
h a way to keep the tra
k-ing error limited. Before explaining in detail the overall feedforward/feedba
kstrategy, the replanning operator to be used to 
onstru
t ea
h referen
e γi from
γi−1 is de�ned as follows:De�nition 8 (Replanning Operator) Let be given a (
urrent) referen
e tra-je
tory γ : [t0,+∞) → R

2 and a robot's state z0 = (x0, y0, θ0). De�ne a newreferen
e traje
tory γz0,t0,γ : [t0,+∞)→ R
2 a

ording to the 
onvex replanning:

γz0,t0,γ(t) = λ(t− t0) [(x0, y0) +R(eθ(t0))(γ(t) − γ(t0))]
+(1− λ(t− t0)) γ(t) ,

(4.3)where� λ : R+ → [0, 1] is a monotone de
reasing C3-fun
tion with λ(0) = 1,
Diλ(0) = 0, i = 1, 2, 3 and limt→+∞ λ(t) = 0;� R(x) =

[

cos x − sinx

sinx cos x

] is the rotation matrix;� eθ(t0) = θ0 − arg γ̇(t0) is the heading angle error at time t0.The 
urve γ1 = γz0,t0,γ0 is a C3-fun
tion and enjoys the following properties
γ1(t0) = (x0, y0) ,

arg γ̇1(t0) = θ0 ,

lim
t→∞

γ1(t)− γ0(t) = 0 .



4.1. Re
ursive 
onvex replanning 113In other words, traje
tory γ1 at t0 is equal to ( x0

y0

) and its derivative hasthe dire
tion given by θ0. Asymptoti
ally γ1 
onverges to γ0 and the rateof 
onvergen
e is 
ontrolled by the monotone de
reasing fun
tion λ. Remarkthat the replanned 
urve γ1 is determined trough a linear 
onvex 
ombination,weighted by λ(t), of fun
tion γ0 and another traje
tory obtained by rotatingand translating γ0 itself, as depi
ted in �gure 4.2. For instan
e, one may 
hoose
PSfrag repla
ements
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λ using C3-transition polynomials [48℄ and setting the transition time equalsto 2T :

λ(t) = 1− 35

(

t

2T

)4

+ 84

(

t

2T

)5

− 70

(

t

2T

)6

+ 20

(

t

2T

)7

, t ∈ [0, 2T ] , (4.4)
λ(t) = 0, t > 2T .The graph of this fun
tion is reported in �gure 4.3.The motion 
ontrol method 
an be summarized as follows (it is assumedthat a), b) of property 4 hold).
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T 2TFigure 4.3: The C3-transition polynomial λ(t).1) For t ∈ [0, T ], where T > 0 is the replanning time, the 
ontrol fun
tions aregiven by 
), d) (in property 4)2) For t ∈ [iT, (i+1)T ], with i = 1, 2, . . . , the 
ontrol velo
ities are de�ned by
u(t) = ‖γ̇i(t)‖ , (4.5)

ω(t) =
d

dt
arg(γ̇i(t)) , (4.6)where γi(t) is the traje
tory determined via the 
onvex replanning oper-ator (4.3):

γi = γz(iT ),iT,γi−1
. (4.7)That is, for t ∈ [iT, (i + 1)T ], an open loop 
ontrol is applied, thatwould drive the nominal system from state ( x(iT )

y(iT )

) with orientation
θ(iT ), to referen
e traje
tory γi−1. Therefore the referen
e traje
tory γi isde�ned re
ursively with respe
t to traje
tory γi−1, as shown in �gure 4.4.
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e traje
tories.The overall 
ontrol s
heme is depi
ted in �gure 4.5 where the Re
ursiveConvex Replanning Operator blo
k takes 
are of the iterative traje
tory gen-eration and the Inverse Control Operator blo
k 
omputes the a
tual 
ontrolby means of di�erential relations (4.5),(4.6).
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Figure 4.5: The hybrid feedforward/feedba
k s
heme for the traje
tory tra
kingof wheeled mobile robots.The 
ontrol method just outlined draws on the idea of iterative state steer-ing (see [4℄), the main di�eren
e lies in the fa
t that ea
h replanned traje
toryis de�ned re
ursively with respe
t to the previous one. With respe
t to theiterative state steering, this method has the following signi�
ant di�eren
es:� if the noise fun
tions η and ηθ a�e
ting system (4.1) are zero during time
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tory tra
kinginterval [iT, (i+1)T ] the replanned traje
tory 
oin
ides with the previousone, i.e. γi+1 = γ1. No replanning is a
tually performed in absen
e ofnoise.� The replanning does not a�e
t the 
ontrol smoothness as ω and v re-main C1-fun
tions, linear and angular a

elerations remain 
ontinuous.A
tually, these 
ontrol fun
tions 
ould be made arbitrarily regular by
hoosing su�
iently regular referen
e γ0 and fun
tion λ.� Even if a dire
t 
omparison is di�
ult, the su�
ient 
onditions for ap-plying this method are somehow weaker than the one appearing in [4℄sin
e it is not required that the tra
king error de
reases in norm afterthe replanning time T (see (
) of assumption 1 in [4℄).In this se
tion, this method will be analyzed, 
onditions will be found thatallow keeping the tra
king error limited and bounds will be provided. Theproblem that will be solved is therefore the following.Problem 6 Find 
onditions on traje
tory γ0, replanning time T and noisemagnitude that guarantee that the tra
king error is bounded, and �nd an esti-mate on the error norm.In se
tion 2.1.2, this problem will be 
onsidered for a general 
lass of sys-tems that in
ludes the uni
y
le model (4.1). The main result of this work(proposition 7), when applied to the 
ase of the uni
y
le vehi
le with fun
tion
λ de�ned as in (4.5), brings to the following result.Corollary 1 Consider 
ontrol laws given by (4.5) and (4.6) and let λ(t) begiven by (4.4). If T < 32

83Nθ
then the following bounds hold

‖γ̇i(t)− γ̇0(t)‖ ≤ V̄2 :=
83
32 T Nθ VM +

(

T
2

2
Nθ + T N

)

1− 83
32 T Nθ

, (4.8)
‖γi(t)− γ0(t)‖ ≤

(

1 +
T

4

)

T Nθ(V̄2 + VM ) +
T

2
N . (4.9)
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ursive 
onvex replanning 117This result means that if the produ
t of the replanning time T and the noisebound Nθ is su�
iently small, then the di�eren
e between the replanned 
urves
γi and the referen
e 
urve γ0 is bounded (the tra
king error has similar bounds).Obviously, the provided bounds grow as the replanning time T in
reases andde
rease with the noise bounds N , Nθ. Exa
t tra
king is guaranteed only when
N = 0 and Nθ = 0.4.1.2 Re
ursive tra
king in a general settingIn this subse
tion we introdu
e the re
ursive tra
king problem in a more generalsetting and present a te
hni
al result (proposition 7) whi
h will permit to �ndtra
king bounds for the 
ase of the uni
y
le vehi
le dis
ussed in se
tion 4.1.1.Consider system

{

ż(t) = f(z(t), u(t)) + η(t)

z(t0) = z0 ,
(4.10)where z(t) ∈ R

n, u(t) ∈ R
m and η is a noise term that satis�es the following
onstrain
‖η(t)‖ ≤ N ∀t ∈ R , (4.11)with N ∈ R+. As in the 
ase of the uni
y
le, when N = 0, the system aboveis 
alled the nominal system (4.10). De�ne as feasible traje
tory a referen
efun
tion whi
h 
an be exa
tly tra
ked by the nominal system (4.10):De�nition 9 A 
ontinuous fun
tion γ0 : R → R

n is a feasible traje
toryfor (4.10) with 
ontrol u0, if the following di�erential equation is satis�ed
γ̇0(t) = f(γ0(t), u0(t)), t ≥ 0 . (4.12)The following is the fundamental assumption for de�ning a re
ursive iterativetra
king. For every feasible system traje
tory γ, every initial state z̄ and time

t̄, it is assumed that there exists a feasible replanned traje
tory that bringsasymptoti
ally the state from z̄ to the referen
e γ.



118 Chapter 4. Replanning methods for the traje
tory tra
kingAssumption 2 If γ0 is a feasible traje
tory for (4.10) then ∀z̄ ∈ R
n and t̄ ∈ Rthere exist 
ontinuous fun
tions uz̄,t̄,γ0 : [t̄,+∞)→ R

m and γz̄,t̄,γ0 : [t̄,+∞)→
R
n, su
h that

{

γ̇z̄,t̄,γ0(t) = f(γz̄,t̄,γ0(t), uz̄,t̄,γ0(t))

γz̄,t̄,γ0(t̄) = z̄ ,
(4.13)and

lim
t→+∞

γz̄,t̄,γ0(t)− γ0(t) = 0 . (4.14)Assumption 2 allows de�ning a re
ursive iterative 
ontrol (as has been donein the 
ase of the uni
y
le vehi
le in se
tion 4.1.1) in the following way.Control Law: Given a referen
e traje
tory γ0, the 
ontrol fun
tion ū forsystem (4.1) is de�ned as follows
ū(t) = u0(t), if t ∈ [0, T ]

ū(t) = uz(iT ),iT,γi−1
(t) if t ∈ [iT, (i + 1)T ] ,

(4.15)where
ż(t) = f(z(t), ū(t))

γi(t) = γz(iT ),iT,γi−1
(t), i > 0 .

(4.16)The following de�nes a parti
ular 
lass of positive de�nite operators, similarto Lyapunov fun
tions.De�nition 10 Let n be a positive integer, then U : Rn → R, is a seminorm ifthe following 
onditions hold1. V (0) = 0 ;2. V (z) ≥ 0,∀z ∈ R
n ;3. V (z1 + z2) ≤ V (z1) + V (z2), ∀z1, z2 ∈ Rn .Moreover V = (V1, V2, . . . , Vl) : Rn → R

l is a ve
tor of seminorms if ea
h
omponent Vi is a seminorm.Notation: for any relational operator <R and x, y ∈ R
n, x <R y means xi <R

yi, i = 1, . . . , n.
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tion ϕ : R+ → R+ and a seminorm U , we saythat system (4.10) is (U,ϕ)-bounded, if, when γ̄ is a feasible traje
tory with
ontrol ū and z is the solution of the following system
{

ż(t) = f(z(t), ū(t)) + η(t)

z(t0) = γ̄(t0) ,then, ∀t ≥ t0
U(z(t)− γ̄(t)) ≤ ϕ(t− t0) . (4.17)The following proposition is the main result of this se
tion.Proposition 7 Let V be a ve
tor of seminorms and U a seminorm, γ0 afeasible traje
tory for (4.10), with 
ontrol fun
tion u0. Let z(t) and γi be de�neda

ording to (4.15), (4.16). Let fun
tion Φ : Rl × R× R

l → R
l be su
h that

V (γ̄z0,t0,γ(t)− γ(t)) ≤ Φ(U(z(t0)− γ(t0)), t− t0,W (γ − γ0)) , (4.18)and Φ is monotone in
reasing with respe
t to ea
h 
omponent of the argument
W , de�ned as W (γ) = supt∈R V (γ(t)). Moreover, assume that there exists afun
tion ϕ(t), su
h that (4.10) is (U,ϕ)-bounded. If there exists V̄ ∈ R

l su
hthat
V̄ ≥

+∞
∑

k=1

Φ(ϕ(T ), t− kT, V̄ ) , (4.19)then, ∀t ∈ R and ∀i ∈ N,
V (γi(t)− γ0(t)) ≤ V̄ . (4.20)Proof. Proposition 7 
an be proved by indu
tion as follows. Consider �rst i = 0,in this 
ase inequality (4.20) holds sin
e, by 1) of de�nition 10,

V (γ0(t)− γ0(t)) = V (0) = 0 ≤ V̄ .
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tory tra
kingMoreover assume that (4.20) is veri�ed for i = 0, 1, . . . , l− 1, then from (4.18)and 2) of de�nition 10 the following relation is obtained
V (γl(t)− γ0(t)) = V

(

l
∑

k=1

(γk(t)− γk−1(t))

)

≤
l
∑

k=1

V (γk(t)− γk−1(t))

≤
l
∑

k=1

Φ (U(z(k T )− γk−1(k T )), t− k T,W (γk−1(t)− γ0(t))) . (4.21)From (4.17), with γ̄ = γk−1 and t0 = (k − 1)T , ∀k = 1, . . . , l, the followinginequality holds
U(z(k T )− γ(k T )) ≤ ϕ(T ) .Sin
e by the indu
tive hypothesis relation (4.20) is true for i = 0, 1, . . . , l − 1,

∀t ∈ R :

W (γk−1(t)− γ0(t)) ≤ V̄ ,therefore, the following inequality is obtained
V (γl(t)− γ0(t)) ≤

l
∑

k=1

Φ(ϕ(T ), t− k T, V̄ ) . (4.22)and �nally, 
ombining (4.22) and (4.19), it follows that
V (γi(t)− γ0(t)) ≤ V̄ .

�Remark that instead of �nding separately a fun
tion Φ and ϕ whi
h sat-isfy (4.18) and (4.17), one 
an �nd dire
tly the 
omposite fun
tion Φ(ϕ(T ), t−
t0,W (γ−γ0)) whi
h appears in (4.19), as will be done for the uni
y
le vehi
le.The idea behind proposition (7) is the following. The key element for �ndingbounds for traje
tories γi de�ned in (4.16) 
onsists in �nding the fun
tion
Φ(ϕ(T ), t− t0,W (γ−γ0)), whi
h provides bounds on the norm at time t of thedi�eren
e of a 
urve replanned at t0 with the previous one (γ), as a fun
tion ofthe replanning time T , the time elapsed sin
e the parameterization (t− t0) andthe maximum value of the norms of the di�eren
e between γ and the referen
e
urve γ0.
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ation to the tra
king problem for the uni
y
leIn this subse
tion proposition 7 is applied to the tra
king problem for theuni
y
le vehi
le, introdu
ed in se
tion 4.1.1.The following lemma estimates the error on the feed-forward 
ontrol ofsystem (4.1) 
aused by the noise terms.Lemma 1 Consider system (4.1), assume that a) and b) in property 4 holdand that the 
ontrols u and ω are given by 
) and d). Then the followinginequalities hold
|θ(t)− arg(γ0(t))| ≤ Nθt , (4.23)

∥

∥

∥

∥

∥

(

x(t)

y(t)

)

− γ0(t)
∥

∥

∥

∥

∥

≤ t2

2
NθVM +Nt . (4.24)Proof. De�ne eθ(t) = θ(t) − arg(γ̇0(t)) and e(t) =

(

x(t)

y(t)

)

− γ0(t), then
ėθ(t) = ηθ(t) and |ėθ(t)| ≤ Nθ, from whi
h (4.23) is obtained. Moreover ė =

v

(

cos θ(t)− cos(arg γ̇(t))

sin θ(t)− sin(arg γ̇(t))

)

+ η and ‖ė(t)‖ ≤ VM
√
2
√
1− cos eθ +N . Sin
e

cos x ≥ 1− x2

2 , then ‖ė(t)‖ ≤ VM t2Nθ

2 +Nt, from whi
h (4.24) follows. �The following result represents the dire
t appli
ation of proposition 7 tothe 
ase of the uni
y
le.Proposition 8 Consider system (4.1), where the 
ontrol u is de�ned by (4.5)-(4.6) and the referen
e fun
tion γ0 satis�es assumption 1. Moreover supposethat
χ = TNθ

[

+∞
∑

i=0

λ(iT ) +

+∞
∑

i=0

|λ̇(iT )|iT
]

< 1 .De�ne
V̄2 = (1− χ)−1

(

TNθVMTNθ

(

+∞
∑

i=1

λ(T i) + λ̇(T i)Ti

)

+

(

TNθ

2
+NT

) +∞
∑

i=0

λ(Ti)

)

,

(4.25)
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V̄1 =

(

T

2

2

Nθ(V̄2 + VM ) +NT

) +∞
∑

i=1

λ(T i) + TNθ(V̄2 + VM )
+∞
∑

i=1

λ(T i) , (4.26)
V̄3 =

(

1− TNθ

+∞
∑

i=0

λ(iT )

)−1{

T Nθ (V̄2 + VM )

(

+∞
∑

i=1

λ̈(iT ) + λ̇(iT )

)

+AM T Nθ

+∞
∑

i=1

λ(iT ) +

(

T

2

2

Nθ + T N

) +∞
∑

i=1

λ̈(iT )

}

, (4.27)and suppose that the following 
ondition is veri�ed
Vm < V̄2 ,then the following inequalities hold, ∀i ∈ N and ∀t ≥ iT ,

‖γi(t)− γ0(t)‖ ≤ V̄1 , (4.28)
‖γ̇i(t)− γ̇0(t)‖ ≤ V̄2 , (4.29)
‖γ̈i(t)− γ̈0(t)‖ ≤ V̄3 . (4.30)Moreover the 
ontrols de�ned by (4.5) and (4.6) satisfy the following bounds,

∀i ∈ N, ∀t ≥ iT ,
u(t) ∈ [Vm − V̄2, VM + V̄2] , (4.31)
‖ω(t)‖ ≤ AM + V̄3

Vm − V̄2
. (4.32)Proof. Sin
e, input fun
tions u(t), ω(t) de�ned in (4.5) and (4.6) are C1 andrespe
tively C0, then the extended state z = {x, y, θ, ẋ, ẏ, ẍ, ÿ} is well de�ned.Set V = (V1, V2, V3) with V1 = ‖(x, y)‖, V2 = ‖(ẋ, ẏ)‖ and V3 = ‖(ẍ, ÿ)‖.Remark that V satis�es de�nition 10. In order to use proposition 7, we nowde�ne the fun
tion Φ = (Φ1,Φ2,Φ3) su
h that (4.18) holds. To de�ne Φ1,
onsider the following bound

V1(γz(t0),t0,γ − γ) = ‖λ(t− t0) {R(eθ(t0)) [γ(t) − γ(t0)]
+γ(t0) + eγ(t0)}+ [1− λ(t− t0)] γ(t)− γ(t)‖

= ‖λ(t− t0) {[R(eθ(t0))− I] [γ(t) − γ(t0)] + eγ(t0)}‖ ,
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‖γ(t)− γ(t0)‖ ≤ (t− t0) sup

t≥t0

‖γ̇(t)‖ ≤ (t− t0)
[

VM + sup
t≥t0

‖γ̇(t)− γ̇0(t)‖
]

≤ (t− t0) [VM +W2(γ − γ0)] .Therefore, by lemma 1, we �nd the bound
V1(γz(t0),t0,γ − γ) ≤ λ(t− t0) {|eθ(t0)| (t− t0)[W2(γ − γ0) + VM ] + |eγ(t0)|}

≤ Φ1(T, t− t0,W (γ − γ0)) .Analogously
V2(γz(t0),t0,γ − γ) = ‖λ̇(t− t0) {[R(eθ(t0))− I][γ(t) − γ(t0)] + eγ(t0)}+ γ̇(t)

{λ(t− t0) [R(eθ(t0))− I]}‖ ≤ Φ2(T, t− t0,W (γ − γ0)) .Finally
V3(γz(t0),t0,γ − γ) = ‖λ̈(t− t0) {[R(eθ(t0))− I][γ(t) − γ(t0) + eγ(t0)]}
+λ̇(t− t0) [R(eθ(t0))− I]γ̇(t) + γ̈(t) {1 + λ(t− t0) [R(eθ(t0)− I]}
+γ̇(t) λ̈(t− t0) [R(eθ(t0)− I]− γ̈(t)‖ ≤ Φ3(T, t− t0,W (γ − γ0)) .From (4.25), (4.26) and (4.27) it follows that, for k = 1, 2, 3

V̄k ≥
+∞
∑

i=1

Φk(T, iT, V̄k) ,and, by (4.20) of proposition 7, relations (4.28), (4.29) and (4.30) hold. More-over, ∀t ∈ [iT, (i+ 1)T ]

u(t) = ‖γ̇i(t)‖ = ‖γ̇0(t) + γ̇i(t)− γ̇0(t)‖

∈
[

Vm − sup
t≥iT
{‖γ̇i(t)− γ̇0(t)‖}, VM + sup

t≥iT
{‖γ̇i(t)− γ̇0(t)‖}

]

⊂
[

Vm − V̄2, VM + V̄2
]

,
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kinghen
e (4.31) holds. Furthermore,
|ω(t)| = | d

dt
arg(γ̇i(t))| ≤

|det[γ̈i(t), γ̇i(t)]|
‖γ̇i(t)‖2

≤ ‖γ̈i(t)‖‖γ̇i(t)‖

≤ ‖γ̈0(t)‖+ supt≥iT {‖γ̈i(t)− γ̈0(t)‖}
‖γ̇0(t)‖ − supt≥iT {‖γ̇i(t)− γ̇0(t)‖}

≤ AM + V̄2
Vm − V̄2

,therefore (4.32) holds and the proof of proposition 8 is 
omplete. �Corollary 1 follows from proposition 8 when λ is given by (4.4).4.1.4 Simulation resultsThe method presented in subse
tion 4.1.1 has been 
ompared with the 
on-troller for the uni
y
le presented in [68, p.809℄. We have assumed that thestate is measured only at regular intervals T = 1 s, whi
h represents also thereplanning time for our algorithm. The state appearing in the feedba
k 
ontrollaw presented in [68℄ is obtained through a dis
ontinuous open loop observerwhi
h is updated at ea
h observation time. The gain in this 
ontroller havebeen set to have 
ontrols signals of magnitude similar to the method of se
-tion 4.1.1. As referen
e traje
tory we have 
onsidered a periodi
 spline followedwith 
onstant speed 1 m/s. The noise bounds appearing in (4.2) are given by
N = 0.5

√
2 and Nθ = 0.5. The obtained results are presented in �gures 4.6and 4.7. The two methods showed a similar performan
e in terms of tra
kingerror. However, the 
ontrol method presented in this se
tion has the advantageof providing overall 
ontinuous input signals whereas the 
ontrol signals of the
lassi
 
ontroller are dis
ontinuous (even if this is a 
onsequen
e of having useda dis
ontinuous observer). Our method has the advantage of guaranteeing anarbitrary 
lass of 
ontinuity in the input signals. Moreover, it is not an ad ho
solution for the uni
y
le, sin
e it 
an be applied in prin
iple to any systemsatisfying the 
onditions presented in se
tion 4.1.2.
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tory tra
king4.1.5 Experimental resultsWe have implemented an experimental setting for the method presented inse
tion 4.1.1. A mobile robot built with Lego Mindstorm NXT pie
eshas beenused. The tra
tion is provided by two front wheels, a passive rear 
astor wheelis used to prevent the robot from falling over. The inputs variable are ωl and ωr,the angular velo
ity of left and right wheels. Set v = rωl+ωr

2 and ω = r
L
ωl−ωr

2 ,where r is the driving wheels radius and L is the distan
e between the twowheels. After this substitution this di�erential drive robots 
an be des
ribedwith the uni
y
le model (4.1).Two red markers of di�erent sizes have been pla
ed on the robot and thesystem state (x, y, θ) is measured ten times per se
ond through a Unibrain�rewire 
amera, using standard 
omputer vision te
hniques. A personal 
om-puter running MATLAB 
ontains a systems observer for �nding the robot stateand implements the re
ursive 
ontroller presented in (4.5), (4.6) and (4.7). The
ontrol signals are 
omputed and sent to the wheeled robot via Bluetooth. Thereplanning time has been set to T = 0.8 s. This experimental setting is 
hara
-terized by some di�
ulties, in parti
ular the Bluetooth transmission introdu
esin the 
ontrol loop a delay of 80 ms, and the wheels o

asionally experimentslippage.Figure 4.8-a) shows the experimental results obtained when the referen
etraje
tory is a 
ir
le of radius equal to 30 
m, followed with a 
onstant speedof 0.2 m/s. The red line represents the referen
e traje
tory γ0 and the blueline the robot observed position. In the middle of the test the robot has beenmoved with a rod to test the robustness of the 
ontroller, this explain the largetransient error present in the �gure. In �gure 4.8-b), the norm of the (x, y)
omponent of the tra
king error is showed; the spike on time t = 40 it is dueto the test of the robustness of the 
ontroller.Figure 4.9-a) shows another experiment where the desired traje
tory is aspline whi
h has been reparameterized with 
onstant speed 0.15 m/s. The as-so
iated tra
king error is shown in �gure 4.9-b). Remark that the evaluationof fun
tions γi in (4.7) require the use of a re
ursive fun
tion. If fun
tion λ
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tory tra
kingrea
hes 0 in �nite time τ , then the maximum order of re
ursion is given bythe ratio τ
T (re
all that T is the replanning time). Sin
e the order of re
ur-sion is deterministi
, the proposed 
ontrol law 
an be implemented in a realtime 
ontroller. Parameter T must be 
arefully 
hosen. In fa
t, on one hand,by (4.8), (4.9), redu
ing T improves the tra
king performan
es. On the otherhand, it in
reases the ratio τ

T , the number of re
ursions needed to implementthe 
ontroller and the 
omputational e�ort.4.2 Iterative output replanning for �at systemsThe se
tion 
onsiders the output tra
king problem for nonlinear systems whoseperforman
e output is also a �at output of the system itself. A desired out-put signal is sought on the a
tual performan
e output by using a feedforwardinverse input that is periodi
ally updated with dis
rete-time feedba
k of thesampled state of the system. The proposed method is based on an iterative out-put replanning that uses the desired output traje
tory and the sampled state toreplan an output traje
tory whose inverse input helps in redu
ing the tra
kingerror. This iterative replanning exploits the Hermite interpolating polynomialsto a
hieve an overall arbitrarily smooth input and a tra
king error that 
anbe made arbitrarily small if the state sampling period is su�
iently small andmild assumptions are 
onsidered. Some simulation results are presented for the
ases of an uni
y
le and a one-trailer system a�e
ted by additive noise.4.2.1 Problem statementConsider the nonlinear 
ontrolled system
ẋ = f(x, u) , (4.33)with x ∈ C(R,Rn), u ∈ C(R,Rm). System (4.33) is �at if there exists anoutput fun
tion y su
h that the system state x(t) and the input u(t) 
an bewritten as a fun
tion of y and its derivatives up to a �nite order, evaluated attime t. More pre
isely the following de�nition 
an be given (see [52℄).
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m, two integers r and s and mappings ψ from R

n×R
m(s+1) to R

m, of rank min a suitably 
hosen output subset, and (φ0, φ1) from R
m(r+2) to R

n × R
m, ofrank m+ n in a suitable open subset, su
h that

y = (y1, . . . , ym) = ψ(x, u, u̇, . . . , u(s)) , (4.34)implies that
x = φ0(y, ẏ, . . . , y

(r)) ,

u = φ1(y, ẏ, . . . , y
(r+1)) ,

(4.35)the di�erential equation dφ0
dt = f(φ0, φ1) being identi
ally satis�ed.In this way, fun
tion φ0 represents the state x with the output y and itsderivatives up to the order r. Fun
tion φ1 represents the input u with theoutput and its derivatives up to the order r + 1.For simpli
ity, for a Cn fun
tion f we use the notation f̄n = (f, f (1), . . . , f (n)),to denote the ordered set 
ontaining fun
tion f and its time derivatives up tothe order n.If φ1 is su�
iently regular, di�erentiating (4.35), one obtains fun
tions φi,su
h that, for any i ≥ 1

u(i−1) = φi(ȳ
r+i) , (4.36)i.e., the input derivatives 
an be expressed as a fun
tion of the output andits derivatives. Similarly, if ψ is su�
iently regular, di�erentiating (4.34), oneobtains fun
tions ψi, su
h that, for any i ≥ 0

y(i) = ψi(x, ū
s+i) , (4.37)with ψ0 = ψ, where ψ is given in (4.34). Combining (4.36) and (4.37), thefollowing identity holds ∀i ≥ 1

u(i−1) = φi(ψ0(x, ū
s), . . . , ψr+i(x, ū

(s+r+i))) . (4.38)It is well known that tra
king and motion planning problems 
an be easilysolved for �at systems, see for instan
e 
hapter 7 of [52℄. In this se
tion we study



130 Chapter 4. Replanning methods for the traje
tory tra
kingthe tra
king problem for system (4.33), in presen
e of a bounded disturban
eadded to the nominal velo
ity of the state:
ẋ(t) = f(x(t), u(t)) + η(t) , (4.39)where η is a disturban
e signal su
h that
‖η(t)‖ ≤ N, ∀t ∈ R . (4.40)The performan
e output of system (4.39) is given by

y = ψ(x, u) . (4.41)We assume that y is a �at output for system (4.39) when no noise is present(i.e., η = 0). In this 
ase, from (4.34) and (4.35), it follows that the outputsignal y satis�es
y = ψ(φ0(ȳ

r), φ1(ȳ
r+1)) . (4.42)Note that the form (4.39) may be restri
tive sin
e the disturban
e η enters asa pure additive term. This form does not in
lude, for instan
e, 
ases in whi
ha disturban
e multiplies the state x or the input u.We assume that the full system state is a
quired periodi
ally, with a sam-pling period equal to T > 0. In this way, the feedba
k 
ontrol relies on thedis
rete-time observed sequen
e x(kT ), k ∈ N. For instan
e, this assumptionis reasonable when the system state is obtained through a 
amera, using 
om-puter vision te
hniques. In this 
ase, a sampling time of T = 0.1 se
onds wouldbe a typi
al situation.We study an iterative output replanning te
hnique for 
ontrolling sys-tem (4.39), based on Hermite interpolating polynomials, similar in spirit tothe iterative state steering method presented in [4℄. Roughly speaking, themethod is the following. A su�
iently regular referen
e output traje
tory ydis assigned in advan
e. During ea
h time interval [kT, (k + 1)T [, a replannedoutput yp is 
omputed su
h that



4.2. Iterative output replanning for �at systems 1311. yp 
orresponds through (4.35) to an initial state whi
h is the same as
x(kT ), i.e.

x(kT ) = φ0(yp(kT ), ẏp(kT ), . . . , y
(r)
p (kT )) .2. the replanned output yp 
onverges to the desired one yd at time (k+1)T ,i.e., yp((k + 1)T ) = yd((k + 1)T ).The 
ontrol is given a

ording to (4.35), ∀t ∈ [kT, (k + 1)T [, by

u(t) = φ1(yp(t), ẏp(t), . . . , y
(r+1)
p (t)) .Sin
e the system is a�e
ted by additive noise and in interval [kT, (k + 1)T [open loop 
ontrol is used, at time (k + 1)T the system output y((k + 1)T ) isdi�erent from yd((k + 1)T ). Hen
e, the above step is repeated, �nding a newreplanned traje
tory yp, that would drive the output of the nominal system to

yd at time (k+2)T . Again, for the presen
e of noise, at time (k+2)T the a
tualsystem output is di�erent from the referen
e traje
tory and a new traje
toryis replanned. Sin
e the replanned traje
tories 
onverge to the referen
e yd, thesystem output is driven towards the desired output and the tra
king error iskept limited despite the presen
e of a disturban
e. This method is illustratedin �gure 4.10, while �gure 4.11 shows the 
orresponding 
ontrol s
heme.We prove that the tra
king error 
an be made arbitrarily small if the replan-ning time T is 
hosen su�
iently small. Moreover, we show that the replannedoutput yp 
an be 
hosen in su
h a way to have an arbitrary degree of 
ontinuityon the resulting input fun
tion.4.2.2 An Hermite interpolation problemConsider the following problem.Problem 7 (Replanning problem) Given �at system (4.33), an output ref-eren
e traje
tory, yd ∈ Cr+l(R,Rm), an initial state x0 ∈ R
n and initial valuesfor the input and its derivatives u0, u(1)0 , . . . , u

(l−1)
0 , �nd an output referen
etraje
tory yp ∈ Cr+l(R,Rm) su
h that the following properties hold
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4.2. Iterative output replanning for �at systems 133a) φ0(ȳrp(0)) = x0, i.e., x0 is the initial state of the system traje
tory that has
yp as output,b) u(i)0 = φi+1(ȳ

r+i+1
p (0)), i = 0, . . . , l − 1 i.e., u(i)0 is the initial value of the

i-th derivative of the 
ontrol for the system traje
tory whi
h has yp asoutput,
) yp(t) = yd(t), ∀t ≥ T , where T is a given positive 
onstant, i.e. fun
tion yp
onverges to yd at time T .For any l ∈ N, let Ψ0,Ψ1, . . . ,Ψr+l, be ve
tors in R
m and set matrix Ψ =

(Ψ0,Ψ1, . . . ,Ψr+l). Consider the interpolation problem of determining a fun
-tion πΨ,T ∈ Cr+l([0, T ],Rm) that satis�es the two 
onditions
di

dti
πΨ,T (0) = Ψi, i = 0, . . . , r + l , (4.43)

di

dti
πΨ,T (T ) = 0, i = 0, . . . , r + l . (4.44)Condition (4.43) requires that fun
tion πΨ,T have the �rst r + l derivativesequal to the 
olumns of Ψ at time t = 0, while 
ondition (4.44) requires thatall derivatives up to the (r + l)-th be equal to 0 at time t = T .This problem belongs to the 
lass of Hermite interpolation problems, whi
hhave been widely studied in interpolation literature. Its solution 
an be writtenin the form

(πΨ,T )i(t) =

r+l
∑

k=0

AT,k(t) (Ψk)i , (4.45)where the Hermite interpolation fun
tion AT,k is the minimum degree polyno-mial that satis�es 
onditions
di

dti
AT,k(0) = δi−k,

di

dti
AT,k(T ) = 0 ,where

δi =

{

1 if i = 0 ,

0 otherwise.



134 Chapter 4. Replanning methods for the traje
tory tra
kingThese polynomials have degree 2(r+ l+1) and 
an be 
omputed in 
losed formusing a result presented in [69℄:
AT,k(t) = (t− T )r+l+1 t

k

k!

r−k+l
∑

i=0

(−t)i
i!

(r + i+ l)!

(−T )r+l+i+1 (r + l)!
. (4.46)These polynomials satisfy the following inequality, ∀t ∈ [0, T ]

|AT,k(t)| ≤
T k

k!

r−k+l
∑

i=0

(r + i+ l)!

i!(r + l)!
.Expression (4.45) implies that, for any T̃ > 0, there exists a 
onstant C, su
hthat, ∀T ∈ [0, T̃ ], ∀t ∈ [0, T ]

|πΨ,T (t)| ≤ C‖Ψ‖ . (4.47)Figure 4.12 shows some of the Hermite polynomials AT,k. We use Hermite poly-
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A1,2Figure 4.12: The �rst three Hermite polynomials for r + l = 4 and T = 1.nomials for de�ning the replanned traje
tory yp. To this end, de�ne fun
tion
ψ̄ : Rn × R

m(r+l+1) → R
m×(r+l+1)

(z, v, v1, . . . , vr+l) ; (Φ0,Φ1, . . . ,Φr+l) ,
(4.48)
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h that
Φk = ψk(z, v0, v1, . . . , vk) , k = 0, . . . , r + l , (4.49)where ψk is de�ned in (4.37). In this way Φk represents the k-th derivative ofthe output obtained when the system state is z and the input and its derivativesare given by vi, i = 0, . . . , k. Finally de�ne the referen
e traje
tory yp as follows
yp(t) =

{

yd(t) + πΨ,T (t) if 0 ≤ t < T

yd(t) if t ≥ T ,where
Ψ = ψ̄(x0, u

(0)
0 , . . . , u

(r+l)
0 )− ȳr+ld (0) . (4.50)Fun
tion yp solves the replanning problem, sin
e1. it belongs to Cr+l,2. it satis�es properties a) and b) be
ause of 
onditions (4.43) and (4.50),3. it satis�es property 
) be
ause of 
ondition (4.44).Remark In this way, x0 represents the initial state 
orresponding to outputfun
tion yp and u0, u

(1)
0 , . . . , u

(r+l)
0 represent the initial input and the initialinput derivatives up to the degree r + l.The use of Hermite interpolation allows to de�ne replanned traje
tories that
orresponds to arbitrary 
onditions on the initial state, the initial input andits derivatives.4.2.3 Iterative 
ontrol lawUsing the replanning method des
ribed in the previous se
tions, the 
ontrollaw for system (4.39) is de�ned as follows
u(t) = φ1(ȳ

r+1
p (t)) , (4.51)where φ1 is given in (4.35) and, for t ∈]kT, (k + 1)T ]

yp(t) = yd(t) + πΨ(k),T (t− kT ) , (4.52)
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tory tra
kingwith
Ψ(0) = ψ̄(x0, u0, u

(1)
0 , . . . , u

(r+l)
0 )− ȳr+ld (0) , (4.53)and, for k > 0,

Ψ(k) = ψ̄(x(kT−), ūr+l(kT−))− ȳr+ld (kT ) . (4.54)In (4.53), x0 represents the initial state x(0) and the assigned 
onstants u0,
u
(1)
0 , . . . , u

(r+l)
0 are the initial 
ontrol input with its derivatives. In other words,in time interval ]kT, (k+1)T ] it is used the 
ontrol fun
tion u that would drivethe nominal system (4.33) along the referen
e traje
tory yp(t). This traje
-tory is 
omputed by adding the polynomial fun
tion πΨ(k),T to the referen
etraje
tory yd. In this way the replanned traje
tory yp satis�es the propertiesa) φ0(ȳrp(kT )) = x(kT ), i.e. x(kT ) is the value at time kT of the state traje
-tory that 
orresponds to yp,b) ȳr+lp ((k+1)T−) = ȳr+ld ((k+1)T ), i.e. the replanned traje
tory is the sameas the desired traje
tory at time (k + 1)T .4.2.4 Main resultsA relevant property is that the resulting 
ontrol fun
tion u is C l−1 
ontinuousas shown in the following proposition.Proposition 9 The 
ontrol fun
tion u de�ned in (4.51) belongs to 
lass C l−1.Proof. Sin
e yp is of 
lass Cr+l in the open sets ]kT, (k+1)T [ a

ording to (4.36),the 
ontrol fun
tion belongs to C l−1 in the the union of intervals ]kT, (k+1)T [,

k ∈ N. It remains to prove C l−1 
ontinuity on kT , k ∈ N. Sin
e system (4.33) is�at, by de�nition (4.51) and taking into a

ount (4.36) it follows that, ∀k ∈ N,
u(i)(kT+) = φi+1(ȳp

r+i+1(kT+)), i = 0, . . . , l − 1 ,moreover, by 
onditions (4.37), (4.54)
y(i)p (kT+) = ψi(x(kT

−), ūs+i(kT−)), i = 0, . . . , l ,



4.2. Iterative output replanning for �at systems 137therefore by (4.38), u(i)(kT+) = u(i)(kT−), ∀i = 0, . . . , l − 1, ∀k ∈ N, whi
hproves C l−1 
ontinuity. �Remark With regards to proposition 9, it is worth noting that integer l is, inpra
ti
e, a free parameter provided that a su�
iently smooth desired traje
tory
yd ∈ Cr+l is designed. Consequently, this implies that the 
ontrol input of theproposed method 
an be 
hosen as smooth as ne
essary or desired.The main result of this paper requires the following Lips
hitz assumptionon fun
tion (4.33).Assumption 3 Given �at system (4.33), there exist 
onstants 0 < Lf , Lψ ∈ Rfor whi
h ∀x1, x2 ∈ R

n, u ∈ R
m

‖f(x1, u)− f(x2, u)‖ ≤ Lf‖x1 − x2‖ ,and the asso
iated fun
tion ψ̄ (see (4.48)) satis�es the following 
ondition,
∀x1, x2 ∈ R

n and u0, . . . , ur+l ∈ R
m

‖ψ̄(x1, u0, . . . , ur+l)− ψ̄(x2, u0, . . . , ur+l)‖ ≤ Lψ‖x1 − x2‖ .The following theorem states that it is always possible to 
hoose a replanningtime T , su�
iently small, su
h that the output tra
king error is lower thanany given positive 
onstant ǫ.Theorem 4 Let ẋ(t) = f(x(t), u(t)) be a 
ontrol system with �at output (4.41),su
h that assumption 3 is satis�ed. Let yd ∈ Cr+l(R,Rm) be a referen
e tra-je
tory for the �at output ψ. Consider the di�erential system
{

ẋ(t) = f(x(t), u(t)) + η(t)

x(0) = x0 ,
(4.55)where ‖η(t)‖ ≤ N , ∀t ∈ R, and the initial state x0 is su
h that there exists aninitial 
ontrol u0 for whi
h yd(0) = ψ(x0, u0). Then, for any ǫ > 0, there exists

T > 0 su
h that the solution of (4.55) with 
ontrol fun
tion u given by (4.51)satis�es
‖ψ(x(t), u(t)) − yd(t)‖ ≤ ǫ, ∀t ≥ 0 .



138 Chapter 4. Replanning methods for the traje
tory tra
kingThe following lemma will be used in the proof of theorem 4.Lemma 2 Let Lf ∈ R be su
h that ∀x1, x2 ∈ R
n and ∀t ∈ R

‖f(x1, t)− f(x2, t)‖ ≤ Lf ‖x1 − x2‖ , (4.56)and let x and xr be the solutions of
{

ẋ(t) = f(x, t) + η(t)

x(0) = x0 ,
and {

ẋr(t) = f(xr, t)

xr(0) = x0 ,with x0 ∈ R
n and ‖η(t)‖ ≤ N , ∀t ∈ R. Then

‖x(t)− xr(t)‖ ≤
eLf t − 1

Lf
N . (4.57)Proof. By hypothesis (4.56) the following di�erential inequality is satis�ed

d‖x(t) − xr(t)‖
dt

≤ ‖f(x(t), t) + η(t)− f(xr(t), t)‖ ≤ Lf‖x(t)− xr(t)‖+N .Inequality (4.57) follows from the Comparison Lemma, solving the 
orrespond-ing linear di�erential equation in the variable ‖x− xr‖. �Proof of theorem 4. For any k ∈ N, ∀t ∈ [kT, (k + 1)T [, let xr be the solutionof the following di�erential system
{

ẋr(t) = f(xr(t), u(t))

xr(kT ) = x(kT ) ,
(4.58)where the 
ontrol u is given by (4.51). System f(x, u) is �at and by de�nition 12the asso
iated fun
tion φ0 satis�es the di�erential equation

dφ0(ȳ
r
p)

dt
(t) = f(φ0(ȳ

r
p(t)), φ1(ȳ

r+1
p (t))) . (4.59)By 
onstru
tion, the replanned traje
tory yp satis�es x(kT ) = φ0(ȳ

r
p(kT )).Sin
e u is de�ned by (4.51), di�erential equation (4.58) 
an be rewritten as

{

ẋr(t) = f(xr(t), φ1(ȳ
r+1
p (t)))

xr(kT ) = x(kT ) .
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e, for t ∈ [kT, (k + 1)T )[, xr(t) is the solution of the same di�erentialequation (4.59) as φ0, therefore xr(t) = φ0(ȳ
r
p(t)). Consequently, by (4.42),

ψ(xr(t), u(t)) = ψ(φ0(ȳ
r
p), φ1(ȳ

r+1
p )) = yp(t).Moreover, using lemma 2,

‖y(t)− yp(t)‖ = ‖ψ(x, u) − ψ(xr, u)‖ ≤ Lψ‖x− xr‖ ≤ Lψ
eLfT − 1

Lf
N .Set T1 su�
iently small su
h that Lψ eLfT1−1

Lf
N ≤ ǫ

2 , so that ‖y(t)−yp(t)‖ ≤ ǫ
2 ,

∀t > 0.Remark that, ∀k ∈ N,
‖ψ̄(x(kT ), ūr+l(kT )) − ψ̄(xr(kT ), ūr+l(kT ))‖

≤ Lψ‖x(kT )− xr(kT )‖ ≤ Lψ
eLfT − 1

Lf
N ,therefore, by (4.47) and assumption 3, ∀t ∈ [kT, (k + 1)T [

‖yp(t)− yd(t)‖ = ‖πψ̄(x(kT ),u(kT ),...,u(r+l)(kT ))−ȳr+l
d

(kT ),T (t)‖

≤ C‖ψ̄(x(kT ), u(kT ), . . . , u(r+l)(kT ))− ȳr+ld (kT )‖

= CLψ‖x(kT )− xr(kT )‖ ≤ CLψ
eLfT − 1

Lf
N .Choose then T2 su
h that CLψ eLfT2−1

Lf
N ≤ ǫ

2 , so that ‖yp(t) − yd(t)‖ ≤ ǫ
2 ,

∀t > 0. Finally set T = min{T1, T2}, then the thesis holds sin
e, ∀t > 0,
‖y(t)− yd(t)‖ ≤ ‖y(t)− yp(t)‖+ ‖yp(t)− yd(t)‖ ≤ ǫ. �4.2.5 Simulation results for the 
ase of a uni
y
leThis se
tion shows some simulation results obtained by applying the methodpresented in the above subse
tions to a uni
y
le system illustrated in �gure 4.1.Here, the uni
y
le kinemati
s (4.1) of se
tion 4.1 is proposed again with theonly substitution of y with z.











(

ẋ

ż

)

= v(t)

(

cos θ

sin θ

)

+ η(t)

θ̇ = ω(t) + ηθ(t) ,

(4.60)
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tory tra
kingIn this example we want that the uni
y
le follows a C2 
urve with 
ontinuous
ontrol inputs v(t), ω(t) ∈ C0. We have assumed that the state is periodi
allymeasured with sample time T = 1 s. The performan
e output is given by
y = (x, z), whi
h is a �at output with r = 1 for the nominal uni
y
le (4.60). Inorder to obtain a C0 
ontrol input, by proposition 9 we set l = 1. In this waythe Hermite interpolating polynomials (4.46) have degree 2(r + l + 1) = 6.As referen
e traje
tory we have 
onsidered a periodi
 spline yd followedwith 
onstant speed 1 m/s. The noise bounds appearing in (4.2) are given by
N = 0.5

√
2 and Nθ = 0.5. The obtained result is presented in �gure 4.13. The
ontrol inputs and the error fun
tions are depi
ted in �gure 4.14 and 4.15,where the position error e(t) and the angular error eθ(t) are de�ned as follows

e(t) =

(

x(t)

z(t)

)

− yd(t) ,

eθ(t) = θ(t)− arg ẏd(t).
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Figure 4.13: Simulation results for uni
y
le system with the iterative replanningmethod.Figure (4.16) shows the referen
e traje
tory yd, the replanned one yp andthe a
tual uni
y
le output y.
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Figure 4.14: The 
ontrol inputs for the iterative replanning method applied tothe uni
y
le system.
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Figure 4.15: The error fun
tions for the iterative replanning method appliedto the uni
y
le system.
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Figure 4.16: The referen
e traje
tory yd, the replanned one yp and the a
tualuni
y
le output y, for the uni
y
le example.Comparison with a well known methodThe proposed method has been 
ompared with the same one used for the
omparison in subse
tion 4.1.5 (
f. [68, p.809℄), with an observation time setto be T = 1 s. The gains in the Samson's 
ontroller have been set to obtain
ontrol signals of magnitude similar to the introdu
ed method. The resultsobtained with this method are shown in �gures 4.17, 4.18 and 4.19.The two methods shows a similar performan
e in terms of tra
king error.However, the 
ontrol method presented in this se
tion has the advantage of pro-viding input signals of an arbitrary degree of 
ontinuity, whereas the 
ontrolsignals of the 
lassi
 
ontroller are dis
ontinuous (even if this is a 
onsequen
eof having used a dis
ontinuous observer). Moreover, the iterative output re-planning method has the advantage of being appli
able to any system with a�at performan
e output.
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Figure 4.17: Simulation results for the uni
y
le with the Samson's method.
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Figure 4.18: The 
ontrol inputs for the Samson's method applied to the uni
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lesystem.
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ements
eγ(t)

eθ(t)Figure 4.19: The error fun
tions for the Samson's method applied to the uni-
y
le system.4.2.6 Simulation results for the 
ase of a one-trailer systemThe iterative output replanning method has been applied to a tru
k and trailer,or one trailer, system (see se
tion 2.2). With respe
t to the 
oordinates (x, z)of the middle point of the trailer rear axle, the well-known equations for thissystem are given by






















ẋ = v cos θ1 cos(θ0 − θ1) + ηx(t)

ż = v sin θ1 cos(θ0 − θ1) + ηz(t)

θ̇0 = ω + ηθ0(t)

θ̇1 = v
d sin(θ0 − θ1) + ηθ1(t) ,where θ0 and θ1 are the orientation angles of the pulling tru
k and of the trailerrespe
tively, and d represents the distan
e between the rear point (x, z) of thetrailer and the joint point on the tru
k. The 
ontrol input fun
tion v is thetru
k longitudinal velo
ity while ω represent its angular velo
ity. As shownin [53℄, this system is �at (r = 2) with respe
t to the performan
e output

y = (x, z). In this 
ase to limit the degree of the interpolation polynomials, wehave 
hosen l = 0, obtaining therefore a dis
ontinuous 
ontrol by proposition 9.



4.2. Iterative output replanning for �at systems 145In this simulation, the noise terms have been 
hosen su
h that |ηx(t)|, |ηz(t)|,
|ηθ0(t)|, |ηθ1(t)| ≤ 0.2. The value of the distan
e d is set to be equal to 1 m.Tru
k pulling a trailerAs referen
e traje
tory yd we have 
onsidered the same C2 periodi
 splineused for the uni
y
le example, 
hara
terized by a positive 
onstant speed of 1m/s. The obtained results are presented in �gures 4.20, 4.21 and 4.22, where
eθ(t) = θ1(t)− arg ẏd(t).

Figure 4.20: Tra
king results for the one-trailer system on a periodi
 spline, inthe tru
k pulling trailer 
ase.As in the 
ase of the uni
y
le, the iterative output replanning method showsa good performan
e in terms of tra
king error.Tru
k pushing a trailerAs known, the traje
tory tra
king of trailer system in reverse gear is moredi�
ult than in forward driving, be
ause it is unstable (see [70℄). The referen
etraje
tory is again the periodi
 spline used in the previous examples, with thedi�eren
e, in this 
ase, of being 
hara
terized by a 
onstant negative speed of
−1 m/s. The obtained results are presented in �gures 4.23, 4.24 and 4.25.
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Figure 4.21: The 
ontrol inputs for the iterative replanning method applied tothe one-trailer system, in the tru
k pulling trailer 
ase.
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b)Figure 4.22: a) The error fun
tions for the iterative replanning method appliedto the one-trailer system, in the tru
k pulling trailer 
ase and b) a 
lose up ofit on a smaller time interval.
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Figure 4.23: Tra
king results for the one-trailer system on a periodi
 spline, inthe tru
k pushing trailer 
ase.
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Figure 4.24: The 
ontrol inputs for the iterative replanning method applied tothe one-trailer system, in the tru
k pushing trailer 
ase.
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b)Figure 4.25: a) The error fun
tions for the iterative replanning method appliedto the one-trailer system, in the tru
k pushing trailer 
ase and b) a 
lose up ofit on a smaller time interval.Also in this 
ase, the iterative output replanning method shows a goodperforman
e in terms of tra
king error.



Con
lusionsThe thesis has presented some methods useful for the optimal planning and
ontrol for the motion of autonomous wheeled vehi
les. In parti
ular, the ex-posed te
hniques may be applied to the wide 
lass of �at systems (
f. de�nition12). Results 
an be summarized as an hybrid feedforward/feedba
k 
ontrols
heme, whose purpose is to guarantee a robust and highly performing 
ontrol.High performan
es are rea
hed out with the planning of time-optimal and
ontinuous velo
ity pro�les and geometri
ally 
ontinuous paths, that lead toa 
ontinuous steering input signal. This means that a smooth and optimalmotion of the wheeled vehi
le 
an be attained and, in su
h a way, the vehi
leautonomous navigation 
an perform agile and event-driven maneuvers.Robustness is a
hieved by means of iterative traje
tory replanning pro
e-dures, whi
h guarantee the tra
king of the planned traje
tory in the presen
eof noise. It has been proved the existen
e, for the proposed traje
tory planningmethods, of 
losed-form bounds on the tra
king error.Simulation and experimental results obtained during this resear
h point outthat the presented methods may be well suited for a real-time implementationprovided that some of the required optimizations are done o�-line. Indeed,optimal velo
ity pro�les and paths 
an be generated in real-time using fast lo
aloptimization routines based on look-up tables built with o�-line optimization.
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