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Introduction

Pure Spinor superstring is the first successful attempt to write a space-time super-
symmetric formalism of string that admits quantization without breaking manifest

Poincaré covariance.

The Ramond and Neveu-Schwarz formalism indeed presents supersymmetry only
on the world-sheet that the string describes during its movement, on the contrary
space-time supersymmetry is not manifest but it is recovered once bosonic and
fermionic degrees of freedom have been selected a posteriori by the Gliozzi-Scherk-
Olive mechanism. The presence of worldsheet fermions and ghosts for local super-
symmetry makes quantisation very complicated, particularly at an arbitrary genus,
due to the complicated nature of the (super)moduli space. In particular higher-
loop amplitudes computation needs ghost insertions and sum over spin structures.
Furthermore the fact that states are represented by an infinite tower of vertex op-
erators related by picture changing makes things even more difficult. Moreover this
formalism can not be generalised to curved backgrounds with non-zero Ramond-
Ramond fields, since the vertex operators for these states involve spin fields which

are non-local in terms of the world-sheet fields.

On the contrary, in Green-Schwarz formalism supersymmetry is manifest in ten-
dimensional space-time where strings live. However, one encounters serious difficul-
ties in the quantization procedure already in a flat space due to the presence of first
and second class constraints. This problem is solved by requiring the presence of a

fermionic local symmetry, named x-symmetry, and fixing the light-cone gauge. Al-
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8 INTRODUCTION

though light-cone quantization deals with only physical degrees of freedom, it is not
completely satisfactory since one would like to preserve Poincaré covariance. On the
other hand, an important feature of the Green-Schwarz formulation is that it natu-
rally extends to any curved background which obeys the supergravity equations of
motion, namely the corresponding string action is invariant under the k-symmetry,
which in turn is responsible for the space-time supersymmetry of the physical spec-
trum. In practice, the explicit construction of the Green-Schwarz action for an
arbitrary supergravity solution is a technically complicated problem which has not
been solved so far. These difficulties can be bypassed if the background has special
symmetry properties by observing that the Green-Schwarz action is equivalent to a

Wess-Zumino non-linear sigma model on some coset superspace.

The Pure Spinor formalism, proposed by Berkovits in 2000 has both manifest
space-time supersymmetry and ten-dimensional Lorentz covariance. This approach,
based on previous idea of Siegel (1986), uses a standard fermionic action and it does
not need k-symmetry and light-cone gauge. In addition to supercoordinates, ghost
fields - specifically bosonic spinors - and their conjugate momenta are introduced.
The non-physical degrees of freedom introduced in the theory are removed through
a BRST-like operator (). In particular the ghosts are constrained by the canonical
request of BRST nilpotency and they are are defined pure because of the kind of
constraint. For the string in a flat background it has been shown that the BRST
cohomology determines the physical spectrum which is equivalent to that of the
Ramond-Neveu-Schwarz formalism and that of the Green-Schwarz formalism in the

light-cone gauge.

The possibility of avoiding light-cone gauge in this formalism allows the string
to have manifest Poincaré covariance together with supersymmetry in space-time
even at the quantum level. However, there are some hidden sources of possible
violation of Lorentz covariance when one solves the pure spinor constraint in terms

of independent fields. Finally, the pure spinor formalism is suitable to describe



strings in curved background and we will discuss in particular the case of anti-de
Sitter geometries.

From the latest years of 20th century, the study of holographic theories has be-
come a very interesting research field in height energy physics. The possibility of
studying a n-dimensional physical system on the boundary of a (n + 1)-dimensional
system has exponentially increased because of the Maldacena conjecture, that sup-
poses the equivalence of the type IIB superstring in AdSs x S® space with super-
symmetric Yang-Mills A/ = 4 theory in Minkovski 4-dimensional space in the ’t
Hooft limit N — oo. The fundamental aspect of this correspondence between a
string theory and a conformal field theory - known as AdS/CFT correspondence - is
that the strong coupling regime of a system corresponds to the weak coupling of its
holographic dual and vice-versa: in this way it is possible a perturbative approach
otherwise unapplicable.

Recently Aharony, Bergman, Jafferis and Maldacena proposed that the N' = 6
supersymmetric Chern-Simons theory in three dimensions had a 't Hooft limit whose
holographic dual is described by type IIA superstring in AdS,; x CP? background.
The ABJM conjecture has stimulated the study of the superstring in the space above:
likewise the study of superstring in AdSs x S°, the model is based on the possibility
to describe an homogeneous space - like AdS - in an algebraic way by means of a
coset of its symmetry group, AdS,; = SO(3,2)/SO(3,1). Because of internal space
has the same property CP? = SU(4)/U(3), it is possible to give a supersymmetric
form to direct product of the spaces:

SO(3,2) x SU4)  susy OSP(4/6)
SOB, 1) xU@B)  SO@B,1)xU@)

AdS, x CP? =

In this way we can build a non-linear sigma model action by means of the supercoset

Maurer-Cartan forms

OSP(46)
SO(3,1) x U(3)

J=g'dg , g¢€

However, differently from AdSs; x S°, the so-built Green-Schwarz superstring
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presents some issues: in fact the supercoset OSP(46)/SO(3,1) x U(3) contains
24 fermions instead of 32 like in the canonical type IIA superstring. A possible
solution is to interpret the sigma model as a Green-Schwarz superstring with half-
fixed k symmetry, in which 8 fermions are gauged away. In confirmation of this
interpretation, the coset model presents a local fermionic symmetry that takes away
8 fermionic degrees of freedom and gives 16 fermions, as in canonical total-gauged
Green-Schwarz superstring. Nevertheless in some peculiar string configurations the
rank of this k£ symmetry is bigger that 8 and the argument above is not allowed.
The peculiarity of OSP(4]6)/SO(3,1) x U(3) coset is the existence of a Z4-
grading, i.e. the decomposition of the Lie algebra in four eigenspaces H; bosonic
type (i = 0,2) and fermionic type (i = 1,3). Thus J = Z?:o J;: in particular form
Jo represents gauge-field of the transformation SO(3,1) x U(3), so it can appear only
in interaction terms. To complete the matter part of the action we have to add to

the sigma model a Wess-Zumino term, typical of superstring, and the final result is

Sonatter = g d?z STr EJJQ + zjgjl + }lJJg : (1)
This is very different from Green-Schwarz model that has fermionic currents only
in the Wess-Zumino term, to ensure the x-symmetry and then the light-cone quan-
tization. Introducing a covariant derivative, the ghost term of the action can be
written
R2

Sghost = —% d*z STI“(wgv)\l + w1V/\3) ,

noting that the ghosts A and their conjugate momenta w are in the fermionic sectors
H1.3 of the superalgebra. The action, provided with current-current interation term,

is invariant under the BRST transformation generated by the charge

Q = /dZ STI'()\gjl) + /dESTI'(/\ljg)

Physical states are defined in BRST cohomology of (), i.e. a physical state W sat-
isfies QU = 0 with ¥ # QU’, while nilpotency of the charge (Q* = 0) gives the
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fundamental constraint that defines the ghosts and corresponds to the pure spinor
constraint in flat space. It is important to note that in pure spinor formalism the
k-symmetry is absent, so one can suppose that this approach solves the issues of the
coset Green-Schwarz superstring in AdS, x CP? .

The aim of present work is to provide an alternative formulation of pure spinor
action in AdS; x CP? in which ghost fields are free, that is the constraint is al-
ready solved. Defining BRST transformation on the generic coset element Q(g) =
g(A1 + A3), we obtain the expression of the transformation on Maurer-Cartan form
J and imposing Q*(J) = 0 modulo a gauge transformation, we can write the ghost

constraints on the super-coset manifold:
{>\17>\1} =0 {)\37)\3}20

Then we choose a basis for OSP(4(6) generators that makes explicit the anticommu-
tators and so we can solve the constraints. The solution amounts to decomposing
the ghosts A;, A3 and their conjugate momenta ws, w; into the direct product
of bosonic SO(3, 1)-spinorial variables (namely new ghost) and orthonormal U(3)-
vectorial variables (u,v). Because of the orthonormality and two residual phase
invariances, the (u,v) variables lie in the SU(3)/U(1) x U(1) coset. Finally we can
substitute the solutions into the ghost action and add a sigma model on the coset
SU(3)/U(1) x U(1) to take account of (u,v) kinematic.

The advantage of the action we build is to have free ghost fields: it allows to
compute their propagators. Since SO(3,1) gauge fields couple only to the ghosts,
the SO(3,1) currents contain only ghost fields and we can compute explicitly their
operator product expansion. We use the background field method to treat pertur-
batively matter and U(3)-variables: in this way we can study the central charge and
show that it vanishes up to one-loop.

To outline the present work, in the first chapter we give an outlook of super-
string in flat space: starting from the Casalbuoni-Brink-Schwarz superparticle, we

define the Green-Schwarz superstring and introduce the light-cone gauge to quantize,
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pointing out the difficulties of a non quadratic action. Then we construct the Pure
Spinor superstring from the Siegel action and solve explicitly the ghost constraint
in order to make some fundamental computations.

In the second chapter we study the superstring in curved background. First we
give the general action for the Green-Schwarz superstring, then we study the impor-
tant case of superspaces that admit supercoset formulation, in particular AdSs x S°.
Finally we derive the Pure Spinor superstring in the same background.

In the third chapter we examine the AdS,; x CP? superspace as the OSP(4/6)/
SO(3,1) x U(3) coset and the characteristics of Pure Spinor superstring in this
background. In particular we give an explicit form for the pure spinor constraint
and solve it using an original realization of the superalgebra of OSP(4|6). Then we
revise the action to write it in terms of unconstrainted fields.

Finally in the fourth chapter we derive the background field expansion and per-
form some perturbative calculation.

More details on the supercoset and the structure constants of the superalgebra

of OSP(4]6) are given in the Appendices.



Chapter 1

Superstring in flat space

1.1 The Casalbuoni-Brink-Schwarz superparticle

The best way to understand the space-time supersimmetric string is through the
Casalbuoni-Brink-Schwarz superparticle, describing the world-line of a particle in 10

dimensions instead of the world-sheet of the string. The action is [1][2]
5= / dr (11" P,y + eP™P,) (1.1)

where II" = X™ — % 'O‘(ym)awﬁ, m=20,...,9and a =1,...,16. As said, its fun-

damental aspect is the invariance under space-time supersymmetry transformation
i
00% = € X" = 597’”6 OP™ =0e =0 (1.2)

with €* constant fermionic parameter. The conjugate momenta of the bosonic and

fermionic coordinates are

oL oL {
— =P — =—=P,(Y"0)a =pa - 1.3
— = 5P = (1.3

The momenta p, depend on the 6 coordinates by the constraint

- +tm

dy = po + %Pm(we)a —0 (1.4)
if we define the canonical Poisson brackets
{pa,0"}p = —i6,"  {parpstr =1{0"0"1p =0 (1.5)

13



14 CHAPTER 1. SUPERSTRING IN FLAT SPACE

we can construct the constraint matrix
Cap ={da,dstp = Pu(7")ap - (1.6)

In general we have a set of constraint hy with Cap = {ha,hp}p: h, are first
class constraints if C is zero o weakly zero (i.e. C is a linear combination of the
constraints), otherwise h,, are second class constraints.

The Dirac quantization for first class constraints imposes the substitution { , }p =
—i[ , ], so the constraint operators commute between themselves and the physical

states can be consistently defined by
hu|phys) =0 . (1.7)

This position is non consistent for second class constraint!, so we have to define

the Dirac brackets [3]
{A, B}yp = {A, B}p — {A, ha}p(C7)**{hs, B} p (1.8)

and to quantize posing { , }p = —i[ , |. In this way the second class constraints
can be considered always zero.

Because the equation of motion P? = 0 we can choose P™ = (P,0,...,0, P), so
that Cop ~ (7° —1")ap ~ (v )as. The rank of this matrix is 8, i.e. C,p has only
8 different from zero eigenvalues . It means that an half of the constraints d, are
of first class and an half are of second class. We need to divide the two kinds of

constraints in order to quantize, so we define
D, = P,(y"d)a (1.9)

and note that {D,, Dg} = 0 using P? = 0. The first class constraints D,, generate

a fundamental gauge symmetry of the action (1.1), named kappa symmetry [4][5]:

50 = Pp(ymK)*  6X™ = —%ewae §P™ =0 be=ilk (1.10)

'In fact 0 = hohg|phys) — hgha|phys) = [ha, hgl|lphys) # 0.
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where k is a fermionic local parameter. If we define the light-cone coordinates

i_i 0 9 i_i 0 9 i_i 0 9
X _\/i(X +X% P _ﬁ(P +P%) A —\/5(7 ++9)  (1.11)

by means of the k£ symmetry it is possible to choose 6 so that

V=0 (1.12)

since the rank of v is 8, half of the components of # is totally decoupled from the

theory. The action can be written

Spe = / dr (Xum + %Pﬂéy—e) + erPm) : (1.13)
1s 0

A possible choice for the v~ matrix is (Y7 )as = —V/2 , then posing S* =
0 O

Ste. = / dr (Xum — %S“SG + erPm) : (1.14)

This action in light-cone gauge is simple to quantize: the conjugate momentum

of 5% is

oL i
= — = —=9, 1.15
Pa= 2, =5 (1.15)
and imposing the canonical Poisson brackets {p®, S®}p = —id?, the constraints

d* =p* + %Sa are just the 8 second class constraints, having non-zero matrix
{d*, d"} p = 6 (1.16)
and the Dirac brackets for .S are
{8 S0 p = 6% . (1.17)

It is important to note that the quantization with second class constraints was
possible only in the light-cone gauge, i.e. in a non-covariant gauge: the same problem

affects the Green-Schwarz superstring.
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Notice that the standard description of the massless relativistic superparticle can

be obtained from the action (1.1) by using the equation of motion for P,,, that is

1
" 42eP" =0 = P"=-— " (1.18)
e

and has the final expression

1
S = _Z/dTe_lanm . (119)

1.2 The Green-Schwarz superstring

The Green-Schwarz superstring represents the generalization of the superparticle on
a world-sheet with coordinates (,0) = (¢, 0'). In 10 dimensional space-time, the

action is? |6]

1 .
Sos =~ / o BT, + (1.20)
T

1 0] . m m m m
+ E d2O'€Z][—ZaiXm((9L")/ 8]-9L — 93’}/ @93) + (HL*y 8Z¢9L)(0p;y 8j93)]

with 4,7 = 0, 1, h;; world-sheet metric, € antisymmetric tensor, 7,,, flat space-time

metric and II7* natural generalization of II" in (1.1):

where 01, 0 are Majorana-Weyl spinors of SO(9, 1), said respectively left- and right-
mouving.

Note that the first term of (1.20) is the 2-dimensional analogue to (1.19) and
represents the kinetic term of the string, while the second one is a new contribute
known as Wess-Zumino term and it is necessary to have the x symmetry. One could
show that this procedure works at most for two supersymmetries and this is the
reason of two different spinors 6 [7]. Further the WZ term is supersymmetric in 10

dimensions only if € spinors are Majorana-Weyl.

2Compared with usual convention we divide the action by 4, in agreement with next section.
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Because of the reparametrization invariance it is possible to choose flat metric on
the world-sheet h;; = (—1,41). As usual, the the world-sheet metric can be written
in euclidean signature by the Wick rotation® 7 — —io?, so that h;; = (+1,+1) for

the new coordinates (o', 0?). Introducing complex coordinates
z=o0'+io? zZ=o0' —io? (1.23)
and the corresponding derivatives
D= SO —ith) 0= 30+ id) (1.24)
the action (1.20) acquires the form
Sas = % / d*z [0X"0X,, — 200X, (0.7™00L) — 2i0X,,(0ry"00R)+
— (017m00L) (01,7001, + Ory"O0R) +
—(0rYmO0R) (0,700, + Oy 00R)] . (1.25)
We can also define the momentum (1.21) in complex coordinates
M = o0X™ —i0,y"00, — i0ry"00R (1.26)

and analogous for II.

Superstrings take different names depending on the chirality of #’s: in particular,
closed string with 6y, 0g of opposite or equal chirality are respectively Type IIA or
Type IIB, while open string with 0, 0r of equal chirality are Type I. Open strings
with spinors of opposite chirality do not preserve supersymmetry, so we do not care
about them.

The equations of motion for the metric give the Virasoro constraints

i, =0 0", =0 |, (1.27)

3Note that by definition Leyeria = —Lr—s—io2, in order that

S = / do®do* L — i / dotdo® Leyetia = 1Seuctia - (1.22)
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while the equation for X and 6 are highly non linear.

The GS superstring is invariant under supersymmetry transformation
007 r = €I R 0X™ =iery™0 + iegy"O0g (1.28)

and k symimetry

59% = Hm(’ymﬁL)a 56% = Hm(’ymRR)a OX™ = 29L7m(50L —f-l@R’ym(S@R (129)

To quantize the GS superstring we define the conjugate momentum of 6,

05, ) )
L GS m m
= = (0 m)a [TI™ + =(0,4™010 1.
Pa 7T6809g 2( LYm) + 2( LY 0101) (1.30)
and the constraint
) 1
di’ = pé — 5(0L7m)aﬂm + Z(HL'ym)a(é’L'ymaﬂL) . (131)

If we impose the canonical brackets, we obtain immediately the fermionic constraint
matrix {d},dj}p = In(7™)ap and because of the equations of motion we can see
that 8 constraints are first class and the remanent 8 are second class, as for the
superparticle. In the same way, we have to separate the two classes, in order to
invert the constraint matrix and to define the Dirac brackets.

Using the x symmetry we can assume the light-cone gauge
’7+9L =0 ’)/+9R =0 (132)

and this position allows to put zero half of the components of both #; in addition

we can use the residual conformal invariance to choose

X*(r,0) :x++p+7':x++%p+(z—z) : (1.33)
Using the properties
Oyto0 =040 =0 , 07y'00=60~4'00=0 i=1,...,8 (1.34)
and
1

OXT =—-0X" = 5p+ (1.35)
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the action (1.25) takes the form

1 - 1 = 1 _
S . = o d*z {—8Xk8Xk - §p+8X_ + §p+8X_ +ipT (07~ 00L) — ipt (Opy~ O0R)
T
(1.36)
where the second and third term are total derivatives and can be cancelled. There

exists the representations of v~

1s O

7= V2 for Weyl spinor (1.37)
0 O
0 0
= V2 for anti-Weyl spinor (1.38)
0 1y
so that (1.36) becomes
1 _ _ .
Sle. = e d*z (—8Xk8Xk + S70ST + S%@S}’%) ITA (1.39)
1 2 kavk aqQa a a

where k =1,...,8, a/a=1,...,8 and

Sg, = 214 /ipTog)

) . o=lf (1.41)
o Sy = 24i\/ipT o

a=9,...,16
The eight surviving components of X form the vectorial representation 8, of SO(8),
while the eight surviving components of each 6 - labelled S - form a spinorial rep-
resentation of the same group. In particular, because of the definitions, they are
either in Weyl representation (5S¢, S%) € (8, 85) for IIB string and they are in Weyl
and anti-Weyl representation (5¢,S5%) € (8, 8.) for ITA string?.

From the action (1.39)-(1.40) we obtain the equations of motion in light-cone

gauge:

00X (z,2)=0  0S%(z) =0 : (1.42)

4(Clearly it is a convention and everything is consistent changing 8; with 8.
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or, in (o, 7) coordinates,

o 9\ ..
PPNy (D, 0N , oo ar)7RT0 A
do? 012 B do or )t 9 0 $e _0 TIB ’

do or) F

noting the last two equations justify the left /right-moving definitions for S and hence
for 6.
Along with the equations of motion we have to specify the boundary conditions.

For closed string we have to impose the periodicity of the o coordinate:
X' (o +2m,7) = X'(0,7) (1.43)

Se(o+2m,7) = S4(o,7) IIA

St(o+2m,7)=S5(o,7) . (1.44)
St(o+2m,7) = S%(o,7) 1IB

For open string we have to relate the bosonic and the fermionic variables at the ends

c=0and o=

9 o 0 _
55 X(0.7) = o~ X'(m,7) =0 (1.45)
S$(0,7) = SE(0,7) St(m,1) = SE(m,7) . (1.46)

It is possible to demonstrate that supersymmetry is only possible for this choice;
moreover, for the first transformation of (1.28), boundary conditions for S require
€1, = €g, i.e. supersymmetry decreases for type I superstring from N’ =2 to N' = 1.

The light-cone actions (1.39) and (1.40) identify immediately the second class
constraints and allow to quantize the superstring in the same way of the superpar-

ticle.

1.3 The Siegel superstring

From the previous considerations it is evident that the difficulty of a covariant
quantization for GS superstring is strictly related to the mixing between first and

second class constraints, that originates from the non-quadratic form of the action.
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So an attempt to solve the problem must start from a quadratic formulation of the
superstring.

In order to illustrate the relation between the GS formulation and the Siegel
proposal, we reconsider the action (1.25) and, to simplify the notation, we take only
one type of spinor - like in the heterotic string. Posing 0, = 6 and 0z = 0 in (1.25)

we get:
Ses = i / Pz [OX™5X, — 20X, (0770) — (07nD0)(09700)] . (1.47)

Defining the conjugate momentum

0Sas 1 .
o = 2T—— = — (—2i0X,, — 07,,00) (0™, 1.4
o = 205205 = (210X, — 03 00) (67") (1.48)
and the constraint
1
do = P — 5 (—2i0X,, — 07,00) (0v™)s (1.49)

the GS action becomes

Ses = % / Pz [0X7 35X, — 2(de — pa)36°)]
_ 1
27

1 - - 1 -

d*z (—aXmaXm +paaea) — —/d2z d,00% . (1.50)
2 2T

Therefore it is natural the definition |§|

— 1 2 1 m 9 [aYale}
Sg = %/d 2 (28)( 0X,, + padf ) (1.51)

which is related to GS string by
1 2 [ayale]
SS = SGS + 2— d zda(‘?@ . (1.52)
T

If p, is constrained by d, = 0, the actions (1.47) and (1.51) are completely equiv-
alent. Otherwise, if we relax the constraint and consider p, as an independent
variable, we obtain an alternative action known as Siegel superstring.

However, this formulation is not yet the solution of a covariant quantization,

because the action (1.51) presents at least two serious issues: it is not anomaly



22 CHAPTER 1. SUPERSTRING IN FLAT SPACE

free and the operator product expansion of the Lorentz currents does not reproduce
the Ramond and Neveu-Schwarz result. To show them, we recall the definition of

stress-energy tensor in general metric Ay,

27 4S5

Ty = ——F=——
b Vi Ohe

(1.53)

In a conformal field theory - as superstring - this tensor in complex coordinates
satisfies [9]:
TzE - TEZ =0 aTzz - 5TZE =0
so that
T..=T(z) Tez=T(2) . (1.54)
The operator product expansion (OPE) of T" with himself gives

c/2 27 (w) 0T (w)
(z —w)? * (z — w)? * z—w

T(2)T(w) = (1.55)

and analogous for T(Z). ¢ is a constant depending on the theory, known as central
charge: the request for an anomaly free theory gives ¢ = 0.
The action Sg (1.51) is quadratic, so it is straightforward to compute the stress-

energy tensor

T(z) = —%axmaxm  pa08® (1.56)

and the OPE between the fundamental fields [10]

X"(2)X™(w) = —n™"In|z — wl|? (1.57)
B
pal2)0° () = o (1.58)

Because bosonic and fermionic fields do not mix, we can compute the central charge
separately in the two sector: cx = 10 and c¢,9 = —32. Usually one understands these
results associating a contribute +1 at every bosonic degree of freedom (i.e. at every

space-time dimension) and —2 at every fermionic one. The total central charge is

c=cx+cp=10—-32=-22#0 (1.59)
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so the action presents unwanted anomaly.
Let us compute now the Lorentz current of (1.51): an infinitesimal Lorentz

transformation gives

XM =¢m X" for vectorial fields
00 = }Lgmn(ym")aﬁeﬁ for Weyl spinorial fields (1.60)
0pa = ifmn(fym”)aﬁpﬁ for anti-Weyl spinorial fields

where &, = —&,m is the infinitesimal parameter of the transformation, i.e. A™, =

0", +&M,. According to Noether’s theorem, the procedure for computing conserved
currents is to let & become a function of z: integrating by parts when needed, we

have

1 _ _ _
555 = o / P2 (X B6X™ + 5pad0” + padS6?)
T
1 = 1 = 1 _
= % 4’z (gmnaXmaXn + Zémn('ymn)aﬁpﬁaea + Zlgmnpa('ymn)aﬁaeﬁ_F

_ 1_ _
+0&mn0X" X" + Zafmnpa(ym“)aﬁaaﬂ>

1 = 1= _
=— | & X"X" 4+ - mnye 998 1.61
ot / z (8€mn8 + 4a€mnpo¢(’y ) ﬂa ) ( 6 )
where we used the antisymmetry of &, and (7"")%5 = —(7™")," to cancel the term

not 0¢-depending. By definition®

1 2 3 mn 1 mn
SO
KW“—%@XWX“—8X@Xm) (1.63)
mn 1 mn\a 9
L™ = Spa(y™) 500° (1.64)

We are interested in computing the OPE of the spin contribute to Lorentz current
L™ with himself: using (1.58) we have

m[lLk]n _ n[lLk}m k[n,,m]l
mn n Ui e
LM(2) L™ (w) = — +4@—wy : (1.65)

5The coefficient % in front of the fermionic current coupling is due to the a priori antisymmetry

of L™™
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This OPE does not coincide with the analogue in the Ramond and Neveu-Schwarz

approach, indeed in this case the spinorial Lorentz current L% ¢ = ™™ gives [10]

m[lLk]n _ n[lLk]m kln,,m|l
mn n Ui e
Ll;%lNS(Z) rns(w) = RN;_ w RS (z—w)3? (1.66)

To have an acceptable superstring action we must add to the Siegel action Sg a
term that cancels the central charge and adjusts the coefficient of the double pole

in the OPE (1.65).

1.4 The Pure Spinor superstring

Both the above requests can be satisfied if we add to Sg a ghost term [11]
Sy = — /d2 o\ (1.67)
= — 2 W, :
A or
where the ghost fields A are constrained by
A% (170N = 0 (1.68)

and take the name of pure spinors [12]. This constraint appears because we want
to provide the action with BRST quantization, as usual in theories with ghosts; to
do it, we have to construct a nilpotent BRST charge ) so that physical states W lie

in the cohomology of Q:
QU =0 but ¥#QP . (1.69)

We know that @ raises the ghost number, hence it has to contain A (ghost number
+1); in addition we remember that canonical quantization was d,¥ = 0, therefore

it is natural to define the BRST charge

Q= /dz)\ada . (1.70)
Using (1.58) we can compute the simple pole in the OPE of d, with himself:
1 _Hm " o
do(2)dg(w) = (210X + 07,00) (V™) agp = (™) (1.71)

Z— W zZ—Ww
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and so

1

@ =310.Q) =~ [dLA (M =0 (1.72)

it means that pure spinor constraint (1.68) assures the nilpotency of BRST charyge.
The ghost action (1.67) contributes to the central charge (1.59) and to the spino-
rial currents (1.64). Because of the constraint (1.68) we cannot use the naive OPE

between w and A, indeed using

wa (2) N (w) = —2 (1.73)

zZ—Ww

we get a contradiction with the pure spinor constraint:
mn )3

w(2) M N) (w) = 22 g (1.74)

Z—Ww

Then we have to solve the constraint and find a new formulation of Sy in terms of

unconstrainted fields.

1.4.1 Decomposition of SO(10) in U(5)

To solve the pure spinor constraint we need a convenient group representation: we
want to write vectors, tensors and spinors of the euclidean Lorentz group SO(10) -
i.e. the Wick-rotated form of SO(9,1) - in term of the group U(5) [11][13].

A vector V™ (m = 1,...,10) in the fundamental representation 10 of SO(10)
can be decomposed in vector v’ plus a vector v; (i = 1,...,5) respectively in the

fundamental 5 and anti-fundamental 5* representation of U(5):

VT () (10 =5@5%) (1.75)
with
vi= L (V' 4iV'+) (1.76)
V2
1 ) )
vy = —= (V' =iV . 1.77
75 ( ) (1.77)
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and the scalar product can be written

By the position above it is possible to deduce the decomposition of an antisym-

metric 2-rank tensor

N™ — (n 0t ng,n)  (45=10024®10" 1) (1.79)
with
n. % (sz + ZNZ(j+5) + ,LN(Z+5) N(i+5)(j+5)) (180)
0y — 1( NU NG+ N NG5)6+9) (1.81)
1. 2 .
. 5
1 i i(j A7(i45)5 i j (Y i4+5)i
n} = 5 (N — NG+ 4 NGHD) . NEFS)G+0)) =0 D NG (1.82)
i=1

. 5
3 . .
n=—Y NG (1.83)

To decompose a spinor it is necessary to decompose before the 10-dimensional

matrices in the way:

(v +i9"*0) (1.84)
(v =) . (1.85)

In 10 dimensions 4™ can be hermitian, so a' = a ; furthermore using the Clifford

algebra {7, 7"} = 26™" we have
{aiv aj} = 6i {ai7 aj} = {a'ia a]} =0 ) (186)

so we can understand a’ and a; as creation/annihilation operators. If we define the

vacuum state |0) by a;|0) = 0 we can construct the generical state applying a’

Ao—i-ZAa —i—ZA”aa]—i- Z Ajjra’ ol aF

1<j 1<j<k

+ Z Agjma‘a’afa’ + Asa'a*aa*a®]|0) . (1.87)

1<j<k<l
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Note that the number of components is 22:0 (2) =1+54+10+10+5+1=32, as
right for a generic spinor in 10 dimensions.
The chirality operator v'* =4 [['"_ 4™ can be written
5

7= H(ai +a')(ai —a') = — [ [20'a; - 1) (1.88)

=1
and we have

(e ={+"a}=0 . (1.89)
Trivially v'|0) = |0), so a positive chirality state contains only terms with 0, 2 or 4
a', while a negative chirality state contains only terms with 1, 3 or 5 a’. By (1.67)

we can see that A and w must have opposite chirality to preserve Lorentz invariance,

thus we have for Weyl spinor®

1 o 1 . A
|)\>+ = )\+|O> + EAijaJaZ|0> + I)\leijklmamalakaﬂO} (190)
where the components are

. 1 ..
)\+ = <O’)\> )\ij = <0|(IZCL]‘>\> A= Ee”klm(O]ajakalamPQ . (191)

For anti-Weyl spinor

lw)_ = w;a’|0) + Q—ywljeijklmakalamm) +wyata’a’a’a’|0) (1.92)

where the components are

wy = (0lasasazaza;|w) w" = ge”klm<0\akalam|w) w; = (0]a;|w) . (1.93)

In this way we obtained the U(5) decomposition for Weyl spinor
A = (AT A, A) (16=1310" 9 5) (1.94)
and for anti-Weyl spinor

w, — (wi,w?,wy)  (16*=5"91091%) . (1.95)

6This choice is in agreement with 6 and p in (1.51).
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1.4.2 Solution of the constraint

Charge conjugation matrix is defined by [14]
CymC™h = —(y™)" (1.96)

and in 10-dimensional case a possible choice is

5
C = =iy """ = [[(a; — a') . (1.97)

i=1

Remembering that (Y")as = (v"),"C~s, the constraint (1.68) means Ay"CA =0 in

o

SO(10) terms: in U(5) it becomes

(A" CIA) = (Al(ai + a')CIN) = 0

Ay FCIN) = i (a; — a")C|X) = 0
that is

NaC|A) = 0 (1.98)

Aa'CIAy =0 . (1.99)
Let us consider first (1.98): by means of the decomposition (1.90) we have
1 - 1., ,
(Ma,C|\) = AT (A]a,C0) + 5)\ij<)\]ap0a7a’|0> + E)\Zeijklm</\|ap0amalaka]|O)
1 1.
= A" (\|a,C|0) + §Aij()\]apajai0|0> + E)feijklm(A\apamalakajC’\O)
1 11, .
= a)ﬁ)\z €ijkim (0] ajara;ama,C|0) + 5 5)\@-/\,61<|O>|akalapajai0|0> +
1 . *
+ I)\l)\+ eijklm(0|apamalakaj0\0>

= —a)ﬁ)\z €ijklmEjklmp — Z)\ij/\kleklpjz' - I)\ AN € ikimEpmik
1 .. "
= At — L—lem]’”AijAzl — APAT (1.100)
using Ca’ = —a;C, (0|Ca‘a’a*a'a™|0) = ¢*™ and canonical properties of tensor e.

So (1.98) becomes
1 . .
NN @GN+ AT =0 (1.101)
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noting that (e?*\;\5)" = e\ Ny, it is simple ti verify that
. 1.
MPATT = —gewklAijA;l (1.102)

satisfies the constraint. Further we could show it solves automatically also the
constraint (1.99). Therefore a pure spinor in 10 dimensions is given by the decom-

position (1.94) in which
Vi L @A
s T A

for AT # 0. Trivially the degrees of freedom of the pure spinor are 10(\;;) +1(AT) =

(1.103)

11.

1.4.3 Action with solved constraint
Ghost action Sy given in (1.67) is invariant under local symmetry
W = Zp (V™) ap N’ SN =0 (1.104)

in fact integrating by parts, using (7")as = (7™)sa and the pure spinor constraint

we have
1 2 m Baya
0Sy = — | d°2Z,(7™)apA O
2T

1 5 1 3
=g / @z 0Z(")opA A" = - / A2z 2, (V™) apO NN
s

T
_ _i 2.9 af.m 8 i 2 m aqy g
= /d 2OZ, X (0 asX — o /d 2 2 (™) 5 NI
= —55}\ = (SS)\ == 0
If we decompose Z™ in ((%,(;), (1.78) gives
Swa = V2 [("(aiN)a + (' N)o] (1.105)

and, remembering that dw; = (0]|a;|0w), we have
dwi = V2 [/ {0lasaj A) + ¢ (Olasa V)]
I .
=2 §C])\kl(0|aiajalak|0> + ;A1 (0]a;a’ |0)

=V2 (N0 +ATG) (1.106)
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Let us choice the Z parameters:

. w; . w;
i_ Wi Zits ;v 1.1
% o (1.107)
we have immediately
. w;
and so

In this way we demonstrated that it is always right to assume w; = 0. We can note

also that in 10 dimension C' admits the antidiagonal form

0 1
C = (1.110)
-1 0
and we have the scalar product
ANES
_(w|CIA)+ = (0 wg) = —w, A" . (1.111)
—58% 0 0

Now

(w|C|\) 4 = (wi (0la; + T gV P €iikim (Ol amarar, + w+<0\a5a4a3a2a1> X

1 o 1
x C (]0>)\+ + aqap\()>§)\pq +a’a aqap\O)a)\tetpqm)

1 1,
= — W Neppgrs(0la;Ca’a”alaP|0) + ——w"" N\py€ijrim (0]amaiarCala?|0) +

4l 4. 3!
+ w* AT (0|asasazaza; C|0)
o1
= —wi)\J’ — w:)\l — §w” )\ij

S0 WaA® = wiAt + wiA 4+ $w¥")\;; and obviously
_ _ R
WaON* = wiONT + w;ON + 5w” oNij - (1.112)
Let us define

. 1 .
MN=e  Nj=u; A= -3 (e7%)" €M™y, (1.113)
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and
w; = Ote™* w" = w =0 (1.114)
noting that last position is justified by the gauge choice w; = 0. In this way the

ghost action (1.67) can be written

I Is + Lol G
S\ = 5 /d z <8t83+ 5Y 8um) , (1.115)
the ghost OPE are
t(z)s(w) = In(z — w) (1.116)
N 5[idﬂ
v (2)up (w) = zk—lw (1.117)

and we can compute the stress-energy tensor for the ghost action
1 ..
T/\(Z) = év”uij + otos + 828 . (1118)

The last term 9?s is necessary in order that the Lorentz currents are primary fields,
i.e their OPE with T'(z) have at most a double pole. So, using (1.116) and (1.117),
we obtain the central charge of the ghosts ¢y = 22, typical of a bc bosonic system
with 11 degrees of freedom. Thus if we add the ghost action Sy to the Siegel action

Ss we obtain the total central charge
c=cx+cepten=10-32422=0 (1.119)

this is the first outcome of the ghost term (1.67).

The Lorentz currents for the ghosts are given by (1.67)

1
N™ = vam")\ (1.120)

so the U(5) decomposition is, using (1.80)-(1.83), (1.84)-(1.85), (1.90) and (1.92),

n' = —eso" (1.121)
1
ng; =e° (28141-]» — u;;0t — 2u;;0s + uikuﬂvkl — §uijuklvkl> (1.122)
n; = u v’ — gdﬁ-uklvkl (1.123)
1 1

G 5, 5
n = —% <Zuijv J + 56% — §8S> (1124)
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and we can compute the OPE current-current. The results can be summarized by
the expression

m[lNk}n _ n[lNk]m k[n,,m|l
N () N™ () = 1 7 31 _ (1.125)

z—w (z —w)

The total spinorial contribute to the Lorentz current is
M™ = L™ 4 N (1.126)
and with (1.65) we have

MM (2)M™ (w) = [L*(2) + N¥(2)] [L™" (w) + N™"(w)]

= LF(2) L™ (w) + N*(2)N™ (w)
77m[lLk}n _ 77n[lLlc]m nm[lNk]n _ 77n[l]\]k}m

A nk[nnm]l 5 7]k:[n,nm]l
e e wp
m[le]n _ n[le:]m k[n,,mll
_" — Z + (Z _nw>2 (1.127)

exactly as the RNS superstring (1.66). So the pure spinor ghost term (1.67) makes

right the Siegel action (1.51) and the sum of Sg and Sy constitutes the Pure Spinor

superstring.



Chapter 2

Superstring in curved space

2.1 The Green-Schwarz superstring in general back-
ground

The Green-Schwarz Type II superstring can be extended naturally in a curved back-

ground [15]

Sas =3 [ do (VKIGux(2) + < Buu(2)) 0240,2" (21

or rather, in complex coordinates (euclidean flat world-sheet)

Ses = % / 22 (Grrw(Z) + Ban(2)) 02M 52" (2.2)

where ZM = (X™ 6% 1) are the coordinates of the superspace and M = (m, , fi)
withm =0,...,9, u,7i=1,...,16. The Grassmann variables 6*, 6% are Majorana-
Weyl spinors of the opposite chirality for type IIA and same chiralty for type I1B.
The first term of (2.1) and (2.2) corresponds to the kinetic term of (1.20) and (1.25),
while the second one corresponds to the W7 term.

Explicitly, we can see the superspace as a supermanifold and we can define
at every point Z the tangent superspace with flat metric 7, and the cotangent

superspace. The last one admits (see section (A)) coordinate dual basis {dZ} or

33
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orthonormal basis {E4}, where A = (a,a,@) with a = 0,...,9, a,a = 1,...,16
are indices on tangent superspace. In the same way of the purely bosonic case, the

change of basis defines the supervielbein E,;*(Z)
EA = By AdzM (2.3)
and we have (cfr. (A.10))
Gun(Z) = Ey"(Z)Ex"(Z)a (2.4)

generalization of the metric to the superspace.

In general supergravity background the WZ term is given by the 2-superform
1 1
B = 5BMNdZMA dzN = §BABEA/\ EP (2.5)

being
Bun(Z) = E,;N2)ENB(Z2)Bas(Z) . (2.6)

In fact it is
1
Swz :/B =5 /BMNdZM/\ dzN
=+

/ Bun0;Z2M0;ZNdo' A do?

N — DN —

/ d*0c” Byp0,2M 0, 7N (2.7)

as in (2.1). We define in a natural way

JA =E, 0, 2™ (2.8)
and therefore
JA = E,AozM JA=E,AozM | (2.9)
SO we can write
Ses = —% / o (VRhIna ;" + £ Bas ;") (2.10)

or

1
Sgs = /d22 3 (navT.“ T." + BagJ, M L5) (2.11)
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2.2 Coset formulation of a superspace

From the previous section, it is evident that to write the action of superstring in
curved space, we have to know the supervielbein £,,” and the 2-superform Bs.
The most important case (and also the simplest one) occurs when the superspace M
can be described as the coset manifold of a Lie supergroup GG on a bosonic subgroup
H (see B)

G

M= (2.12)

We can divide the complete set of generators of G as Ta = (T{4p), Ta), where Tap)
are the generators of H and all the other ones T4 remain in the quotient G/H. In
general G\H is not a subalgebra of G. As the generators span the tangent space of
a group manifold, T4 describe the tangent superspace of M.

To construct the vielbein, we define the Maurer-Cartan form

J=gldg , g€G (2.13)
which takes values in the Lie algebra of (G, as can be seen by substituting g = e Ta
in (2.13) and using

1 1
e et = dA + 5[dA, Al + g[[dA, ALA 4. (2.14)
Hence J can be decomposed as
J = JTy = JAT 4+ T (2.15)
ie.
J = JyAZMTy = Ty A dZM T+ A2 T (2.16)

Jy? are exactly the supervielbein E,,*, while JM(ab) are spin connections. By

taking dZ™ = 0;Z™do*, we find
JA =T, 02M (2.17)

and similarly

J A= J,0zM JA =g,z (2.18)
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as in (2.8) and (2.9).
The WZ term for a supergroup! manifold can be obtained generalizing the

bosonic analogue on a group manifold [16]. Let us write the 3-form
Q3 = STr(JA[JAJ]) = Capc P NITPATC (2.19)

where

CABC = CABDT]DC (2.20)

with €45 structure constants of G and nap = STr(T4T5): the WZ contribution is
given by

SWZZ/ Q5 (2.21)
D3

being ®3 a 3-dimensional domain whose boundary is the string world-sheet. By

means of the Jacobi identity and the Maurer-Cartan equation
1
dJ + §[J ANJ] =0 (2.22)

one can verify that 3 is closed, df23 = 0. Thus 23 is locally exact and we can
found a 2-form B depending on the coordinates of the supergroup manifold, so that
Q3 =dB.

Notice that the WZ term for a coset manifold of a supergroup (or simply super-
coset manifold), cannot be written as (2.19), with J* restricted to G\ H, because
G~ H is not a superalgebra and we cannot use Jacobi and Maurer-Cartan equations,
so CapeJ? A JB A JC is in general not closed. We will see in the following how this

problem solves for the particular cosets we are interested in.

2.2.1 Flat Green-Schwarz string as sigma model on super-

coset

A particular case of a supercoset manifold is the flat space: denoting by SUSY (N =

2) the supergroup of Poincaré with 2 supersimmetries in 10 dimension and SO(9, 1)

!Note that a supergroup manifold is a the particular case of supercoset manifold
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its Lorentz subgroup, the flat 10-dimensional superspace with AN/ = 2 is given by
SUSY(N = 2)/SO(9,1). The bosonic generators in the coset are P,, and the
fermionic ones are )y, with m =0, ..., 9 space-time indices, a = 1, ..., 16 spinorial
indices and I = 1,2 corresponding to the two supersymmetries. We can construct

the Maurer-Cartan form on the coset taking the group element

g = Xm0 Qur (2.23)

and recalling the flat superalgebra for P and @)

{Qar, Qsr} = —2i617(7")apPrm (2.24)
[P, P =0 (2.25)
[Qar, Pu] =0 . (2.26)

We have
[dX" P +d0™ Qur, X" Py 4077 Q] = —d6*'0°7{Qar, Qps} = —2i0" (v")apdd”' Py,
hence only the first two terms of the expansion (2.14) survive, so

g g = (dX™ —i0'y™d0") Py, + d0* Qur (2.27)

Noting that indices on the supermanifold and on the tangent superspace are the

same in flat case?, we can write
J" =0, X™ — i0'y™0,0 Jh = 0,000 . (2.28)

We recognize immediately that J,” is II; in (1.21) and the first part of (2.10)
reproduces the kinetic term of the Green-Schwarz superstring in flat space, up to a
normalization constant.

To construct the WZ term [17], we have to find a closed 3-form invariant under
SUSY (N = 2): the J# given in (2.28) are invariant under translations and super-

symmetry transformations, so we can start from a 3-form like fagcJA A JB A JC,

2In particular we use m = a and u, i = a,a — (a; I = 1,2).
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where fasc are constants. Since (J™, J%) are respectively a vector and a spinor un-
der Lorentz transformation SO(9,1), the Lorentz invariance imposes the structure
s TN T () ap A JB7 with s’/ symmetric matrix. Finally to have closed form

we have to choice s’ traceless:
Qs =" I AT (V) as A TP (2.29)

with s'! = —s?2 = 1. It is not difficult to show that the closed 3-form Q3 (dQ3 = 0)

is also ezact:

Oy = dB (2.30)
with
B = —idX™ A (s"0'y,,d07) + (6'y™dO") A (0%,,d6?) (2.31)

=V [<i0, X (0" 7m0i0" — 0270307 + (0" 900" (077, 0;6%)] %0 .

Trivially the WZ term in (1.20) is given - up to a constant - by /B.
Notice that the supercoset SUSY (N = 2)/SO(9, 1) has a peculiar character since
the algebra of P and @ is closed, i.e. P and @ span a subalgebra of SUSY (N = 2):

in fact the form (2.27) does not take values in the Lorentz algebra so(9,1).

2.2.2 The Green-Schwarz string in AdS; x S°

The 10-dimensional space AdS; x S® is homeomorphic to the coset (see B.1 and B.2)

S0(4,2)  SO(6) _ SO(4,2) x SO(6)
1

S v
AdSs 5= 9511 7) ¥ S0(5) — SO(4,1) x SO(5)

(2.32)

so the corresponding superspace is given by a supercoset with bosonic part as above.

Let us consider the even supermatrix (4 +4) x (4 +4)

X 0
A= (2.33)

n Y
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with Grassmann even entries for X, Y and Grassmann odd entries for 6, n. If we
introduce the (2,2[4) metric

20 . \ 1, 0
K= with Y=0"®1l,= , (2.34)
0 1, 0 -1,

and the superadjoint of A
At =A% with = (c* even, —ic* odd) (2.35)

we can define the Lie superalgebra psu(2,2|4) of the supergroup PSU(2,2|4) impos-
ing that A satisfy [18]
AK + KAY =0 (2.36)

TtX=TrY =0 . (2.37)

For the building blocks of A the conditions above give?

XY +2Xxt=0 Y +Yt=0
f—ixn' =0 . (2.39)
TrX =0 TrY =0

It means that the bosonic (even) blocks (X,Y) are X € su(2,2), Y € su(4), i.e.
Bos[psu(2,2|4)] = su(2,2) @& su(4) (2.40)
or, in terms of groups
Bos[PSU(2,2/4)] = SU(2,2) x SU(4) . (2.41)

From the classical group theory we know that [19] SU(2,2) = SO(4, 2) and SU(4) =
SO(6), thus
Bos[PSU(2,2[4)] = SO(4,2) x SO(6) . (2.42)

3Tt is interesting to note that the condition (2.37) admits a weaker form given by STrA =
TrX — TrY = 0. The so-defined superalgebra is su(2,2]4): it differs from psu(2,2[4) essentially

because it contains the identity 1s, i.e
Bos[su(2,2[4)] = su(2,2) @ su(4) ® u(1) (2.38)

or PSU(2,2[4) = SU(2,2/4)/U(1).
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The principal characteristic of psu(2,2[4) is given by the existence of an auto-

morphism Q : A — Q(A) € psu(2,2|4) defined as

IXNT —JntJ 0 —1,
A) = with J = : (2.43)
JOtJ  JY'J 1, 0

It is simple to show that Q*(A4) = A i.e.
Q=1 (2.44)

hence € has eigenvalues {1, £i}: if 7, is the eigenspace associated to the eigenvalue
i? (p=0,1,2,3)
Q(H,) =i"H, H,eH, (2.45)

we can decompose psu(2,2[4) in the direct sum of H,:

3
psu(2,24) = P, (2.46)
p=0
said Z4-grading of psu(2,2[4). Further one can demonstrate that
Q([Hy, Hy)) = [(H,), QA(H,)] = *™[Hy, H] (2.47)

thus

[Hpa Hq] € Hp+q|mod4 . (2.48)

Notice that the only closed subalgebra of psu(2,2[4) is Ho.
We want to study the explicit form of H),; let us start from Hj: the definition
Q(Hy) = Hy on the building blocks gives

XJ+JX=0 YJ+JY=0 6=n=0 (2.49)

that means X,Y € sp(4), superalgebra of the symplectic group Sp(4). On the other

hand X € su(2,2) and Y € su(4), so we can conclude that in Hy

X € usp(2,2) Y € usp(4) (2.50)
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with usp(n) superalgebra of the unitary-symplectic group USp(n) = SU(n) N Sp(n).

Because of § =1 = 0 H, is a bosonic subalgebra of the form
Ho = usp(2,2) & usp(4) (2.51)

and it generates the bosonic subgroup USp(2,2) x USp(4) of PSU(2,2|4). From clas-
sical group theory [19] USp(2,2) = SO(4,1) and USp(4) = SO(5), so H, generates
SO(4,1) x SO(5) and can be identified with so(4, 1) @ so(5).

As regards the Hs one can observe that § = n = 0, so it is a bosonic eigenspace,
while in ‘H; and Hs X =Y = 0, so they are fermionic eigenspaces.

Using (2.42) we can write

PSU(2, 2/4)

AdSs x §° = B
S x 8= Bos | a1y < s0() |

(2.52)

hence we can study the superstring in the corresponding supermanifold by means
of the supercoset PSU(2,2/4)/SO(4,1) x SO(5). Notice that the bosonic subgroup
SO(4,1) x SO(5) represents the generalization of the Lorentz group in the space
AdSs x S°, on analogy of the flat case.
We define the canonical form J = ¢g~'dg with g € PSU(2,2[4): since it takes
values in psu(2,2|4), we can decompose it in Z, components
3
T=> (2.53)
i=0
where

Jo=JNTy  Jo=JT, Ji=JT, Jy=JT; (2.54)
and (T(a), To, Ta, Ta) are the generators respectively in (Ho, Ha, H1, H3). Trivially
J is invariant under global left PSU(2,2|4) multiplication

g—4qyg g € PSU(2,2/4) ; (2.55)

on other hand it is simple to verify that under a local right SO(4,1) x SO(5) multi-
plication

g — gh h € SO(4,1) x SO(5) (2.56)
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J; transform in the way

Jo — hilj(]h + hildh (257)

Ji = h ' Jh i=1,2,3 . (2.58)

The transformation of Jy is the typical of a gauge field, so we can understand Jy as
the SO(4,1)xSO(5)-gauge field; J; transform according to the adjoint representation
of SO(4, 1) xSO(5) as befits matter fields. If we write h = € with b € so(4,1)®so(5)

the infinitesimal gauge transformation on g is
g = gb (2.59)
and we obtain the infinitesimal form of (2.57) and (2.58)

dJo = [Jo,b] +db (2.60)

5J; = [, 6] . (2.61)

The kinetic term of the action can be written immediately in the form (2.10) or
(2.11), noting that J in (2.54) are exactly J of these expressions. In particular if

we pose* 1, = STr(T,T}) and J¢ = J*, J¢ = J" we can write
o 1 =
Skm == d°z §STI'(J2J2> . (262)
To construct the WZ term we use the Zs-grading and define the 3-form [20)]
Q3 = STI' (JQ N [Jl A Jl] — Jg N [Jg A Jg]) . (263)

It is simple to note that Q3 is SO(4, 1) x SO(5)-gauge invariant and one can show

that it is also closed. By means of the PSU(2, 2|4) structure constants, {23 becomes

Qs = CoapJ* N J*N TP = Coagd*NJEN TP (2.64)

4We define only a constant, because the trace of two generators is always proportional to
the metric. It can be understood noting that only the metric takes appropriate indices (Killing

formalism).
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and introducing the explicit formulas for C' one can obtain an expression closely
analogous to (2.29) [21]. As the flat case, one can demonstrate that €23 is not only

closed, but also exact, {23 = dB with
B = STI'(Jl VAN Jg) = STI'(J173 - 71J3)d22 . (265)

To add the WZ term to the action we have to fix a constant in front of 23 i.e. in front
1

of B. The correct choice is 3 to have k-symmetry [21]| and conformal invariance [20],

and the final expression of GS superstring in AdSs x S° is a Wess-Zumino non-linear

stgma model

1 - 1, - —
Scs = /d2z STr {5(12[]2 -1 (JsJ1 — Jids)| . (2.66)

2.3 The Pure Spinor superstring in curved back-

ground

The pure spinor superstring in curved background can be constructed from GS
superstring in a similar way to the flat case. To this purpose, we recall the relation

between the GS and the Siegel action (1.52) which using (2.28) can be rewritten as
Se = Sag + / Ezdn T (2.67)

In the case of a type II superstring we have to add a term for the right sector
daoJ*?, where d' and d? have (1,0) and (0,1) conformal weight respectively. This
can be immediately generalized in a curved background with Z-grading by d,J - +
dzJ® with the index convention of the last section. Furthermore we have to add
a quadratic term in d, and ds generalization of the massless vertex operator [22|:

hence we have

Smatter = SGS + /dQZ (daja + daJa + naadad&) . (268)
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The auxiliary fields d,, dz can integrated out and we obtain trivially

Smatter = SGS + /STY(JSjl)

1 - 3 - 1 =
:/dQZSTI‘ |:§J2J2+1J3J1+1J1J3:| (269)

with the position STr(T,75) = Nag and n°® inverse of 1.5. Notice that Spaser can

be written
) 1, — _ 1, - _
Smatter = d“z STr 5 (JQJQ + J3J1 + J1J3> + Z (J3J1 — J1J3) . (270)

the first bracket is a principal chiral model and it can be understood as the kinetic
term for the matter, while the second term has the structure of a Wess-Zumino
action. So we define Sy,q11er = Spym + Swz.

The ghost fields have to take values in the fermionic eigenspaces H; and Hs,
hence we can define them A\; and A3. In flat space the momentum has opposite
chirality respect to its conjugate field, so that the coupling ghost-momentum is
Lorentz invariant: analogously in curved space we take each momentum in a different
eigenspace respect to its ghost, i.e. w3 € Hs is the conjugate momentum of A\; and
w; € H,p is the conjugate one of A3. To construct the ghost term of the action
we have to substitute the canonical derivative with the covariant one: because we

interpreted the Jy as the gauge field, it is natural to define
V=0+[Jo, | (2.71)
and analogue for V. In this way the ghost term can be written
Sghost = — / d?*z STr [wgv/\l + w1V)\3} . (2.72)
To complete the action, we have to add a current-current term
Seurrent = — /d2z STr ({ws, A\ }{wi, A\3}) (2.73)

we will see in the next chapter that N = —{ws, \;} and N = {wy, A3} are gauge

currents and Sy rent 1s necessary to allow the BRST invariance of the action. Now we
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can note that STr(N N ) = N(ab)(ca) IV (ab) N(ed) and the tensor Naby(ed) = ST (T(an) T (cay)
corresponds to the Riemann curvature tensor of the space [23].

Finally we write the complete pure spinor superstring in a curved space described
by a Zj-graded supercoset. We fix a normalization and choose a coupling constant
R?: for spaces with some characteristic length it will be natural to identify R with

this length, e.g. in AdS,, space R is the curvature radius. We have

R? 1. - 3 _= 1 - — .
SPS = % dQZ STr |:§J2<]2 + 1J3J1 + ZJ1J3 — w3V/\1 — ’LU1V)\3 — NN|. (274)

Let us note that the presence of fermionic fields J;, J3 out of the WZ term breaks
the k symmetry typical of GS superstring. However in next chapter we will show

that the action is invariant under BRST symmetry, as in the flat case.
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Chapter 3

Superstring in AdS; x CP? space

3.1 Superalgebra of OSP(4/6)

As we did in the section 2.2.2, now we have to find a supercoset corresponding to

AdS, x CP? |, noting that (B.11) and (B.14) give

SO(3,2)  SUM) _ SO(3,2) x SU(4)

AdS, x CP? = = 3.1
1 SO(3,1) © U@B) — SO(3,1) x U(3) (38-1)
In order to do it, we introduce the even supermatrix (4 + 6) x (4 + 6)
X 6
A= (3.2)
n Y

with Grassmann even entries for X, Y and Grassmann odd entries for 8, n, we define

the supertranspose of A

Xt gt
At — K (3.3)
6t Y!
and the (4]6) metric
Cy 0
K= (3.4)
0 I

where C} is the 4-dimensional charge conjugation matrix, that we can always choose

real, antisymmetric and so that C;? = —14 (see (C.3)). The superalgebra osp(4/6)

47
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of the orthosymplectic supergroup OSP(4/6) is given by the matrices A with the
property [18]
AMK + KA =0 (3.5)

1.e.

X'Cy+ CuX =0 Yi4y =0 n'—Ch=0 (3.6)

hence X € sp(4) and Y € so(6) that is
Bos[osp(4[6)] = sp(4) @ so(6) . (3.7)
In group term it means
Bos[OSP(4/6)] 2 Sp(4) x SO(6) (3.8)
and because [19] Sp(4) 2 SO(3,2) and SO(6) = SU(4)
Bos[OSP(4]6)] 2 SO(3,2) x SU(4) . (3.9)

One can show that there exist two real antisymmetric matrices Ky, Kg respectively

4 x 4 and 6 x 6, with the properties
[K4,Cy) =0 K, =14 K& =—1¢ ; (3.10)
thus we can define the automorphism Q : A — Q(A) € osp(4/6) with

Q(A) = FaXTR T K (3.11)
— K"K, KgY'Kg

Let us note that if we introduce the matrix

K.Cy 0
r=[ """ (3.12)

0 — K

the 2 automorphism can be written

Q(A) =TAYT! (3.13)
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using (3.6). It is simple to show that T* = 1, therefore
QA =TIAT Y =4 = Q=1 (3.14)

and osp(4|6) admits Z,-grading

0sp(4/6) = @Hk (3.15)

with Hy, = {Hy € osp(4]6) : Q(H},) = i*H}. Trivially we observe that [H,, H,| €
Hp+qmoda; further one can demonstrate that #Ho, H, are bosonic eigenspaces (6 =
n = 0) and H,, Hs are fermionic ones (X =Y = 0). In particular one can show that

Ho = so(3,1) ®u(3), so the subgroup of OSP(4/6) is SO(3,1) x U(3). Consequently

(3.16)

AdS, x CP? =~ Bos { OSP(46) }

SO(3,1) x U(3)
and we can use the supercoset OSP(4/6)/SO(3,1) x U(3) to study superstring in
AdS, x CP3.

In addition we note that
QA" = (TATA)* =TA T ! = QA% (3.17)
since T is real. Thus for all Hs € H3
Q(Hs*) = [Q(H3)]" = (—iH3)" = iH3* = H3* € H,y (3.18)
and in the same way H;* € Hs: we can conclude that
Hs* = H,y (3.19)

and it means that there is a one-to-one correspondence between H; and Hj.

The construction of pure spinor superstring in the supercoset OSP(4[6)/SO(3, 1) x
U(3) is totally analogous to the PSU(2,2[4)/SO(4,1) x SO(5) case we discussed in
section 2.2.2 and we do not repeat it.

However it is important to note that the supercoset OSP(4]6)/SO(3,1) x U(3)

contains 24 fermionic degrees of freedom, while the type ITA GS superstring has
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32 fermions. Thus the sigma model can be interpreted as GS formulation with a
partially fixed x symmetry [24], i.e. where 8 fermions are gauged away. This inter-
pretation is confirmed by the presence in the GS coset model of a local fermionic
symmetry that is able to remove other 8 fermionic degrees of freedom, giving finally
16 fermions, as in the GS superstring with £ symmetry totally fixed. This argument
fails for some particular bosonic configurations, corresponding to string moving in
the AdS part of the space only, because the number of x simmetries becomes 12 and
the gauge fixed sigma model has less fermionic degrees of freedom than canonical
GS string. In pure spinor superstring there is not £ symmetry, so one can hope to

solve the problem within this formulation.

Finally we fix our conventions about the generators of osp(4/6):

M™ V,b)  M™ € so0(3,1) V.t e u(3)

P™V, V4 P™e so(3,2)\s0(3,1) (V,,V%) € su(4)~u(3) (3.20)

while the expression for OSP(4|6) algebra is given in Appendix C.

3.2 BRST transformation

3.2.1 Nilpotency

The BRST transformation is a gauge transformation with ghost fields as gauge
parameters, i.e the BRST charge acts on ¢ element of the supergroup OSP(4/6) as

an infinitesimal right multiplication like (2.59)

Q(g) = gA (3.21)
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o1

where A = \;+ )3 is the ghost total field. It is simple to verify that Q(g~!) = —Ag~!,

so the BRST transformation of J = g~'dg is
Q(J) = 0N+ [J,A]
In Z, components

Q(Jo) = [J1, As] + [J3, M)
Q(Jl) — 6)\1 —|— [Jo, )\1] —|— [JQ, )\3] — V)\l —|— [Jg, )\3]
Q(J2) = [J1, M) + [Js, Ag]

Q(J3) = OAs + [Jo, As] + [, Ai] = VA + [Ja, Ad]
Then, taking into account the fermionic character of (), we have
Q*(J) = QL A]) = {0A, A} +{[J, A A}
using Jacobi identities and
{OA, M} = %8{)\1, Mt {0As A3} = %a{)\fﬂa As}

{0A1, A} + {0A3, M} = 0{ 1, A5}

we can write also (3.27) in Z4 components

Q*(Jo) = —%[{)\1,)\1} + {3, A3}, o] + V{1, A3}
Q1) = =3[0 M} + D dsh ] = (£, Ak,
Q* () = %V{Al, M)+ %V{/\g, A3t — [{A1, Az}, Jo]

Q(Js) = =500 A} Do Ak, Al = ([, Aah ]

(3.22)

(3.23)
(3.24)
(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
(3.31)
(3.32)

(3.33)

As in the flat case, ghost fields need a constraint to give the nilpotency of Q?: if we

impose

{>\17>\1} :0 {)\37)\3}20

(3.34)
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we obtain

Q*(Jo) = V{1, A3} (3.35)
Q*(1) = —[{ M, A}, il (3.36)
Q* () = —[{ M. Az}, Jo] (3.37)
Q*(J3) = —[{A, Aa}, ] (3.38)

Since {1, A3} € s0(3,1) & u(3), equations (3.35) — (3.38) are exactly gauge trans-
formations of the form (2.60)-(2.61) and so Q*(J;) = 0 just up to gauge transforma-
tions. Therefore the conditions (3.34) are the constraints of the ghosts on curved
background and correspond to the pure spinor constraint on flat space.

In addition we note that using (3.23)-(3.26) one can obtain the BRST conserved

charge for the action in the form

Q= /szTr()\ng)+/d§STr()\371) . (3.39)

If we reintroduce the auxiliary fields d,, dg, () can be written
Q=— / dz\"d, + / dz\%5 (3.40)

that is analogous to (1.70) in the flat case. In fact solving the equation of motion

for d fields, (3.40) gives exactly (3.39).

3.2.2 Invariance of the action

We want verify the BRST invariance for the PS action. For the kinetic term of
matter

S _ P2 STe| 20Ty + 20T+ 0,7 (3.41)
PXM—27T ZT222213231 .

we have

2

R 1 S -
QSPXM == %/Cﬁz STI“§ [V/\ng + V)\3J1 + V)\1J3 + V)\1J3} (342)
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using the Maurer-Cartan equations

VJi =V = —[J3,J2] — [J2, ]3] (3.44)
ng — ng - —[Jl,jg] - [Jg,jl] (345)
we have
R* [ 1 - = - —
QSwz =5 [ d*2STrg [VAsJ1 = VAsJi — VA Js + VA3 +
R [ 1 - — -
+ % d ZSTI"Z—l [8()\1J3 - )\3J1) + (9()\3J1 - )\1J3)} . (346)

Canceling the total derivative, BRST transformation for Sy,qtter = Spyar + Swz is

2

R _
@Spir = - [ @2STe [VAT, 4 VA] (3.47)

This quantity has to be deleted by the BRST variation of the ghost term
R? —
Sghost = _2_ dQZ STr(waV)\l + wlvAZi) . (348)
s

together with the usual transformations for the ghosts

QA1) =0 Q(A3)=0 (3.49)

we assume for the momenta

Qws) = J; Qwy) =J1 (3.50)

noting that, as required, ) does not modify the Z, grading and the conformal weight,
but increase the ghost number.

By means of the identity

STr (w[Jy, A]) = —STr (Jo{w, \}) (3.51)
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it is possible to write

R? =

Sghost = —g dQZ STr(wgf))\l + wl(‘?)\g) —+
R? —
+ % /dQZ STI”(JQ{ZU;?,, )\1} + Jo{wl, )\3}) (352)
and the BRST transformation is
R? - =
QSghost = _% /dgz STI"(VASJl + v>\1J3) +

- g/d2ZSTr(Q(7o){w3,A1}+Q(J0){w1,A3}) . (3.53)

The first term cancels exactly QSyaier, but now we have to eliminate the second

one. By means of (3.23) we have

STT(Q(jo){UJS, At} + Q(Jo){wr, )\3}) =

= STI'[([jl, /\3] + [73, )\1]){11)3, )\1} + ([Jl, )\3] + [Jg, )\1]){11}1, )\3}] (354)
Then, using the the constraint (3.34) into the identity

STr ({75, Ml s, A}) = — 58T (s, wsl D0, A1)

we obtain
STr ([J5, AiJ{ws, A\1}) =0 (3.55)
and in the same way
STr ([J1, As]{wi, \s}) =0, (3.56)
50 (3.54) becomes
ST (Q(Jo){ws, M} + Q(Jo){wr, As}) = STr([J1, Aal{ws, A} + [T, M{wr, As})

(3.57)

Because of the fermionic character of @, it is

Q{wg, )\1} = [Jg, )\1] Q{wl, )\3} = [Jl, )\3] (358)

and finally we can write

STI‘(Q(j()){wg, )\1} —f- Q(Jo){wl, /\3}) = STI Q({wg, /\1}{’[1)1, )\3}) (359)
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i.e.
R2
QSatter + Syront) = 5 / P2 STrQ({ws, A\ w ) . (3.60)
This way, to have BRST invariance, we must add to Spatter + Sghost the term
R2
Scurrent - _2_ dgz STr ({w?n )\1}{101, /\3}) . (361)
T

We note that in (3.52) {ws, A\;} and {wi, A3} couple linearly with Jo and Jp,

hence they can be understood as gauge currents and it explains the subscript of S.

3.3 Action

The action of pure spinor in coset superspace is

S = Smatter + Sghost + Scur’rent (362)
with
R? | R Rp— -
Smatter = %/CFZ STr {5}2!]2 + ZJSJl + ZJlJB (3.63)
R? _
Sghost = _% d2Z STI'(U)gV)\l + w1V/\3) (364)
RQ
Scurrent = —g d2Z ST‘I'({'LUg7 )\1}{11)1, )\3}) . (365)

To write the explicit form of S we have to expand the fields J; and the ghosts w;,

A; on the generators of the osp(4]6) superalgebra:

Jo = J™" My + J4V, (3.66)
Ji = J*Opq + J4a0% (3.67)
Jo = J" Py + JV, + JV° (3.68)
Jz = J*0O. "+ J, 0%, (3.69)
At = A"Oaa + Aaa O™ As = A,0,7 + 2,09, (3.70)

and analogue for wy, wy. For convenience, we introduce also the gauge currents

N = —{ws3, \1} ) N = —{wy, A3} (3.71)
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and using (C.41) we obtain

i.e.

N = 5 (0 (0™ )es X (0N, ) Mo+
4 % <€aﬁw A\Pa _ a)\ﬂb) v,° (3.72)
N = i (wa“(am")aﬁﬁ + w4 (0N, ) o
- % ( a0\, — P ) Vb (3.73)
N™ = i <w°‘ o\ w5 m”)aﬂ)\ ) (3.74)
N = i (waa mn aﬁAB +waa (@A, ) (3.75)
Ne, = +% (saﬁw@bw - sdﬂ'wduﬁ-b> (3.76)
N¢ = —% <5a5w0‘“)\’3b — edﬁwdb)\ﬁ.“) . (3.77)

Furthermore using (C.46) and (C.48)

R2
Scurrent 2 dQZ STI'(NN)
T
R? - -
= o [ &2 (—nkmn,nN“Nm" + N%,N‘;) (3.78)
s

and with all the other traces (C.46)-(C.51), we have

S =

R’ 1 S R B
d2 o 'Imn " — GqYa __Jaja
o { Y Y
_ igag (3Jaajﬁa + Jaa75a> — igdg <3Jda76a + Jda75a> +

— €08 (wo‘aVAﬁa + wo‘“V)\’Ba> — g% (wd“v)\ga + wdaVAﬁ-“> +

1 35
+ g lemlin (waa(gkl)aﬁ)‘ﬂa +wy*(@ kl)aﬁ)‘ﬁ'a) x

x (wvb( ") 16N A wsp(5 YN )

1 . .
~5 <8a5wo‘b/\5“ — go‘ﬁwd“)\@b> (5a5w°‘b)\ﬁa — 5a5wda)\5b>} (3.79)

Finally we observe that the action (3.79) has another local invariance:

dws = [A1, {s] dwy = A, Q] 0N =0A3 =10 (3.80)
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with Qs € H,. In fact we have
§STr(wsVA;) = STr(0ws VA1) = STr([A1, ] VL) = STr(Q22{V A1, M1 })
using the Jacobi identities and (3.28) we can show that
{VAL M = %V{M, At} (3.81)

and
— 1 —
(SSTI"(UI;;V)q) = §STI'(QQV{>\1, )\1}) =0 (382)
because of (3.34). In analogous way we could show that §STr(w; VA3) = 0, therefore

0Sghost = 0. Then we have, by means of the Jacobi identities,
1
ON = —{5w3, )\1} = —{[)\1, QQ],)\l} = —5[{)\1, )\1},92] =0 (383)

and identically SN = 0, so that 0S.urent = 0 too. Now, if we write €25 in osp(4/6)
components

Oy = QuP™ + QV* +Q, (3.84)

we obtain the explicit form of (3.80), e.g. for ws:

2 ]

5 a _Qm)\da —m\ o ——e, CQb/\ac )

W =3 (™) 4+ \/56 b (3.85)
1 )

Sw® = QA" (0™) g — —= €W Aae 3.86

3.4 Solution of the constraint

We obtained the ghost constraint in Section 3.2.1: our goal is to find a form for
the action in which this constraint is already solved, that is the ghost fields have
manifestly the right number of degrees of freedom, in a similar way to flat case.

The ghost constraints (3.34) can be explicitly written using the algebra (C.40)
€abe N €0\ = 0 e e s\’ =0
€ Ngae® Nz = 0 €ancha"ePN, = 0 (3.87)

/\aa(am)aﬁ)\ﬁ.a =0 )\da(am)dﬂ/\ﬁa =0
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The constraint on A; can be solved setting [25]

A = 0%° /\aa = 'lbo'ﬂja (388)
with the condition
uv, =0 . (3.89)
Moreover we can scale
1
u® — cu® 0 — —6° (3.90)
c
and
1
Vg — dva "Lpd — (_l ’l/)d (391)

with ¢,d € C, so we can impose the further conditions on u and v:
lu|? = uuf =1 o] = 0™, =1 (3.92)

In this way the constraint on A; - i.e. the first column of (3.87) - becomes the couple
of conditions (3.89) and (3.92).

The constraint on A3 admits identical solution, however we remember that there
is a one-to-one correspondence (3.19) between the eigenspaces H; and Hs, so we

can construct the fields A3 by the same elements of \;. We guess

Y = %, A = Oqu” (3.93)

with
P = i) Os = 0" (0%)ae - (3.94)
As far as the field w is concerned, we can use the gauge invariance (3.80) to

simplify its decomposition. Let us consider e.g. the field ws: substituting (3.88) in
(3.85)-(3.86) we have

Sw® = =015 (™), + —€ap02°0%uC 3.95
o = g a(6") v + e (3.95)

i i
ow.® = =00 (0™ patt® — — e Vihsv. 3.96
& 92 ( ) \/5 bw ( )
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On general grounds, w3 can be written as

w®, = w*(u + Aegpeu’v™ + Bu®) (3.97)

W, = paltta + Ce™uju, + Do) (3.98)

where w®, pg are the antighost fields that will play the role of the conjugate momenta
of 6%, 14 respectively and A, B, C, D are arbitrary functions. However, using the
gauge transformation (3.95) and (3.96) we can cancel exactly the second and the

third term in (3.97) and (3.98) and set

w®, = wul W, = pav® . (3.99)
In analogous way
w = pro* Weaa = Wl (3.100)
with
p* = pi(5?)™ o = W (0Haa - (3.101)

3.4.1 Gauge transformations

In this section we discuss the gauge transformation of the ghost, and the wu, v vari-

ables. Let us recall the gauge transformation for a field F' in G\H (see (2.58))
F — h'Fh  with heH (3.102)
or, in infinitesimal form,
h=e"Tar = §F = —[¢@T ) F] . (3.103)
In our case H = so(3,1) ®u(3) and we can write the transformation for ghost fields:
6\ = —%gmn[Mm", A = €LV P A = Saoh + G (3.104)
in components (case \)

. 1 1 .
5so>\aa0aa + 550)\daoaa = _§€mn>\aa [an7 Oaa] - 56mn>\da [ana Oaa]

6u/\aa0aa + 5u)\daoda = _£ab)\ac[‘/a ba Oozc] - ab)\o'cc [V;z b7 Odc]
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For clearness we write the (C.44) algebra in the same way of (C.42), introducing

(o0, = —is,%,° (3.105)
so that
V", Oad = =(0,)00a [V,", 0%] = —(0,") 10O
Vo Oul = ~(0)00m (10 = ~@000%
[‘/:J,b7 Oac] = (Uab>dcoad [V:zbﬂ Oac] = (Uab)dcoad :
We obtain the transformations under so(3, 1)
aa 1 Ba mny « 1 —mn 5
050N = Z)\ (Emnc™ ) dsoNéa = Z)‘Bfl(fmna ). (3.107)
and under u(3)
0uA™ = X (E50,)," Sudia = = (§°4.")a" Aab - (3.108)

It is evident that latin indices a (up and down) and greek indices a,cv transform inde-
pendently under so(3,1) and u(3), therefore we can write the gauge transformation

for the fields 0,9 and u,v:
a 1 B mn\ « 1 _mn\S
(5506 = 19 (fan )5 5sowd = 11/1/3<5an ) & (3109)

oyu® = ub(gcdo-cd)ba OuVa = _(gcdacd>abvb ) (3.110)

while 6,0% = 0,04 = 0 and d5u® = ds,v, = 0. In the following we will omit the
subscripts so and u without confusion. Assuming as usual £ € R and noting that
(0%),* = —0,% it is trivial to see that v, transform with the hermitian conjugate
matrix of u®: then u® and v, lie respectively in the representations 3 and 3* of U(3).

Now let us study the behaviour of the complex conjugate fields. First
ou™ =ub (- 0%),0 = —ub (- 0) (3.111)
if we transpose this identity, we obtain

Sui = —(&-0), v (3.112)
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exactly as the transformation of v,, then u} transforms in 3* representation. Iden-
tical argument, works for v: Jv® = v** (¢ - 7),% and v®* lies in 3. It follows that the
conditions (3.89) and (3.92) are U(3) invariant.

For 6* we have

1 g«
ok &) mnx\ @
00 —10 Emn (™) 5 : (3.113)
trivially 0™* = —0%6™m6? =
(0™)5% = —=(0%)55(6™)° (%) (3.114)
S
ok 1 * _mn\ B —2\
o6 :—19’3 (0%) g&mn (T )Bd(JQ) (3.115)

and right-multiplying by ¢? (%02 = —1) we obtain

(3.116)

07

. 1 s« £
50 (02 ) g = Zeﬁ (0) g5Emn(@™)

i.e.

1~ —mn
005 = 5 05(&mn® ). (3.117)

In this way we proved that 0, in (3.94) transforms in the right way under so(3, 1),
that is in the same representation of 1)4. An analogous computation shows that 1)®
transforms like . This property is a fundamental one, because the independency of
latin and greek index imposes A3 (3.93) transform under SO(3, 1) just like A; (3.88),

as we could prove directly by (3.104).

3.4.2 Covariant derivative

We introduced the covariant derivative in Section 3.1. Now we want to see how it

work on 6,7 and u,v. By definition
V=0+][J, | (3.118)
with Jy = JpnM™ 4 J% V. ° therefore in components (case ;)
VY = O\ — %Aﬁa(Jmnam")ﬁo‘ — A (J%0. D), (3.119)

1 —mn (&
Vo = 0o = 5 X5 (nnd™) ; + (S50 At (3.120)
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using obviously (C.42) and (C.44). By A** = 0*u®
a, a « 1 B mn\ Q] a « a b 7C d\ a
V(0%u®) = [00 —59 (Jmn0™) 5" Ju® + 0%[0u® — u’(J0,),"]
= VO"u’ + 0°Vu (3.121)

and analogue for Ay, = ¥4v,. So

Vo = 96~ — %65 (Jon0™) 5" (3.122)
1 —mn .
Vb = 0 — U5 Jmnd ™), (3.123)
and
Vu® = ou® — u’(J%0, %), (3.124)
Vv, = v, + (J%0,%) oy (3.125)

3.5 The revised action

The second step towards our proposal is to write the action (3.79) by means of the

new fields (0,v,w, p;u,v). The ghost term gives

RQ . CE _ .z _
Sohost = o d?z (—i) [éagwo‘VQﬁ + gaﬁpdV% + 5a5ﬁ°‘V¢B + 8“'3@@%95 +

+ (Eapw®@)uiVu® + (edﬁpdwg)v“*vva +
(a0 Vi, + (e¥@aB)uiVus | . (3.126)
In the following it is useful to develop the covariant derivative:
o8P = £, 5% (50° — %m(jmnamn)f)
s 90° + %wa(jmnam)aﬁeﬁ (3.127)
remembering that (0™") Pegq = (0™") mn)

va = (0™")ay (see Appendix C). In analogous

way

af . = & 3 1 T =mn
€ /dev@%’ =¢ 5%@%’ - §¢"V(Jmn0 )75)

L - 1 — 5
= e pa O + §pd(Jmna—m”)a%B (3.128)
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and the action becomes

2

Sghost = %

63

/ %2 (i) |agw®00° + €% padips + easp® 00 + e w500+

1—

+

N — N

Jon (ﬁ"(am")aﬁw + @d(6m”)é‘5§5>

+ (Eapw®@)uiVu® + (5d/8pd1/1ﬂ-)v“*vva +

+(app™ V)0 Vg, + (adgwdég)uZVu“}

5T (@7(07™)asb” + pa(6") P 5) +

(3.129)

Then let us substitute (3.88), (3.93), (3.99) and (3.100) into the currents (3.74)-

(3.77):

because of

we have

N,.. Nmn

mn i mn — mn\&f

N™ = 1 (w (o )aﬂﬁﬁ + pa(@™) 6%)
Nmn 3 —a( _mn ,¢ﬁ + (* mn)aﬂé

=P (6™)ap Wy (0 E

1 *a af

N¢ = +§ ((gagw 07 uju® — ( 5/)(11/16)11 vb)
% 1 V6 — * a
N = —3 ((5a5p VP vy, — (6“5wa95)ubu ) ;

(amn>aﬁ(0mn)75 = 4<€a'y€ﬁ§ + 5a5€ﬁ~,)
(5mn)d5(5 mn)"yS _ 4(60'@55’5 + 6@56,5’&)

(Umn>a6(5 mn)d,@" =0

1 _ _
4 (50‘6&)06,55)(575@77#5) + (504[3‘*}&1#5)(5“/69755) +

+(e% pay) (7 0305) + (27 Paéfé)(gww‘@(;)]

and because of (3.89) (3.92) we have

NabNba -

| =

[(cap®0%) (%85 + (= parts) (casp® )|

(3.130)
(3.131)
(3.132)

(3.133)

(3.134)
(3.135)

(3.136)

(3.137)

(3.138)
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so we can write immediately Seyrrent:

R? 1 .
Scurrent — % dzz 5 [(Eafyg/jé + Emssgv)w“@ﬂp“*@b‘s —+
+ (561&585 +5d58ﬁﬁ)pa¢5®y§5 +

0™ (wae%déﬁpwﬁﬁ%ﬁ)} . (3.139)

3.6 Kinematics of v and v

Last step of our formulation is to add to the action we just revised a kinetic term
which contains the conditions on v and v .
It is possible to give a matricial aspect to the vectorial constraints (3.89) and

(3.92). We already considered column and row vectors

ut vl*
u® = | 42 v = | 2" uy = (uj uy uj) Ve = (V1 U3 v3)
u? V3
and we can arrange these in the matrix
Ug
U= (u“ eCvul U“*) Ut = EapeV” UE : (3.140)
Uq

using uv, = 0 and |u|* = |v|> = 1 it is simple to verify that

UlU =133 , detU=1 |, (3.141)

hence U € SU(3). Furthermore we noted that it is still possible to choose two

different phase factors e”*» € U(1),,, in front of u and v. It means that the space
SU(3)

T < U)" So we

of the constrained variables (u,v) corresponds to the coset

can introduce a covariant canonical form

j=U"'VWU =U'VU (3.142)
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and build the non-linear sigma model

S, = 1 /d% Gy . (3.143)
o2
Explicitly
di —pt o =gt
J= | —di+dy —j35" (3.144)
J2 J3 —dy
where
dy =, Vu® dy = v**Vu, (3.145)
J1 = €apev™ ubVus jo = v, Vu® j3 = €%y ~up VU, . (3.146)

As usual, j takes values in the Lie algebra su(3), i.e. it can be express in the Gell-
Mann matrices basis: if we want to restrict it into the coset su(3)\[u(1) ® u(1)], we
have to take only the off-diagonal generators, that is to omit the diagonal elements
dioin (3.144).

We obtain
R2

SX o

dZij,jk—i-CC] : (3.147)

assuming the complex conjugation and the bar on j (i.e. on the derivative) inde-
pendent operations.

We have to study the behaviour of S, under SO(3,1) x U(3) and BRST trans-
formation. Trivially S, is SO(3, 1)-invariant. Let us consider the finite form of U(3)

transformation: by (3.110) we have
u® — u’M,° Ve — Mty (3.148)

and analogous ones for v®* and u’, with M = e € U(3). j, is invariant by

definition, while for j; we have
€ap VUV U — eabcvd*Md“ueMequfoc = (detM)edefvd*ueVuf (3.149)
that is j; — (detM)j1, so

gy = detM " =7, (3.150)
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and the same for j,7,*. In similar way we could show j; — (detM*)js and the
invariance of the j3j3-terms.

We assume the fields (u,v) BRST invariant,
Qu) =0 Q) =0, (3.151)

so the BRST generator acts only on the .Jy field in the covariant derivative of u and
v. By (3.23) we have, using (C.41) algebra,
QU™ =~ [(70%, 4 7))+ (Jaahs" + TN (0]
Q%) = % [eaﬁ <J‘“”/\5b - JabAﬂa) e (Jdb/\ s JdaABb)]
and we can rewrite Q(J%) by means of (3.88) and (3.93)

Q(J%) = % [(%N“”W + adﬁjdwg) vy — (saﬂjabeﬁ + edBJdbéB) u]
= Foup + Fpu® (3.152)

[t is convenient to use the explicit form of the covariant derivative, putting (3.105)

into (3.124) and (3.125):

Vu® = u® +iJ%u’ (3.153)
Vg, = 0v, — ivpJ?, (3.154)
S0
Qj2) = QuaVu") = Q(vadu” + ivgJyu’)
= i0,Q(J% )’ = v, (Fvp + Fpu®)u’ =0 . (3.155)
Then
Q(j1) = Qearetv™ V) = Qeapv®™ ubuC + g™ ub J¢ud)
= deapet™ uPQ(J%))u = ieqpev™ u’ (Fovg + Fqu)u® =0 (3.156)
and

Q(j3) = Q(e“bcquvac) = Q(e“bcqubﬁvc — ie“bcu;vbvdec)

= —ie®ulvugQ(JL) = —ieutvyvg(Flve + Fou?) =0, (3.157)
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because of u®v, = 0 and antisymmetry of € indices. Thus the BRST invariance of

S, is demonstrated.

3.7 Final form of the action

We can now write the complete action of pure spinor superstring in AdS, x CP?

adding Syauer (first two line of (3.79)), Sgnost (3.129), Scurrent (3.139) and S, (3.147):

S

RZ
27

i a T Ba aa TP i ap a7, T
— Zeas (37°T 4 10T, ) = 16 (80, T g+ JaaT ) +

1 A e

d2 S limn " - SYa —=J* a

z [27) J"J 2J J 2J Jo+

—1 (%Bwo‘a@ﬁ + Edﬁpd&bg + 5045506877[)5 + €d6@daéﬁ' +
al T mn 1 7 —mn\&f

+ —w (Jan )aﬁgﬁ + épd(JmnO- ) B¢ﬁ +

_ 1 L
+ ﬁOz(Jmno_mn)aﬁwﬁ 4 §@d(<]mn5'mn)aﬂ8/j’ ) +

N~ N~

+ % <(5a7565 + €astpy )W 07 PY° +
+ (%9 4 edseﬁh”)pdqbﬁ-w&ég +
Feape® (w*0Pwab; + pdwﬁ-ﬁo‘z/_)ﬁ)) +

+ (Eapw®0P)u; Vus + (Edgpdw/g)v“*Vva +

+ (2app VP 0" Vv, + (5dﬂwd53)uZVU“ 1 +S, . (3.158)

This formulation for pure spinor superstring presents explicitly solved ghost con-

straint and in that way it becomes easy to handle: in particular we will be able to

compute the central charge and the beta function up to one loop. It will be the

matter of next chapter.
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Chapter 4

Properties of the action in

AdS, x CP3

4.1 The background field method

We want to quantize the model using the background field method [26], i.e. we have
to expand the fields around a classical configuration, just named the background
field. First we consider the matter part of the action: because we are in a coset

manifold, it is natural to expand around an element of the group, so
g = geX/® (4.1)

where ¢ is in OSP(4]6), X are the quantistic fluctuations and R is some scale which
can be identified with the radius of AdSs. As we know, the gauge transformation is
g — gh with h € SO(3,1) x U(3), that is g — ge” with b € s0(3,1) ® u(3), then it
is always possible to take away the so(3,1) ® u(3) component from X and to choice

X € osp(4]6)\[s0(3,1) ® u(3)]. In Z4 terms

X=>X; with X;eM; . (4.2)
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The Maurer-Cartan forms become

J = gfldg — e*X/R’g’fld(geX/R)
X/R( 1dg) X/R+€ X/R o X/R
= —X/RjeX/R+€—X/Rd6X/R

J+ }—%(dX +[J, X)) +

1 ~ 1
2R2[dX+[J,X],X]+O<ﬁ) . (4.3)

in components, up to the second order in the fluctuations,

Jo = Jo + [Ja, Xo] + [J1, Xa] + [, X1] + % ([V X, Xo] + [VX1, X3] + [V X3, X1]) +
+ % <[[(71,X1]7X2] + ([T, Xa], X1] + [[J2, X1], X1] + [ o, Xa], Xa]+
+{[Js, Xal, Xs] + [[Js, X, Xz) (4.4)
1

Ji=Ji+ VX1 + [Jo, Xs] + [ Js, Xo] + 5 ([VXs, X3] + [VX3, X)) +
+ 5 (172,30, 00 + {5050 5,
+H‘72aX1]’X2] + [[‘TQ?XQ]’Xl] + [[‘E?Xl]le] + [[‘737X3]7X3]) (4'5)
Jo = Jo+ VXo + [J1, X1] + [J3, X3] + % ([VX1, Xi] + [VX5, X)) +
+ % ([[jz,Xz],XQ] + [[jz,Xl],X:),] + [[jz,Xs],Xl]‘i‘
11, X, Xs) + [, Xa], 0]+ ([T, Xa), X] + [, Xl X)) (46)
Js = Js + V Xy + [y, Xo] + [ o, X1] + % ([VX1, Xo] + [VXo, X4]) +
43 (103 X0, X + [ X0 X+ [ Xl X1+

F1To, Xal, Xa] + [To, Xal, Xo] + [0, Xa), X0+ [0, Xl Xl ) (A7)

where for simplicity R=1and V =0 + [J~0, |. In this way we can write Spatter I
terms of background and fluctuations: at order 0 in X we have the classical action
with J instead of J ; the first order in X does not contribute to the effective action

and can be put zero on shell. The second order in X gives, omitting for simplicity
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the tilde over J and reintroducing the R constant,

1 1 = 3 = 1 —
Smatter — 2— / d2z STr |:§VX2VX2 + ZVXBVXl + Z—lVX1VX3 + LJ 4 Lgl} + LSZ}
m

(4.8)
with
L= ng X1, VX + ng (X2, VX1] + %71 (X1, VX, — %71 (X2, VX1] +
+ éjg[xgﬁxﬂ - éjg[XQ,VXQ 1 273[)(3, VX,] + 273[)(2, VX3] +
4 %JQ X1, VX, + %72 Xy, VX (4.9)
L) = %[J2>X2][J27X2] ;L[J%Xl][JmXa] - Z[J27X3HJ2,XJ
+ 5l XallT, Xa] + 410, X3, Xol = 01, Xl T, Xl +
%[JS,XQ][Jl,XQ] Z[Jg,xl][?]l,xg] - %[Jg,Xg] [J1, X1 (4.10)
L = g[JhXﬂ[jz, Xs] — g[‘]la Xs][Ja, Xo] +
- 2[7 X[, Xs] — g[jl,xg][Jz,Xg] +
— 2 X0, Xa) = Sl X7 Xl +
- g[j , Xa][J2, Xo] + 2[73,)(2“&)(1] +
%[J17X3][J1»X3] %[Js,Xﬂ[j&Xl] : (4.11)
where we used
STr(A[B, C]) = —STr(B[A, C]) (4.12)

Let us consider the first line of the expression above: we can write

STIBVX2VX2+ SVXVX + vxlvxg =

= [% (0X20X5 — Jo[0X5, Xo] — Jo[0X2, Xo] + [Jo, Xa][Jo, Xa]) +
z (0X30X; — Jo[0X3, X1] — Jo[0X1, X5] + [Jo, X3][Jo, X1])
i(axlaxg Jol0X1, X3] — Jo[0Xs5, X1] + [Jo, X1][Jo, X3]) | (4.13)



72 CHAPTER 4. PROPERTIES OF THE ACTION IN ADS, x CP?

If we write X in osp(4]6) components

X; = X0y + Xaa O (4.14)
Xo=X"P,+ XV, + X, V* (4.15)
X3 = Xaaoaa + Xdaoda ) (416)

integrating for parts we obtain the kinetic term for X:

1 1 = 3 = 1 _
SXX = — /dgz STI" —8X28X2 + —8X38X1 + —8X18X3 (417)

27 2 4 4

1 _ _
2 d22 STI'|: 6X26X2 —|—8X18X3:|

s

1 2 1~ m 3y a . 3y aa B8 . aB A a
=5 d“z 28X 0X,, — 0X0X, —icqg0X*0X" —ic 8Xc’yaaXB

s

Now let us consider the coupling of X with Jy: remembering (3.66)

Jo = J™ My, + J4V, @ (4.18)
we have
STr(Jo[0X2, Xo]) = =2 n (X™X™) + (4.19)
—iJ", [(0X"X, — 0X,X") — 6, (0X°X. — 0X.X")]
STr(Jo[0X1, X3]) = %7% (axm( " as X’ + 0X 40l m”)aﬂX ) + (4.20)
+ T <5 XX, — <P, X )
STr(Jo[0Xs5, X1]) = %7,,m (aXaa( ™y s X+ 00X, (6 "m)aﬁX ) + (4.21)
— Ty (Fas0X X — 20X, X, )
STr ([Jo, Xo][Jo, Xa]) = 4 unJ"* X" X + (4.22)
— (O + T J = 2% — 20T + 20 . J%5,%) XuX°
STt ([Jo, Xu][Jo, X3]) = %Jmnjkl ((Um")wa(ﬂkl)aﬁ%aXWXéa + (4.23)

—mn\Y (=kixa _B6 a
H(E) (0 M) 5P X0 X0 +
— (jbcjcagaﬁXaaXﬂb + 7cajbc8dBdeXBa> +

1, o - y
+5 (Jan”a + Jmnjba> <Xw(o—m")aﬁxﬁb ~ Xe(d m”)aﬁxﬁ.“)
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In this way we can write

1 - N
Snxx = o / 2 {Jmn {5 (OX™X™ — OX"X™) + (4.24)

—gz (0, (0" as X7 4 09X, (57 X, ) +

—%i <8X°“( "o X7, + 0Xaa(6 ™)X, )1

+ Jon {— (OX™X™ — X" X™) +

'(5)(&( s X2 4+ DX, (5™ X, )+

|
Ol W N~

_l’_

<

-~ 8
N |

= s oo Y

<8a55XaaXBb — €d85deXBa) +

EasdX X sd‘fB@XdaXBb)} }

and

|
Ssx = 5= / o Jan ™ XX 4 —6 (Tt + 3T Tat) % (4.25)

(™), (), Peps XX, + (67 (0 )X, X +

X,—/_\
ﬁk.l

| 1 . Ly .
5 TJe + T = T T~ JeT 47 CJdd(Sab) XX+
7 e [Sgaﬁxaaxﬁ 4B X X ]

IT [easX X, 4 359X X +

l\DlH,.];|N...];|®/\

<Janb —I—Jan ) [Xa“(gm")aﬂxﬁb _dewmn)a[?XBa}}
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4.2 The ghost term

The ghost kinetic term for (w,#) and (p, 1) does not require background expansion:

R2

S =
0 27r

@22 (i) [eapu® 00 + £ paD0py + 20sp® 00 + =%,00;| 1 (4.26)

on the other hand, we apply the background method to the coupling term of (w, )
and (p, 1) with Jy:

SJOwQ — _/d2 |: mnW ( )aﬂ‘gﬁ + §Jmnpd(0- ) 6¢5+
1
+§Jmnﬁa( o) s’ + 5 Jmn0a(@ 5G| (4.27)

For our purposes we consider the expansion of Jj in two X fields plus the background

J()l

1
J() — J() + 2—R2 ([QXQ,XQ] + [8X1,X3] + [an,Xl]) . (428)

The interaction between the ghost fields and Jj is identical to (4.27) with J, instead
of Jo. Then the SO(3,1) components of the [0X, X] part is

2RI —OX" X" 4 £ (0X°(0")as X, 4+ 0Xaa(6 )X 1) +
+ ;1 (aXaa(o—m") X0 4+ 9X,%(a ™)X ) , (4.29)
so, using (3.134)-(3.136), we can write

2R2Jmn(0mn)a,3 — _8Xan(O-mn>Oéﬂ +
+ i (8XWX6a + 8X7aX6a) (Umn>”/5(amn)aﬁ
— —0X X (0™ ) ap +

+ i(Earess + EasEsy) (0X X0, +0X7,X°%)  (4.30)
and in analogous way

2R2Jmn( mn)aﬁ_> aX X( mn)a6+

+ (e 4 ¥ ) (anXSuaXsza) . (4.31)
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So we can write
_ 1 2 i 5 af _mn B mn oeﬁ
SXXWQ—QW/dzLaXan(w( Jagh® + pa(@™) ¢)
L0, X, (707 + a5 ™0, +
'an5 _{_aX'y X(Sa) a9,3+

+ ~(€avEps + EasEpy)

(MM g 8ep ) (O, X, + DX, "X, ) pathy +

+ —(€arEps + EasEpry) (8X'Y“X‘5a +0X7 X0

S e S WS T

) P
—1—4( e¥ghd 4 o 557) <8XWX +0X. “Xéa) wal s } (4.32)

Finally, for completeness, we remember the current action (3.139), that gives the

coupling ghost-ghost:

R? 1 -
Scurrent 27T d2 |:(€oz'y€,6’6 + 8@65B7)wa6ﬁp’yw6 +
+ (%9 4 5d$55‘7)pd¢gwﬁ§5 +

+Ease™ (w 0°5al 5 + patbsp® wﬁ)} . (4.33)

4.3 The uv term

The background expansion for (u,v) fields takes origin from the position
U=Ue/? (4.34)

where U € SU(3) is the background and z € su(3)~[u(1) @ u(1)] is the fluctuation.

Trivially, noting that the covariant derivative acts on x like a canonical one,
j=U'VU = e_I/Rj e/ 4 e/ Rper/ R (4.35)
with j = UTVU. In this way
Te(j'j) = ~Te(fj) = —Te(e /RTe/R 4 =2/ RGet/B) (¢7/R j e/ R - e=a/Riee/ R
= —Tr(jj — je/Roe /R — jer/Bde=2/R — Jer/Rpe=/R)

= Tr(JTTj) + Tr(je™ Roe /% 4 je/Bde=2/B) 4 Tr(0e™/ Roe /%) | (4.36)
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using the cyclical properties of the trace and e*0e” = —0de™" - €*. Let us consider

the background free term

Tr(0e® Eoe~2/B) = Tr {—R—(?xax +0 (R4)1 : (4.37)
explicitly the matrix x is
0 —z] —x3
r=|z 0 —u (4.38)
Ty X3 0
S0 1 s
_ﬁTr(ﬁxax = ; Oz 0z + c.c.) (4.39)
and )
Tr(de™ Rde=*/R) = =3 Z (0x}0zk + c.c.) + O (}%4) . (4.40)

We can write the kinetic action for the fluctuations xj, from S, (3.147):

3
1
Sy — / [Z Oz} dxy, + c.c.) + O (RQ) =
k=1
3 1 3
_ 2 AR 3
Spx = d*z kz:; Oz} 0y, + c.c.) = o /d 22;8%8:@; . (4.41)

4.4 The central charge

We want to compute the central charge for the action (3.158) using the background
field method. We will prove that it is zero at tree level (i.e. at order 1/R°) and at

one loop (i.e. at order 1/R?).

4.4.1 Matter sector

Let us start with the matter term: the stress-energy tensor can be obtained directly

by (3.63)

1 3 1
Trnatter = —R*STr {§J2J2 + ZJ3J1 + ZJlJS]

1
= —RQSTI‘ |:§J2J2 + J1J3:| ) (442)



4.4. THE CENTRAL CHARGE 7

to our aim, since the central charge cannot contain fields, we consider only the

background free expansion of J in (4.3) and we can interrupt it at the order 1/R?:

X X, X .
J%Ra +2R2[8 ] (4.43)
i.e.
1
Jl — R@Xl + — SR ([8X2,X3} + [an,XQ]) (444)
1 1
Jo — R@XQ + — OR? ([(9X1,Xﬂ + [8X3,X3]) (445)
1 1
Jg — Ran + 2_R2 ([aXl, XQ} + [8X2, Xl]) . (446)
In this way we have
1/1 ?
2
Tmatter — —R°STr 5 (R(?Xg + 2—R2[8X1,X1] 2R2 [8X37X3]> +
( 0%+ s R2 02, X + 5 R2 [0, XQ])

< (0%t

2R? T 2R?

0X1, Xo] + L[aXZ, Xl])]
— —STr B@XﬁXg + 8X18X3} +
— %STr {8X2[6X1, Xi] + 0X5[0X3, X3] +
+ 0X1[0X1, Xo] + 0X1[0Xo, X1] + 0X;5[0X5, Xo] + 0X3[0Xo, Xg]:|
Because of (4.12), we have
STr(0X:1[0Xs, X1]) = —=STr(0X,[0X1, X1]) (4.47)
STr(0X:[0X1, Xs]) = =STr(0X1[0X1, Xs]) = STr(0X:[0X:, X)) =0 (4.48)
and analogues with 0X3 instead of 0.X;. So the background free tensor is

Tatter — —STr 8X28X2 + 8X18X3} + O(R12) . (449)

Obviously the first term of T},.er above is the stress-energy tensor of the kinetic

action for X fields Sxx (4.17). In components

1 y
Tatter = = | 30X "OX" = 0X°0X, — ieapdX**0X", ~ igaﬁaxdaaxﬁa} (4.50)
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By Sxx we obtain the fundamental OPE

X™(2)X"(w) = —n™"In|z — wl|? (4.51)
X*(2)Xy(w) = 6,In|z — w|? (4.52)
X(2)XP (w) = —ie*?6,%In|z — w]|? (4.53)
Xda(z)XBb(w) = —i5d55abln]2 — wl? (4.54)

and thus the terms 1/(z — w)?* of the OPE Tyaster(2) Tinatter (W) are

<%77mnaXmaX " Z %nmaX "oX' w> — }lnmnnkl (™ 0™ + g™y ) ﬁ
- %(’22—5{])4 _ € —Qw)4 (4.55)
(0X"0X,|, 0X°0X,| ) — (jlfd;b)él E 5_“;)4 E _?’w)4 (4.56)
(i£0p0X0X" . ievgﬁX'yb@X‘sb’w} — i25a5575(—i)25a556756“(5abﬁ
_ <,faji£4 - _6w)4 (4.57)
(iadgﬁXdaﬁXBa ) z‘gwax%axsb’w> — i%dﬁgw(—i)25d556&/5ab(5b“ E 1w)4
_ _éd_aé;; - _6w)4 . (4.58)
The central charge for different sectors is
Chos. matter = 22+ 3-2=10 Cferm. matter = —6-2—6-2=—24 . (4.59)

The absence of a term 1/R in Tpaer (4.49) implies that matter does not give

contribution to the central charge of the order 1/R?.
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4.4.2 Ghost sector
The stress-energy tensor for the ghost is!

Typost = iR? (gaﬁwaveﬁ + gdﬁpdwﬁ-) (4.60)

and by (4.26) we have the fundamental OPE

W (2)0P (w) = —%gaﬁz ! . (4.61)
) 1
pa(2)5(w) = —T5eas—— (4.62)

Thus the terms 1/(z — w)* of the OPE Tyhost(2) Tynost(w) at the order 1/RY are

-\ 2 ad
(iR?)? (eapw®00° | e,5w?00°| ) — (iR?)’capeys i
Pt w Y\R2) (z—w)
0, 2
= a = 4.63
(z—w)* (z—w)* (4.63)
N\ 2
SN2/ _af T . N2 _aB w6 [ T €a648
R (o] pson] ) - (rpede (T) S5
5,4 2
= e = 4.64
Gowp Gowp Y
therefore the ghost central charge is
Cohost =2-2+2-2=8 . (4.65)

If we expand the covariant derivative, we would have to add a contribution like
0XXwb to Tynest and it would give a term proportional to 1/ R* in the c expres-
sion above. It means that the ghost sector does not give contribution 1/R? to c,

analogously to the matter sector.

4.4.3 wuv sector

The stress-energy tensor for u and v is given by (3.143)

T, = —R*Tr (j'5) (4.66)

1'We consider only the holomorphic component of T": the anti-holomorphic one is given by (@, 0)

and (p,).
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and the fundamental OPE is

1
xp(2)x(w) = —§5klln|z —w* (4.67)
so at order 1/R" we have
3
Too = =2  Ox;01; (4.68)
k=1
and
3
k=1
3 2
1 k101K 3
! (——) _— - (4.69)
N\ 2) (z-w) (z —w)
The central charge is
Cw=3-2=6 ; (4.70)

in analogous way to the matter sector, the correction of ¢, proportional to 1/R? is

Zero.

4.4.4 Ghost-uv sector

The last terms in Sgpest (3.129) give a tensor
Tonostran = iR | (Eagw®@P s Vus + (sdﬁpd%)va*wa] . (4.71)

The lower order in the background free expansion of u}Vu® and v**Vu, is 1/R?: it
can be understood noting that these ones are the diagonal elements of j while in
the expansion

' ! 0 ! 0 O !

j—)ﬁ ZB+2—R2[ QS,SB]+ ﬁ (472)
the first diagonal terms are [Ox, x| /2R?, since x has only extra-diagonal components.

It is simple to verify that the coefficient of 1/(z —w)?* in the OPE of T with itself

is proportional to 1/R*, so that the ghost-uv sector does not give contribution to c
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up to this order.

Finally we can collect the results above:
C = Chos. matter T Cferm. matter + Cwp T Cup = 10 -2448+6=0 (473)

noting it is true up to the 1/R* order.

4.5 The operator product expansion of the Lorentz

current

As final check of the consistency of our pure spinor action, we compute the OPE of
the Lorentz current with itself. In our case from the definition of the gauge-current

coupling

1 —
Scoupling = % /dQZ Lanmn (474)

we obtain the Lorentz current for the action (3.158)2
mn i af _mn —mn\éf
L= LR (cu (0700 + pa(@™) %) . (4.75)

Notice that respect to the flat case, the Lorentz current is not given by the sum of

a matter contribute and a ghost one, but is completely provided by the ghost fields.

2The Lorentz current L™ differs from N™" (3.130) in a constant. Although the physical content
is the same, we have to fix the normalization so that the simple pole of the OPE current-current

reproduce the so(3,1) algebra.
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Using the ghost OPE (4.61) and (4.62) we have

X

(L) = (=) (0™t + a0

x W (M9 + ps(0) 0] )

i af ._mn 1) —m 13 1
77 (@107, M 2ot 4+ palo™, 5y sy ) —— +

() (e @mryy,) o]

= ——R2 [277” < *(0™) 050" + pa( ml)aﬁw > + permutations}
1

— (™™ = ™) G-y (4.76)

having used
[0, "] = 2 (n"* o™ 4 permutations) (4.77)
(O_mn>a6(o_kl>ﬁa —9 (nmlnnk nmknnl) (478)

and analogous ones for &. Thus we have

k[an]l _ l[an]k [mn][kl]
(L (o)) = T (4.79)

i.e. the Lorentz currents form a current algebra with level £ = 1, as in the flat case.



Conclusions

In this thesis we presented a formulation of the Pure Spinor superstring in AdS, X

CP? with unconstrainted ghost fields.

We started from the Pure Spinor superstring in a supercoset manifold and we
studied the BRST invariance. Imposing the nilpotency of the BRST charge, we
derived the general form of the ghost constraint. To solve this constraint in the
OSP(4]6)/SO(3,1) x U(3) coset, corresponding to the AdS, x CP? superspace,
we chose a convenient realization of the superalgebra of OSP(4/|6). In this way we
were able to write the solutions of the constraint as a direct product of new ghosts
and bosonic variables. We noted that OSP(4[6)/SO(3,1) x U(3) coset admits a Z,-
grading and in particular that there is a one-to-one correspondence between the two
fermionic eigenspaces H; and Hs: so the ghosts A3 € Hg are given by the same field
content of the ghosts \; € H;. Then we extended the ghost decomposition to the
conjugate momenta wy, ws of A, A3, using a residual gauge invariance of the action
to make the most convenient choice.

We replaced the so-determined ghosts and momenta in the original action: by
the choice we did, the bosonic variables have not a kinetic term. To give a kinematics
to these variables we observed that they lie in the SU(3)/U(1) x U(1) coset, thus we
added to the action a SO(3,1) x U(3) and BRST invariant non-linear sigma model
on this coset.

Working with unconstrainted ghosts presents a lot of advantages, first of all

the possibility of computing directly the ghost propagators (as in flat case). We

83
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used these propagators to compute the operator product expansion of the Lorentz
currents; moreover, using also the background field method, we proved that the
central charge of the action vanishes up to one loop, i.e. 1/R? order. The results we
obtained confirm the correctness of the action proposed.

Using the background field expansion derived in Chapter 4, one could compute
the effective action and check for instance the vanishing of the beta function. Pre-

liminary results indicate the absence of one-loop divergent contributions.



Appendix A

Vielbein formalism

Be M a m-dimension differentiable manifold and ¢ a local chart!

e :UCM — R™ . (A.1)

-----

.....

It is possible to chose a different, non-coordinate, basis {e,},_, . for T, M and its

dual basis {e}_,

.....

=, related in the usual way

.....

e“(ep) = 6, . (A.3)

Obviously they are linear combinations of the old bases

e, = e, R ) e =e,%dy" (A.4)
SO
a _— , aj i J 9 a, j§ o i, a
&' =e,%dy" | e, 9 =¢;%¢,’0;" = ¢'¢; (A.5)
ie. e, = (e,)) " and viceversa.

'For simplicity we chose real manifold, but the the complex case is a trivial generalization.
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Metric 2-form is an intrinsic property of M and does not depend from the coor-

dinates:
9= gijdy’ ® dp’ = gapdyp® © dg” (A.6)
where
0 0
59 (5505) e A7)

We can chose the basis vectors e, Lorentz-orthogonal, that is
Gab = Nap = diag(+,—,...,—) (A.8)

provided that the components of e, on the coordinate basis change point by point,
e,’ = e, (p). On the contrary 9/9¢" usually not have fixed angles, then g;; = g:;(p).

a

It is simple to compute the relation between g;; and ga:
9 9 o
_ v J_- — 1y J .
Gab = 9 (ea &p’ ) € a(p]) €4 €y Yij (Ag)
and inverting e’
9i5(p) = &.“(D)e;"(P)nay - (A.10)
Let us consider now a diffeomorphism on R™, f : z — a’; obviously ¢’ = fop is

still a local chart of M with coordinate basis 9/0¢". By definition, if F : M — R™

OF 0

- = =(Fo o 1) (A.11)
O P Ox z=p(p)
and analogue for ¢'; using
0 or? 0
- = o — A12
ox"*  Ox'* Oz7 ( )
and o' = o 1o f~1 we have
oF oz’ 0 or? 0 Oz’ OF
- == - - F -1 -1 — r— F -1 - e A].?)
o' |, priae L oP o) = gpigmfev )| 02" g3 |, (A4.13)
ie.
0 oz? 0
_ 9T 9 (A.14)
op'  Ox"* Ol
Vectors e, are not affected by diffeomorphism f, so
e ('3' =¢ 0 - — ¢ 8:61 (9' (A.15)
Oyt o' 0x'? 0'



and trivially

1J
ea_ax eltl
N

or

or
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. rt .
e, = gzﬂ e, (A.16)
o 01

Then let us consider a Lorentz transformation A sending the orthogonal basis e,

in another ¢,

ea=Al e, (A.18)
It is
Nab = 9(Ca, @) = A, A% glec, €a) = A A% 1ea (A.19)
ie. Aisa pseudo-rotation SO(m — 1,1). In components
gai@ii — A, 8%01 ; (A.20)
posing A = A~
e, =N ¢, or ¢ =(A1He, (A.21)
and trivially
e, = (AH)"e’ or &%= A%e" (A.22)

The components e;* are called wvielbein and have the demonstrated properties:

they locally generate the metric (A.10), transform under diffeomorphism in the i

index (A.17) and under Lorentz-pseudo rotation in the a index (A.22).
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Appendix B

Algebraic properties of the manifolds

If M is a differentiable manifold and G a Lie group with identity e, we can define
[27] action of G on M the application (g,p) € G x M — gp € M so that

€p =pe=Dp
Vpe M Vg,90€ G (Bl)
91(92p) = (9192)p
The action is transitive if Vpy, ps € M there is g € G so that gp; = po. The orbit of

p € M under the action of G is the subset Gp of M given by

Gp={gp:g€G} . (B.2)

Trivially if G acts transitively on M, Gp = M. The little group (or isotropy group)
of p € M is the subgroup H, of G so that

H,={9€G:g9p=p} . (B.3)

If H C G is a subgroup and g € G, the subset gH = {gh € G : h € H} is the left
coset of H; analogously we can define the right coset Hg. The set of all gH in G is

the quotient space

%:{gHCG:gEG} (B.4)

and it admits the structure of group only if H in a normal subgroup, i.e. if gH = Hg
Vg. However if G is a Lie group, G/ H admits differentiable manifold structure, called

coset manifold.
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If a group of Lie GG acts on M transitively and we choose as subgroup of G the
little group H, of some p € M, the coset manifold G/H, is homeomorphic to M,
i.e. there is a continuous one-to-one map between G/H, and M. To see that, we
can start identifying H, with p : if ¢ # p is another point of M, there is g € G so
that gp = ¢ and we can identify gH, with ¢g. This identification is the only one, in
fact if there is ¢’ # g, so that ¢'p = ¢, surely g~'¢’ = h € H, that is ¢'H, = gH,,.

Note that the choice of p is completely free. If we start from a point p’ # p ,
obviously there is a ¢ € G so that gp = p’ and it is straightforward to prove that
H, = gH,g™"', so we can repeat the argument above. The equivalence of all p € M
means that the coset manifold describes an homogeneous space. In the present work

we are interested in three fundamental spaces:

B.1 Sphere

If we consider a (n + 1)-dimensional flat bulk of coordinates (y*,y"),_,  , ; With
metric
v n . e—N—
dspux = Nudy"dy” +(dy")* 1 = diag(h, -, +) (B.5)
the n-dimensional Sphere is defined by
nwy"y’ + (y")* = R? (B.6)

with R € R named curvature radius. Trivially the action of the group SO(n + 1) is
transitive on the Sphere and the rotations of SO(n) around a point do not shift it,

hence
SO(n +1)
SO(n)

S

(B.7)

It is simple to note that

dim (%&;1)) = dim SO(n + 1) — dim SO(n)

1 1
=S+ hn=Znm—1)=n . (B.8)



B.2. ANTI-DE SITTER SPACE 91

B.2 Anti-de Sitter Space

If the (n + 1)-dimensional flat bulk has metric

n—1
v n .
dspu = Nwdy"dy” + (dy™)* = diag(+,~=,---, =) (B.9)

the n-dimensional Anti-de Sitter Space is defined as the hyperboloid
nwy'y’ + (") = R* . (B.10)

It corresponds in lorentzian signature to the Lobacevskij Space |28] in euclidean
signature. It is simple to see that AdS,, is the orbit of the group SO(n — 1,2) - i.e.
this group acts transitively on AdS - and that SO(n—1,1) is the little group respect

to any point of AdS, so

SO(n —1,2)
AdS, ¥ —— 2 B.11
Sn SO(n —1,1) (B11)
Obviously
dim <%) = dimSO(n — 1,2) — dim SO(n — 1,1)
1 1
= é(n +1)n — én(n —1)=n . (B.12)

B.3 Complex Projective Space

Be z1,2, € C"™ — {0}: we can define the equivalence z; ~ z, if there is a complex
number A # 0 so that zo = Az;. The Complex Projective Space is the set of all the

classes in C"*t — {0} [27]
_ Cn+1 _ {0}

~

cp™ (B.13)

and it represents the space of the direction of C"*!: defining |z|> = z'z, we have
CP" = {z € C"™ — {0} : |z| = 1}. Let us consider g € U(n + 1) acting on z.
If 215 — z’172 = gz12 and z; ~ 2z, surely z| ~ 2z}, hence the group acts on CP"
too. In analogy with O(n + 1) on R™", U(n + 1) can be seen as the group of

complex rotations of C"™! and its action is trivially transitive. Choosing an element
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of CP™ by means of an homogeneous coordinate z # 0, its little group is given by
the complex rotations U(n) around the z-direction and by the phase scaling U(1)

z — €'%z. This way
U(n+1) SU(n+1)
p" = = .
B < v - Uy (B.14)

because SU(n + 1) = U(n +1)/U(1). As above

) w—im n —dimU(n) = [(n 2_1]-n*=2n
dzm( ) >—d SU(n+1)—dimU(n) = [(n+1)*—1] 2n . (B.15)



Appendix C

OSP(4/6) algebra

C.1 Preliminary definitions

Antisymmetric 2-dimensional tensor

el = 2 =1 €19 = —€91 = —1
Ear€?P =60 60”6&5 = 6%
Charge conjugation matrix and inverse
0 —1
0
€o 0 1 0
Co=|"" | =
0 e 0 1
0
-1 0
CupC?” =9,"
Dirac matrices in 4 + 1 dimensions, m =0/,0,1,...,4
{v™ " =2 with 9™ =(++—-—-)

explicitly
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with 0™ = (1,0',0%,0%) and 7™ = (1, —0o', —0?, —¢?), noting that

(5_ m)da — gngaﬁ(gm)

e (C.7)
Definition
(™), =iy (C.8)
omn) B 0
(™))" = %W’W”] = (( o o ) (C.9)
0 (™) 5
with
(0™ = 5 (0™)aia™) = (0" )aale ™)) (€10
@)% = 5 (@™ 0 )05~ (07 (0 ) a) (©1)
Definition
(e = Ot () (€12
(V™) = (V™)L C (C.13)
explicitly

() = (“’mn)aw 0 )
0 (ammye, e

Antisymmetric chiral matrices in 6 dimensions

11l
—
Q
o 3
E_/
=
B}
I o
\_5.

-
N——
Q
[a—y

=

(M)l () = 2675, (C.16)
B = 2o M) (M) = s (€17
("),

L= 5 (M)~ (M)uc(M)) (C18)
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C.2 Algebras
OSP(4]6) algebra in Sp(4) x SO(6) basis

[O O ] CHPOVU _l_ CMO'OV,D + CVpOMU + O}/UO,up (019)

2

[Onmn, Okr] = dmuxOnL + 0mrONk + OnkOur + v Ouk - (C.20)

{OHMa OPL} = i(_(SMLOup + C,upOML> (021)
[Ouua O ] C,upOVL + Cl/pO,uL (022)
[Omn, Opr] = 601r0pn — onLOpm (C.23)

with g,y =1,...,4and M,N =1,...,6.

Change of basis

1 1
M= = Z(VM)WOW Ow = _Q(VM)WMM
{ i a
UQQ —_ 4_1( MN)Qb Oun Oun = _E(pMN)gb UQ
(C.24)
1 M 1 ~M\ab
Ouar = 50 (P )ar - Ouar = =5(77)* Opuab
1
O o = §OHM( M)@ Oum = _5( Jab O a
OSP(4]6) algebra in SO(3,2) x SU(4) basis
(M MEL] = gk Nt — gk g — el kg gl ek (C.25)
U, U2 =i (60,4~ 6,4UL) (C.26)
{O,uaba Cd} ( B _5 5 ) uuan+
+§CW(5 U2 —6,5U,% - 5,40, +6,2U, ) (C.27)
[M™, Ou@] = —%(VM)“”OV@ (C.28)
[U , O, o] €0, bd _ (9 be %5; Ou@) (C.29)

—i (9,
[UQQ ) O,ucd ( O,u ad — 547 OH% - %6@@ OH@) (CSO)
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with m,n, k,1=0',0,1,..

APPENDIX C. OSP(4|6) ALGEBRA

4and a,b,c,d=1,...,4.

Properties
M= = (MY™ M™)  with m=(0,m) and m=0,123
ult=U,U0"0," with a=(a,4) and a=1,2,3
ab 1 abed
ON = 56 O,uLd
1
Ouab = 5 €abed 0, (C.31)
1 be ab abc
Ou4a - _§Eabcou OM = —¢€ OM4C (032)
a 1 aoc aoc C
0, = =5 Opune Opap = —€0,* (C.33)
Definitions
Pm= Mo (C.34)
1 1
vi=ubt-stuc V,=—=U"* | Ve=—U,*(C.35
a a a c \/5 a \/5 4 ( )
_ a _ 4a
O a=12 ~ Onta p=12 0 T la=12 " TH =12 (C.36)
& _ aa _ 4a

O al4=1,2 - O,u4a (=34 ) G=12 =Y =3, (037)
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OSP(4]6) algebra in chiral basis

[ Mmn Mkl] _ nnk M nmk M nnl M™k 4 nml Wik

[Mmn, PR = gk pm— gk pr (C.38)
[P, P"] = —M™"

Voo Vel =i 0V, = 6,7V, ")

VotV =i (0Va = 0,0Ve) (V" V] = =i (8,V = 6,7Ve) (C:39)

[Vavvb] = % (V b— 5ab‘/c C)

a

{Oaa; Oﬁb} 5a,8€abc Ve {Oaa, Oﬁb} — \/LigaﬁEabc‘/c
(0,07} = 755‘“ V. {0%,0°) = —JseMeaVe (CAD)

{Oau, 07} = 16,2(0™) PP {0,0,0° } = 15,4(F™)4, P,

{Oaav Oﬁb} = _i ab<0mn)aﬁan + lgaﬁv ’

{09,007} = —16,2(6 ™) My + 37V, (C.41)
IB _ a bl __

{00, 0"} =0 {0,%,0%} =0

M, 0] = 4™, 0p (M, 0,7) = ™ fO1
[an’ Oda] — _%( ) Oﬁa [an7 Oda] — _%(6mn)d60ﬂa
[P, Oua] = =4(0™)50",  [P™.0,7] = ~4(0™) ;O .
[P, 0%) = — 40,0 [P7,0%,) = 40,
[Va b? Oac] = iécboaa [V:z b7 Odc] = iécboda

| | (C.44
[Va b7 Oac] = _iéacoab [‘/a b’ Oac] = _iéacoab
[Vay Oab] = _\/Lieachac [‘/aa Oab] =
Vm 0% =0 ‘/:17 0] = —=% a (:(Qdc
Vs O% Ve, 0% = .
[V Oup) =0 (Ve 0] = LeteO,,

V2

[Va, Odb] — \/Lieabcodc [Va, Odb] =0
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C.3 Super-Traces

STr( My Monn) = NMet)imn] = MemMin — MenTim
STr(PPn) = N

STr(V, V. %) = —26,%

STr(V,V?) = -6,

STr(0naOy') = icasd,’

STr(0*0") = ie*"5,"

(C.46)
(C.47)
(C.48)
(C.49)
(C.50)

(C.51)
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