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Introduction

Pure Spinor superstring is the �rst successful attempt to write a space-time super-

symmetric formalism of string that admits quantization without breaking manifest

Poincaré covariance.

The Ramond and Neveu-Schwarz formalism indeed presents supersymmetry only

on the world-sheet that the string describes during its movement, on the contrary

space-time supersymmetry is not manifest but it is recovered once bosonic and

fermionic degrees of freedom have been selected a posteriori by the Gliozzi-Scherk-

Olive mechanism. The presence of worldsheet fermions and ghosts for local super-

symmetry makes quantisation very complicated, particularly at an arbitrary genus,

due to the complicated nature of the (super)moduli space. In particular higher-

loop amplitudes computation needs ghost insertions and sum over spin structures.

Furthermore the fact that states are represented by an in�nite tower of vertex op-

erators related by picture changing makes things even more di�cult. Moreover this

formalism can not be generalised to curved backgrounds with non-zero Ramond-

Ramond �elds, since the vertex operators for these states involve spin �elds which

are non-local in terms of the world-sheet �elds.

On the contrary, in Green-Schwarz formalism supersymmetry is manifest in ten-

dimensional space-time where strings live. However, one encounters serious di�cul-

ties in the quantization procedure already in a �at space due to the presence of �rst

and second class constraints. This problem is solved by requiring the presence of a

fermionic local symmetry, named κ-symmetry, and �xing the light-cone gauge. Al-
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8 INTRODUCTION

though light-cone quantization deals with only physical degrees of freedom, it is not

completely satisfactory since one would like to preserve Poincaré covariance. On the

other hand, an important feature of the Green-Schwarz formulation is that it natu-

rally extends to any curved background which obeys the supergravity equations of

motion, namely the corresponding string action is invariant under the κ-symmetry,

which in turn is responsible for the space-time supersymmetry of the physical spec-

trum. In practice, the explicit construction of the Green-Schwarz action for an

arbitrary supergravity solution is a technically complicated problem which has not

been solved so far. These di�culties can be bypassed if the background has special

symmetry properties by observing that the Green-Schwarz action is equivalent to a

Wess-Zumino non-linear sigma model on some coset superspace.

The Pure Spinor formalism, proposed by Berkovits in 2000 has both manifest

space-time supersymmetry and ten-dimensional Lorentz covariance. This approach,

based on previous idea of Siegel (1986), uses a standard fermionic action and it does

not need κ-symmetry and light-cone gauge. In addition to supercoordinates, ghost

�elds - speci�cally bosonic spinors - and their conjugate momenta are introduced.

The non-physical degrees of freedom introduced in the theory are removed through

a BRST-like operator Q. In particular the ghosts are constrained by the canonical

request of BRST nilpotency and they are are de�ned pure because of the kind of

constraint. For the string in a �at background it has been shown that the BRST

cohomology determines the physical spectrum which is equivalent to that of the

Ramond-Neveu-Schwarz formalism and that of the Green-Schwarz formalism in the

light-cone gauge.

The possibility of avoiding light-cone gauge in this formalism allows the string

to have manifest Poincaré covariance together with supersymmetry in space-time

even at the quantum level. However, there are some hidden sources of possible

violation of Lorentz covariance when one solves the pure spinor constraint in terms

of independent �elds. Finally, the pure spinor formalism is suitable to describe
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strings in curved background and we will discuss in particular the case of anti-de

Sitter geometries.

From the latest years of 20th century, the study of holographic theories has be-

come a very interesting research �eld in height energy physics. The possibility of

studying a n-dimensional physical system on the boundary of a (n+1)-dimensional

system has exponentially increased because of the Maldacena conjecture, that sup-

poses the equivalence of the type IIB superstring in AdS5 × S5 space with super-

symmetric Yang-Mills N = 4 theory in Minkovski 4-dimensional space in the 't

Hooft limit N → ∞. The fundamental aspect of this correspondence between a

string theory and a conformal �eld theory - known as AdS/CFT correspondence - is

that the strong coupling regime of a system corresponds to the weak coupling of its

holographic dual and vice-versa: in this way it is possible a perturbative approach

otherwise unapplicable.

Recently Aharony, Bergman, Ja�eris and Maldacena proposed that the N = 6

supersymmetric Chern-Simons theory in three dimensions had a 't Hooft limit whose

holographic dual is described by type IIA superstring in AdS4 × CP3 background.

The ABJM conjecture has stimulated the study of the superstring in the space above:

likewise the study of superstring in AdS5 × S5, the model is based on the possibility

to describe an homogeneous space - like AdS - in an algebraic way by means of a

coset of its symmetry group, AdS4
∼= SO(3, 2)/SO(3, 1). Because of internal space

has the same property CP3 ∼= SU(4)/U(3), it is possible to give a supersymmetric

form to direct product of the spaces:

AdS4 × CP3 ∼=
SO(3, 2)× SU(4)

SO(3, 1)× U(3)

SUSY−→ OSP(4|6)
SO(3, 1)× U(3)

.

In this way we can build a non-linear sigma model action by means of the supercoset

Maurer-Cartan forms

J = g−1dg , g ∈ OSP(4|6)
SO(3, 1)× U(3)

.

However, di�erently from AdS5 × S5, the so-built Green-Schwarz superstring
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presents some issues: in fact the supercoset OSP(4|6)/SO(3, 1) × U(3) contains

24 fermions instead of 32 like in the canonical type IIA superstring. A possible

solution is to interpret the sigma model as a Green-Schwarz superstring with half-

�xed κ symmetry, in which 8 fermions are gauged away. In con�rmation of this

interpretation, the coset model presents a local fermionic symmetry that takes away

8 fermionic degrees of freedom and gives 16 fermions, as in canonical total-gauged

Green-Schwarz superstring. Nevertheless in some peculiar string con�gurations the

rank of this κ symmetry is bigger that 8 and the argument above is not allowed.

The peculiarity of OSP(4|6)/SO(3, 1) × U(3) coset is the existence of a Z4-

grading, i.e. the decomposition of the Lie algebra in four eigenspaces Hi bosonic

type (i = 0, 2) and fermionic type (i = 1, 3). Thus J =
∑3

i=0 Ji: in particular form

J0 represents gauge-�eld of the transformation SO(3, 1)×U(3), so it can appear only

in interaction terms. To complete the matter part of the action we have to add to

the sigma model a Wess-Zumino term, typical of superstring, and the �nal result is

Smatter =
R2

2π

∫
d2z STr

[
1

2
J2J2 +

3

4
J3J1 +

1

4
J1J3

]
. (1)

This is very di�erent from Green-Schwarz model that has fermionic currents only

in the Wess-Zumino term, to ensure the κ-symmetry and then the light-cone quan-

tization. Introducing a covariant derivative, the ghost term of the action can be

written

Sghost = −R
2

2π

∫
d2z STr

(
w3∇λ1 + w1∇λ3

)
,

noting that the ghosts λ and their conjugate momenta w are in the fermionic sectors

H1,3 of the superalgebra. The action, provided with current-current interation term,

is invariant under the BRST transformation generated by the charge

Q =

∫
dz STr(λ3J1) +

∫
dz STr(λ1J3) .

Physical states are de�ned in BRST cohomology of Q, i.e. a physical state Ψ sat-

is�es QΨ = 0 with Ψ ̸= QΨ′, while nilpotency of the charge (Q2 = 0) gives the
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fundamental constraint that de�nes the ghosts and corresponds to the pure spinor

constraint in �at space. It is important to note that in pure spinor formalism the

κ-symmetry is absent, so one can suppose that this approach solves the issues of the

coset Green-Schwarz superstring in AdS4 × CP3 .

The aim of present work is to provide an alternative formulation of pure spinor

action in AdS4 × CP3 in which ghost �elds are free, that is the constraint is al-

ready solved. De�ning BRST transformation on the generic coset element Q(g) =

g(λ1 + λ3), we obtain the expression of the transformation on Maurer-Cartan form

J and imposing Q2(J) = 0 modulo a gauge transformation, we can write the ghost

constraints on the super-coset manifold:

{λ1, λ1} = 0 {λ3, λ3} = 0 .

Then we choose a basis for OSP(4|6) generators that makes explicit the anticommu-

tators and so we can solve the constraints. The solution amounts to decomposing

the ghosts λ1, λ3 and their conjugate momenta w3, w1 into the direct product

of bosonic SO(3, 1)-spinorial variables (namely new ghost) and orthonormal U(3)-

vectorial variables (u, v). Because of the orthonormality and two residual phase

invariances, the (u, v) variables lie in the SU(3)/U(1)× U(1) coset. Finally we can

substitute the solutions into the ghost action and add a sigma model on the coset

SU(3)/U(1)× U(1) to take account of (u, v) kinematic.

The advantage of the action we build is to have free ghost �elds: it allows to

compute their propagators. Since SO(3, 1) gauge �elds couple only to the ghosts,

the SO(3, 1) currents contain only ghost �elds and we can compute explicitly their

operator product expansion. We use the background �eld method to treat pertur-

batively matter and U(3)-variables: in this way we can study the central charge and

show that it vanishes up to one-loop.

To outline the present work, in the �rst chapter we give an outlook of super-

string in �at space: starting from the Casalbuoni-Brink-Schwarz superparticle, we

de�ne the Green-Schwarz superstring and introduce the light-cone gauge to quantize,
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pointing out the di�culties of a non quadratic action. Then we construct the Pure

Spinor superstring from the Siegel action and solve explicitly the ghost constraint

in order to make some fundamental computations.

In the second chapter we study the superstring in curved background. First we

give the general action for the Green-Schwarz superstring, then we study the impor-

tant case of superspaces that admit supercoset formulation, in particular AdS5×S5.

Finally we derive the Pure Spinor superstring in the same background.

In the third chapter we examine the AdS4 × CP3 superspace as the OSP(4|6)/

SO(3, 1) × U(3) coset and the characteristics of Pure Spinor superstring in this

background. In particular we give an explicit form for the pure spinor constraint

and solve it using an original realization of the superalgebra of OSP(4|6). Then we

revise the action to write it in terms of unconstrainted �elds.

Finally in the fourth chapter we derive the background �eld expansion and per-

form some perturbative calculation.

More details on the supercoset and the structure constants of the superalgebra

of OSP(4|6) are given in the Appendices.



Chapter 1

Superstring in �at space

1.1 The Casalbuoni-Brink-Schwarz superparticle

The best way to understand the space-time supersimmetric string is through the

Casalbuoni-Brink-Schwarz superparticle, describing the world-line of a particle in 10

dimensions instead of the world-sheet of the string. The action is [1][2]

S =

∫
dτ(ΠmPm + ePmPm) (1.1)

where Πm = Ẋm − i
2
θ̇α(γm)αβθ

β, m = 0, . . . , 9 and α = 1, . . . , 16. As said, its fun-

damental aspect is the invariance under space-time supersymmetry transformation

δθα = ϵα δXm =
i

2
θγmϵ δPm = δe = 0 (1.2)

with ϵα constant fermionic parameter. The conjugate momenta of the bosonic and

fermionic coordinates are

δL

δẊm
= Pm

δL

δθ̇α
= − i

2
Pm(γ

mθ)α ≡ pα . (1.3)

The momenta pα depend on the θα coordinates by the constraint

dα ≡ pα +
i

2
Pm(γ

mθ)α = 0 ; (1.4)

if we de�ne the canonical Poisson brackets

{pα, θβ}P = −iδ β
α {pα, pβ}P = {θα, θβ}P = 0 (1.5)

13



14 CHAPTER 1. SUPERSTRING IN FLAT SPACE

we can construct the constraint matrix

Cαβ ≡ {dα, dβ}P = Pm(γ
m)αβ . (1.6)

In general we have a set of constraint hA with CAB = {hA, hB}P : hm are �rst

class constraints if C is zero o weakly zero (i.e. C is a linear combination of the

constraints), otherwise hα are second class constraints.

The Dirac quantization for �rst class constraints imposes the substitution { , }P =

−i[ , ], so the constraint operators commute between themselves and the physical

states can be consistently de�ned by

hm|phys⟩ = 0 . (1.7)

This position is non consistent for second class constraint1, so we have to de�ne

the Dirac brackets [3]

{A,B}D = {A,B}P − {A, hα}P (C−1)αβ{hβ, B}P (1.8)

and to quantize posing { , }D = −i[ , ]. In this way the second class constraints

can be considered always zero.

Because the equation of motion P 2 = 0 we can choose Pm = (P, 0, . . . , 0, P ), so

that Cαβ ∼ (γ0 − γ9)αβ ∼ (γ−)αβ. The rank of this matrix is 8, i.e. Cαβ has only

8 di�erent from zero eigenvalues . It means that an half of the constraints dα are

of �rst class and an half are of second class. We need to divide the two kinds of

constraints in order to quantize, so we de�ne

Dα = Pm(γ
md)α (1.9)

and note that {Dα, Dβ} = 0 using P 2 = 0. The �rst class constraints Dα generate

a fundamental gauge symmetry of the action (1.1), named kappa symmetry [4][5]:

δθα = Pm(γ
mκ)α δXm = − i

2
θγmδθ δPm = 0 δe = iθ̇κ (1.10)

1In fact 0 = hαhβ |phys⟩ − hβhα|phys⟩ = [hα, hβ ]|phys⟩ ̸= 0.
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where κ is a fermionic local parameter. If we de�ne the light-cone coordinates

X± =
1√
2
(X0 ±X9) P± =

1√
2
(P 0 ± P 9) γ± =

1√
2
(γ0 ± γ9) (1.11)

by means of the k symmetry it is possible to choose θ so that

γ+θ = 0 : (1.12)

since the rank of γ+ is 8, half of the components of θ is totally decoupled from the

theory. The action can be written

Sl.c. =

∫
dτ

(
ẊmPm +

i

2
P+(θ̇γ−θ) + ePmPm

)
. (1.13)

A possible choice for the γ− matrix is (γ−)αβ = −
√
2

18 0

0 0

, then posing Sa ≡

21/4
√
P+θα α=1,...,8 the action (1.1) becomes

Sl.c. =

∫
dτ

(
ẊmPm − i

2
ṠaSa + ePmPm

)
. (1.14)

This action in light-cone gauge is simple to quantize: the conjugate momentum

of Sa is

pa =
δL

δṠa
= − i

2
Sa (1.15)

and imposing the canonical Poisson brackets {pa, Sb}P = −iδab, the constraints

da = pa + i
2
Sa are just the 8 second class constraints, having non-zero matrix

{da, db}P = δab (1.16)

and the Dirac brackets for S are

{Sa, Sb}D = δab . (1.17)

It is important to note that the quantization with second class constraints was

possible only in the light-cone gauge, i.e. in a non-covariant gauge: the same problem

a�ects the Green-Schwarz superstring.
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Notice that the standard description of the massless relativistic superparticle can

be obtained from the action (1.1) by using the equation of motion for Pm, that is

Πm + 2ePm = 0 ⇒ Pm = − 1

2e
Πm , (1.18)

and has the �nal expression

S = −1

4

∫
dτe−1ΠmΠm . (1.19)

1.2 The Green-Schwarz superstring

The Green-Schwarz superstring represents the generalization of the superparticle on

a world-sheet with coordinates (τ, σ) = (σ0, σ1). In 10 dimensional space-time, the

action is2 [6]

SGS = − 1

8π

∫
d2σ

√
hhijΠm

i Π
n
j ηmn + (1.20)

+
1

4π

∫
d2σεij[−i∂iXm(θLγ

m∂jθL − θRγ
m∂jθR) + (θLγ

m∂iθL)(θRγ
m∂jθR)]

with i, j = 0, 1, hij world-sheet metric, εij antisymmetric tensor, ηmn �at space-time

metric and Πm
i natural generalization of Πm in (1.1):

Πm
i = ∂iX

m − iθLγ
m∂iθL − iθRγ

m∂iθR (1.21)

where θL, θR are Majorana-Weyl spinors of SO(9, 1), said respectively left- and right-

moving.

Note that the �rst term of (1.20) is the 2-dimensional analogue to (1.19) and

represents the kinetic term of the string, while the second one is a new contribute

known as Wess-Zumino term and it is necessary to have the κ symmetry. One could

show that this procedure works at most for two supersymmetries and this is the

reason of two di�erent spinors θ [7]. Further the WZ term is supersymmetric in 10

dimensions only if θ spinors are Majorana-Weyl.

2Compared with usual convention we divide the action by 4, in agreement with next section.
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Because of the reparametrization invariance it is possible to choose �at metric on

the world-sheet hij = (−1,+1). As usual, the the world-sheet metric can be written

in euclidean signature by the Wick rotation3 τ → −iσ2, so that hij = (+1,+1) for

the new coordinates (σ1, σ2). Introducing complex coordinates

z = σ1 + iσ2 z̄ = σ1 − iσ2 (1.23)

and the corresponding derivatives

∂ =
1

2
(∂1 − i∂2) ∂̄ =

1

2
(∂1 + i∂2) (1.24)

the action (1.20) acquires the form

SGS =
1

4π

∫
d2z

[
∂Xm∂̄Xm − 2i∂Xm(θLγ

m∂̄θL)− 2i∂̄Xm(θRγ
m∂θR)+

− (θLγm∂̄θL)(θLγ
m∂θL + θRγ

m∂θR) +

−(θRγm∂θR)(θLγ
m∂̄θL + θRγ

m∂̄θR)
]

. (1.25)

We can also de�ne the momentum (1.21) in complex coordinates

Πm = ∂Xm − iθLγ
m∂θL − iθRγ

m∂θR (1.26)

and analogous for Π̄.

Superstrings take di�erent names depending on the chirality of θ's: in particular,

closed string with θL, θR of opposite or equal chirality are respectively Type IIA or

Type IIB, while open string with θL, θR of equal chirality are Type I. Open strings

with spinors of opposite chirality do not preserve supersymmetry, so we do not care

about them.

The equations of motion for the metric give the Virasoro constraints

ΠmΠm = 0 Π̄mΠ̄m = 0 , (1.27)

3Note that by de�nition Leuclid ≡ −Lτ→−iσ2 , in order that

S =

∫
dσ0dσ1L→ i

∫
dσ1dσ2Leuclid ≡ iSeuclid . (1.22)
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while the equation for X and θ are highly non linear.

The GS superstring is invariant under supersymmetry transformation

δθαL,R = ϵαL,R δXm = iϵLγ
mθL + iϵRγ

mθR (1.28)

and κ symmetry

δθαL = Πm(γ
mκL)

α δθαR = Π̄m(γ
mκ̄R)

α δXm = iθLγ
mδθL + iθRγ

mδθR (1.29)

To quantize the GS superstring we de�ne the conjugate momentum of θL

pLα ≡ π
δSGS

δ∂0θαL
=
i

2
(θLγm)α

[
Πm +

i

2
(θLγ

m∂1θL)

]
(1.30)

and the constraint

dLα ≡ pLα − i

2
(θLγm)αΠ

m +
1

4
(θLγm)α(θLγ

m∂1θL) . (1.31)

If we impose the canonical brackets, we obtain immediately the fermionic constraint

matrix {dLα, dLβ}P = Πm(γ
m)αβ and because of the equations of motion we can see

that 8 constraints are �rst class and the remanent 8 are second class, as for the

superparticle. In the same way, we have to separate the two classes, in order to

invert the constraint matrix and to de�ne the Dirac brackets.

Using the κ symmetry we can assume the light-cone gauge

γ+θL = 0 γ+θR = 0 (1.32)

and this position allows to put zero half of the components of both θ; in addition

we can use the residual conformal invariance to choose

X+(τ, σ) = x+ + p+τ = x+ +
1

2
p+(z̄ − z) . (1.33)

Using the properties

θγ+∂θ = θγ+∂̄θ = 0 , θγi∂θ = θγi∂̄θ = 0 i = 1, . . . , 8 (1.34)

and

∂̄X+ = −∂X+ =
1

2
p+ (1.35)



1.2. THE GREEN-SCHWARZ SUPERSTRING 19

the action (1.25) takes the form

Sl.c. =
1

4π

∫
d2z

[
−∂Xk∂̄Xk − 1

2
p+∂̄X− +

1

2
p+∂X− + ip+(θLγ

−∂̄θL)− ip+(θRγ
−∂θR)

]
(1.36)

where the second and third term are total derivatives and can be cancelled. There

exists the representations of γ−

γ− = −
√
2

18 0

0 0

 for Weyl spinor (1.37)

γ− =
√
2

0 0

0 18

 for anti-Weyl spinor , (1.38)

so that (1.36) becomes

Sl.c. =
1

4π

∫
d2z

(
−∂Xk∂̄Xk + Sa

L∂̄S
a
L + S ȧ

R∂S
ȧ
R

)
IIA (1.39)

Sl.c. =
1

4π

∫
d2z

(
−∂Xk∂̄Xk + Sa

L∂̄S
a
L + Sa

R∂S
a
R

)
IIB (1.40)

where k = 1, . . . , 8, a/ȧ = 1, . . . , 8 and

Sa
L = 21/4i

√
ip+θαL α=1,...,8

Sa
R = 21/4

√
ip+θαR α=1,...,8

S ȧ
R = 21/4i

√
ip+θαR α=9,...,16

. (1.41)

The eight surviving components of X form the vectorial representation 8v of SO(8),

while the eight surviving components of each θ - labelled S - form a spinorial rep-

resentation of the same group. In particular, because of the de�nitions, they are

either in Weyl representation (Sa
L, S

a
R) ∈ (8s,8s) for IIB string and they are in Weyl

and anti-Weyl representation (Sa
L, S

ȧ
R) ∈ (8s,8c) for IIA string4.

From the action (1.39)-(1.40) we obtain the equations of motion in light-cone

gauge:

∂∂̄X i(z, z̄) = 0 ∂̄Sa
L(z) = 0

∂S ȧ
R(z̄) = 0 IIA

∂Sa
R(z̄) = 0 IIB

, (1.42)

4Clearly it is a convention and everything is consistent changing 8s with 8c.
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or, in (σ, τ) coordinates,

(
∂2

∂σ2
− ∂2

∂τ 2

)
X i = 0

(
∂

∂σ
+

∂

∂τ

)
Sa
L = 0

(
∂

∂σ
− ∂

∂τ

)
S ȧ
R = 0 IIA(

∂

∂σ
− ∂

∂τ

)
Sa
R = 0 IIB

,

noting the last two equations justify the left/right-moving de�nitions for S and hence

for θ.

Along with the equations of motion we have to specify the boundary conditions.

For closed string we have to impose the periodicity of the σ coordinate:

X i(σ + 2π, τ) = X i(σ, τ) (1.43)

Sa
L(σ + 2π, τ) = Sa

L(σ, τ)
S ȧ
R(σ + 2π, τ) = S ȧ

R(σ, τ) IIA

Sa
R(σ + 2π, τ) = Sa

R(σ, τ) IIB
. (1.44)

For open string we have to relate the bosonic and the fermionic variables at the ends

σ = 0 and σ = π:
∂

∂σ
X i(0, τ) =

∂

∂σ
X i(π, τ) = 0 (1.45)

Sa
L(0, τ) = Sa

R(0, τ) Sa
L(π, τ) = Sa

R(π, τ) . (1.46)

It is possible to demonstrate that supersymmetry is only possible for this choice;

moreover, for the �rst transformation of (1.28), boundary conditions for S require

ϵL ≡ ϵR, i.e. supersymmetry decreases for type I superstring from N = 2 to N = 1.

The light-cone actions (1.39) and (1.40) identify immediately the second class

constraints and allow to quantize the superstring in the same way of the superpar-

ticle.

1.3 The Siegel superstring

From the previous considerations it is evident that the di�culty of a covariant

quantization for GS superstring is strictly related to the mixing between �rst and

second class constraints, that originates from the non-quadratic form of the action.
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So an attempt to solve the problem must start from a quadratic formulation of the

superstring.

In order to illustrate the relation between the GS formulation and the Siegel

proposal, we reconsider the action (1.25) and, to simplify the notation, we take only

one type of spinor - like in the heterotic string. Posing θL ≡ θ and θR = 0 in (1.25)

we get:

SGS =
1

4π

∫
d2z

[
∂Xm∂̄Xm − 2i∂Xm(θγ

m∂̄θ)− (θγm∂̄θ)(θγ
m∂θ)

]
. (1.47)

De�ning the conjugate momentum

pα ≡ 2π
δSGS

δ∂̄θα
=

1

2
(−2i∂Xm − θγm∂θ) (θγ

m)α (1.48)

and the constraint

dα ≡ pα − 1

2
(−2i∂Xm − θγm∂θ) (θγ

m)α , (1.49)

the GS action becomes

SGS =
1

4π

∫
d2z

[
∂Xm∂̄Xm − 2(dα − pα)∂̄θ

α)
]

=
1

2π

∫
d2z

(
1

2
∂Xm∂̄Xm + pα∂̄θ

α

)
− 1

2π

∫
d2z dα∂̄θ

α . (1.50)

Therefore it is natural the de�nition [8]

SS ≡ 1

2π

∫
d2z

(
1

2
∂Xm∂̄Xm + pα∂̄θ

α

)
(1.51)

which is related to GS string by

SS = SGS +
1

2π

∫
d2z dα∂̄θ

α . (1.52)

If pα is constrained by dα = 0, the actions (1.47) and (1.51) are completely equiv-

alent. Otherwise, if we relax the constraint and consider pα as an independent

variable, we obtain an alternative action known as Siegel superstring.

However, this formulation is not yet the solution of a covariant quantization,

because the action (1.51) presents at least two serious issues: it is not anomaly
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free and the operator product expansion of the Lorentz currents does not reproduce

the Ramond and Neveu-Schwarz result. To show them, we recall the de�nition of

stress-energy tensor in general metric hab

Tab = − 2π√
h

δS

δhab
. (1.53)

In a conformal �eld theory - as superstring - this tensor in complex coordinates

satis�es [9]:

Tzz = Tzz = 0 ∂Tzz = ∂̄Tz z = 0

so that

Tzz ≡ T (z) Tz z ≡ T (z) . (1.54)

The operator product expansion (OPE) of T with himself gives

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
(1.55)

and analogous for T (z). c is a constant depending on the theory, known as central

charge: the request for an anomaly free theory gives c = 0.

The action SS (1.51) is quadratic, so it is straightforward to compute the stress-

energy tensor

T (z) = −1

2
∂Xm∂Xm − pα∂θ

α , (1.56)

and the OPE between the fundamental �elds [10]

Xm(z)Xn(w) = −ηmnln|z − w|2 (1.57)

pα(z)θ
β(w) =

δ β
α

z − w
. (1.58)

Because bosonic and fermionic �elds do not mix, we can compute the central charge

separately in the two sector: cX = 10 and cpθ = −32. Usually one understands these

results associating a contribute +1 at every bosonic degree of freedom (i.e. at every

space-time dimension) and −2 at every fermionic one. The total central charge is

c = cX + cpθ = 10− 32 = −22 ̸= 0 (1.59)
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so the action presents unwanted anomaly.

Let us compute now the Lorentz current of (1.51): an in�nitesimal Lorentz

transformation gives

δXm = ξmnX
n for vectorial �elds

δθα = 1
4
ξmn(γ

mn)αβθ
β for Weyl spinorial �elds

δpα = 1
4
ξmn(γ

mn) β
α pβ for anti-Weyl spinorial �elds

(1.60)

where ξmn = −ξnm is the in�nitesimal parameter of the transformation, i.e. Λm
n =

δmn+ ξ
m
n. According to Noether's theorem, the procedure for computing conserved

currents is to let ξ become a function of z: integrating by parts when needed, we

have

δSS =
1

2π

∫
d2z

(
∂Xm∂̄δX

m + δpα∂̄θ
α + pα∂̄δθ

a
)

=
1

2π

∫
d2z

(
ξmn∂X

m∂̄Xn +
1

4
ξmn(γ

mn) β
α pβ∂̄θ

α +
1

4
ξmnpα(γ

mn)αβ∂̄θ
β+

+∂̄ξmn∂X
mXn +

1

4
∂̄ξmnpα(γ

mn)αβ∂̄θ
β

)
=

1

2π

∫
d2z

(
∂̄ξmn∂X

mXn +
1

4
∂̄ξmnpα(γ

mn)αβ∂̄θ
β

)
(1.61)

where we used the antisymmetry of ξmn and (γmn)αβ = −(γmn) α
β to cancel the term

not ∂̄ξ-depending. By de�nition5

δS =
1

2π

∫
d2z

(
∂̄ξmnK

mn +
1

2
∂̄ξmnL

mn

)
(1.62)

so

Kmn =
1

2
(∂XmXn − ∂XnXm) (1.63)

Lmn =
1

2
pα(γ

mn)αβ∂̄θ
β . (1.64)

We are interested in computing the OPE of the spin contribute to Lorentz current

Lmn with himself: using (1.58) we have

Lkl(z)Lmn(w) =
ηm[lLk]n − ηn[lLk]m

z − w
+ 4

ηk[nηm]l

(z − w)2
. (1.65)

5The coe�cient 1
2 in front of the fermionic current coupling is due to the a priori antisymmetry

of Lmn



24 CHAPTER 1. SUPERSTRING IN FLAT SPACE

This OPE does not coincide with the analogue in the Ramond and Neveu-Schwarz

approach, indeed in this case the spinorial Lorentz current Lmn
RNS = ψmψn gives [10]

Lkl
RNS(z)L

mn
RNS(w) =

ηm[lL
k]n
RNS − ηn[lL

k]m
RNS

z − w
+

ηk[nηm]l

(z − w)2
. (1.66)

To have an acceptable superstring action we must add to the Siegel action SS a

term that cancels the central charge and adjusts the coe�cient of the double pole

in the OPE (1.65).

1.4 The Pure Spinor superstring

Both the above requests can be satis�ed if we add to SS a ghost term [11]

Sλ =
1

2π

∫
d2z wα∂̄λ

α (1.67)

where the ghost �elds λ are constrained by

λα(γm)αβλ
β = 0 (1.68)

and take the name of pure spinors [12]. This constraint appears because we want

to provide the action with BRST quantization, as usual in theories with ghosts; to

do it, we have to construct a nilpotent BRST charge Q so that physical states Ψ lie

in the cohomology of Q:

QΨ = 0 but Ψ ̸= QΦ . (1.69)

We know that Q raises the ghost number, hence it has to contain λ (ghost number

+1); in addition we remember that canonical quantization was dαΨ = 0, therefore

it is natural to de�ne the BRST charge

Q =

∫
dzλαdα . (1.70)

Using (1.58) we can compute the simple pole in the OPE of dα with himself:

dα(z)dβ(w) → (2i∂Xm + θγm∂θ) (γ
m)αβ

1

z − w
≡ −Πm(γ

m)αβ
z − w

(1.71)
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and so

Q2 =
1

2
{Q,Q} = −1

2

∫
dzΠmλ

α(γm)αβλ
β = 0 ; (1.72)

it means that pure spinor constraint (1.68) assures the nilpotency of BRST charge.

The ghost action (1.67) contributes to the central charge (1.59) and to the spino-

rial currents (1.64). Because of the constraint (1.68) we cannot use the naive OPE

between w and λ, indeed using

wa(z)λ
β(w) =

δ β
α

z − w
(1.73)

we get a contradiction with the pure spinor constraint:

w(z)(λγmnλ)(w) =
2γmn

αβ λ
β

z − w
̸= 0 . (1.74)

Then we have to solve the constraint and �nd a new formulation of Sλ in terms of

unconstrainted �elds.

1.4.1 Decomposition of SO(10) in U(5)

To solve the pure spinor constraint we need a convenient group representation: we

want to write vectors, tensors and spinors of the euclidean Lorentz group SO(10) -

i.e. the Wick-rotated form of SO(9, 1) - in term of the group U(5) [11][13].

A vector V m (m = 1, . . . , 10) in the fundamental representation 10 of SO(10)

can be decomposed in vector vi plus a vector vi (i = 1, . . . , 5) respectively in the

fundamental 5 and anti-fundamental 5∗ representation of U(5):

V m → (vi, vi) (10 = 5⊕ 5∗) (1.75)

with

vi =
1√
2

(
V i + iV i+5

)
(1.76)

vi =
1√
2

(
V i − iV i+5

)
. (1.77)
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and the scalar product can be written

V iWi = viwi + viw
i . (1.78)

By the position above it is possible to deduce the decomposition of an antisym-

metric 2-rank tensor

Nmn → (nij, ni
j , nij , n) (45 = 10⊕ 24⊕ 10∗ ⊕ 1) (1.79)

with

nij =
1

2

(
N ij + iN i(j+5) + iN (i+5)j −N (i+5)(j+5)

)
(1.80)

nij =
1

2

(
N ij − iN i(j+5) − iN (i+5)j −N (i+5)(j+5)

)
(1.81)

ni
j =

1

2

(
N ij − iN i(j+5) + iN (i+5)j +N (i+5)(j+5)

)
− i

5
δij

5∑
i=1

N (i+5)i (1.82)

n =
i√
5

5∑
i=1

N (i+5)i . (1.83)

To decompose a spinor it is necessary to decompose before the 10-dimensional γ

matrices in the way:

ai =
1

2

(
γi + iγi+5

)
(1.84)

ai =
1

2

(
γi − iγi+5

)
. (1.85)

In 10 dimensions γm can be hermitian, so ai = a†i ; furthermore using the Cli�ord

algebra {γm, γn} = 2δmn we have

{ai, aj} = δji {ai, aj} = {ai, aj} = 0 , (1.86)

so we can understand ai and ai as creation/annihilation operators. If we de�ne the

vacuum state |0⟩ by ai|0⟩ = 0 we can construct the generical state applying ai

|A⟩ = [A0 +
∑
i

Aia
i +

∑
i<j

Aija
iaj +

∑
i<j<k

Aijka
iajak

+
∑

i<j<k<l

Aijkla
iajakal + A5a

1a2a3a4a5]|0⟩ . (1.87)
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Note that the number of components is
∑5

k=0

(
5
k

)
= 1+ 5+ 10+ 10+ 5+ 1 = 32, as

right for a generic spinor in 10 dimensions.

The chirality operator γ11 = i
∏10

m=i γ
m can be written

γ11 = −
5∏

i=1

(ai + ai)(ai − ai) = −
5∏

i=1

(2aiai − 1) (1.88)

and we have

{γ11, ai} = {γ11, ai} = 0 . (1.89)

Trivially γ11|0⟩ = |0⟩, so a positive chirality state contains only terms with 0, 2 or 4

ai, while a negative chirality state contains only terms with 1, 3 or 5 ai. By (1.67)

we can see that λ and w must have opposite chirality to preserve Lorentz invariance,

thus we have for Weyl spinor6

|λ⟩+ = λ+|0⟩+ 1

2
λija

jai|0⟩+ 1

4!
λiϵijklma

malakaj|0⟩ (1.90)

where the components are

λ+ = ⟨0|λ⟩ λij = ⟨0|aiaj|λ⟩ λi =
1

4!
ϵijklm⟨0|ajakalam|λ⟩ . (1.91)

For anti-Weyl spinor

|w⟩− = wia
i|0⟩+ 1

2 · 3!
wijϵijklma

kalam|0⟩+ w+a
1a2a3a4a5|0⟩ (1.92)

where the components are

w+ = ⟨0|a5a4a3a2a1|w⟩ wij =
1

3!
ϵijklm⟨0|akalam|w⟩ wi = ⟨0|ai|w⟩ . (1.93)

In this way we obtained the U(5) decomposition for Weyl spinor

λα → (λ+, λij , λ
i) (16 = 1⊕ 10∗ ⊕ 5) (1.94)

and for anti-Weyl spinor

wα → (wi, w
ij, w+) (16∗ = 5∗ ⊕ 10⊕ 1∗) . (1.95)

6This choice is in agreement with θ and p in (1.51).
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1.4.2 Solution of the constraint

Charge conjugation matrix is de�ned by [14]

CγmC−1 = −(γm)T (1.96)

and in 10-dimensional case a possible choice is

C = −iγ6γ7γ8γ9γ10 =
5∏

i=1

(ai − ai) . (1.97)

Remembering that (γm)αβ = (γm) γ
α Cγβ, the constraint (1.68) means λγmCλ = 0 in

SO(10) terms: in U(5) it becomes

⟨λ|γiC|λ⟩ = ⟨λ|(ai + ai)C|λ⟩ = 0

⟨λ|γi+5C|λ⟩ = i⟨λ|(ai − ai)C|λ⟩ = 0

that is

⟨λ|aiC|λ⟩ = 0 (1.98)

⟨λ|aiC|λ⟩ = 0 . (1.99)

Let us consider �rst (1.98): by means of the decomposition (1.90) we have

⟨λ|apC|λ⟩ = λ+⟨λ|apC|0⟩+
1

2
λij⟨λ|apCajai|0⟩+

1

4!
λiϵijklm⟨λ|apCamalakaj|0⟩

= λ+⟨λ|apC|0⟩+
1

2
λij⟨λ|apajaiC|0⟩+

1

4!
λiϵijklm⟨λ|apamalakajC|0⟩

=
1

4!
λ+λi

∗
ϵijklm⟨0|ajakalamapC|0⟩+

1

2
· 1
2
λijλ

∗
kl⟨|0⟩|akalapajaiC|0⟩+

+
1

4!
λiλ+

∗
ϵijklm⟨0|apamalakajC|0⟩

= − 1

4!
λ+λi

∗
ϵijklmϵjklmp −

1

4
λijλ

∗
klϵklpji −

1

4!
λiλ+

∗
ϵijklmϵpmlkj

= −λ+λp∗ − 1

4
ϵpijklλijλ

∗
kl − λpλ+

∗ (1.100)

using Cai = −aiC, ⟨0|Caiajakalam|0⟩ = ϵijklm and canonical properties of tensor ϵ.

So (1.98) becomes

λ+λp∗ +
1

4
ϵpijklλijλ

∗
kl + λpλ+

∗
= 0 ; (1.101)
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noting that
(
ϵpijklλijλ

∗
kl

)∗
= ϵpijklλijλ

∗
kl it is simple ti verify that

λpλ+
∗
= −1

8
ϵpijklλijλ

∗
kl (1.102)

satis�es the constraint. Further we could show it solves automatically also the

constraint (1.99). Therefore a pure spinor in 10 dimensions is given by the decom-

position (1.94) in which

λi = −1

8
· ϵ

pijklλijλ
∗
kl

λ+∗ , (1.103)

for λ+ ̸= 0. Trivially the degrees of freedom of the pure spinor are 10(λij)+1(λ+) =

11.

1.4.3 Action with solved constraint

Ghost action Sλ given in (1.67) is invariant under local symmetry

δwα = Zm(γ
m)αβλ

β δλα = 0 , (1.104)

in fact integrating by parts, using (γm)αβ = (γm)βα and the pure spinor constraint

we have

δSλ =
1

2π

∫
d2zZm(γ

m)αβλ
β∂̄λα

= − 1

2π

∫
d2z ∂̄Zm(γ

m)αβλ
βλα − 1

2π

∫
d2zZm(γ

m)αβ∂̄λ
βλα

= − 1

2π

∫
d2z ∂̄Zmλ

α(γm)αβλ
β − 1

2π

∫
d2zZm(γ

m)βαλ
α∂̄λβ

= −δSλ ⇒ δSλ = 0

If we decompose Zm in (ζ i, ζi), (1.78) gives

δwα =
√
2
[
ζ i(aiλ)α + ζi(a

iλ)α
]

(1.105)

and, remembering that δwi = ⟨0|ai|δw⟩, we have

δwi =
√
2
[
ζj⟨0|aiaj|λ⟩+ ζj⟨0|aiaj|λ⟩

]
=

√
2

[
1

2
ζjλkl⟨0|aiajalak|0⟩+ ζjλ

+⟨0|aiaj|0⟩
]

=
√
2
(
λijζ

j + λ+ζi
)

. (1.106)
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Let us choice the Z parameters:

Z i = − wi

2λ+
Z i+5 = −i wi

2λ+
; (1.107)

we have immediately

ζ i = 0 ζi = − wi√
2λ+

(1.108)

and so

δwi = −wi ⇒ wi → wi + δwi = wi − wi = 0 . (1.109)

In this way we demonstrated that it is always right to assume wi = 0. We can note

also that in 10 dimension C admits the antidiagonal form

C =

 0 1

−1 0

 (1.110)

and we have the scalar product

−⟨ω|C|λ⟩+ = ( 0 wβ )

 0 δβα

−δβα 0

λα
0

 = −wαλ
α . (1.111)

Now

−⟨ω|C|λ⟩+ =

(
w∗

i ⟨0|ai +
1

2 · 3!
wij∗ϵijklm⟨0|amalak + w∗

+⟨0|a5a4a3a2a1
)
×

× C

(
|0⟩λ+ + aqap|0⟩1

2
λpq + asaraqap|0⟩ 1

4!
λtϵtpqrs

)
=

1

4!
w∗

i λ
tϵtpqrs⟨0|aiCasaraqap|0⟩+

1

4 · 3!
wij∗λpqϵijklm⟨0|amalakCaqap|0⟩+

+ w∗
+λ

+⟨0|a5a4a3a2a1C|0⟩

= −w∗
+λ

+ − w∗
i λ

i − 1

2
wij∗λij

so wαλ
α = w∗

+λ
+ + w∗

i λ
i + 1

2
wij∗λij and obviously

wα∂̄λ
α = w∗

+∂̄λ
+ + w∗

i ∂̄λ
i +

1

2
wij∗∂̄λij . (1.112)

Let us de�ne

λ+ = es λij = uij λi = −1

8

(
e−s

)∗
ϵijklmujku

∗
lm (1.113)
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and

w∗
+ = ∂te−s wij∗ = vij w∗

i = 0 , (1.114)

noting that last position is justi�ed by the gauge choice wi = 0. In this way the

ghost action (1.67) can be written

Sλ =
1

2π

∫
d2z

(
∂t∂̄s+

1

2
vij ∂̄uij

)
, (1.115)

the ghost OPE are

t(z)s(w) = ln(z − w) (1.116)

vij(z)ukl(w) =
δ
[i
kd

j]
l

z − w
(1.117)

and we can compute the stress-energy tensor for the ghost action

Tλ(z) =
1

2
vijuij + ∂t∂s+ ∂2s . (1.118)

The last term ∂2s is necessary in order that the Lorentz currents are primary �elds,

i.e their OPE with T (z) have at most a double pole. So, using (1.116) and (1.117),

we obtain the central charge of the ghosts cλ = 22, typical of a bc bosonic system

with 11 degrees of freedom. Thus if we add the ghost action Sλ to the Siegel action

SS we obtain the total central charge

c = cX + cpθ + cλ = 10− 32 + 22 = 0 : (1.119)

this is the �rst outcome of the ghost term (1.67).

The Lorentz currents for the ghosts are given by (1.67)

Nmn =
1

2
wγmnλ (1.120)

so the U(5) decomposition is, using (1.80)-(1.83), (1.84)-(1.85), (1.90) and (1.92),

nij = −esvij (1.121)

nij = e−s

(
2∂uij − uij∂t− 2uij∂s+ uikujlv

kl − 1

2
uijuklv

kl

)
(1.122)

ni
j = ujkv

ik − 1

5
δijuklv

kl (1.123)

n = − 1√
5

(
1

4
uijv

ij +
5

2
∂t− 5

2
∂s

)
(1.124)
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and we can compute the OPE current-current. The results can be summarized by

the expression

Nkl(z)Nmn(w) =
ηm[lNk]n − ηn[lNk]m

z − w
− 3

ηk[nηm]l

(z − w)2
. (1.125)

The total spinorial contribute to the Lorentz current is

Mmn = Lmn +Nmn (1.126)

and with (1.65) we have

Mkl(z)Mmn(w) =
[
Lkl(z) +Nkl(z)

]
[Lmn(w) +Nmn(w)]

= Lkl(z)Lmn(w) +Nkl(z)Nmn(w)

=
ηm[lLk]n − ηn[lLk]m

z − w
+
ηm[lNk]n − ηn[lNk]m

z − w
+

+ 4
ηk[nηm]l

(z − w)2
− 3

ηk[nηm]l

(z − w)2

=
ηm[lMk]n − ηn[lMk]m

z − w
+

ηk[nηm]l

(z − w)2
(1.127)

exactly as the RNS superstring (1.66). So the pure spinor ghost term (1.67) makes

right the Siegel action (1.51) and the sum of SS and Sλ constitutes the Pure Spinor

superstring.



Chapter 2

Superstring in curved space

2.1 The Green-Schwarz superstring in general back-

ground

The Green-Schwarz Type II superstring can be extended naturally in a curved back-

ground [15]

SGS = −1

2

∫
d2σ

(√
hhijGMN(Z) + εijBNM(Z)

)
∂iZ

M∂jZ
N (2.1)

or rather, in complex coordinates (euclidean �at world-sheet)

SGS =
1

2

∫
d2z (GMN(Z) +BNM(Z)) ∂ZM ∂̄ZN (2.2)

where ZM = (Xm, θµL, θ
µ̂
R) are the coordinates of the superspace and M = (m,µ, µ̂)

with m = 0, . . . , 9 , µ, µ̂ = 1, . . . , 16 . The Grassmann variables θµ, θµ̂ are Majorana-

Weyl spinors of the opposite chirality for type IIA and same chiralty for type IIB.

The �rst term of (2.1) and (2.2) corresponds to the kinetic term of (1.20) and (1.25),

while the second one corresponds to the WZ term.

Explicitly, we can see the superspace as a supermanifold and we can de�ne

at every point Z the tangent superspace with �at metric ηab and the cotangent

superspace. The last one admits (see section (A)) coordinate dual basis {dZM} or

33
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orthonormal basis {EA}, where A = (a, α, α̂) with a = 0, . . . , 9 , α, α̂ = 1, . . . , 16

are indices on tangent superspace. In the same way of the purely bosonic case, the

change of basis de�nes the supervielbein E A
M (Z)

EA = E A
M dZM (2.3)

and we have (cfr. (A.10))

GMN(Z) = E a
M (Z)E b

N (Z)ηab , (2.4)

generalization of the metric to the superspace.

In general supergravity background the WZ term is given by the 2-superform

B =
1

2
BMNdZ

M∧ dZN =
1

2
BABE

A∧ EB (2.5)

being

BMN(Z) = E A
M (Z)E B

N (Z)BAB(Z) . (2.6)

In fact it is

SWZ =

∫
B =

1

2

∫
BMNdZ

M∧ dZN

= +
1

2

∫
BMN∂iZ

M∂jZ
Ndσi ∧ dσj

= −1

2

∫
d2σεijBNM∂iZ

M∂jZ
N (2.7)

as in (2.1). We de�ne in a natural way

J A
i = E A

M ∂iZ
M (2.8)

and therefore

J A
z = E A

M ∂ZM J A
z̄ = E A

M ∂̄ZM , (2.9)

so we can write

SGS = −1

2

∫
d2σ

(√
hhijηabJ

a
i J

b
j + εijBABJ

A
i J B

j

)
(2.10)

or

SGS =

∫
d2z

1

2

(
ηabJ

a
z J

b
z̄ +BABJ

A
z J B

z̄

)
. (2.11)
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2.2 Coset formulation of a superspace

From the previous section, it is evident that to write the action of superstring in

curved space, we have to know the supervielbein E A
M and the 2-superform BAB.

The most important case (and also the simplest one) occurs when the superspace M

can be described as the coset manifold of a Lie supergroup G on a bosonic subgroup

H (see B)

M ∼=
G

H
. (2.12)

We can divide the complete set of generators of G as TA = (T(ab), TA), where T(ab)

are the generators of H and all the other ones TA remain in the quotient G/H. In

general GrH is not a subalgebra of G. As the generators span the tangent space of

a group manifold, TA describe the tangent superspace of M.

To construct the vielbein, we de�ne the Maurer-Cartan form

J ≡ g−1dg , g ∈ G (2.13)

which takes values in the Lie algebra of G, as can be seen by substituting g = eα
ATA

in (2.13) and using

e−AdeA = dA+
1

2
[dA,A] +

1

3!
[[dA,A], A] + · · · . (2.14)

Hence J can be decomposed as

J = JATA = JATA + J (ab)T(ab) (2.15)

i.e.

J = J A
M dZMTA = J A

M dZMTA + J
(ab)

M dZMT(ab) : (2.16)

J A
M are exactly the supervielbein E A

M , while J (ab)
M are spin connections. By

taking dZM = ∂iZ
Mdσi, we �nd

J A
i = J A

M ∂iZ
M (2.17)

and similarly

J A
z = J A

M ∂ZM J A
z̄ = J A

M ∂̄ZM , (2.18)
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as in (2.8) and (2.9).

The WZ term for a supergroup1 manifold can be obtained generalizing the

bosonic analogue on a group manifold [16]. Let us write the 3-form

Ω3 = STr(J ∧ [J ∧ J ]) = CABCJ
A ∧ JB ∧ JC (2.19)

where

CABC = C D
AB ηDC (2.20)

with C C
AB structure constants of G and ηAB = STr(TATB): the WZ contribution is

given by

SWZ =

∫
D3

Ω3 (2.21)

being D3 a 3-dimensional domain whose boundary is the string world-sheet. By

means of the Jacobi identity and the Maurer-Cartan equation

dJ +
1

2
[J ∧ J ] = 0 (2.22)

one can verify that Ω3 is closed, dΩ3 = 0. Thus Ω3 is locally exact and we can

found a 2-form B depending on the coordinates of the supergroup manifold, so that

Ω3 = dB.

Notice that the WZ term for a coset manifold of a supergroup (or simply super-

coset manifold), cannot be written as (2.19), with JA restricted to GrH, because

GrH is not a superalgebra and we cannot use Jacobi and Maurer-Cartan equations,

so CABCJ
A ∧ JB ∧ JC is in general not closed. We will see in the following how this

problem solves for the particular cosets we are interested in.

2.2.1 Flat Green-Schwarz string as sigma model on super-

coset

A particular case of a supercoset manifold is the �at space: denoting by SUSY(N =

2) the supergroup of Poincaré with 2 supersimmetries in 10 dimension and SO(9, 1)

1Note that a supergroup manifold is a the particular case of supercoset manifold
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its Lorentz subgroup, the �at 10-dimensional superspace with N = 2 is given by

SUSY(N = 2)/SO(9, 1). The bosonic generators in the coset are Pm and the

fermionic ones are QαI , with m = 0, . . . , 9 space-time indices, α = 1, . . . , 16 spinorial

indices and I = 1, 2 corresponding to the two supersymmetries. We can construct

the Maurer-Cartan form on the coset taking the group element

g = eX
mPm+θαIQαI (2.23)

and recalling the �at superalgebra for P and Q

{QαI , QβJ} = −2iδIJ(γ
m)αβPm (2.24)

[Pm, Pn] = 0 (2.25)

[QαI , Pm] = 0 . (2.26)

We have

[dXmPm+dθαIQαI , X
nPn+θ

βJQβJ ] = −dθαIθβJ{QαI , QβJ} = −2iθαI(γm)αβdθ
βIPm

hence only the �rst two terms of the expansion (2.14) survive, so

g−1dg = (dXm − iθIγmdθI)Pm + dθαIQαI . (2.27)

Noting that indices on the supermanifold and on the tangent superspace are the

same in �at case2, we can write

J m
i = ∂iX

m − iθIγm∂iθ
I J αI

i = ∂iθ
αI . (2.28)

We recognize immediately that J m
i is Π m

i in (1.21) and the �rst part of (2.10)

reproduces the kinetic term of the Green-Schwarz superstring in �at space, up to a

normalization constant.

To construct the WZ term [17], we have to �nd a closed 3-form invariant under

SUSY(N = 2): the JA given in (2.28) are invariant under translations and super-

symmetry transformations, so we can start from a 3-form like fABCJ
A ∧ JB ∧ JC,

2In particular we use m = a and µ, µ̂ = α, α̂→ (α; I = 1, 2).
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where fABC are constants. Since (Jm, JαI) are respectively a vector and a spinor un-

der Lorentz transformation SO(9, 1), the Lorentz invariance imposes the structure

sIJJm ∧ JαI(γm)αβ ∧ JβJ , with sIJ symmetric matrix. Finally to have closed form

we have to choice sIJ traceless:

Ω3 = isIJJm ∧ JαI(γm)αβ ∧ JβJ (2.29)

with s11 = −s22 = 1. It is not di�cult to show that the closed 3-form Ω3 (dΩ3 = 0)

is also exact :

Ω3 = dB (2.30)

with

B = −idXm ∧ (sIJθIγmdθ
J) + (θ1γmdθ1) ∧ (θ2γmdθ

2) (2.31)

= εij
[
−i∂iXm

(
θ1γm∂jθ

1 − θ2γm∂jθ
2
)
+ (θ1γm∂iθ

1)(θ2γm∂jθ
2)
]
d2σ .

Trivially the WZ term in (1.20) is given - up to a constant - by
∫
B.

Notice that the supercoset SUSY(N = 2)/SO(9, 1) has a peculiar character since

the algebra of P and Q is closed, i.e. P and Q span a subalgebra of SUSY(N = 2):

in fact the form (2.27) does not take values in the Lorentz algebra so(9, 1).

2.2.2 The Green-Schwarz string in AdS5 × S5

The 10-dimensional space AdS5×S5 is homeomorphic to the coset (see B.1 and B.2)

AdS5 × S5 ∼=
SO(4, 2)

SO(4, 1)
× SO(6)

SO(5)
≡ SO(4, 2)× SO(6)

SO(4, 1)× SO(5)
(2.32)

so the corresponding superspace is given by a supercoset with bosonic part as above.

Let us consider the even supermatrix (4 + 4)× (4 + 4)

A =

X θ

η Y

 (2.33)
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with Grassmann even entries for X, Y and Grassmann odd entries for θ, η. If we

introduce the (2, 2|4) metric

K =

Σ 0

0 14

 with Σ = σ3 ⊗ 12 =

12 0

0 −12

 , (2.34)

and the superadjoint of A

A‡ = At♯ with c♯ = (c∗ even,−ic∗ odd) , (2.35)

we can de�ne the Lie superalgebra psu(2, 2|4) of the supergroup PSU(2, 2|4) impos-

ing that A satisfy [18]

AK +KA‡ = 0 (2.36)

TrX = TrY = 0 . (2.37)

For the building blocks of A the conditions above give3

XΣ + ΣX† = 0

TrX = 0

Y + Y † = 0

TrY = 0
θ − iΣη† = 0 . (2.39)

It means that the bosonic (even) blocks (X, Y ) are X ∈ su(2, 2), Y ∈ su(4), i.e.

Bos[psu(2, 2|4)] = su(2, 2)⊕ su(4) (2.40)

or, in terms of groups

Bos[PSU(2, 2|4)] = SU(2, 2)× SU(4) . (2.41)

From the classical group theory we know that [19] SU(2, 2) ∼= SO(4, 2) and SU(4) ∼=

SO(6), thus

Bos[PSU(2, 2|4)] ∼= SO(4, 2)× SO(6) . (2.42)

3It is interesting to note that the condition (2.37) admits a weaker form given by STrA ≡

TrX − TrY = 0. The so-de�ned superalgebra is su(2, 2|4): it di�ers from psu(2, 2|4) essentially

because it contains the identity 18, i.e

Bos[su(2, 2|4)] = su(2, 2)⊕ su(4)⊕ u(1) (2.38)

or PSU(2, 2|4) = SU(2, 2|4)/U(1).
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The principal characteristic of psu(2, 2|4) is given by the existence of an auto-

morphism Ω : A→ Ω(A) ∈ psu(2, 2|4) de�ned as

Ω(A) =

JX tJ −JηtJ

JθtJ JY tJ

 with J =

 0 −12

12 0

 . (2.43)

It is simple to show that Ω4(A) = A i.e.

Ω4 = I , (2.44)

hence Ω has eigenvalues {±1,±i}: ifHp is the eigenspace associated to the eigenvalue

ip (p = 0, 1, 2, 3)

Ω(Hp) = ipHp Hp ∈ Hp (2.45)

we can decompose psu(2, 2|4) in the direct sum of Hp:

psu(2, 2|4) =
3⊕

p=0

Hp (2.46)

said Z4-grading of psu(2, 2|4). Further one can demonstrate that

Ω ([Hp, Hq]) = [Ω(Hp),Ω(Hq)] = ip+q[Hp, Hq] (2.47)

thus

[Hp, Hq] ∈ Hp+q |mod4 . (2.48)

Notice that the only closed subalgebra of psu(2, 2|4) is H0.

We want to study the explicit form of Hp ; let us start from H0: the de�nition

Ω(H0) = H0 on the building blocks gives

X tJ + JX = 0 Y tJ + JY = 0 θ = η = 0 (2.49)

that means X,Y ∈ sp(4), superalgebra of the symplectic group Sp(4). On the other

hand X ∈ su(2, 2) and Y ∈ su(4), so we can conclude that in H0

X ∈ usp(2, 2) Y ∈ usp(4) (2.50)
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with usp(n) superalgebra of the unitary-symplectic group USp(n) ≡ SU(n)∩Sp(n).

Because of θ = η = 0 H0 is a bosonic subalgebra of the form

H0 = usp(2, 2)⊕ usp(4) (2.51)

and it generates the bosonic subgroup USp(2, 2)×USp(4) of PSU(2, 2|4). From clas-

sical group theory [19] USp(2, 2) ∼= SO(4, 1) and USp(4) ∼= SO(5), so H0 generates

SO(4, 1)× SO(5) and can be identi�ed with so(4, 1)⊕ so(5).

As regards the H2 one can observe that θ = η = 0, so it is a bosonic eigenspace,

while in H1 and H3 X = Y = 0, so they are fermionic eigenspaces.

Using (2.42) we can write

AdS5 × S5 ∼= Bos

[
PSU(2, 2|4)

SO(4, 1)× SO(5)

]
, (2.52)

hence we can study the superstring in the corresponding supermanifold by means

of the supercoset PSU(2, 2|4)/SO(4, 1) × SO(5). Notice that the bosonic subgroup

SO(4, 1) × SO(5) represents the generalization of the Lorentz group in the space

AdS5 × S5, on analogy of the �at case.

We de�ne the canonical form J = g−1dg with g ∈ PSU(2, 2|4): since it takes

values in psu(2, 2|4), we can decompose it in Z4 components

J =
3∑

i=0

Ji (2.53)

where

J0 = J (ab)T(ab) J2 = JaTa J1 = JαTα J3 = J α̂Tα̂ (2.54)

and (T(ab), Ta, Tα, Tα̂) are the generators respectively in (H0,H2,H1,H3). Trivially

J is invariant under global left PSU(2, 2|4) multiplication

g → g′g g′ ∈ PSU(2, 2|4) ; (2.55)

on other hand it is simple to verify that under a local right SO(4, 1)× SO(5) multi-

plication

g → gh h ∈ SO(4, 1)× SO(5) (2.56)
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Ji transform in the way

J0 → h−1J0h+ h−1dh (2.57)

Ji → h−1Jih i = 1, 2, 3 . (2.58)

The transformation of J0 is the typical of a gauge �eld, so we can understand J0 as

the SO(4, 1)×SO(5)-gauge �eld; Ji transform according to the adjoint representation

of SO(4, 1)×SO(5) as be�ts matter �elds. If we write h = eh with h ∈ so(4, 1)⊕so(5)

the in�nitesimal gauge transformation on g is

δg = gh (2.59)

and we obtain the in�nitesimal form of (2.57) and (2.58)

δJ0 = [J0, h] + dh (2.60)

δJi = [Ji, h] . (2.61)

The kinetic term of the action can be written immediately in the form (2.10) or

(2.11), noting that Ja in (2.54) are exactly Ja of these expressions. In particular if

we pose4 ηab = STr(TaTb) and Ja
z ≡ Ja, Ja

z̄ ≡ J
a
we can write

Skin =

∫
d2z

1

2
STr(J2J2) . (2.62)

To construct the WZ term we use the Z4-grading and de�ne the 3-form [20]

Ω3 = STr (J2 ∧ [J1 ∧ J1]− J2 ∧ [J3 ∧ J3]) . (2.63)

It is simple to note that Ω3 is SO(4, 1) × SO(5)-gauge invariant and one can show

that it is also closed. By means of the PSU(2, 2|4) structure constants, Ω3 becomes

Ω3 = CaαβJ
a ∧ Jα ∧ Jβ − Caα̂β̂J

a ∧ J α̂ ∧ J β̂ (2.64)

4We de�ne only a constant, because the trace of two generators is always proportional to

the metric. It can be understood noting that only the metric takes appropriate indices (Killing

formalism).
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and introducing the explicit formulas for C one can obtain an expression closely

analogous to (2.29) [21]. As the �at case, one can demonstrate that Ω3 is not only

closed, but also exact, Ω3 = dB with

B = STr(J1 ∧ J3) = STr(J1J3 − J1J3)d
2z . (2.65)

To add the WZ term to the action we have to �x a constant in front of Ω3 i.e. in front

of B. The correct choice is
1

2
to have κ-symmetry [21] and conformal invariance [20],

and the �nal expression of GS superstring in AdS5×S5 is a Wess-Zumino non-linear

sigma model

SGS =

∫
d2z STr

[
1

2
J2J2 −

1

4

(
J3J1 − J1J3

)]
. (2.66)

2.3 The Pure Spinor superstring in curved back-

ground

The pure spinor superstring in curved background can be constructed from GS

superstring in a similar way to the �at case. To this purpose, we recall the relation

between the GS and the Siegel action (1.52) which using (2.28) can be rewritten as

SS = SGS +

∫
d2z dα1J

α1
. (2.67)

In the case of a type II superstring we have to add a term for the right sector

dα2J
α2, where d1 and d2 have (1, 0) and (0, 1) conformal weight respectively. This

can be immediately generalized in a curved background with Z4-grading by dαJ
α
+

dα̂J
α̂ with the index convention of the last section. Furthermore we have to add

a quadratic term in dα and dα̂ generalization of the massless vertex operator [22]:

hence we have

Smatter = SGS +

∫
d2z

(
dαJ

α
+ dα̂J

α̂ + ηαα̂dαdα̂
)

. (2.68)
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The auxiliary �elds dα, dα̂ can integrated out and we obtain trivially

Smatter = SGS +

∫
STr(J3J1)

=

∫
d2z STr

[
1

2
J2J2 +

3

4
J3J1 +

1

4
J1J3

]
(2.69)

with the position STr(TαTα̂) = ηαα̂ and ηαα̂ inverse of ηαα̂. Notice that Smatter can

be written

Smatter =

∫
d2z STr

[
1

2

(
J2J2 + J3J1 + J1J3

)
+

1

4

(
J3J1 − J1J3

)]
: (2.70)

the �rst bracket is a principal chiral model and it can be understood as the kinetic

term for the matter, while the second term has the structure of a Wess-Zumino

action. So we de�ne Smatter = SPχM + SWZ .

The ghost �elds have to take values in the fermionic eigenspaces H1 and H3,

hence we can de�ne them λ1 and λ3. In �at space the momentum has opposite

chirality respect to its conjugate �eld, so that the coupling ghost-momentum is

Lorentz invariant: analogously in curved space we take each momentum in a di�erent

eigenspace respect to its ghost, i.e. w3 ∈ H3 is the conjugate momentum of λ1 and

w1 ∈ H1 is the conjugate one of λ3. To construct the ghost term of the action

we have to substitute the canonical derivative with the covariant one: because we

interpreted the J0 as the gauge �eld, it is natural to de�ne

∇ ≡ ∂ + [J0, ] (2.71)

and analogue for ∇. In this way the ghost term can be written

Sghost = −
∫
d2z STr

[
w3∇λ1 + w1∇λ3

]
. (2.72)

To complete the action, we have to add a current-current term

Scurrent = −
∫
d2z STr ({w3, λ1}{w1, λ3}) : (2.73)

we will see in the next chapter that N = −{w3, λ1} and N̂ = {w1, λ3} are gauge

currents and Scurrent is necessary to allow the BRST invariance of the action. Now we
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can note that STr(NN̂) = η(ab)(cd)N
(ab)N̂ (cd) and the tensor η(ab)(cd) = STr(T(ab)T(cd))

corresponds to the Riemann curvature tensor of the space [23].

Finally we write the complete pure spinor superstring in a curved space described

by a Z4-graded supercoset. We �x a normalization and choose a coupling constant

R2: for spaces with some characteristic length it will be natural to identify R with

this length, e.g. in AdSn space R is the curvature radius. We have

SPS =
R2

2π

∫
d2z STr

[
1

2
J2J2 +

3

4
J3J1 +

1

4
J1J3 − w3∇λ1 − w1∇λ3 −NN̂

]
. (2.74)

Let us note that the presence of fermionic �elds J1, J3 out of the WZ term breaks

the κ symmetry typical of GS superstring. However in next chapter we will show

that the action is invariant under BRST symmetry, as in the �at case.
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Chapter 3

Superstring in AdS4 × CP3 space

3.1 Superalgebra of OSP(4|6)

As we did in the section 2.2.2, now we have to �nd a supercoset corresponding to

AdS4 × CP3 , noting that (B.11) and (B.14) give

AdS4 × CP3 ∼=
SO(3, 2)

SO(3, 1)
× SU(4)

U(3)
≡ SO(3, 2)× SU(4)

SO(3, 1)× U(3)
. (3.1)

In order to do it, we introduce the even supermatrix (4 + 6)× (4 + 6)

A =

X θ

η Y

 (3.2)

with Grassmann even entries for X, Y and Grassmann odd entries for θ, η, we de�ne

the supertranspose of A

Ast =

X t −ηt

θt Y t

 (3.3)

and the (4|6) metric

K =

C4 0

0 16

 (3.4)

where C4 is the 4-dimensional charge conjugation matrix, that we can always choose

real, antisymmetric and so that C 2
4 = −14 (see (C.3)). The superalgebra osp(4|6)

47
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of the orthosymplectic supergroup OSP(4|6) is given by the matrices A with the

property [18]

AstK +KA = 0 (3.5)

i.e.

X tC4 + C4X = 0 Y t + Y = 0 ηt − C4θ = 0 , (3.6)

hence X ∈ sp(4) and Y ∈ so(6) that is

Bos[osp(4|6)] = sp(4)⊕ so(6) . (3.7)

In group term it means

Bos[OSP(4|6)] ∼= Sp(4)× SO(6) (3.8)

and because [19] Sp(4) ∼= SO(3, 2) and SO(6) ∼= SU(4)

Bos[OSP(4|6)] ∼= SO(3, 2)× SU(4) . (3.9)

One can show that there exist two real antisymmetric matrices K4, K6 respectively

4× 4 and 6× 6, with the properties

[K4, C4] = 0 K 2
4 = −14 K 2

6 = −16 ; (3.10)

thus we can de�ne the automorphism Ω : A→ Ω(A) ∈ osp(4|6) with

Ω(A) =

K4X
tK4 K4η

tK6

−K6θ
tK4 K6Y

tK6

 . (3.11)

Let us note that if we introduce the matrix

Υ =

K4C4 0

0 −K6

 (3.12)

the Ω automorphism can be written

Ω(A) = ΥAΥ−1 (3.13)
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using (3.6). It is simple to show that Υ4 = 110, therefore

Ω4(A) = Υ4A(Υ−1)4 = A ⇒ Ω4 = I (3.14)

and osp(4|6) admits Z4-grading

osp(4|6) =
3⊕

k=0

Hk (3.15)

with Hk = {Hk ∈ osp(4|6) : Ω(Hk) = ikHk}. Trivially we observe that [Hp, Hq] ∈

Hp+q |mod4; further one can demonstrate that H0, H2 are bosonic eigenspaces (θ =

η = 0) and H1, H3 are fermionic ones (X = Y = 0). In particular one can show that

H0 = so(3, 1)⊕u(3), so the subgroup of OSP(4|6) is SO(3, 1)×U(3). Consequently

AdS4 × CP3 ∼= Bos

[
OSP(4|6)

SO(3, 1)× U(3)

]
(3.16)

and we can use the supercoset OSP(4|6)/SO(3, 1) × U(3) to study superstring in

AdS4 × CP3 .

In addition we note that

[Ω(A)]∗ =
(
ΥAΥ−1

)∗
= ΥA∗Υ−1 = Ω(A∗) (3.17)

since Υ is real. Thus for all H3 ∈ H3

Ω(H3
∗) = [Ω(H3)]

∗ = (−iH3)
∗ = iH3

∗ ⇒ H3
∗ ∈ H1 (3.18)

and in the same way H1
∗ ∈ H3: we can conclude that

H3
∗ ≡ H1 (3.19)

and it means that there is a one-to-one correspondence between H1 and H3.

The construction of pure spinor superstring in the supercosetOSP(4|6)/SO(3, 1)×

U(3) is totally analogous to the PSU(2, 2|4)/SO(4, 1) × SO(5) case we discussed in

section 2.2.2 and we do not repeat it.

However it is important to note that the supercoset OSP(4|6)/SO(3, 1) × U(3)

contains 24 fermionic degrees of freedom, while the type IIA GS superstring has
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32 fermions. Thus the sigma model can be interpreted as GS formulation with a

partially �xed κ symmetry [24], i.e. where 8 fermions are gauged away. This inter-

pretation is con�rmed by the presence in the GS coset model of a local fermionic

symmetry that is able to remove other 8 fermionic degrees of freedom, giving �nally

16 fermions, as in the GS superstring with κ symmetry totally �xed. This argument

fails for some particular bosonic con�gurations, corresponding to string moving in

the AdS part of the space only, because the number of κ simmetries becomes 12 and

the gauge �xed sigma model has less fermionic degrees of freedom than canonical

GS string. In pure spinor superstring there is not κ symmetry, so one can hope to

solve the problem within this formulation.

Finally we �x our conventions about the generators of osp(4|6):

H0

(
Mmn, V b

a

)
Mmn ∈ so(3, 1) V b

a ∈ u(3)

H2 (P
m, Va , V

a) Pm ∈ so(3, 2)rso(3, 1) (Va , V
a) ∈ su(4)ru(3)

H1

(
Oαa ,Oα̇a

)
H3

(
O a

α ,Oα̇
a

)
(3.20)

while the expression for OSP(4|6) algebra is given in Appendix C.

3.2 BRST transformation

3.2.1 Nilpotency

The BRST transformation is a gauge transformation with ghost �elds as gauge

parameters, i.e the BRST charge acts on g element of the supergroup OSP(4|6) as

an in�nitesimal right multiplication like (2.59)

Q(g) = gΛ (3.21)
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where Λ = λ1+λ3 is the ghost total �eld. It is simple to verify that Q(g−1) = −Λg−1,

so the BRST transformation of J = g−1∂g is

Q(J) = ∂Λ + [J,Λ] . (3.22)

In Z4 components

Q(J0) = [J1, λ3] + [J3, λ1] (3.23)

Q(J1) = ∂λ1 + [J0, λ1] + [J2, λ3] = ∇λ1 + [J2, λ3] (3.24)

Q(J2) = [J1, λ1] + [J3, λ3] (3.25)

Q(J3) = ∂λ3 + [J0, λ3] + [J2, λ1] = ∇λ3 + [J2, λ1] . (3.26)

Then, taking into account the fermionic character of Q, we have

Q2(J) = Q([J,Λ]) = {∂Λ,Λ}+ {[J,Λ],Λ} ; (3.27)

using Jacobi identities and

{∂λ1, λ1} =
1

2
∂{λ1, λ1} {∂λ3, λ3} =

1

2
∂{λ3, λ3} (3.28)

{∂λ1, λ3}+ {∂λ3, λ1} = ∂{λ1, λ3} (3.29)

we can write also (3.27) in Z4 components

Q2(J0) = −1

2
[{λ1, λ1}+ {λ3, λ3}, J2] +∇{λ1, λ3} (3.30)

Q2(J1) = −1

2
[{λ1, λ1}+ {λ3, λ3}, J3]− [{λ1, λ3}, J1] (3.31)

Q2(J2) =
1

2
∇{λ1, λ1}+

1

2
∇{λ3, λ3} − [{λ1, λ3}, J2] (3.32)

Q2(J3) = −1

2
[{λ1, λ1}+ {λ3, λ3}, J1]− [{λ1, λ3}, J3] (3.33)

As in the �at case, ghost �elds need a constraint to give the nilpotency of Q2: if we

impose

{λ1, λ1} = 0 {λ3, λ3} = 0 (3.34)
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we obtain

Q2(J0) = ∇{λ1, λ3} (3.35)

Q2(J1) = −[{λ1, λ3}, J1] (3.36)

Q2(J2) = −[{λ1, λ3}, J2] (3.37)

Q2(J3) = −[{λ1, λ3}, J3] . (3.38)

Since {λ1, λ3} ∈ so(3, 1) ⊕ u(3), equations (3.35) − (3.38) are exactly gauge trans-

formations of the form (2.60)-(2.61) and so Q2(Ji) = 0 just up to gauge transforma-

tions. Therefore the conditions (3.34) are the constraints of the ghosts on curved

background and correspond to the pure spinor constraint on �at space.

In addition we note that using (3.23)-(3.26) one can obtain the BRST conserved

charge for the action in the form

Q =

∫
dzSTr(λ1J3) +

∫
dz̄STr(λ3J1) . (3.39)

If we reintroduce the auxiliary �elds dα, dα̂, Q can be written

Q = −
∫
dzλαdα +

∫
dz̄λα̂dα̂ , (3.40)

that is analogous to (1.70) in the �at case. In fact solving the equation of motion

for d �elds, (3.40) gives exactly (3.39).

3.2.2 Invariance of the action

We want verify the BRST invariance for the PS action. For the kinetic term of

matter

SPχM =
R2

2π

∫
d2z STr

[
1

2
J2J2 +

1

2
J1J3 +

1

2
J3J1

]
(3.41)

we have

QSPχM =
R2

2π

∫
d2z STr

1

2

[
∇λ3J1 +∇λ3J1 +∇λ1J3 +∇λ1J3

]
(3.42)
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and for the Wess-Zumino term

SWZ =
R2

2π

∫
d2z STr

[
1

4
J3J1 −

1

4
J1J3

]
(3.43)

using the Maurer-Cartan equations

∇J1 −∇J1 = −[J3, J2]− [J2, J3] (3.44)

∇J3 −∇J3 = −[J1, J2]− [J2, J1] (3.45)

we have

QSWZ =
R2

2π

∫
d2z STr

1

2

[
∇λ3J1 −∇λ3J1 −∇λ1J3 +∇λ1J3

]
+

+
R2

2π

∫
d2z STr

1

4

[
∂(λ1J3 − λ3J1) + ∂̄(λ3J1 − λ1J3)

]
. (3.46)

Canceling the total derivative, BRST transformation for Smatter = SPχM + SWZ is

QSmatter =
R2

2π

∫
d2z STr

[
∇λ3J1 +∇λ1J3

]
. (3.47)

This quantity has to be deleted by the BRST variation of the ghost term

Sghost = −R
2

2π

∫
d2z STr

(
w3∇λ1 + w1∇λ3

)
: (3.48)

together with the usual transformations for the ghosts

Q(λ1) = 0 Q(λ3) = 0 , (3.49)

we assume for the momenta

Q(w3) = J3 Q(w1) = J1 , (3.50)

noting that, as required, Q does not modify the Z4 grading and the conformal weight,

but increase the ghost number.

By means of the identity

STr (w[J0, λ]) = −STr (J0{w, λ}) (3.51)
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it is possible to write

Sghost = −R
2

2π

∫
d2z STr

(
w3∂̄λ1 + w1∂λ3

)
+

+
R2

2π

∫
d2z STr

(
J0{w3, λ1}+ J0{w1, λ3}

)
(3.52)

and the BRST transformation is

QSghost = −R
2

2π

∫
d2z STr

(
∇λ3J1 +∇λ1J3

)
+

+
R2

2π

∫
d2z STr

(
Q(J0){w3, λ1}+Q(J0){w1, λ3}

)
. (3.53)

The �rst term cancels exactly QSmatter, but now we have to eliminate the second

one. By means of (3.23) we have

STr
(
Q(J0){w3, λ1}+Q(J0){w1, λ3}

)
=

= STr
[
([J1, λ3] + [J3, λ1]){w3, λ1}+ ([J1, λ3] + [J3, λ1]){w1, λ3}

]
(3.54)

Then, using the the constraint (3.34) into the identity

STr
(
[J3, λ1]{w3, λ1}

)
= −1

2
STr

(
[J3, w3]{λ1, λ1}

)
we obtain

STr
(
[J3, λ1]{w3, λ1}

)
= 0 (3.55)

and in the same way

STr ([J1, λ3]{w1, λ3}) = 0 , (3.56)

so (3.54) becomes

STr
(
Q(J0){w3, λ1}+Q(J0){w1, λ3}

)
= STr

(
[J1, λ3]{w3, λ1}+ [J3, λ1]{w1, λ3}

)
.

(3.57)

Because of the fermionic character of Q, it is

Q{w3, λ1} = [J3, λ1] Q{w1, λ3} = [J1, λ3] (3.58)

and �nally we can write

STr
(
Q(J0){w3, λ1}+Q(J0){w1, λ3}

)
= STrQ({w3, λ1}{w1, λ3}) (3.59)
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i.e.

Q(Smatter + Sghost) =
R2

2π

∫
d2z STrQ({w3, λ1}{w1, λ3}) . (3.60)

This way, to have BRST invariance, we must add to Smatter + Sghost the term

Scurrent = −R
2

2π

∫
d2z STr ({w3, λ1}{w1, λ3}) . (3.61)

We note that in (3.52) {w3, λ1} and {w1, λ3} couple linearly with J0 and J0,

hence they can be understood as gauge currents and it explains the subscript of S.

3.3 Action

The action of pure spinor in coset superspace is

S = Smatter + Sghost + Scurrent (3.62)

with

Smatter =
R2

2π

∫
d2z STr

[
1

2
J2J2 +

3

4
J3J1 +

1

4
J1J3

]
(3.63)

Sghost = −R
2

2π

∫
d2z STr

(
w3∇λ1 + w1∇λ3

)
(3.64)

Scurrent = −R
2

2π

∫
d2z STr({w3, λ1}{w1, λ3}) . (3.65)

To write the explicit form of S we have to expand the �elds Ji and the ghosts wi,

λi on the generators of the osp(4|6) superalgebra:

J0 = JmnMmn + Ja
bV

a
b (3.66)

J1 = JαaOαa + Jα̇aOα̇a (3.67)

J2 = JmPm + JaVa + JaV
a (3.68)

J3 = Jα
aO a

α + J a
α̇ Oα̇

a (3.69)

λ1 = λαaOαa + λα̇aOα̇a λ3 = λαaO a
α + λ a

α̇ Oα̇
a (3.70)

and analogue for w1, w2. For convenience, we introduce also the gauge currents

N ≡ −{w3, λ1} , N̂ ≡ −{w1, λ3} (3.71)
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and using (C.41) we obtain

N =
i

4

(
wα

a(σ
mn)αβλ

βa + w a
α̇ (σ̄ mn)α̇β̇λβ̇a

)
Mmn +

+
1

2

(
εαβw

α
bλ

βa − εα̇β̇w a
α̇ λβ̇b

)
V b
a (3.72)

N̂ =
i

4

(
wαa(σmn)αβλ

β
a + wα̇a(σ̄

mn)α̇β̇λ a

β̇

)
Mmn +

− 1

2

(
εαβw

αaλβb − εα̇β̇wαbλ
a

β

)
V b
a (3.73)

i.e.

Nmn ≡ i

4

(
wα

a(σ
mn)αβλ

βa + w a
α̇ (σ̄ mn)α̇β̇λβ̇a

)
(3.74)

N̂mn ≡ i

4

(
wαa(σmn)αβλ

β
a + wα̇a(σ̄

mn)α̇β̇λ a

β̇

)
(3.75)

Na
b = +

1

2

(
εαβw

α
bλ

βa − εα̇β̇w a
α̇ λβ̇b

)
(3.76)

N̂a
b = −1

2

(
εαβw

αaλβb − εα̇β̇wα̇bλ
a

β̇

)
. (3.77)

Furthermore using (C.46) and (C.48)

Scurrent = −R
2

2π

∫
d2z STr(NN̂)

=
R2

2π

∫
d2z 2

(
−ηkmηlnNklN̂mn +Na

bN̂
b
a

)
(3.78)

and with all the other traces (C.46)-(C.51), we have

S =
R2

2π

∫
d2z

[
1

2
ηmnJ

mJ
n − 1

2
JaJ

a − 1

2
JaJa+

− i

4
εαβ

(
3Jα

aJ
βa + JαaJ β

a

)
− i

4
εα̇β̇

(
3J a

α̇ J β̇a + Jα̇aJ
a

β̇

)
+

− iεαβ

(
wα

a∇λβa + wαa∇λβa
)
− iεα̇β̇

(
w a

α̇ ∇λβ̇a + wα̇a∇λ a

β̇

)
+

+
1

8
ηkmηln

(
wα

a(σ
kl)αβλ

βa + w a
α̇ (σ̄ kl)α̇β̇λβ̇a

)
×

×
(
wγb(σmn)γδλ

δ
b + wγ̇b(σ̄

mn)γ̇δ̇λ b
δ̇

)
+

− 1

2

(
εαβw

α
bλ

βa − εα̇β̇w a
α̇ λβ̇b

)(
εαβw

αbλβa − εα̇β̇wα̇aλ
b

β̇

)]
(3.79)

Finally we observe that the action (3.79) has another local invariance:

δw3 = [λ1,Ω2] δw1 = [λ3,Ω2] δλ1 = δλ3 = 0 (3.80)
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with Ω2 ∈ H2. In fact we have

δSTr(w3∇λ1) = STr(δw3∇λ1) = STr([λ1,Ω2]∇λ1) = STr(Ω2{∇λ1, λ1}) :

using the Jacobi identities and (3.28) we can show that

{∇λ1, λ1} =
1

2
∇{λ1, λ1} (3.81)

and

δSTr(w3∇λ1) =
1

2
STr(Ω2∇{λ1, λ1}) = 0 (3.82)

because of (3.34). In analogous way we could show that δSTr(w1∇λ3) = 0, therefore

δSghost = 0. Then we have, by means of the Jacobi identities,

δN = −{δw3, λ1} = −{[λ1,Ω2], λ1} = −1

2
[{λ1, λ1},Ω2] = 0 (3.83)

and identically δN̂ = 0, so that δScurrent = 0 too. Now, if we write Ω2 in osp(4|6)

components

Ω2 = ΩmP
m + ΩaV

a + ΩaVa , (3.84)

we obtain the explicit form of (3.80), e.g. for w3:

δwα
a =

i

2
Ωmλα̇a(σ̄

m)α̇α +
i√
2
ϵabcΩ

bλαc (3.85)

δw a
α̇ =

i

2
Ωmλ

αa(σm)αα̇ − i√
2
ϵabcΩbλα̇c . (3.86)

3.4 Solution of the constraint

We obtained the ghost constraint in Section 3.2.1: our goal is to �nd a form for

the action in which this constraint is already solved, that is the ghost �elds have

manifestly the right number of degrees of freedom, in a similar way to �at case.

The ghost constraints (3.34) can be explicitly written using the algebra (C.40)

ϵabcλ
αaεαβλ

βb = 0

ϵabcλα̇aε
α̇β̇λβ̇b = 0

λαa(σm) β̇
α λβ̇a = 0

ϵabcλαaεαβλ
β
b = 0

ϵabcλ
a

α̇ ε
α̇β̇λ b

β̇
= 0

λ a
α̇ (σm)α̇βλ

β
a = 0 .

(3.87)
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The constraint on λ1 can be solved setting [25]

λαa = θαua λα̇a = ψα̇va (3.88)

with the condition

uava = 0 . (3.89)

Moreover we can scale

ua → cua θα → 1

c
θα (3.90)

and

va → dva ψα̇ → 1

d
ψα̇ (3.91)

with c, d ∈ C, so we can impose the further conditions on u and v:

|u|2 ≡ uau∗a = 1 |v|2 ≡ va∗va = 1 (3.92)

In this way the constraint on λ1 - i.e. the �rst column of (3.87) - becomes the couple

of conditions (3.89) and (3.92).

The constraint on λ3 admits identical solution, however we remember that there

is a one-to-one correspondence (3.19) between the eigenspaces H1 and H3, so we

can construct the �elds λ3 by the same elements of λ1. We guess

λαa = ψ̄αva λ a
α̇ = θ̄α̇u

a (3.93)

with

ψ̄α = ψ∗
α̇(σ̄

2)α̇α θ̄α̇ = θα∗(σ2)αα̇ . (3.94)

As far as the �eld w is concerned, we can use the gauge invariance (3.80) to

simplify its decomposition. Let us consider e.g. the �eld w3: substituting (3.88) in

(3.85)-(3.86) we have

δwα
a =

i

2
Ωmψα̇(σ̄

m)α̇αva +
i√
2
ϵabcΩ

bθαuc (3.95)

δw a
α̇ =

i

2
Ωmθ

α(σm)αα̇u
a − i√

2
ϵabcΩbψα̇vc . (3.96)
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On general grounds, w3 can be written as

wα
a = ωα(u∗a + Aϵabcu

bvc∗ +Bva) (3.97)

w a
α̇ = ρα̇(ua + Cϵabcu∗bvc +Dva∗) (3.98)

where ωα, ρα̇ are the antighost �elds that will play the role of the conjugate momenta

of θa, ψα̇ respectively and A,B,C,D are arbitrary functions. However, using the

gauge transformation (3.95) and (3.96) we can cancel exactly the second and the

third term in (3.97) and (3.98) and set

wα
a = ωαu∗a w a

α̇ = ρα̇v
a∗ . (3.99)

In analogous way

wαa = ρ̄αva∗ wα̇a = ω̄α̇u
∗
a (3.100)

with

ρ̄α = ρ∗α̇(σ̄
2)α̇α ω̄α̇ = ωα∗(σ2)αα̇ . (3.101)

3.4.1 Gauge transformations

In this section we discuss the gauge transformation of the ghost, and the u, v vari-

ables. Let us recall the gauge transformation for a �eld F in GrH (see (2.58))

F → h−1Fh with h ∈ H (3.102)

or, in in�nitesimal form,

h = eξ
(ab)T(ab) ⇒ δF = −[ξ(ab)T(ab), F ] . (3.103)

In our case H = so(3, 1)⊕u(3) and we can write the transformation for ghost �elds:

δλ = −1

2
ξmn[M

mn, λ]− ξab[V
b

a , λ] ≡ δsoλ+ δuλ (3.104)

in components (case λ1)

δsoλ
αaOαa + δsoλα̇aOα̇a = −1

2
ξmnλ

αa[Mmn,Oαa]−
1

2
ξmnλα̇a[M

mn,Oα̇a]

δuλ
αaOαa + δuλα̇aOα̇a = −ξabλαc[V b

a ,Oαc]− ξabλα̇c[V
b

a ,Oα̇c] .
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For clearness we write the (C.44) algebra in the same way of (C.42), introducing

(σ b
a ) d

c = −iδ d
a δ

b
c (3.105)

so that

[V b
a ,Oαc] = −(σ b

a ) d
c Oαd [V b

a ,Oα̇
c] = −(σ b

a ) d
c Oα̇

d

[V b
a ,Oα̇c] = (σ b

a ) c
d Oα̇d [V b

a ,O c
α ] = (σ b

a ) c
d O d

α .
(3.106)

We obtain the transformations under so(3, 1)

δsoλ
αa =

1

4
λβa(ξmnσ

mn) α
β δsoλα̇a =

1

4
λβ̇a(ξmnσ̄

mn)β̇
α̇

(3.107)

and under u(3)

δuλ
αa = λαb(ξcdσ

d
c ) a

b δuλα̇a = −(ξcdσ
d

c ) b
a λα̇b . (3.108)

It is evident that latin indices a (up and down) and greek indices α,α̇ transform inde-

pendently under so(3, 1) and u(3), therefore we can write the gauge transformation

for the �elds θ,ψ and u,v:

δsoθ
α =

1

4
θβ(ξmnσ

mn) α
β δsoψα̇ =

1

4
ψβ̇(ξmnσ̄

mn)β̇
α̇

(3.109)

δuu
a = ub(ξcdσ

d
c ) a

b δuva = −(ξcdσ
d

c ) b
a vb , (3.110)

while δuθα = δuψα̇ = 0 and δsou
a = δsova = 0. In the following we will omit the

subscripts so and u without confusion. Assuming as usual ξ ∈ R and noting that

(σ∗) a
b = −σ a

b , it is trivial to see that va transform with the hermitian conjugate

matrix of ua: then ua and va lie respectively in the representations 3 and 3∗ of U(3).

Now let us study the behaviour of the complex conjugate �elds. First

δua∗ = ub
∗
(ξ · σ∗) a

b = −ub∗(ξ · σ) a
b : (3.111)

if we transpose this identity, we obtain

δu∗a = −(ξ · σ) b
a u

∗
b (3.112)
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exactly as the transformation of va, then u∗a transforms in 3∗ representation. Iden-

tical argument works for v: δva∗ = vb
∗
(ξ · σ) a

b and va∗ lies in 3. It follows that the

conditions (3.89) and (3.92) are U(3) invariant.

For θ∗ we have

δθα∗ =
1

4
θβ

∗
ξmn(σ

mn∗) α
β : (3.113)

trivially σm∗ = −σ2σ̄mσ̄2 ⇒

(σmn∗) α
β = −(σ2)ββ̇(σ̄

mn)β̇
α̇
(σ̄2)α̇α (3.114)

so

δθα∗ = −1

4
θβ

∗
(σ2)ββ̇ξmn(σ̄

mn)β̇
α̇
(σ̄2)α̇α (3.115)

and right-multiplying by σ2 (σ̄2σ2 = −1) we obtain

δθα∗(σ2)αα̇ =
1

4
θβ

∗
(σ2)ββ̇ξmn(σ̄

mn)β̇
α̇

(3.116)

i.e.

δθ̄α̇ =
1

4
θ̄β̇(ξmnσ̄

mn)β̇
α̇

. (3.117)

In this way we proved that θ̄α̇ in (3.94) transforms in the right way under so(3, 1),

that is in the same representation of ψα̇. An analogous computation shows that ψ̄α

transforms like θα. This property is a fundamental one, because the independency of

latin and greek index imposes λ3 (3.93) transform under SO(3, 1) just like λ1 (3.88),

as we could prove directly by (3.104).

3.4.2 Covariant derivative

We introduced the covariant derivative in Section 3.1. Now we want to see how it

work on θ,ψ and u,v. By de�nition

∇ = ∂ + [J0, ] (3.118)

with J0 = JmnM
mn + Ja

bV
b

a , therefore in components (case λ1)

∇λαa = ∂λαa − 1

2
λβa(Jmnσ

mn) α
β − λαb(Jc

dσ
d

c ) a
b (3.119)

∇λα̇a = ∂λα̇a −
1

2
λβ̇a(Jmnσ̄

mn)β̇
α̇
+ (J c

dσ
d

c ) b
a λαb , (3.120)
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using obviously (C.42) and (C.44). By λαa = θαua

∇(θαua) = [∂θα − 1

2
θβ(Jmnσ

mn) α
β ]ua + θα[∂ua − ub(Jc

dσ
d

c ) a
b ]

≡ ∇θαua + θα∇ua (3.121)

and analogue for λα̇a = ψα̇va. So

∇θα = ∂θα − 1

2
θβ(Jmnσ

mn) α
β (3.122)

∇ψα̇ = ∂ψα̇ − 1

2
ψβ̇(Jmnσ̄

mn)β̇
α̇

(3.123)

and

∇ua = ∂ua − ub(J c
dσ

d
c ) a

b (3.124)

∇va = ∂va + (Jc
dσ

d
c ) b

a vb (3.125)

3.5 The revised action

The second step towards our proposal is to write the action (3.79) by means of the

new �elds (θ, ψ, ω, ρ ;u, v). The ghost term gives

Sghost =
R2

2π

∫
d2z (−i)

[
εαβω

α∇θβ + εα̇β̇ρα̇∇ψβ̇ + εαβ ρ̄
α∇ψ̄β + εα̇β̇ω̄α̇∇θ̄β̇ +

+ (εαβω
αθβ)u∗a∇ua + (εα̇β̇ρα̇ψβ̇)v

a∗∇va +

+(εαβρ̄
αψ̄β)va∗∇va + (εα̇β̇ω̄α̇θ̄β̇)u

∗
a∇ua

]
. (3.126)

In the following it is useful to develop the covariant derivative:

εαβω
α∇θβ = εαβω

α(∂̄θβ − 1

2
θγ(Jmnσ

mn) β
γ )

= εαβω
α∂̄θβ +

1

2
ωα(Jmnσ

mn)αβθ
β (3.127)

remembering that (σmn) β
γ εβα = (σmn)γα = (σmn)αγ (see Appendix C). In analogous

way

εα̇β̇ρα̇∇ψβ̇ = εα̇β̇ρα̇(∂̄ψβ̇ −
1

2
ψγ̇(Jmnσ̄

mn)γ̇
β̇
)

= εα̇β̇ρα̇∂̄ψβ̇ +
1

2
ρα̇(Jmnσ̄

mn)α̇β̇ψβ̇ (3.128)
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and the action becomes

Sghost =
R2

2π

∫
d2z (−i)

[
εαβω

α∂̄θβ + εα̇β̇ρα̇∂̄ψβ̇ + εαβρ̄
α∂ψ̄β + εα̇β̇ω̄α̇∂θ̄β̇+

+
1

2
Jmn

(
ωα(σmn)αβθ

β + ρα̇(σ̄
mn)α̇β̇ψβ̇

)
+

+
1

2
Jmn

(
ρ̄α(σmn)αβψ̄

β + ω̄α̇(σ̄
mn)α̇β̇ θ̄β̇

)
+ (εαβω

αθβ)u∗a∇ua + (εα̇β̇ρα̇ψβ̇)v
a∗∇va +

+(εαβρ̄
αψ̄β)va∗∇va + (εα̇β̇ω̄α̇θ̄β̇)u

∗
a∇ua

]
. (3.129)

Then let us substitute (3.88), (3.93), (3.99) and (3.100) into the currents (3.74)-

(3.77):

Nmn =
i

4

(
ωα(σmn)αβθ

β + ρα̇(σ̄
mn)α̇β̇ψβ̇

)
(3.130)

N̂mn =
i

4

(
ρ̄α(σmn)αβψ̄

β + ω̄α̇(σ̄
mn)α̇β̇ θ̄β̇

)
(3.131)

Na
b = +

1

2

(
(εαβω

αθβ)u∗bu
a − (εα̇β̇ρα̇ψβ̇)v

a∗vb

)
(3.132)

N̂a
b = −1

2

(
(εαβ ρ̄

αψ̄β)va∗vb − (εα̇β̇ω̄α̇θ̄β̇)u
∗
bu

a
)

; (3.133)

because of

(σmn)αβ(σ
mn)γδ = 4(εαγεβδ + εαδεβγ) (3.134)

(σ̄mn)
α̇β̇(σ̄ mn)γ̇δ̇ = 4(εα̇γ̇εβ̇δ̇ + εα̇δ̇εβ̇γ̇) (3.135)

(σmn)αβ(σ̄
mn)α̇β̇ = 0 (3.136)

we have

NmnN̂
mn = −1

4

[
(εαβω

αρ̄β)(εγδθ
γψ̄δ) + (εαβω

αψ̄β)(εγδθ
γ ρ̄δ) +

+(εα̇β̇ρα̇ω̄β̇)(ε
γ̇δ̇ψγ̇ θ̄δ̇) + (εα̇β̇ρα̇θ̄β̇)(ε

γ̇δ̇ψγ̇ω̄
δ̇)
]

(3.137)

and because of (3.89) (3.92) we have

Na
bN̂

b
a =

1

4

[
(εαβω

αθβ)(εα̇β̇ω̄α̇θ̄β̇) + (εα̇β̇ρα̇ψβ̇)(εαβ ρ̄
αψ̄β)

]
, (3.138)
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so we can write immediately Scurrent:

Scurrent =
R2

2π

∫
d2z

1

2

[
(εαγεβδ + εαδεβγ)ω

αθβ ρ̄γψ̄δ +

+ (εα̇γ̇εβ̇δ̇ + εα̇δ̇εβ̇γ̇)ρα̇ψβ̇ω̄γ̇ θ̄δ̇ +

+εαβε
α̇β̇

(
ωαθβω̄α̇θ̄β̇ + ρα̇ψβ̇ ρ̄

αψ̄β
)]

. (3.139)

3.6 Kinematics of u and v

Last step of our formulation is to add to the action we just revised a kinetic term

which contains the conditions on u and v .

It is possible to give a matricial aspect to the vectorial constraints (3.89) and

(3.92). We already considered column and row vectors

ua =


u1

u2

u3

 va∗ =


v1

∗

v2
∗

v3
∗

 u∗a = (u∗1 u
∗
2 u

∗
3) va = (v1 v2 v3)

and we can arrange these in the matrix

U =
(
ua ϵabcvbu

∗
c va∗

)
U † =


u∗a

ϵabcv
b∗uc

va

 : (3.140)

using uava = 0 and |u|2 = |v|2 = 1 it is simple to verify that

U †U = 13×3 , detU= 1 , (3.141)

hence U ∈ SU(3). Furthermore we noted that it is still possible to choose two

di�erent phase factors eiϕu,v ∈ U(1)u,v in front of u and v. It means that the space

of the constrained variables (u, v) corresponds to the coset
SU(3)

U(1)u × U(1)v
. So we

can introduce a covariant canonical form

j ≡ U−1∇U = U †∇U (3.142)



3.6. KINEMATICS OF U AND V 65

and build the non-linear sigma model

Sχ =
R2

2π

∫
d2zTr(j

†
j) . (3.143)

Explicitly

j =


d1 −j1∗ −j2∗

j1 −d1 + d2 −j3∗

j2 j3 −d2

 (3.144)

where

d1 = u∗a∇ua d2 = va∗∇va (3.145)

j1 = ϵabcv
a∗ub∇uc j2 = va∇ua j3 = ϵabcu∗avb∇vc . (3.146)

As usual, j takes values in the Lie algebra su(3), i.e. it can be express in the Gell-

Mann matrices basis: if we want to restrict it into the coset su(3)r[u(1)⊕u(1)], we

have to take only the o�-diagonal generators, that is to omit the diagonal elements

d1,2 in (3.144).

We obtain

Sχ =
R2

2π

∫
d2z [

3∑
k=1

jk
∗
jk + c.c.] , (3.147)

assuming the complex conjugation and the bar on j (i.e. on the derivative) inde-

pendent operations.

We have to study the behaviour of Sχ under SO(3, 1) × U(3) and BRST trans-

formation. Trivially Sχ is SO(3, 1)-invariant. Let us consider the �nite form of U(3)

transformation: by (3.110) we have

ua → ubM a
b va → M∗ b

a vb (3.148)

and analogous ones for va∗ and u∗a, with M = eξ·σ ∈ U(3). j2 is invariant by

de�nition, while for j1 we have

ϵabcv
a∗ub∇uc → ϵabcv

d∗M a
d ueM b

e ∇ufM c
f = (detM)ϵdefv

d∗ue∇uf (3.149)

that is j1 → (detM)j1, so

j1
∗
j1 → |detM |2j1

∗
j1 = j1

∗
j1 (3.150)
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and the same for j1j1
∗. In similar way we could show j3 → (detM∗)j3 and the

invariance of the j3j3-terms.

We assume the �elds (u, v) BRST invariant,

Q(u) = 0 Q(v) = 0 , (3.151)

so the BRST generator acts only on the J0 �eld in the covariant derivative of u and

v. By (3.23) we have, using (C.41) algebra,

Q(Jmn) = − i

4

[(
Jαaλβa + Jα

aλ
βa
)
(σmn)αβ +

(
Jα̇aλ

a

β̇
+ J a

α̇ λβ̇a

)
(σ̄ mn)α̇β̇

]
Q(Ja

b) = +
1

2

[
εαβ

(
Jαaλβb − Jα

bλ
βa
)
− εα̇β̇

(
Jα̇bλ

a

β̇
− J a

α̇ λβ̇b

)]
and we can rewrite Q(Ja

b) by means of (3.88) and (3.93)

Q(Ja
b) =

1

2

[(
εαβJ

αaψ̄β + εα̇β̇J a
α̇ ψβ̇

)
vb −

(
εαβJ

α
bθ

β + εα̇β̇Jα̇bθ̄β̇

)
ua
]

≡ Favb + Fbu
a . (3.152)

It is convenient to use the explicit form of the covariant derivative, putting (3.105)

into (3.124) and (3.125):

∇ua = ∂ua + iJa
bu

b (3.153)

∇va = ∂va − ivbJ
b
a (3.154)

so

Q(j2) = Q(va∇ua) = Q(va∂u
a + ivaJ

a
bu

b)

= ivaQ(J
a
b)u

b = iva(Favb + Fbu
a)ub = 0 . (3.155)

Then

Q(j1) = Q(ϵabcv
a∗ub∇uc) = Q(ϵabcv

a∗ub∂uc + iϵabcv
a∗ubJ c

du
d)

= iϵabcv
a∗ubQ(J c

d)u
d = iϵabcv

a∗ub(F cvd + Fdu
c)ud = 0 (3.156)

and

Q(j3) = Q(ϵabcu∗avb∇vc) = Q(ϵabcu∗avb∂vc − iϵabcu∗avbvdJ
d
c)

= −iϵabcu∗avbvdQ(Jd
c) = −iϵabcu∗avbvd(Fdvc + Fcu

d) = 0 , (3.157)
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because of uava = 0 and antisymmetry of ϵ indices. Thus the BRST invariance of

Sχ is demonstrated.

3.7 Final form of the action

We can now write the complete action of pure spinor superstring in AdS4 × CP3

adding Smatter (�rst two line of (3.79)), Sghost (3.129), Scurrent (3.139) and Sχ (3.147):

S =
R2

2π

∫
d2z

[
1

2
ηmnJ

mJ
n − 1

2
JaJ

a − 1

2
JaJa+

− i

4
εαβ

(
3Jα

aJ
βa + JαaJ β

a

)
− i

4
εα̇β̇

(
3J a

α̇ J β̇a + Jα̇aJ
a

β̇

)
+

− i

(
εαβω

α∂̄θβ + εα̇β̇ρα̇∂̄ψβ̇ + εαβ ρ̄
α∂ψ̄β + εα̇β̇ω̄α̇∂θ̄β̇ +

+
1

2
ωα(Jmnσ

mn)αβθ
β +

1

2
ρα̇(Jmnσ̄

mn)α̇β̇ψβ̇ +

+
1

2
ρ̄α(Jmnσ

mn)αβψ̄
β +

1

2
ω̄α̇(Jmnσ̄

mn)α̇β̇ θ̄β̇

)
+

+
1

2

(
(εαγεβδ + εαδεβγ)ω

αθβ ρ̄γψ̄δ +

+ (εα̇γ̇εβ̇δ̇ + εα̇δ̇εβ̇γ̇)ρα̇ψβ̇ω̄γ̇ θ̄δ̇ +

+εαβε
α̇β̇

(
ωαθβω̄α̇θ̄β̇ + ρα̇ψβ̇ ρ̄

αψ̄β
))

+

+ (εαβω
αθβ)u∗a∇ua + (εα̇β̇ρα̇ψβ̇)v

a∗∇va +

+(εαβρ̄
αψ̄β)va∗∇va + (εα̇β̇ω̄α̇θ̄β̇)u

∗
a∇ua

]
+ Sχ . (3.158)

This formulation for pure spinor superstring presents explicitly solved ghost con-

straint and in that way it becomes easy to handle: in particular we will be able to

compute the central charge and the beta function up to one loop. It will be the

matter of next chapter.
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Chapter 4

Properties of the action in

AdS4 × CP3

4.1 The background �eld method

We want to quantize the model using the background �eld method [26], i.e. we have

to expand the �elds around a classical con�guration, just named the background

�eld. First we consider the matter part of the action: because we are in a coset

manifold, it is natural to expand around an element of the group, so

g = g̃eX/R (4.1)

where g̃ is in OSP(4|6), X are the quantistic �uctuations and R is some scale which

can be identi�ed with the radius of AdS4. As we know, the gauge transformation is

g → gh with h ∈ SO(3, 1)× U(3), that is g → geh with h ∈ so(3, 1)⊕ u(3), then it

is always possible to take away the so(3, 1)⊕ u(3) component from X and to choice

X ∈ osp(4|6)r[so(3, 1)⊕ u(3)]. In Z4 terms

X =
3∑

i=1

Xi with Xi ∈ Hi . (4.2)

69
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The Maurer-Cartan forms become

J = g−1dg = e−X/Rg̃−1d(g̃eX/R)

= e−X/R(g̃−1dg̃)eX/R + e−X/RdeX/R

≡ e−X/RJ̃eX/R + e−X/RdeX/R

= J̃ +
1

R
(dX + [J̃ , X]) +

1

2R2
[dX + [J̃ , X], X] +O

(
1

R3

)
; (4.3)

in components, up to the second order in the �uctuations,

J0 = J̃0 + [J̃2, X2] + [J̃1, X3] + [J̃3, X1] +
1

2
([∇X2, X2] + [∇X1, X3] + [∇X3, X1]) +

+
1

2

(
[[J̃1, X1], X2] + [[J̃1, X2], X1] + [[J̃2, X1], X1] + [[J̃2, X3], X3]+

+[[J̃3, X2], X3] + [[J̃3, X3], X2]
)

(4.4)

J1 = J̃1 +∇X1 + [J̃2, X3] + [J̃3, X2] +
1

2
([∇X2, X3] + [∇X3, X2]) +

+
1

2

(
[[J̃1, X2], X2] + [[J̃1, X1], X3] + [[J̃1, X3], X1]+

+[[J̃2, X1], X2] + [[J̃2, X2], X1] + [[J̃3, X1], X1] + [[J̃3, X3], X3]
)

(4.5)

J2 = J̃2 +∇X2 + [J̃1, X1] + [J̃3, X3] +
1

2
([∇X1, X1] + [∇X3, X3]) +

+
1

2

(
[[J̃2, X2], X2] + [[J̃2, X1], X3] + [[J̃2, X3], X1]+

+[[J̃1, X2], X3] + [[J̃1, X3], X2] + [[J̃3, X1], X2] + [[J̃3, X2], X1]
)

(4.6)

J3 = J̃3 +∇X3 + [J̃1, X2] + [J̃2, X1] +
1

2
([∇X1, X2] + [∇X2, X1]) +

+
1

2

(
[[J̃3, X2], X2] + [[J̃3, X1], X3] + [[J̃3, X3], X1]+

+[[J̃2, X2], X3] + [[J̃2, X3], X2] + [[J̃1, X1], X1] + [[J̃1, X3], X3]
)

(4.7)

where for simplicity R = 1 and ∇ = ∂ + [J̃0, ]. In this way we can write Smatter in

terms of background and �uctuations: at order 0 in X we have the classical action

with J̃ instead of J ; the �rst order in X does not contribute to the e�ective action

and can be put zero on shell. The second order in X gives, omitting for simplicity
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the tilde over J and reintroducing the R constant,

Smatter →
1

2π

∫
d2z STr

[
1

2
∇X2∇X2 +

3

4
∇X3∇X1 +

1

4
∇X1∇X3 + LJ + L

(1)
JJ + L

(2)
JJ

]
(4.8)

with

LJ =
3

8
J1[X1,∇X2] +

5

8
J1[X2,∇X1] +

1

8
J1[X1,∇X2]−

1

8
J1[X2,∇X1] +

+
1

8
J3[X3,∇X2]−

1

8
J3[X2,∇X3] +

3

8
J3[X3,∇X2] +

5

8
J3[X2,∇X3] +

+
1

2
J2[X1,∇X1] +

1

2
J2[X3,∇X3] (4.9)

L
(1)
JJ = −1

2
[J2, X2][J2, X2] +

1

4
[J2, X1][J2, X3]−

1

4
[J2, X3][J2, X1] +

+
1

2
[J1, X2][J3, X2] +

1

4
[J1, X1][J3, X3]−

1

4
[J1, X3][J3, X1] +

− 1

2
[J3, X2][J1, X2]−

3

4
[J3, X1][J1, X3]−

1

4
[J3, X3][J1, X1] (4.10)

L
(2)
JJ =

3

8
[J1, X2][J2, X3]−

3

8
[J1, X3][J2, X2] +

− 3

8
[J1, X2][J2, X3]−

5

8
[J1, X3][J2, X2] +

− 5

8
[J3, X1][J2, X2]−

3

8
[J3, X2][J2, X1] +

− 3

8
[J3, X1][J2, X2] +

3

8
[J3, X2][J2, X1] +

− 1

2
[J1, X3][J1, X3]−

1

2
[J3, X1][J3, X1] , (4.11)

where we used

STr(A[B,C]) = −STr(B[A,C]) . (4.12)

Let us consider the �rst line of the expression above: we can write

STr

[
1

2
∇X2∇X2 +

3

4
∇X3∇X1 +

1

4
∇X1∇X3

]
=

= STr

[
1

2

(
∂X2∂̄X2 − J0[∂X2, X2]− J0[∂̄X2, X2] + [J0, X2][J0, X2]

)
+

+
3

4

(
∂X3∂̄X1 − J0[∂X3, X1]− J0[∂̄X1, X3] + [J0, X3][J0, X1]

)
+

1

4

(
∂X1∂̄X3 − J0[∂X1, X3]− J0[∂̄X3, X1] + [J0, X1][J0, X3]

)]
.(4.13)
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If we write X in osp(4|6) components

X1 = XαaOαa +Xα̇aOα̇a (4.14)

X2 = XmPm +XaVa +XaV
a (4.15)

X3 = Xα
aO a

α +X a
α̇ Oα̇

a , (4.16)

integrating for parts we obtain the kinetic term for X:

SXX =
1

2π

∫
d2z STr

[
1

2
∂X2∂̄X2 +

3

4
∂X3∂̄X1 +

1

4
∂X1∂̄X3

]
(4.17)

=
1

2π

∫
d2z STr

[
1

2
∂̄X2∂X2 + ∂̄X1∂X3

]
=

1

2π

∫
d2z

[
1

2
∂̄Xm∂Xm − ∂̄Xa∂Xa − iεαβ∂̄X

αa∂Xβ
a − iεα̇β̇∂̄Xα̇a∂X

a

β̇

]
.

Now let us consider the coupling of X with J0: remembering (3.66)

J0 = JmnMmn + Ja
bV

a
b (4.18)

we have

STr(J0[∂X2, X2]) = −2Jmn(∂X
mXn) + (4.19)

− iJ
a

b

[(
∂XbXa − ∂XaX

b
)
− δ b

a (∂XcXc − ∂XcX
c)
]

STr(J0[∂X1, X3]) =
i

2
Jmn

(
∂Xαa(σmn)αβX

β
a + ∂Xα̇a(σ̄

mn)α̇β̇X a

β̇

)
+ (4.20)

+ J
a

b

(
εαβ∂X

αbXβ
a − εα̇β̇∂Xα̇aX

b

β̇

)
STr(J0[∂X3, X1]) =

i

2
Jmn

(
∂Xα

a(σ
mn)αβX

βa + ∂X a
α̇ (σ̄ mn)α̇β̇Xβ̇a

)
+ (4.21)

− J
a

b

(
εαβ∂X

α
aX

βb − εα̇β̇∂X b
α̇ Xβ̇a

)
STr

(
[J0, X2][J0, X2]

)
= 4JmnJ

mkXnXk + (4.22)

−
(
J
a

cJ
c
b + J

c

bJ
a
c − 2J

c

cJ
a
b − 2J

a

bJ
c
c + 2J

c

cJ
d
dδ

a
b

)
XaX

b

STr
(
[J0, X1][J0, X3]

)
=
i

4
JmnJkl

(
(σmn) α

γ (σkl) β
α εβδX

γaXδ
a + (4.23)

+(σ̄ mn)γ̇α̇(σ̄
kl)α̇

β̇
εβ̇δ̇Xγ̇aX

a
δ̇

)
+

− i
(
J
b

cJ
c
aεαβX

αaXβ
b + J

c

aJ
b
cε

α̇β̇Xα̇bX
a

β̇

)
+

+
1

2

(
JmnJ

b

a + JmnJ
b
a

)(
Xαa(σmn)αβX

β
b −Xα̇b(σ̄

mn)α̇β̇X a

β̇

)
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In this way we can write

SJ0XX =
1

2π

∫
d2z

{
Jmn

[
1

2
(∂XmXn − ∂XnXm)+ (4.24)

− 3

8
i
(
∂Xα

a(σ
mn)αβX

βa + ∂X a
α̇ (σ̄ mn)α̇β̇Xβ̇a

)
+

−1

8
i
(
∂Xαa(σmn)αβX

β
a + ∂Xα̇a(σ̄

mn)α̇β̇X a

β̇

)]
+

+ Jmn

[
1

2

(
∂̄XmXn − ∂̄XnXm

)
+

− 3

8
i
(
∂̄Xα

a(σ
mn)αβX

βa + ∂̄X a
α̇ (σ̄ mn)α̇β̇Xβ̇a

)
+

−1

8
i
(
∂̄Xαa(σmn)αβX

β
a + ∂̄Xα̇a(σ̄

mn)α̇β̇X a

β̇

)]
+

+ J
a

b

[
i

2

[(
∂XbXa − ∂XaX

b
)
− δ b

a (∂XcXc − ∂XcX
c)
]
+

+
3

4

(
εαβ∂X

α
aX

βb − εα̇β̇∂X b
α̇ Xβ̇a

)
+

−1

4

(
εαβ∂X

αbXβ
a − εα̇β̇∂Xα̇aX

b

β̇

)]
+

+ Ja
b

[
i

2

[(
∂̄XbXa − ∂̄XaX

b
)
− δ b

a

(
∂̄XcXc − ∂̄XcX

c
)]

+

+
3

4

(
εαβ∂̄X

α
aX

βb − εα̇β̇∂̄X b
α̇ Xβ̇a

)
+

−1

4

(
εαβ∂̄X

αbXβ
a − εα̇β̇∂̄Xα̇aX

b

β̇

)]}

and

SJ0J0XX =
1

2π

∫
d2z

{
2JmnJklη

mkXnX l +
i

16

(
JmnJkl + 3JmnJkl

)
× (4.25)

×
[
(σmn) α

γ (σkl) β
α εβδX

γaXδ
a + (σ̄ mn)γ̇α̇(σ̄

kl)α̇
β̇
εβ̇δ̇Xγ̇aX

a
δ̇

]
+

−
(
1

2
J
b

cJ
c
a +

1

2
J b

cJ
c

a − J
c

cJ
b
a − Jc

cJ
b

a + J
c

cJ
d
dδ

b
a

)
XbX

a +

− i

4
J
b

cJ
c
a

[
3εαβX

αaXβ
b + εα̇β̇Xα̇bX

a

β̇

]
+

− i

4
J b

cJ
c

a

[
εαβX

αaXβ
b + 3εα̇β̇Xα̇bX

a

β̇

]
+

+
1

2

(
JmnJ

b
a + JmnJ

b

a

) [
Xαa(σmn)αβX

β
b −Xα̇b(σ̄

mn)α̇β̇X a

β̇

]}
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4.2 The ghost term

The ghost kinetic term for (ω, θ) and (ρ, ψ) does not require background expansion:

Sωθ =
R2

2π

∫
d2z (−i)

[
εαβω

α∂̄θβ + εα̇β̇ρα̇∂̄ψβ̇ + εαβ ρ̄
α∂ψ̄β + εα̇β̇ω̄α̇∂θ̄β̇

]
; (4.26)

on the other hand, we apply the background method to the coupling term of (ω, θ)

and (ρ, ψ) with J0:

SJ0ωθ =
R2

2π

∫
d2z (−i)

[
1

2
Jmnω

α(σmn)αβθ
β +

1

2
Jmnρα̇(σ̄

mn)α̇β̇ψβ̇+

+
1

2
Jmnρ̄

α(σmn)αβψ̄
β +

1

2
Jmnω̄α̇(σ̄

mn)α̇β̇ θ̄β̇

]
. (4.27)

For our purposes we consider the expansion of J0 in twoX �elds plus the background

J̃0:

J0 → J̃0 +
1

2R2
([∂X2, X2] + [∂X1, X3] + [∂X3, X1]) . (4.28)

The interaction between the ghost �elds and J̃0 is identical to (4.27) with J̃0 instead

of J0. Then the SO(3, 1) components of the [∂X,X] part is

2R2Jmn → −∂XmXn +
i

4

(
∂Xαa(σmn)αβX

β
a + ∂Xα̇a(σ̄

mn)α̇β̇X a

β̇

)
+

+
i

4

(
∂Xα

a(σ
mn)αβX

βa + ∂X a
α̇ (σ̄ mn)α̇β̇Xβ̇a

)
, (4.29)

so, using (3.134)-(3.136), we can write

2R2Jmn(σ
mn)αβ → −∂XmXn(σ

mn)αβ +

+
i

4

(
∂XγaXδ

a + ∂Xγ
aX

δa
)
(σmn)γδ(σ

mn)αβ

→ −∂XmXn(σ
mn)αβ +

+ i(εαγεβδ + εαδεβγ)
(
∂XγaXδ

a + ∂Xγ
aX

δa
)

(4.30)

and in analogous way

2R2Jmn(σ̄
mn)α̇β̇ → −∂XmXn(σ̄

mn)α̇β̇ +

+ i(εα̇γ̇εβ̇δ̇ + εα̇δ̇εβ̇γ̇)
(
∂Xγ̇aX

a
δ̇

+ ∂X a
γ̇ Xδ̇a

)
. (4.31)
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So we can write

SXXωθ =
1

2π

∫
d2z

[
i

4
∂̄XmXn

(
ωα(σmn)αβθ

β + ρα̇(σ̄
mn)α̇β̇ψβ̇

)
+

+
i

4
∂XmXn

(
ρ̄α(σmn)αβψ̄

β + ω̄α̇(σ̄
mn)α̇β̇ θ̄β̇

)
+

+
1

4
(εαγεβδ + εαδεβγ)

(
∂̄XγaXδ

a + ∂̄Xγ
aX

δa
)
ωαθβ +

+
1

4
(εα̇γ̇εβ̇δ̇ + εα̇δ̇εβ̇γ̇)

(
∂̄Xγ̇aX

a
δ̇

+ ∂̄X a
γ̇ Xδ̇a

)
ρα̇ψβ̇ +

+
1

4
(εαγεβδ + εαδεβγ)

(
∂XγaXδ

a + ∂Xγ
aX

δa
)
ρ̄αψ̄β +

+
1

4
(εα̇γ̇εβ̇δ̇ + εα̇δ̇εβ̇γ̇)

(
∂Xγ̇aX

a
δ̇

+ ∂X a
γ̇ Xδ̇a

)
ω̄α̇θ̄β̇

]
(4.32)

Finally, for completeness, we remember the current action (3.139), that gives the

coupling ghost-ghost:

Scurrent =
R2

2π

∫
d2z

1

2

[
(εαγεβδ + εαδεβγ)ω

αθβ ρ̄γψ̄δ +

+ (εα̇γ̇εβ̇δ̇ + εα̇δ̇εβ̇γ̇)ρα̇ψβ̇ω̄γ̇ θ̄δ̇ +

+εαβε
α̇β̇

(
ωαθβω̄α̇θ̄β̇ + ρα̇ψβ̇ ρ̄

αψ̄β
)]

. (4.33)

4.3 The uv term

The background expansion for (u, v) �elds takes origin from the position

U = Ũex/R (4.34)

where Ũ ∈ SU(3) is the background and x ∈ su(3)r[u(1)⊕ u(1)] is the �uctuation.

Trivially, noting that the covariant derivative acts on x like a canonical one,

j = U †∇U = e−x/R j ex/R + e−x/R∂ex/R , (4.35)

with j = Ũ †∇Ũ . In this way

Tr(j
†
j) = −Tr(jj) = −Tr(e−x/R j ex/R + e−x/R∂̄ex/R)(e−x/R j ex/R + e−x/R∂ex/R)

= −Tr(j j− jex/R∂e−x/R − jex/R∂̄e−x/R − ∂̄ex/R∂e−x/R)

= Tr(j
†
j) + Tr(jex/R∂e−x/R + jex/R∂̄e−x/R) + Tr(∂̄ex/R∂e−x/R) , (4.36)
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using the cyclical properties of the trace and e−x∂ex = −∂e−x · ex. Let us consider

the background free term

Tr(∂̄ex/R∂e−x/R) = Tr

[
− 1

R2
∂̄x∂x+O

(
1

R4

)]
: (4.37)

explicitly the matrix x is

x =


0 −x∗1 −x∗2
x1 0 −x∗3
x2 x3 0

 (4.38)

so

− 1

R2
Tr(∂̄x∂x) =

1

R2

3∑
k=1

(
∂̄x∗k∂xk + c.c.

)
(4.39)

and

Tr(∂̄ex/R∂e−x/R) =
1

R2

3∑
k=1

(
∂̄x∗k∂xk + c.c.

)
+O

(
1

R4

)
. (4.40)

We can write the kinetic action for the �uctuations xk from Sχ (3.147):

Sχ → 1

2π

∫
d2z

[
3∑

k=1

(
∂̄x∗k∂xk + c.c.

)
+O

(
1

R2

)]
⇒

Sxx =
1

2π

∫
d2z

3∑
k=1

(
∂̄x∗k∂xk + c.c.

)
=

1

2π

∫
d2z 2

3∑
k=1

∂̄x∗k∂xk . (4.41)

4.4 The central charge

We want to compute the central charge for the action (3.158) using the background

�eld method. We will prove that it is zero at tree level (i.e. at order 1/R0) and at

one loop (i.e. at order 1/R2).

4.4.1 Matter sector

Let us start with the matter term: the stress-energy tensor can be obtained directly

by (3.63)

Tmatter = −R2STr

[
1

2
J2J2 +

3

4
J3J1 +

1

4
J1J3

]
= −R2STr

[
1

2
J2J2 + J1J3

]
; (4.42)
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to our aim, since the central charge cannot contain �elds, we consider only the

background free expansion of J in (4.3) and we can interrupt it at the order 1/R2:

J → 1

R
∂X +

1

2R2
[∂X,X] (4.43)

i.e.

J1 →
1

R
∂X1 +

1

2R2
([∂X2, X3] + [∂X3, X2]) (4.44)

J2 →
1

R
∂X2 +

1

2R2
([∂X1, X1] + [∂X3, X3]) (4.45)

J3 →
1

R
∂X3 +

1

2R2
([∂X1, X2] + [∂X2, X1]) . (4.46)

In this way we have

Tmatter → −R2STr

[
1

2

(
1

R
∂X2 +

1

2R2
[∂X1, X1] +

1

2R2
[∂X3, X3]

)2

+

+

(
1

R
∂X1 +

1

2R2
[∂X2, X3] +

1

2R2
[∂X3, X2]

)
×

×
(
1

R
∂X3 +

1

2R2
[∂X1, X2] +

1

2R2
[∂X2, X1]

)]

→ −STr

[
1

2
∂X2∂X2 + ∂X1∂X3

]
+

− 1

2R
STr

[
∂X2[∂X1, X1] + ∂X2[∂X3, X3] +

+ ∂X1[∂X1, X2] + ∂X1[∂X2, X1] + ∂X3[∂X3, X2] + ∂X3[∂X2, X3]

]
.

Because of (4.12), we have

STr(∂X1[∂X2, X1]) = −STr(∂X2[∂X1, X1]) , (4.47)

STr(∂X1[∂X1, X2]) = −STr(∂X1[∂X1, X2]) ⇒ STr(∂X1[∂X1, X2]) = 0 (4.48)

and analogues with ∂X3 instead of ∂X1. So the background free tensor is

Tmatter → −STr

[
1

2
∂X2∂X2 + ∂X1∂X3

]
+O

(
1

R2

)
. (4.49)

Obviously the �rst term of Tmatter above is the stress-energy tensor of the kinetic

action for X �elds SXX (4.17). In components

Tmatter → −
[
1

2
ηmn∂X

m∂Xn − ∂Xa∂Xa − iεαβ∂X
αa∂Xβ

a − iεα̇β̇∂Xα̇a∂X
a

β̇

]
(4.50)
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By SXX we obtain the fundamental OPE

Xm(z)Xn(w) = −ηmnln|z − w|2 (4.51)

Xa(z)Xb(w) = δ a
b ln|z − w|2 (4.52)

Xαa(z)Xβ
b(w) = −iεαβδ a

b ln|z − w|2 (4.53)

Xα̇a(z)X
b

β̇
(w) = −iεα̇β̇δ

b
a ln|z − w|2 (4.54)

and thus the terms 1/(z − w)4 of the OPE Tmatter(z)Tmatter(w) are

⟨ 1
2
ηmn∂X

m∂Xn

∣∣∣∣
z

1

2
ηkl∂X

k∂X l

∣∣∣∣
w

⟩ → 1

4
ηmnηkl

(
ηmkηnl + ηmlηnk

) 1

(z − w)4

=
1

4

2δ k
k

(z − w)4
=

2

(z − w)4
(4.55)

⟨∂Xa∂Xa|z ∂X
b∂Xb

∣∣
w
⟩ → δ a

b δ
b

a

(z − w)4
=

δ a
a

(z − w)4
=

3

(z − w)4
(4.56)

⟨iεαβ∂Xαa∂Xβ
a

∣∣∣
z
iεγδ∂X

γb∂Xδ
b

∣∣∣
w
⟩ → i2εαβεγδ(−i)2εαδεβγδ a

b δ
b

a

1

(z − w)4

= − δ α
α δ a

a

(z − w)4
= − 6

(z − w)4
(4.57)

⟨iεα̇β̇∂Xα̇a∂X
a

β̇

∣∣∣
z
iεγ̇δ̇∂Xγ̇b∂X

b
δ̇

∣∣∣
w
⟩ → i2εα̇β̇εγ̇δ̇(−i)2εα̇δ̇εβ̇γ̇δ

b
a δ

a
b

1

(z − w)4

= − δ α̇
α̇ δ a

a

(z − w)4
= − 6

(z − w)4
. (4.58)

The central charge for di�erent sectors is

cbos. matter = 2 · 2 + 3 · 2 = 10 cferm. matter = −6 · 2− 6 · 2 = −24 . (4.59)

The absence of a term 1/R in Tmatter (4.49) implies that matter does not give

contribution to the central charge of the order 1/R2.
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4.4.2 Ghost sector

The stress-energy tensor for the ghost is1

Tghost = iR2
(
εαβω

α∇θβ + εα̇β̇ρα̇∇ψβ̇

)
(4.60)

and by (4.26) we have the fundamental OPE

ωα(z)θβ(w) = − i

R2
εαβ

1

z − w
(4.61)

ρα̇(z)ψβ̇(w) = − i

R2
εα̇β̇

1

z − w
. (4.62)

Thus the terms 1/(z − w)4 of the OPE Tghost(z)Tghost(w) at the order 1/R0 are

(iR2)2 ⟨εαβωα∂θβ
∣∣
z
εγδω

γ∂θδ
∣∣
w
⟩ → (iR2)2εαβεγδ

(
−i
R2

)2
εαδεγβ

(z − w)4

=
δ α
α

(z − w)4
=

2

(z − w)4
(4.63)

(iR2)2 ⟨εα̇β̇ρα̇∂ψβ̇

∣∣∣
z
εγ̇δ̇ργ̇∂ψδ̇

∣∣∣
w
⟩ → (iR2)2εα̇β̇εγ̇δ̇

(
−i
R2

)2 εα̇δ̇εγ̇β̇
(z − w)4

=
δ α̇
α̇

(z − w)4
=

2

(z − w)4
(4.64)

therefore the ghost central charge is

cghost = 2 · 2 + 2 · 2 = 8 . (4.65)

If we expand the covariant derivative, we would have to add a contribution like

∂XXωθ to Tghost and it would give a term proportional to 1/R4 in the c expres-

sion above. It means that the ghost sector does not give contribution 1/R2 to c,

analogously to the matter sector.

4.4.3 uv sector

The stress-energy tensor for u and v is given by (3.143)

Tχ = −R2Tr
(
j†j

)
(4.66)

1We consider only the holomorphic component of T : the anti-holomorphic one is given by (ω̄, θ̄)

and (ρ̄, ψ̄).
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and the fundamental OPE is

x∗k(z)xl(w) = −1

2
δklln|z − w|2 , (4.67)

so at order 1/R0 we have

Txx = −2
3∑

k=1

∂x∗k∂xk (4.68)

and

⟨Txx|z Txx|w⟩ = (−2)2
3∑

k,l=1

⟨∂x∗k∂xk|z ∂x
∗
l ∂xl|w⟩

→ 4
3∑

k,l=1

(
−1

2

)2
δklδlk

(z − w)4
=

3

(z − w)4
. (4.69)

The central charge is

cuv = 3 · 2 = 6 ; (4.70)

in analogous way to the matter sector, the correction of cuv proportional to 1/R2 is

zero.

4.4.4 Ghost-uv sector

The last terms in Sghost (3.129) give a tensor

Tghost+uv = iR2
[
(εαβω

αθβ)u∗a∇ua + (εα̇β̇ρα̇ψβ̇)v
a∗∇va

]
. (4.71)

The lower order in the background free expansion of u∗a∇ua and va∗∇va is 1/R2: it

can be understood noting that these ones are the diagonal elements of j while in

the expansion

j → 1

R
∂x+

1

2R2
[∂x, x] +O

(
1

R3

)
(4.72)

the �rst diagonal terms are [∂x, x]/2R2, since x has only extra-diagonal components.

It is simple to verify that the coe�cient of 1/(z − w)4 in the OPE of T with itself

is proportional to 1/R4, so that the ghost-uv sector does not give contribution to c



4.5. THE OPERATOR PRODUCT EXPANSIONOF THE LORENTZ CURRENT81

up to this order.

Finally we can collect the results above:

c = cbos.matter + cferm.matter + cωθ + cuv = 10− 24 + 8 + 6 = 0 (4.73)

noting it is true up to the 1/R4 order.

4.5 The operator product expansion of the Lorentz

current

As �nal check of the consistency of our pure spinor action, we compute the OPE of

the Lorentz current with itself. In our case from the de�nition of the gauge-current

coupling

Scoupling =
1

2π

∫
d2z LmnJmn (4.74)

we obtain the Lorentz current for the action (3.158)2

Lmn = − i

2
R2

(
ωα(σmn)αβθ

β + ρα̇(σ̄
mn)α̇β̇ψβ̇

)
. (4.75)

Notice that respect to the �at case, the Lorentz current is not given by the sum of

a matter contribute and a ghost one, but is completely provided by the ghost �elds.

2The Lorentz current Lmn di�ers fromNmn (3.130) in a constant. Although the physical content

is the same, we have to �x the normalization so that the simple pole of the OPE current-current

reproduce the so(3, 1) algebra.
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Using the ghost OPE (4.61) and (4.62) we have

⟨Lmn(z)Lkl(w)⟩ =
(
− i

2
R2

)2

⟨ωα(σmn)αβθ
β + ρα̇(σ̄

mn)α̇β̇ψβ̇

∣∣∣
z
×

× ωγ(σkl)γδθ
δ + ργ̇(σ̄

kl)γ̇δ̇ψδ̇

∣∣∣
w
⟩

=

(
i

2

)2

R4

[
i

R2

(
ωα[σmn, σkl] β

α εβδθ
δ + ρα̇[σ̄

mn, σ̄kl]α̇
β̇
εβ̇δ̇ψδ̇

) 1

z − w
+

−
(
i

R2

)2 (
(σmn) β

α (σkl) α
β + (σ̄mn)α̇

β̇
(σ̄kl)β̇

α̇

) 1

(z − w)2

]
= − i

4
R2

[
2ηnk

(
ωα(σml)αβθ

β + ρα̇(σ̄
ml)α̇β̇ψβ̇

)
+ permutations

] 1

z − w
+

−
(
ηmlηnk − ηmkηnl

) 1

(z − w)2
(4.76)

having used

[σmn, σkl] = 2
(
ηnkσml + permutations

)
(4.77)

(σmn) β
α (σkl) α

β = 2
(
ηmlηnk − ηmkηnl

)
(4.78)

and analogous ones for σ̄. Thus we have

⟨Lmn(z)Lkl(w)⟩ = ηk[nLm]l − ηl[nLm]k

z − w
+

η[mn][kl]

(z − w)2
(4.79)

i.e. the Lorentz currents form a current algebra with level k = 1, as in the �at case.



Conclusions

In this thesis we presented a formulation of the Pure Spinor superstring in AdS4 ×

CP3 with unconstrainted ghost �elds.

We started from the Pure Spinor superstring in a supercoset manifold and we

studied the BRST invariance. Imposing the nilpotency of the BRST charge, we

derived the general form of the ghost constraint. To solve this constraint in the

OSP(4|6)/SO(3, 1) × U(3) coset, corresponding to the AdS4 × CP3 superspace,

we chose a convenient realization of the superalgebra of OSP(4|6). In this way we

were able to write the solutions of the constraint as a direct product of new ghosts

and bosonic variables. We noted that OSP(4|6)/SO(3, 1)×U(3) coset admits a Z4-

grading and in particular that there is a one-to-one correspondence between the two

fermionic eigenspaces H1 and H3: so the ghosts λ3 ∈ H3 are given by the same �eld

content of the ghosts λ1 ∈ H1. Then we extended the ghost decomposition to the

conjugate momenta w1, w3 of λ1, λ3, using a residual gauge invariance of the action

to make the most convenient choice.

We replaced the so-determined ghosts and momenta in the original action: by

the choice we did, the bosonic variables have not a kinetic term. To give a kinematics

to these variables we observed that they lie in the SU(3)/U(1)×U(1) coset, thus we

added to the action a SO(3, 1)× U(3) and BRST invariant non-linear sigma model

on this coset.

Working with unconstrainted ghosts presents a lot of advantages, �rst of all

the possibility of computing directly the ghost propagators (as in �at case). We
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used these propagators to compute the operator product expansion of the Lorentz

currents; moreover, using also the background �eld method, we proved that the

central charge of the action vanishes up to one loop, i.e. 1/R2 order. The results we

obtained con�rm the correctness of the action proposed.

Using the background �eld expansion derived in Chapter 4, one could compute

the e�ective action and check for instance the vanishing of the beta function. Pre-

liminary results indicate the absence of one-loop divergent contributions.



Appendix A

Vielbein formalism

Be M a m-dimension di�erentiable manifold and φ a local chart1

φ : U ⊂ M → Rm . (A.1)

If p ∈ U , the tangent space TpM admits coordinate basis

{
∂

∂φi

}
i=1,...,m

and the

cotangent space T ∗
pM admits dual basis {dφi}i=1,...,m so that

dφi

(
∂

∂φj

)
= δ i

j . (A.2)

It is possible to chose a di�erent, non-coordinate, basis {ea}a=1,...,m for TpM and its

dual basis {ea}a=1,...,m, related in the usual way

ea(eb) = δ a
b . (A.3)

Obviously they are linear combinations of the old bases

ea = e i
a

∂

∂φi
, ea = e a

i dφ
i , (A.4)

so

δ a
b ≡ e a

i dφ
i

(
e j
b

∂

∂φj

)
= e a

i e
j

b δ
i

j = e i
b e

a
i (A.5)

i.e. e a
i = (e i

a )
−1 and viceversa.

1For simplicity we chose real manifold, but the the complex case is a trivial generalization.
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Metric 2-form is an intrinsic property of M and does not depend from the coor-

dinates:

g = gijdφ
i ⊗ dφj = gabdφ

a ⊗ dφb (A.6)

where

gij = g

(
∂

∂φi
,
∂

∂φj

)
gab = g(ea, eb) . (A.7)

We can chose the basis vectors ea Lorentz-orthogonal, that is

gab = ηab ≡ diag(+,−, . . . ,−) , (A.8)

provided that the components of ea on the coordinate basis change point by point,

e i
a = e i

a (p). On the contrary ∂/∂φi usually not have �xed angles, then gij = gij(p).

It is simple to compute the relation between gij and gab:

gab = g

(
e i
a

∂

∂φi
, e j

b

∂

∂φj

)
= e i

a e
j

b gij (A.9)

and inverting e i
a

gij(p) = e a
i (p)e b

j (p)ηab . (A.10)

Let us consider now a di�eomorphism on Rm, f : x→ x′; obviously φ′ ≡ f ◦φ is

still a local chart of M with coordinate basis ∂/∂φ′i. By de�nition, if F : M → Rm

∂F

∂φi

∣∣∣∣
p

=
∂

∂xi
(F ◦ φ−1)

∣∣∣∣
x=φ(p)

(A.11)

and analogue for φ′; using
∂

∂x′i
=
∂xj

∂x′i
∂

∂xj
(A.12)

and φ′−1 = φ−1 ◦ f−1, we have

∂F

∂φ′i

∣∣∣∣
p

=
∂xj

∂x′i
∂

∂xj
(F ◦ φ−1 ◦ f−1)

∣∣∣∣
x′
=

∂xj

∂x′i
∂

∂xj
(F ◦ φ−1)

∣∣∣∣
x

=
∂xj

∂x′i
∂F

∂φj

∣∣∣∣
p

(A.13)

i.e.
∂

∂φ′i =
∂xj

∂x′i
∂

∂φj
. (A.14)

Vectors ea are not a�ected by di�eomorphism f , so

e i
a

∂

∂φi
≡ e′

j
a

∂

∂φ′j = e′
j

a

∂xi

∂x′j
∂

∂φi
⇒ (A.15)
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e i
a =

∂xi

∂x′j
e′

j
a or e′

i
a =

∂x′i

∂xj
e j
a (A.16)

and trivially

e a
i =

∂x′j

∂xi
e′

a
j or e′

a
i =

∂xj

∂x′i
e a
j . (A.17)

Then let us consider a Lorentz transformation Λ̃ sending the orthogonal basis ea

in another ẽa

ẽa = Λ̃b
aeb . (A.18)

It is

ηab = g(ẽa, ẽb) = Λ̃c
aΛ̃

d
b g(ec, ed) = Λ̃c

aΛ̃
d
bηcd (A.19)

i.e. Λ̃ is a pseudo-rotation SO(m− 1, 1). In components

ẽ i
a

∂

∂φi
= Λ̃b

ae
i

b

∂

∂φi
; (A.20)

posing Λ = Λ̃−1

e i
a = Λb

aẽ
i

b or ẽ i
a = (Λ−1)bae

i
b (A.21)

and trivially

e a
i = (Λ−1)abẽ

b
i or ẽ a

i = Λa
be

b
i . (A.22)

The components e a
i are called vielbein and have the demonstrated properties:

they locally generate the metric (A.10), transform under di�eomorphism in the i

index (A.17) and under Lorentz-pseudo rotation in the a index (A.22).
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Appendix B

Algebraic properties of the manifolds

If M is a di�erentiable manifold and G a Lie group with identity e, we can de�ne

[27] action of G on M the application (g, p) ∈ G×M → gp ∈ M so that

ep = pe = p

g1(g2p) = (g1g2)p
∀p ∈ M ∀g1, g2 ∈ G (B.1)

The action is transitive if ∀p1, p2 ∈ M there is g ∈ G so that gp1 = p2. The orbit of

p ∈ M under the action of G is the subset Gp of M given by

Gp = {gp : g ∈ G} . (B.2)

Trivially if G acts transitively on M, Gp = M. The little group (or isotropy group)

of p ∈ M is the subgroup Hp of G so that

Hp = {g ∈ G : gp = p} . (B.3)

If H ⊂ G is a subgroup and g ∈ G, the subset gH = {gh ∈ G : h ∈ H} is the left

coset of H; analogously we can de�ne the right coset Hg. The set of all gH in G is

the quotient space
G

H
= {gH ⊂ G : g ∈ G} (B.4)

and it admits the structure of group only if H in a normal subgroup, i.e. if gH = Hg

∀g. However ifG is a Lie group, G/H admits di�erentiable manifold structure, called

coset manifold.
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If a group of Lie G acts on M transitively and we choose as subgroup of G the

little group Hp of some p ∈ M, the coset manifold G/Hp is homeomorphic to M,

i.e. there is a continuous one-to-one map between G/Hp and M. To see that, we

can start identifying Hp with p : if q ̸= p is another point of M, there is g ∈ G so

that gp = q and we can identify gHp with q. This identi�cation is the only one, in

fact if there is g′ ̸= g, so that g′p = q, surely g−1g′ = h ∈ Hp that is g′Hp ≡ gHp.

Note that the choice of p is completely free. If we start from a point p′ ̸= p ,

obviously there is a g ∈ G so that gp = p′ and it is straightforward to prove that

Hp′ = gHpg
−1, so we can repeat the argument above. The equivalence of all p ∈ M

means that the coset manifold describes an homogeneous space. In the present work

we are interested in three fundamental spaces:

B.1 Sphere

If we consider a (n + 1)-dimensional �at bulk of coordinates (yµ, yn)µ=0,..., n−1 with

metric

ds2bulk = ηµνdy
µdyν + (dyn)2 ηµν = diag(

n︷ ︸︸ ︷
+, · · · ,+) , (B.5)

the n-dimensional Sphere is de�ned by

ηµνy
µyν + (yn)2 = R2 (B.6)

with R ∈ R named curvature radius. Trivially the action of the group SO(n+ 1) is

transitive on the Sphere and the rotations of SO(n) around a point do not shift it,

hence

Sn ∼=
SO(n+ 1)

SO(n)
. (B.7)

It is simple to note that

dim

(
SO(n+ 1)

SO(n)

)
= dim SO(n+ 1)− dim SO(n)

=
1

2
(n+ 1)n− 1

2
n(n− 1) = n . (B.8)



B.2. ANTI-DE SITTER SPACE 91

B.2 Anti-de Sitter Space

If the (n+ 1)-dimensional �at bulk has metric

ds2bulk = ηµνdy
µdyν + (dyn)2 ηµν = diag(+,

n−1︷ ︸︸ ︷
−, · · · ,−) , (B.9)

the n-dimensional Anti-de Sitter Space is de�ned as the hyperboloid

ηµνy
µyν + (yn)2 = R2 . (B.10)

It corresponds in lorentzian signature to the Loba�cevskij Space [28] in euclidean

signature. It is simple to see that AdSn is the orbit of the group SO(n− 1, 2) - i.e.

this group acts transitively on AdS - and that SO(n−1, 1) is the little group respect

to any point of AdS, so

AdSn
∼=

SO(n− 1, 2)

SO(n− 1, 1)
. (B.11)

Obviously

dim

(
SO(n− 1, 2)

SO(n− 1, 1)

)
= dim SO(n− 1, 2)− dim SO(n− 1, 1)

=
1

2
(n+ 1)n− 1

2
n(n− 1) = n . (B.12)

B.3 Complex Projective Space

Be z1, z2 ∈ Cn+1 − {0}: we can de�ne the equivalence z1 ∼ z2 if there is a complex

number λ ̸= 0 so that z2 = λz1. The Complex Projective Space is the set of all the

classes in Cn+1 − {0} [27]

CPn =
Cn+1 − {0}

∼
(B.13)

and it represents the space of the direction of Cn+1: de�ning |z|2 = z†z, we have

CPn = {z ∈ Cn+1 − {0} : |z| = 1}. Let us consider g ∈ U(n + 1) acting on z.

If z1,2 → z′1,2 = gz1,2 and z1 ∼ z2, surely z′1 ∼ z′2, hence the group acts on CPn

too. In analogy with O(n + 1) on Rn+1, U(n + 1) can be seen as the group of

complex rotations of Cn+1 and its action is trivially transitive. Choosing an element
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of CPn by means of an homogeneous coordinate z ̸= 0, its little group is given by

the complex rotations U(n) around the z-direction and by the phase scaling U(1)

z → eiϕz. This way

CPn ∼=
U(n+ 1)

U(n)× U(1)
∼=

SU(n+ 1)

U(n)
(B.14)

because SU(n+ 1) ∼= U(n+ 1)/U(1). As above

dim

(
SU(n+ 1)

U(n)

)
= dim SU(n+1)−dimU(n) = [(n+1)2−1]−n2 = 2n . (B.15)



Appendix C

OSP(4|6) algebra

C.1 Preliminary de�nitions

Antisymmetric 2-dimensional tensor

ε12 = −ε21 = 1 ε12 = −ε21 = −1 (C.1)

εαγε
γβ = δ β

α εα̇γ̇εγ̇β̇ = δα̇
β̇

(C.2)

Charge conjugation matrix and inverse

Cµν =

εαβ 0

0 εα̇β̇

 =



0 −1

1 0
0

0
0 1

−1 0


(C.3)

CµρC
ρν = δ ν

µ (C.4)

Dirac matrices in 4 + 1 dimensions, m = 0′, 0, 1, . . . , 4

{γm, γn} = 2ηmn with ηmn = (+ +−−−) (C.5)

explicitly

(γm) ν
µ =

 0 (σm)αα̇

(σ̄ m)α̇α 0

 (C.6)
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with σm = (1, σ1, σ2, σ3) and σ̄ m = (1,−σ1,−σ2,−σ3), noting that

(σ̄ m)α̇α = εα̇β̇εαβ(σm)ββ̇ . (C.7)

De�nition

(γ0
′m) ν

µ = iγm (C.8)

(γmn) ν
µ =

1

2
[γm, γn] =

(σmn) β
α 0

0 (σ̄ mn)α̇
β̇

 (C.9)

with

(σmn) β
α =

1

2

(
(σm)αα̇(σ̄

n)α̇β − (σn)αα̇(σ̄
m)α̇β

)
(C.10)

(σ̄ mn)α̇
β̇
=

1

2

(
(σ̄ m)α̇α(σ n)αβ̇ − (σ̄ n)α̇α(σ m)αβ̇

)
(C.11)

De�nition

(γmn)µν ≡ Cµρ(γmn) ν
ρ (C.12)

(γmn)µν ≡ (γmn) ρ
µ Cρν (C.13)

explicitly

(γ0
′m)µν = i

 0 (σm)αα̇ ε
α̇β̇

(σ̄ m)α̇αεαβ 0

 ≡ i

 0 (σm) β̇
α

(σ̄ m)α̇β 0

 (C.14)

(γmn)µν =

(σmn) γ
α εγβ 0

0 (σ̄ mn)α̇γ̇ ε
γ̇β̇

 ≡

(σmn)αβ 0

0 (σ̄ mn)α̇β̇

 (C.15)

Antisymmetric chiral matrices in 6 dimensions

(ρM)ac(ρ̃
N)cb + (ρN)ac(ρ̃

M)cb = 2δMNδ b
a (C.16)

(ρ̃M)ab =
1

2
ϵabcd(ρM)cd (ρM)ab =

1

2
ϵabcd(ρ̃

M)cd (C.17)

(ρMN) b
a =

1

2

(
(ρM)ac(ρ̃

N)cb − (ρN)ac(ρ̃
M)cb

)
(C.18)
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C.2 Algebras

OSP(4|6) algebra in Sp(4)× SO(6) basis

[Oµν , Oρσ] = CµρOνσ + CµσOνρ + CνρOµσ + CνσOµρ (C.19)

[OMN , OKL] = δMKONL + δMLONK + δNKOML + δNLOMK (C.20)

{OµM , OρL} = i(−δMLOµρ + CµρOML) (C.21)

[Oµν , OρL] = CµρOνL + CνρOµL (C.22)

[OMN , OρL] = δMLOρN − δNLOρM (C.23)

with µ, ν = 1, . . . , 4 and M,N = 1, . . . , 6.

Change of basis

Mmn =
1

4
(γmn)µνOµν Oµν = −1

2
(γmn)µνMmn

U b
a = − i

4
(ρMN) b

a OMN OMN = − i

2
(ρMN) b

a U a
b

Oµab =
1

2
OµM(ρM)ab OµM = −1

2
(ρ̃M)abOµab

O ab
µ =

1

2
OµM(ρ̃M)ab OµM = −1

2
(ρM)abO ab

µ

(C.24)

OSP(4|6) algebra in SO(3, 2)× SU(4) basis

[Mmn,Mkl ] = ηnkMml − ηmkMnl − ηnlMmk + ηmlMnk (C.25)

[U b
a , U d

c ] = i
(
δ b
c U

d
a − δ d

a U b
c

)
(C.26){

Oµab ,O cd
ν

}
= i

4

(
δ d
a δ c

b − δ c
a δ d

b

)
(γmn)µνMmn +

+ 1
2
Cµν

(
δ c
a U d

b − δ c
b U

d
a − δ d

a U c
b + δ d

b U c
a

)
(C.27)

[Mmn,O cd
µ ] = −1

2
(γmn) ν

µ O cd
ν (C.28)

[U b
a ,O cd

µ ] = −i
(
δ c
a O bd

µ − δ d
a O bc

µ − 1
2
δ b
a O cd

µ

)
(C.29)

[U b
a ,Oµ cd ] = i

(
δ b
c Oµad − δ b

d Oµac − 1
2
δ b
a Oµ cd

)
(C.30)



96 APPENDIX C. OSP(4|6) ALGEBRA

with m,n, k, l = 0′, 0, 1, . . . , 4 and a, b, c, d = 1, . . . , 4.

Properties

Mmn = (M0′m,Mmn) with m = (0′,m) and m = 0, 1, 2, 3

U b
a = (U b

a , U
4

a , U
a

4 ) with a = (a, 4) and a = 1, 2, 3

O ab
µ =

1

2
ϵabcd Oµ cd

Oµab =
1

2
ϵabcd Oµ

cd (C.31)

Oµ 4a = −1

2
ϵabcO bc

µ O ab
µ = −ϵabcOµ 4c (C.32)

O 4a
µ = −1

2
ϵabcOµ bc Oµab = −ϵabcO 4c

µ (C.33)

De�nitions

Pm ≡M0′m (C.34)

V b
a ≡ U b

a − δ b
a U c

c , Va ≡
1√
2
U 4
a , V a ≡ 1√

2
U a
4 (C.35)

Oαa
α=1,2

≡ Oµ 4a
µ=1,2

, O a
α α=1,2

≡ O 4a
µ µ=1,2

(C.36)

Oα̇
a α̇=1,2

≡ Oµ 4a
µ=3,4

, Oα̇a

α̇=1,2
≡ O 4a

µ µ=3,4
(C.37)
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OSP(4|6) algebra in chiral basis

[Mmn,Mkl ] = ηnkMml − ηmkMnl − ηnlMmk + ηmlMnk

[Mmn, P k] = ηnkPm − ηmkP n

[Pm, P n] = −Mmn

(C.38)

[V b
a , V d

c ] = i
(
δ b
c V

d
a − δ d

a V
b

c

)
[V b

a , Vc] = i
(
δ b
c Va − δ b

a Vc
)

[V b
a , V c] = −i

(
δ c
a V

b − δ b
a V

c
)

[Va, V
b] = i

2

(
V b
a − δ b

a V
c

c

) (C.39)

{Oαa,Oβb} = − 1√
2
εαβϵabcV

c {O a
α ,O b

β } = 1√
2
εαβϵ

abcVc

{Oα̇a,Oβ̇b} = 1√
2
εα̇β̇ϵabcVc {Oα̇

a,O
β̇

b
} = − 1√

2
εα̇β̇ϵabcV

c

{Oαa,Oβ̇b} = 1
2
δ b
a (σm) β̇

α Pm {O a
α ,Oβ̇

b
} = 1

2
δ a
b (σm)α̇βPm

(C.40)

{Oαa,O b
β } = − i

4
δ b
a (σmn)αβMmn +

1
2
εαβV

b
a

{Oα̇
a,Oβ̇b} = − i

4
δ b
a (σ̄ mn)α̇β̇Mmn +

1
2
εα̇β̇V b

a

{Oαa,Oβ̇

b
} = 0 {O a

α ,Oβ̇b} = 0

(C.41)

[Mmn,Oαa] = −1
2
(σmn) β

α Oβa [Mmn,O a
α ] = −1

2
(σmn) β

α O a
β

[Mmn,Oα̇a] = −1
2
(σ̄ mn)α̇

β̇
Oβ̇a [Mmn,Oα̇

a] = −1
2
(σ̄ mn)α̇

β̇
Oβ̇

a

(C.42)

[Pm,Oαa] = − i
2
(σm)αβ̇O

β̇

a
[Pm,O a

α ] = − i
2
(σm)αβ̇Oβ̇a

[Pm,Oα̇a] = − i
2
(σ̄m)α̇βO a

β [Pm,Oα̇
a] = − i

2
(σ̄m)α̇βOβa

(C.43)

[V b
a ,Oαc] = iδ b

c Oαa [V b
a ,Oα̇

c] = iδ b
c Oα̇

a

[V b
a ,Oα̇c] = −iδ c

a Oα̇b [V b
a ,O c

α ] = −iδ c
a O b

α

(C.44)

[Va,Oαb] = − i√
2
ϵabcO c

α [Va,O b
α ] = 0

[Va,Oα̇b] = 0 [Va,Oα̇
b] = − i√

2
ϵabcOα̇c

[V a,Oαb] = 0 [V a,O b
α ] = i√

2
ϵabcOαc

[V a,Oα̇b] = i√
2
ϵabcOα̇

c [V a,Oα̇
b] = 0

(C.45)
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C.3 Super-Traces

STr(MklMmn) = η[kl][mn] ≡ ηkmηln − ηknηlm (C.46)

STr(PmPn) = ηmn (C.47)

STr(V b
a V d

c ) = −2δ d
a δ

b
c (C.48)

STr(VaV
b) = −δ b

a (C.49)

STr(OαaO b
β ) = iεαβδ

b
a (C.50)

STr(Oα̇aOβ̇

b
) = iεα̇β̇δ a

b (C.51)
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