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Introduction

Physicists and mathematicians love regularity, mainly for the reason that it makes
things simple, clear and, primely, computable; nature, on the other hand, has its
own way of deciding what’s the right way to behave, and although it presents
the attentive observer with beautifully ordered crystals, impressive fractals and
perfectly spherical soap bubbles, the vast majority of matter we interact with every
day has no definite structural order: wood, plastic, cloth, all are microscopically
complex structures which do not enjoy neither translational nor scale invariance,
nor any other form of symmetry.

However, even when the spatial disposition of the constituents of matter is
highly irregular, what determines the physical properties of the system are not so
much the details of the distribution, as the topological structure of their interac-
tions, which can usually be safely reduced to nearest neighbour or next-nearest
neighbour relations.

As a consequence, both regular and complex matter are well described by
means of graphs, which represent in a compact form the interactions among their
constituents.

When paired with an underlying mathematical model, a graph is able to de-
scribe many physical systems in an approximate yet effective way. Furthermore, a
graph can equally well model a network of interacting agents, as one often finds in
economic literature, or computers - the Internet is the prime example - or abstract
data structures in IT, or a deluge of other possibilities.

A formal introduction to graphs, as well as some of their many peculiar char-
acteristics, is given in Chapter 1.

Given their broad applicability, it is not surprising that a great wealth of sci-
entific literature in many fields regards physical and mathematical models defined
on graphs. In particular, during my doctoral period I focused on two different
general purpose models, which enjoy a wide diffusion: discrete random walks and
the Ising model.
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Random Walks

Regarding random walks, my current research focuses on the statistics of multiple
agents simultaneously travelling on an infinite graph, and their collective proper-
ties.

Several degrees of technical difficulty accompany this endeavour, associated
with keeping track of multiple positions, on the one hand, and with the non-
linearity of collective properties, on the other. A simplifying picture can be some-
times achieved by means of the distance graph, each vertex of which corresponds to
a relative position of the particles, so that, for example, simultaneous encounters
of all the particles correspond to a return to the origin in the distance graph.

Constructing the distance graph proves however impossible in general, so that
case specific methods need to be used to calculate the same quantities.

While further work is in progress, the results I obtained up to date regard three
particles moving on an infinite line: owing to the homogeneity of the structure,
a distance graph exists, which corresponds to the triangular 2-d lattice, so that
the probability of finding the particles at given relative distances can be straight-
forwardly calculated by means of a standard Fourier transform and saddle point
approximation.

As a further step, we computed the probability that the minimum and max-
imum distances among the particles are lower than some constant d, and found
that asymptotically they scale as a function of d2/t, implying that the surfaces of
fixed probability undergo a regular diffusion.

The results have been submitted for publication [1].
Chapter 2 contains an introduction to random walks on infinite graphs. Chap-

ter 3 presents some results about regular and more general graphs, which highlight
fairly recent results in the field. Chapter 4, finally, describes the results I obtained
in the field of multiple random walks and future perspectives.

The Ising Model

The second area of research I investigated revolves around the magnetization prop-
erties of the ferromagnetic Ising model on arbitrary graphs. More specifically, my
aim was to find a relationship between the long range topology of a graph and its
spontaneous magnetization.

Several results are present in literature for regular lattices, fractals and a few
more general graphs, and an extension of the Mermin-Wagner theorem states that
transient on the average graphs show indeed spontaneous magnetization; however,
a very wide set of graphs was still uncovered, and no sufficiently general criterion
for assessing the existence of long range correlation existed.
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The approximate direction of exploration was clear since the beginning: on the
one side, the number of different paths present in a graph is a first measure of
the quality of the correlation between far away points; in turn, the transmission
of information from one vertex to another is strongly inhibited when all the paths
connecting them must cross just a small number of edges of the graph.

These considerations formed the basis from which we proceeded to the con-
struction of two theorems: a necessary condition for the presence of spontaneous
magnetization, in zero external field and no boundary conditions, and a sufficient
condition for its absence. These two theorems represent the most encompassing
criteria to date for what regards the magnetizability of graphs: all the known
structures enter the hypothesis of either of the theorems, even though no sufficient
and necessary condition is known.

The gap left between the hypotheses of the two theorems regards a very small
class of pathological graphs whose existence is not even acknowledged.

The two theorems have been published in [2] and [3].
A part of my study was cast into an analysis of the different ways in which

spontaneous magnetization can be defined, as either a spin expectation value or a
long range order, for a single spin or averaged over the graph, under an external
field or boundary conditions or neither. A chapter has been devoted to a thorough
discussion of the matter.

In Chapter 5 the basics of the ferromagnetic Ising model are presented, to-
gether with the the most important results the scientific literature presents re-
garding the magnetization of complex structures. In Chapter 6 the sufficient
condition for the absence of spontaneous magnetization is discussed in depth, as
is the sufficient condition for the presence of spontaneous magnetization found in
Chapter 7. Finally, Chapter 8 deals with the different definitions of spontaneous
magnetization and their relations.



4



1
Graphs

1.1 Definition of Graphs and their Embeddings.

Subgraphs

An undirected graph (from now on simply graph) G is a pair (P,L), where P
is a countable collection of vertices and L ⊂ P × P is a set of unoriented arcs (or
bonds or edges) between points.

The structure of a graph can be described algebraically, thus allowing for easier
mathematical computations, by means of the adjacency matrix Aij , defined as

Aij =

{

1 if (i, j) ∈ L
0 if (i, j) 6∈ L. (1.1.1)

An embedding of a graph G into a space S is a structure in S which repli-
cates the vertices (to each vertex in P corresponds a point in S) and the edges
(for each arc of L a line exists in S between the corresponding points, with the
peculiarity that two separate lines never intersect) of G. Of course a graph needs
not be embeddable in any given space (e.g. an infinite 3-d regular lattice can not
be embedded into a plane), and there are examples of graphs which can not be
embedded in a separable way into any finite-dimension space.

Definition. A graph which can be embedded on a plane is called a planar graph.

A set of n points linked in all the possible ways is called a complete graphs
and denoted by Kn. For n ≤ 4, Kn is planar, otherwise it is not (see Fig.1.1).

The graphs as mathematical objects have no awareness of any Euclidean space
they may be embedded into: if we draw a graph on a sheet of paper we choose one
of infinite equivalent ways of representing it, and all the details, e.g. the length
of the bonds or the position of vertices, have no significance at all. All in all, the
graph is essentially a topological structure, which is equivalent to the class of all
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Figure 1.1: (a) The planar graph K4, and (b) the non-planar graph K5.

its possible embeddings.

Definition. Any pair G ′ = (P ′,L′), such that

• P ′ ⊂ P,

• L′ ⊂ L, and

• L′ contains only links between elements of P ′,

is called a subgraph, and it’s denoted G ′ ⊂ G.
Since dealing with actually infinite graphs is difficult, we will usually employ the
subgraphs as their growing approximation: one calculates observables on a set
{GN} of finite subgraphs, each including its predecessor, then takes the N → ∞
limit.

The vertex boundary ∂G ′ of a subgraph G ′ is defined as the set of points of P ′

that share a bond with at least one point of the set P \ P ′:

∂G ′ = {i ∈ P ′ : (i, k) ∈ L for some k ∈ P \ P ′} .

The ratio of the size of the boundary to the size of the bulk of a subgraph, in the
thermodynamic limit, is an important quantity in a great deal of applications, as
it enters the hypotheses of a number of theorems in physics and mathematics.

As an example, in solid state physics one can consider periodic boundary con-
ditions when studying the Schrödinger equation of a crystal, in order to make the
calculations easier: since the ratio is asymptotically 1/R as the linear size R of
the system grows, it tends to zero for large size crystals, and one is guaranteed to
obtain essentially the same results as with non periodic boundary conditions.
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Most notably, when the ratio doesn’t tend to zero as the size of the subgraph
grows, as in the case of the Cayley tree (also known as Bethe lattice), the effect
of the border on the overall behaviour of the system is overwhelming, and what
happens there determines the bulk behaviour of the structure.

1.2 Chemical Distance and the Intrinsic Metric

Definition. As we are next going to introduce random walks on graphs, we define
a path γij, between two points i and j, as a collection of consecutive bonds of L,
where consecutive means that each pair shares a vertex with the next one:

γ = {(i, l1), (l1, l2), . . . , (lD−1, j)} .

A path is self-avoiding if no edge appears in it more than once.

A closed self-avoiding path γii, i.e. a path whose starting point is also its ending
point, is called a loop.

The existence of a loop implies that there are 2(#γii) different loops sharing the
same or reverse ordering of edges, but with different starting points. We call the
equivalence class of all such loops a cycle.

We write the set of all possible paths between two points i and j as Γij.

Definition. Directly associated to the concept of path, the chemical distance dij
between two points i and j is defined as the length of the shortest path connecting
them.

dij = min
γij∈Γij

#γij (1.2.1)

Any minimum distance path is called a geodetic.
We can now define an important property of graphs:

Definition. A graph G is connected when for any pair (i, j) ∈ P a path exists
having them as extremes.

As disconnected graphs are essentially a set of independent connected graphs, in
the following we will only consider connected graphs.

Definition. We have introduced vertex boundaries in the previous section; a
slightly different kind of boundary is the bond boundary: let L be a collection
of links L = {li}; if removing L divides the graph into two connected subgraphs
S1 and S2, i.e.

• all the paths γij on G from a point i ∈ S1 to a point j ∈ S2 must cross one
link of L,

• a path exists between any pair of points both belonging to S1 or to S1
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we call L a bond boundary.

The chemical distance straightforwardly induces the so-called intrinsic metric
of the graph: it is in fact trivial to prove that

• dij ≥ 0,

• dij = 0 iff i = j,

• dik + dkj ≥ dij, ∀k ∈ P.

The intrinsic metric of the graph is the most immediate and natural metric which
can be defined on a graph, but it is not the most useful nor powerful: when con-
sidering physical and mathematical models on a graph, a number of fundamental
quantities don’t depend on chemical distances, but on other distances - slight mod-
ifications of euclidean distance, in the case of models on regular lattices - which
therefore appear more apt to describe the corresponding physics.

Definition. The coordination number of a vertex i ∈ P is defined as the
number of arcs which have i as an extreme:

zi = # {l ∈ L : i ∈ l} =
∑

j

Aij ,

where Aij is the adjacency matrix which we have defined at the beginning of this
chapter.

In the following we will mostly be concerned with graphs whose zi are uniformly
limited, i.e. an integer zMax exists such that

• zi ≤ zMax∀i ∈ P,

• a point j ∈ P exists for which zj = zMax.

One of the reasons why the condition zi ≤ zMax is important is that many
inequalities and theorems can be proved as long as it holds. Another point is
that the thermodynamic limit will probably be ill-defined if points arbitrarily
far from the origin are allowed to have more and more first neighbours.

1.3 Infinite Graphs, Van Hove Spheres, Intrinsic

Fractal Dimension and All That

As in this thesis we will be dealing essentially with infinite graphs, it is convenient
to introduce now some concepts which will be used later on.

An essential tool for analytical calculations on infinite graphs is a generalization
of the continuous Euclidean sphere, called Van Hove sphere [4]. The Van Hove
sphere Si,r, of centre i and radius r, is the subgraph of G given by the set of vertices
Pi,r = {j ∈ P : dij ≤ r} and by the set of links Li,r = {(j, k) ∈ L : i, j ∈ Pi,r}.



1.3 Infinite Graphs and All That 9

Let now Nr be the maximum number of vertices included in any Van Hove
sphere of radius r:

Nr = sup
i∈G

#Si,r.

It should be noted that the case of infinite Nr corresponds to unbounded zi: if
zi ≤ zMax then

Nr ≤ zMax (zMax − 1)r−1 .

Definition. The intrinsic fractal dimension dfrac is defined as

dfrac = min
{

d : Nr ≤ Crd + E
}

, (1.3.1)

for some constants C and E.

It differs from the continuous fractal dimension in that it refers to the topological
nature of the graph (i.e. to its natural - chemical - distance), and not on the
metric structure of the space into which the graph is embedded. The limiting case
dfrac = ∞ corresponds to an exponential or faster-than-exponential growth of Nr.

A d-dimensional Euclidean lattice is just the pair
(

Z
d,L
)

with L consisting
of all the edges between first neighbours, as seen in the natural embedding of
Z
d in Rd.

A Van Hove sphere of radius R for such a graph is the set of points inside a
structure S, formed by the juxtaposition of the 2d standard simplices of edge
R having as normal vectors (±1, . . . ,±1), or equivalently the set of points ~x
satisfying

{

ai1x1 + ai2x2 + · · ·+ aidxd ≤ R
ai ∈ {+1,−1} for i = 1, 2, . . . , d

.

The volume of each simplex, and thus of S, is ∼ Rd, and so dfrac = d for
Euclidean lattices.

As a last tool, we now introduce the measure of an infinite subset in the thermo-
dynamic limit: let {SN} be a sequence of sets satisfying

S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊂ . . . ,

whose size #SN tends to infinity with N , and let {RN} be a sequence of subsets
verifying

{

R1 ⊂ R2 ⊂ · · · ⊂ Rk ⊂ . . .
RN ⊂ SN

.

We call measure of the subset R = limN→∞RN with respect to the set S =
limN→∞ SN the quantity

µ(R) = lim
N→∞

#RN

#SN
.
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We will always implicitly think of S as the whole vertex set of a graph G = (P,L),
and furthermore we will use

µ(R) = lim
N→∞

#G ′
N

#GN

as an improper notation for

µ(R) = lim
N→∞

#RN

#SN

,

whenever G ′
N ⊂ GN for all N .

1.4 Bipartite Graphs

A bipartite graph is defined as having the following property: its vertex set can
be divided into two subsets P1 and P2, so that the elements in P1 only share edges
with elements in P2, and vice versa.

Any regular Euclidean lattice is bipartite: since the chemical distance of a
point from the origin is just d0x =

∑

i=1,...,d xi, vertices having an even d0x are
only linked to vertices having odd distance from the origin.

Proposition. Every path between two points, i, j ∈ P1 in a bipartite graph is
even.

Proof. It is obvious that a path of length l ending in j has its first element k in
P1 after two steps; iterating this proposition, it follows that any path lands in P1

only after an even number of steps, while all the odd-numbered steps end up in P2.

Theorem. A graph is bipartite if and only if all of its closed paths γi→i are
even.

⇒ if a graph is bipartite, then all of its loops are even, as they are path where
both the starting and the ending point lie in P1;
⇐ the inverse implication can be proved as follows: set i ∈ V , and let C1 ⊂ P
be the subset set of vertices at even distance from i, and let C2 = P \ C1;
suppose now that an edge exists between two points j and k in C1, and take
a geodetic from j to i, and a geodetic from i to k: since they are both of even
length, it is possible to connect j to k with an odd path, which contradicts the
hypothesis, so no edge between elements of C1 exists. Analogously, no edge
(j, k) between elements of C2 can exist, otherwise it would be possible to create
an odd loop, through i and k, for j.

When each of the elements of P1 is connected to all of the elements of P2, we call
G a complete bipartite graph. This definition is fully equivalent to the one
obtained by reversing the roles of P1 and P2.
It is common to write Kl,m for the complete bipartite graph where #P1 = l and
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Figure 1.2: The complete bipartite graph K3,3.

#P2 = m.

An important example of complete bipartite graph is K3,3 (see Fig.1.2): its
most prominent feature is that of being the simplest non-planar bipartite graph
which can be constructed. The reader has probably encountered a (quite
sadistic) puzzle game, where you are given two sets of three points each and
are asked to connect each elements of the first set to all the elements of the
second set without intersecting lines. We will prove elsewhere that this is
indeed impossible.

1.5 Trees

A tree is a connected graph G which contains no cycles.

Theorem. A graph G is a tree if and only if G has no cycles and if adding
any new edge between non adjacent vertices creates exactly one cycle.

From the definition of tree it immediately follows that if we add a new edge
(i, j) to a tree, exactly one cycle is created, which can be obtained by taking
the only self-avoiding path connecting i to j on G and adding to it the new
edge.
To prove the converse, i.e. that G is connected, we need to prove that a path
exists between i, j ∈ P. If they are adjacent, there is nothing to prove. If they
aren’t, add the edge (i.j) to the graph: by virtue of the hypothesis exactly one
cycle is created; in particular, a self avoiding loop exists whose last step is on
the edge (i, j),

{(j, k), . . . , (z, i), (i, j)} .
If we remove the last edge from the loop, we obtain a path from j to i whose
edges are all in G, which proves the thesis.

Given an arbitrary graph, a spanning tree is a tree S = {P ′,L′} whose vertex
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set is the same as P, and L′ ⊂ L. We call a chord of the spanning tree any edge in
L\L′; the graphs obtained by adding any one chord to S have exactly one cycle.

A cycle which spans all the vertices of a graph is called a spanning cycle.

1.6 Independent Cycles and Cocycles

The presence of cycles is a fundamental property of graphs even for non mathe-
maticians, as it determines the strength of correlation between distant vertices in
a given physical model. In the case of electric networks, the circuits built on the
independent cycles (in a sense which we will specify below) are enough to solve
the whole network, and in the Ising model the quantity of long range cycles is a
key component in determining whether the system magnetizes.

Following Harary [5], we introduce a technique to formally cope with cycles:
first consider the sum operation over the field {0, 1}, where 1 + 1 = 0. When
applied to sums of vertices, it yields i+ i = 0i = 0, and when applied to sums of
edges (l, m) + (l, m) = 0(l, m) = 0.
A 0 − chain is a collection P of vertices, P ⊂ P, while a 1− chain is a collection
of edges, L ⊂ L.
We define the boundary operator ∂ as a linear operator sending 1 − chains to
0− chains, such that

∂l = i+ j

whenever l = (i, j).

Analogously, the coboundary operator δ is linear and sends 0− chains to 1−
chains according to the rule

δi =

zi
∑

k=1

(i, jk),

where jk is a first neighbour of i.

According to the 1 + 1 = 0 rule of the field, the ∂ operator does what one would
expect given its name, at least in simple cases: if we take a path γi→j, ∂γi→j yields
its extrema:

∂γi→j = {i, j} ,
while the boundary of a loop is the empty set.

The coboundary operator has a simple effect if we consider a connected set I ⊂ P:
δI is the set of links one must cut in order to disconnect I from the rest of the
graph.

Cycle Basis

A 1− chain with empty boundary is a collection of cycles that do not share edges;
we call it a cycle vector. Since the sum of cycles, according to the 1 + 1 = 0
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rule, is a cycle, the cycle vectors form a vector space on the field {0, 1}. As usual,
a basis of this space is a maximal collection of independent vectors {vi}, where
independent means that

0 =

N
∑

i=1

αivi

only for αi = 0 for all i = 1, . . . , N .

The set of cycles {vi}, which one obtains by adding one link to a given spanning
tree, is actually a basis of the cycle space:

• they are independent, as each of them contains an edge that no other vj has;

• they generate the vector space, as a sum of such cycles is enough to produce
every possible cycle [5].

1.7 Eulerian Graphs

A well known problem in graph theory, which is traditionally tied to the very
birth of this branch of mathematics, is the Königsberg Bridge Problem: in the
town of Königsberg, once capital of East Prussia, now Kaliningrad, Russia, two
rivers join forming an island; at the time when the problem was first formulated,
seven bridges existed which joined the different regions formed by the rivers (see
Fig.1.3). Is it possible to walk all the bridges without crossing any bridge twice ?

The negative answer to the problem was first given by Euler in 1735. He used
a graph to describe the topological structure of the problem and abstract all the
superfluous details. The bottom line of his reasoning is that one needs an edge to
get to, and an edge to get away from, every vertex, the only possible exceptions
being the vertex from which the walk starts and the vertex where the walk ends.
Therefore at most two vertices can have an odd coordination number, and the
Königsberg Bridge problem admits no solution.

While this condition is necessary to be able to transverse all the edges in a
graph exactly once, we have not proved it to be sufficient. In order to do so, we
define an Eulerian graph as a graph such that it is possible to find a path which
traverses each edge exactly once, goes through all vertices and ends at the starting
point. We call such path an Eulerian cycle. While it is clear that an Eulerian
graph needs to be connected, the following theorem [5] needs a proof.

Theorem. The following statements are equivalent for a graph G which is finite,
connected and non-trivial (i.e.: there are no points with coordination number 1):

1. G is Eulerian;

2. every vertex of G has even coordination number;

3. the set of lines of G can be partitioned into cycles.
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Figure 1.3: The island at Königsberg (now Kaliningrad, Russia) and its graph
representation.

Proof. 1 ⇒ 2
Given any Eulerian path γ - i.e. any cycle which contains all vertices and all edges
- each point appears in γ an even number of times, as for each ingoing step there
is an outgoing step.

2 ⇒ 3
Since the coordination number is at least 2 and the graph is finite, any path which
never steps back will sooner or later visit a vertex which it has already visited. Let
C1 be a cycle thus determined, and call G1 the graph obtained by removing the
edges of C from G. G1 now has even coordination number (possibly 0) at every
vertex: if it contains no lines, then the implications is proved; otherwise, one can
find a cycle C2 in G1 starting from any vertex with coordination number at least 2,
and obtain the corresponding graph G2. Since the graph is finite, this process will
exhaust all possible edges, so that the set of lines in G can actually be partitioned
into cycles.

3 ⇒ 1
Take any partition into cycles {Ci} of G: since G is connected, a cycle Cj must
exist which has at least a vertex vj in common with C1, and the union of C1

and Cj is itself a cycle. One can iterate the previous operation until the cycles
are exhausted, and the final cycle will span all the edges in G, which proves the
implication and the thesis is thus demonstrated.

�

It is now straightforward to prove the result by Euler.

Corollary. A graph G with exactly two vertices of odd coordination number can
be traversed by a path which crosses all its edges.
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Let i and j be the vertices with odd coordination number. Add an edge (i, j)
to the graph, so that it now has even an coordination number at every vertex.
Then an Eulerian cycle γ exists for the new graph, and we can choose the
starting point so that (i, j) is the last traversed edge. Then γ \ {(i, j)} is a
path which starts from j, ends in i and visits all the edges of G.

A slightly more general result is the following.

Corollary. A graph G with exactly 2n vertices (n ≥ 1) of odd coordination
number can be partitioned into n self-avoiding paths.

Arbitrarily divide the 2n of odd coordination number vertices into n pairs, and
add the corresponding edges to the graph. The graph obtained is Eulerian,
and can thus be partitioned into cycles. For each cycle γ that contains l ≥ 1
pairs among the n we have chosen, fix the starting point so that the last edge
visited is one of the l edges: then remove all l pairs from γ, so that it can be
divided into l paths, each beginning and ending in one of the 2l vertices. Since
each pair is present exactly in one cycle, it is possible to divide G into exactly
n paths starting from and ending at the vertices of odd coordination number.

1.8 Hamiltonian Graphs

A further characterization of finite graphs regards the possibility of visiting all its
points (not its edges) exactly once with a self-avoiding path, which we then call
Hamiltonian path. If a Hamiltonian cycle - a Hamiltonian path which returns
to the starting point on the last step - exists, the graph is called a Hamiltonian
graph.

A graph is called k-connected if it can be disconnected by removing k vertices.

Proposition. Any Hamiltonian graph is at least 2-connected.

Since the graph is Hamiltonian, a cycle C exists which spans all the points,
so the graph is connected, and k ≥ 1. Suppose now that k = 1: in that case
a point i exists such that by removing it G is divided into two non-empty
disconnected subgraphs A and B. Choose i as the starting point in i: C will
first visit either A or B, so that before visiting the other subgraph it will have
to step on i again, and a third time on the final step of the cycle, which is
absurd. Thus k ≥ 2.

Graphs that are not Hamiltonian all share a theta graph, which is made of
two non-adjacent vertices of coordination number 3, while all other vertices have
coordination number 2 (see Fig.1.4). In fact the following holds.

Theorem. A 2-connected non-Hamiltonian graph contains a theta subgraph.

Several theorems exist stating sufficient and necessary conditions for a graph to be
Hamiltonian, but no results as encompassing as those for Eulerian graphs exist. A
summary, with no proof, of such results follows.
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Figure 1.4: An example of theta graph.

Figure 1.5: A Hamiltonian graph for which there are 8 vertices of coordination
number 3.

Theorem. A graph G has p ≥ 3 points. If

• for all n such that 1 ≤ n < (p − 1)/2 the number of points of coordination
number lower than or equal to n is less than n,

• in the case of odd p the number of points of coordination number exactly
(p− 1)/2 does not exceed (p− 1)/2,

then G is Hamiltonian.

The previous theorem is by no way necessary: the graph in Fig.1.5 is an immediate
counterexample, as the graph is clearly Hamiltonian, while the number of points of
coordination number 3 is 8, thus breaking the hypothesis of the previous theorem.

It also comprises two classical results which are simpler to state.

Corollary. Let a graph G have p ≥ 3 vertices; if for every pair (i, j) of non-
adjacent points zi + zj ≥ p, then G is Hamiltonian.

Corollary. Let G be a graph made of p ≥ 3 vertices. If, for all vertices i, zi ≥ p/2,
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then G is Hamiltonian.
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2
Random Walks on Graphs

Random walks have been the focus of a wide area of research for over a hundred
years. The most striking fact about them is their impressive area of applicability,
which ranges from finance - with particular regard to the market fluctuations - to
genetics, from psychology to neurophysiology, from statistics to physics.

Since their many incarnations are completely outside the scope of this thesis,
it will suffice to recall the most meaningful example for a physicist: the Brownian
motion, that’s to say the effect of the thermal agitation of water on minuscule
particles laying on its surface, resulting in their movement.

The Brownian motion was arguably observed for the first time in 1785 by Jan
Ingenhousz, a Dutch scholar best known for discovering photosynthesis, and is
named after Robert Brown, a Scottish botanist, which analysed the phenomenon
in 1827.

It was initially modelled as a physical process by Einstein [6] and Smoluchowsky
[7], in two seminal papers at the beginning of the XX Century; the former scientist
predicted a diffusion coefficient for the particles, by means of continuous time
random walk, and the latter was able to experimentally verify the prediction.

Since, however, we are interested in the study of graphs, which are discrete
structures, we will have to yield the continuum space, and as a matter of choice
we will consider almost exclusively discrete time, although the technology of con-
tinuum time will be discussed in some detail later on.

2.1 Definition of Discrete Time Random Walks

Time-Independent Discrete Time Random Walk

In a time-independent discrete time random walk (RW from now on), an
abstract walker moves at discrete time intervals around the vertices of a graph G
in a haphazard fashion. More precisely, if the walker is at vertex i at time t, it will
be at a site j at time (t+ 1) with probability pij.



20 Random Walks on Graphs

The time-independent part means that the pij doesn’t depend explicitly on
time, and it is understood that the transition probability doesn’t depend on the
history of the RW; the latter case is usually referred to as self-interacting RW, and
is considerably more difficult to tackle.

The probability pij needs to satisfy some obvious assumptions

• pij ≥ 0;

• pij = 0 iff (i, j) ∈ L, so as to respect the structure of the graph.

While it may seem mandatory that
∑

j pij = 1, it is not really the case, as a
RW can contain traps - where the walker is destroyed - or sources - where new
walkers spring into existence. As a matter of fact, in the following we’ll be mostly
concerned with the case of conservative RWs so, unless otherwise stated, we
assume that

∑

j pij = 1.

The fundamental quantity to be computed in a RW is Pij(t), which is the prob-
ability that a walker starting at vertex i ends up at j after t steps. Pij(t) can
be computed as the sum, over all the paths γ of length t connecting i to j, of
the weights Pγ =

∏

(l,m)∈γ pl,m; since this definition is frankly encumbering, a
more straightforward algebraic formula is used, which reduces the sum to a matrix
product:

Pij(t) =
∑

l1

· · ·
∑

l(t−1)

pil1 . . . pl(t−1)j = (pt)ij, (2.1.1)

where p is the matrix of elements pij. Obviously Pij(0) = δij.

Another important quantity is the probability of first visit Fij(t): to compute
it one needs to sum over all the different paths which tread on the vertex j for the
first time after t steps.

While this may be close to impossible to compute directly, Fij can be easily
linked to Pij : in order to be at vertex j at time t, a walker either arrives for the
first time in j at t, or it has trodden on j for the first time at some τ < t, and
then wandered about, hitting j again after (t−τ) more steps; since the first arrival
times τ are mutually exclusive, it is licit to write

Pij(t) =
t
∑

τ=0

Fij(τ)Pjj(t− τ) + δijδt0, (2.1.2)

where last term keeps track of the initial position. The latter equation allows one,
in principle, to compute the numbers Fij(t) once the transition probabilities are
known. As a matter of fact, a simpler approach, exploiting generating functions is
the more viable solution, as we will see below.

Yet another meaningful quantity is F
(r)
ij (t), the probability that the random walker
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arrives at j for the r-th time after t steps. It satisfies the recurrence equation

F
(r)
ij (t) =

∑

τ

F
(r−1)
ij (t− τ)Fjj(τ). (2.1.3)

As they are convolutions of the probabilities of first return, all the F r
ij(t) can be

computed in principle once the Fij(t) are known. Once again, there is an alterna-
tive way of computing such quantities, employing generating functions, which is
much easier. We’ll see it later.

Simple Random Walks

A specific widely used type of RW is the simple random walk, in which the
single-step transition probabilities are defined as

pij =
1

zi
. (2.1.4)

A simple RW is evidently conservative, and a simple correlation exists between
Pij(t) and Pji(t) on the one hand, Fij(t) and Fji(t) on the other one:

ziPij = zjPji, (2.1.5)

ziFij = zjFji; (2.1.6)

this result can be immediately proven by noting that any path γ of weight Pγ

connecting i to j can be walked vice versa, with the resulting weight being zi
zj
Pγ .

2.2 Generating Functions

Employing generating functions is a very powerful way of dealing with sequences
of numbers. A generating function is a power series whose coefficients are the
numbers in our sequence. Letting An be such numbers, we define Ã(λ) as

Ã(λ) =
∞
∑

n=0

Anλ
n. (2.2.1)

Generating functions are a discrete version of the Laplace transform, and they
have several advantages over manipulating directly the numbers An, as we are
next going to describe.

Deconvolution

Given two sequences An and Bn, with An = Bn = 0 for n < 0, their convolution
is defined as Cn =

∑

pApBn−p. The corresponding generating functions are simply
related by the following:

C̃(λ) = Ã(λ)B̃(λ); (2.2.2)
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in fact

C̃(λ) =
∑

n

λn

(

∑

p

A(p)B(n− p)

)

=
∑

n

λn

(

∑

p

A(p)
∑

q

B(q)δ(p+ q − n)

)

=
∑

p

∑

q

A(p)B(q)λp+q = Ã(λ)B̃(λ).

In the specific case of RWs, we combine Eqs.(2.1.2) and (2.2.2) and obtain

P̃ij(λ) = F̃ij(λ)P̃jj(λ) + δij. (2.2.3)

A new path to computing Fij(t) is thus open, which can be a valid alternative to
the brute force computation we hinted at above.

The deconvolution properties of generating functions yield a straightforward for-
mula for F

(r)
ij (t), the probability that a walker arrives at j for the r-th time after

t steps, as of Eq.(2.1.3):

F̃
(r)
ij (λ) = F̃

(r−1)
ij (λ)F̃jj(λ) =

[

F̃ij(λ)
]r−1

F̃jj(λ). (2.2.4)

Recurrence Relations

The main tools for computing generating functions analytically are recurrence
relations of the form

An = f(A(n−1), . . . , An−k) : (2.2.5)

in some cases it is indeed possible to obtain closed form expressions for generating
functions by multiplying the n-th term by λn and then summing over n; the
generating function is then completely determined once the first k terms of the
sequence have been calculated.

The Fibonacci numbers φn are defined by

φn = φn−1 + φn−2, (2.2.6)

with φ0 = 0 and φ1 = 1. Multiplying Eq.(2.2.6) by λn and summing over
n = 2, 3, . . . one obtains

φ̃(λ)− λφ1 − φ0 = λ
[

φ̃(λ)− φ0

]

+ λ2φ̃(λ),

and finally

φ̃(λ) =
λ

(1− λ− λ2)
. (2.2.7)
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Asymptotic Expansion

Having a generating function Ã(λ) in closed form is by no means enough to get
an analytic form for the coefficients An, as this often proves an impossible feat to
accomplish. It is nevertheless possible to obtain the asymptotic behaviour of An

as n→ ∞ by a variety of techniques.
We follow here an elementary approach as in a paper by Montroll and Weiss [8],

many more details can be found in references [9, 10] Let λ = e−y, and take for
granted that

• Ã (λ(y)) converges as y → 0+,

• An > 0 ∀n,
Hypothesize now that

Ã(λ) ∼ f(y−1),

where f(l) = lσL(l), with

• L(l) monotonically increases for l > l0,

• liml→∞ L(l) = +∞,

• σ > 0,

• L(cl) ∼ L(l) as l → ∞.

Under these assumptions

A1 + A2 + · · ·+ An ∼ f(n)

Γ(σ + 1)
. (2.2.8)

Computing An is then a matter of algebra:

An ∼ f(n)− f(n− 1)

Γ(σ + 1)
.

2.3 Paths Counting

When a simple random walk occurs on a homogeneous graph (e.g. a regular
lattice), a simple connection is found between Pij(t) and Nij(t), the number of
different paths of t steps connecting i to j: keeping into account that each path
has a weight z−t attached to it,

Pij(t) = z−tNij(t),

P̃ij(λ) = Ñij(λ/z).
(2.3.1)

Analogously, Mij(t), the number of paths which arrive in j for the first time after
t steps, is closely related to Fij(t):

Fij(t) = z−tMij(t),

F̃ij(λ) = M̃ij(λ/z).
(2.3.2)
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2.4 Number of Points Visited

It is possible to compute the average number of distinct points visited in a t-step
RW by employing the quantities we studied earlier. Let S(t) be this probability,
then

Si(t) = 1 +
∑

j 6=i

[Fij(1) + Fij(2) + · · ·+ Fij(t)] ; (2.4.1)

the heading one on the right-hand side is the starting point i, and the sum over
time of each Fij(t) is the probability that site j has been visited at least once in
the first t steps. In the general case, Si(t) depends on the starting site, while in
homogeneous graphs the index i can be dropped.
To compute the generating function for Si(t), we first introduce the average number
of new sites visited at time t, i.e.

∆i(t) = Si(t)− Si(t− 1) =
∑

j 6=i

Fij(t),

for all t = 1, 2, . . . .
Its generating function is

∆̃i(λ) =
∞
∑

t=1

λt∆(t) =
∑

j

F̃ij(λ)− F̃ii(λ).

Inverting Eq.(2.2.3), one can write

∆̃i(λ) =
∑

j

[

P̃ij(λ)− δij

P̃ii(λ)

]

−
[

1− 1

P̃ii(λ)

]

=
∑

j

P̃ij(λ)

P̃ii(λ)
− 1.

Since
∑

j Pij(t) = 1, the following holds:

∑

j

P̃ij(λ) =
∑

t

λt
∑

j

Pij(t) =
1

1− λ
,

which entails

∆̃i =
[

(1− λ) P̃ii(λ)
]−1

.

Returning now to Si(t), we notice that

Si(t) = 1 + ∆i(1) + · · ·+∆i(t),

so that its generating functions satisfies

S̃i(λ) = 1 + λ (1 + ∆i(1)) + λ2 (1 + ∆i(1) + ∆i(2)) + . . .

=
(

1 + λ+ λ2 + . . .
)

+ λ
(

1 + λ+ λ2 + . . .
)

∆i(1) + . . .

= (1− λ)−1 [1 + λ∆i(1) + λ2∆i(2) + . . .
]

= (1− λ)−2 P̃ii(λ)
−1. (2.4.2)
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So the knowledge of the probabilities of return on a graph is enough to determine
the behaviour of Si(t). As before, the dependence of Si(t) on i is not trivial in a
general graph, while the index can be dropped for homogeneous graphs.

2.5 Transience and Recurrence

Definition. A RW on a graph is said to be recurrent if the probability of ever
returning to the starting point is 1, that is to say

∑

t

Fii(t) = 1. (2.5.1)

Equivalently, a RW on a graph is recurrent when the average number of visits of
the starting point is infinite, i.e. when

∑

t

Pij(t) = +∞.

That the two definitions are indeed the same can be easily proven: when i = j,
Eq.(2.2.3) reads

P̃ii(λ) =
(

1− F̃ii(λ)
)−1

,

so that
lim
λ→1

F̃ii(λ) =
∑

t

F̃ii(t) ⇒ lim
λ→1

P̃ii(λ) = +∞.

On the other hand,

F̃ii(λ) = 1− 1

P̃ii(λ)

implies the converse relation.

It is essential to notice that, on a connected graph, if the RW is recurrent at j, it
is recurrent starting from any other vertex.

A way to prove it is as follows: it is obvious that, for any i,

Pjj(t) >
∑

τ1

∑

τ2

Fji(τ1)Pii(t− τ1 − τ2)Fij(τ2).

Now multiply by λt and sum over t: after a little math it results that

P̃jj(λ) > F̃ji(λ)P̃ii(λ)F̃ij(λ);

so that P̃ii(1) = +∞, implies P̃jj(1) = +∞ for all j.

Definition. When
∑

t Fii(t) is less than 1, the RW is called transient, and there
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is a finite chance for a walker never to return to the starting point.

Any finite graph G, that’s to say a graph such that

#P <∞,

is recurrent.

The problem of transience/recurrence is thus only meaningful in the case of infinite
size graphs, which are usually obtained as the limit of a sequence of growing finite
graphs.

2.6 Traps in a Random Walk

A useful generalization of the RW is obtained by introducing traps. The transition
probabilities then satisfy

∑

j

pij = 1− di, (2.6.1)

where di > 0 is the probability of death of the walker. Traps then determine
the possibility that after a step the RW goes nowhere, which is the same as saying
that it’s been destroyed.
If traps are everywhere on the graph, we expect the walker to die relatively soon.
To give a quantitative meaning to this affirmation, take the case of a graph with
all vertices satisfying di = d. Now let D(t) be the probability that the walker is
dead after t steps, and let A(t) = 1 − D(t). An immediate recursion rule is the
following:

A(t) = A(t− 1)(1− d),

which can be iterated to obtain

A(t) = (1− d)t,

and finally
D(t) = 1− (1− d)t. (2.6.2)

The probability of death can be considered an effective cut-off on the length of
the RW, of size 1/ log(1 − d). Actually, this is exactly what happens in generat-
ing functions for λ < 1: paths of length greater than log(λ−1) are exponentially
suppressed since

P̃ij(t) =
∑

t

λtPij(t).

As seen from another point of view, the λ→ 1 limit of generating functions can be
seen as a regulator for divergent quantities (e.g. expected number of returns in a
recurrent graph) or for the thermodynamic limit, as they allow for the exploration
of just a finite part of the graph.
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2.7 Spectral Dimension

In this section we mainly follow ref. [11].

Local Spectral Dimension

Quantities like Fii(t) and Pii(t) usually show a well-defined behaviour as t → ∞,
which in most cases is a power law [11]. The local spectral dimension, provided
that it exists, is defined as d̃ in the following asymptotic expression for t→ ∞:

Pii(t) ∼ t−d̃/2. (2.7.1)

The local spectral dimension can be proved in effect to be site independent [11],
more precisely the previous equation implies

Phk(t) ∼ t−d̃/2,

for all h, k. In a more general, albeit less intuitive, fashion, the local spectral
dimension can be defined as

d̃ = −2 lim
t→∞

logPii(t)

log t
, (2.7.2)

which has the advantage of including both the limiting case d̃ = ∞, for decays
faster than any power law, and possible logarithmic corrections to the Pii(t), which
are indeed frequent.

Introducing traps in a random walk can substantially change the asymptotic
behaviour of the graph. In particular, a finite number of traps shifts the fractal
dimension from d̃ to (d̃+1) whenever d̃ < 2 (as the walk is recurrent, even a single
trap has a sizeable effect on the behaviour of the RW), while it does not affect
transient random walks, i.e. d̃ > 2. The case of d̃ = 2 depends on the sub-leading
behaviour in t, so it can not be fully examined based on d̃ alone, as the spectral
dimension by definition conceals such details.

The case for an infinite amount of traps is more complex, as its effect depend
on the details of the distribution. We will not discuss it here.

The local spectral dimension d̃ is a separate entity from the intrinsic fractal
dimension dfrac, which we defined in Eq.(1.3.1) as a measure of the growth of the
number of points inside a Van Hove sphere.

Average Spectral Dimension

While the local spectral dimension is the same on each point of the graph, the
average behaviour of the probabilities of return on the graph vertices is not guar-
anteed to yield the same asymptotics. As long as the cardinality of the graph
is finite, or the graph is homogeneous, the average behaviour will give the same
spectral dimension; when a graph is inhomogeneous, though, things get murkier.
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To introduce the problem, let us define graph averages of quantities defined on
each vertex:

〈Aj〉 = lim
R→∞

1

#S0,R

∑

i∈S0,R

Ai, (2.7.3)

where i ∈ S0,R is a short-hand notation implying that the sum runs over the
vertices of the Van Hove sphere S0,R, of radius R and centred in 0 (more properly,
i ∈ S0,R should read i ∈ P0,R, and #S0,R should read #P0,R, where P0,R is the set
of vertices of the Van Hove sphere S0,R) (See Sec.1.2).

As long as the graph G is embeddable in a finite dimensional space, i.e. G has
finite fractal dimension, the average does not depend on what point we choose as
the origin.
We can now define the average probabilities of return and of first return:

P (t) = 〈Pii(t)〉,
F (t) = 〈Fii(t)〉.

The averaged expectation values of the number of returns on the graph and the
average probability of ever returning to the origin can then be found as a limit of
the respective generating function:

∑

t

P (t) = lim
λ→1−

P̃ (λ),

∑

t

F (t) = lim
λ→1−

F̃ (λ).

Definition. A graph on which

lim
λ→1−

F̃ (λ) = 1

is said recurrent on average, while if the limit is less than one the graph is said
transient on average.

The corresponding asymptotic behaviour then defines the average spectral dimen-
sion

d̄ = −2 lim
t→∞

logP (t)

log t
. (2.7.4)

The main property of d̄ is its invariance under a large class of transformations,
which make the average spectral dimension a robust measure of the fundamental
structure of the graph. More in detail, transformations that leave d̄ unchanged are

• the addition (or subtraction) of a finite number of traps: only a finite amount
of points, in the thermodynamic limit, will be closer than a given R to the
traps, and thus will be able to perceive its presence (it should be noted,
however, that each local probability function will be affected by the presence
of even a single trap, and so will its asymptotic behaviour);
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• a bounded rescaling of the probabilities, i.e. pij 7→ p′ij, with

0 < pmin ≤ p′ij < pMax

whenever pij > 0 (and of course
∑

j p
′
ij ≤ 1 for all i);

• adding links between vertices not farther away than an arbitrary but finite
chemical distance;

• topological rescaling, i.e. first partitioning the graph G into an infinite family
of connected subgraphs {Gα}, with #Gα ≤ D < ∞; then substituting each
Gα with G ′

α, connecting each pair (G ′
α,G ′

β) with links if and only if (Gα,Gβ)
were connected.

Using these spectral dimension-preserving transformations can reduce a com-
plex graph to a simpler version, allowing for an otherwise difficult computation
of d̄. Conversely, it is possible to transform a known simple graph into a very in-
volved and highly inhomogeneous version of itself, while preserving the asymptotic
behaviour of the average probability of return.

The average spectral dimension and the local spectral dimension are the same
on all regular lattices and exactly decimable fractals, and in fact it wasn’t until
fairly recently [12–15] that concrete examples of graphs exhibiting different d̄ and
d̃ emerged.

It is indeed possible that macroscopic inhomogeneity of the graph entails dif-
ferent asymptotic behaviours when considering its homogeneous subgraphs; in this
case one speaks of spectral classes, each characterized by a given spectral di-
mension. We will see examples of such behaviour in chapter 3.

2.8 Continuous Time Random Walks

A variation of the RWs on graphs we discussed until now is obtained by letting
the random displacements occur at random continuous times instead of at fixed
discrete steps.

Following Montroll and Weiss [8], let t1, t2, . . . be the times at which the steps
occur; the quantities

T1 = t1, T2 = t2 − t1, . . . , Tn = tn − tn−1, . . .

are independent random variables with a common probability distribution ψ(t),
i.e. ψ(t) is the probability density that the particle jumps after loitering for a
time t. ψ(t) of course satisfies

∫ +∞

0

dt ψ(t) = 1.

A set of useful accessory probability functions is the class ψn(t), giving the proba-
bility that the n-th step occurs at time t. For consistency reasons, it is convenient
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to set ψ0(t) = δ(t); the other ψn satisfy a simple recursion relation: in order for
the n-th step to occur at time t, the (n− 1)− th step must have occurred at time
t′ < t, so that

ψn(t) =

∫ t

0

dτ ψ(τ)ψn−1(t− τ). (2.8.1)

While with discrete random walks we used the generating functions technique, here
the most appropriate tool for the computation is the Laplace transform, which for
ψ(t) reads

ψ̃(y) =

∫ +∞

0

dt e−ytψ(t). (2.8.2)

Taking into account that ψ̃0(y) = 1, the deconvolution properties of the Laplace
transform yield as an immediate result

ψ̃n(y) = ψ̃(y)ψ̃n−1(y) =
[

ψ̃(y)
]n

. (2.8.3)

The probabilities P̄ij(t) and F̄ij(t) are the continuous-time equivalent of Pij(t) and
Fij(t). We have to be more careful now, and explicitly notice that P̄ij(t) is the
probability functions that the walker has arrived at j at some time t′ ≤ t and
hasn’t moved ever since, while F̄ij(t) is the probability that the walker has arrived
for the first time in j exactly at time t.
Since the transition probabilities for each step are still given by pij, a strong
connection exists between the probability functions for discrete and continuous
time RWs.
In the case of F̄ij(t) we can write

F̄ij(t) =
∞
∑

n=0

Fij(n)ψn(t); (2.8.4)

once again the Laplace transform proves useful, as

˜̄Fij(y) =

∞
∑

n=0

Fij(n)
[

ψ̃(y)
]n

= F̃ij

(

ψ̃(y)
)

. (2.8.5)

The case for P̄ij(t) is a little more complex. Let Āij(t) be the probability of arriving
at j exactly at time t; then a reasoning analogous to the previous one entails

Āij(t) =
∑∞

n=0 Pij(n)ψn(t),
˜̄Aij(y) = P̃ij

(

ψ̃(y)
)

.
(2.8.6)

As we have already discussed, the walker arrived in j at some time t′ ≤ t and then
stopped; the probability of this happening is

P̄ij(t) =

∫ t

0

dτ Āij(τ)

(

1−
∫ t−τ

0

dχ ψ(χ)

)

. (2.8.7)
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Compute now its Laplace transform:

˜̄Pij(y) =
˜̄Aij(y)·

∫ ∞

0

dt e−yt

(

1−
∫ t

0

dχ ψ(χ)

)

;

the integral on the right side can be tackled as follows:

∫ ∞

0

dt e−yt

(

1−
∫ t

0

dχ ψ(χ)

)

=
1

y
−
∫ +∞

0

dχ ψ(χ)

∫ +∞

χ

dt e−yt

1

y
−
∫ +∞

0

dχ ψ(χ)
1

y
e−yχ =

1

y

(

1− ψ̃(y)
)

,

which entails
˜̄Pij(y) = P̃ij

(

ψ̃(y)
) 1

y

(

1− ψ̃(y)
)

. (2.8.8)

As a consequence, the continuous time RW is solved by the joint knowledge of the
discrete time generating functions and the probability distribution for the jumps.

2.9 Vibrational Dynamics and Random Walks

It is possible to link the continuous-time RW (CTRW) to the vibrational dynamics
of masses and springs on a graph for a simple random walk.

CTRW and the Spectrum of the Laplace Operator

To obtain this analogy, we first analyse the master equation for the probability
P̄ij(t). Let w dt be the probability that a jump occurs in a time interval dt; the
probability P̄(nj)(t) that no jump occurs between 0 and t satisfies

P̄(nj)(t+ dt) = P̄(nj)(t)· (1− w dt) ,

or
dP̄(nj)(t)

dt
= −wP̄(nj)(t),

which entails
P̄(nj)(t) = Ae−wt,

for some constant A.
Since ψ(t) dt = P̄(nj)(t) wdt,

ψ(t) = wP̄(nj)(t) = wAe−wt.

The constant A is then given by

1 =

∫ ∞

0

wAe−wt = A.
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The master equation for P̄ij(t) reads

P̄ij(t + dt) = P̄ij(t)· (1− w dt) +
∑

k

AkjP̄ik(t)·
(

w

zk
dt

)

,

or

dP̄ij(t)

dt
= w

(

−P̄ij(t) +
1

zk

∑

k

AkjP̄ik(t)

)

= w
∑

k

Akj

(

P̄ik(t)

zk
− P̄ij

zi
(t)

)

.

(2.9.1)
A formal solution can be written [16] as

P̄ij(t) = exp
[

tw
(

AZ−1 − I
)]

ji
, (2.9.2)

where Alm = Alm, Zlm = zlδlm and I is the identity matrix. It is easy to see that
the previous equation is indeed a solution: expanding the exponential function one
obtains

dP̄ij(t)

dt
=

( ∞
∑

n=1

ntn−1wn
(

AZ−1 − I
)n

ji

n!

)

=

( ∞
∑

n=1

∑

s

(

AZ−1 − I
)

js

(tw)n−1
(

AZ−1 − I
)n−1

si

n!

)

= w
∑

s

(

AZ−1 − I
)

js
P̄is(t) = w

∑

s

Ajs

[

P̄is(t)

zs
− P̄ij(t)

zj

]

,

which is indeed Eq.(2.9.1).
A continuous-time analogous of the averaging procedure we saw in Sec.2.7 defines
the average return probability P̄ (t):

P̄ (t) = lim
R→∞

∑

i∈S0,R

P̄ii(t)

#S0,R
= lim

R→∞
1

#S0,R
Tr exp

[

tw
(

AS0,R
Z−1

S0,R
− IS0,R

)]

.

(2.9.3)
Under the same conditions as for the discrete-time RWs, or in the case that the
graph is homogeneous, the average is independent of the choice of the origin 0.
Suppose now that Z = zI.
The right-hand part of the previous equation, when expressed in terms of the
eigenvalues, yields an integral over the spectral density of the operator (z−1A− I).
As it is customary to consider the Laplace operator L = (z−A), we will call ρL(λ)
its spectral density, so that

P̄ (t) =

∫ ∞

0

dλ ρL(λ) exp (−twλ/z) .
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Vibrational Dynamics of Masses and Springs

Consider the same graph G on which the CTRW happens with two modifications:
on each site sits a mass m, and to each link corresponds a spring of elastic constant
k. The mass is free to move, relative to the equilibrium position, in a fictitious
space of dimension D, its position being labelled as ~φi.
Since there is no coupling among different components of the vector ~φi, the equa-
tions of motion for the springs can be written for a single component φi:

m
d2φi

dt2
= k

∑

j

Aij (φi − φj) .

It is straightforward to find solutions of the form

φi(t) = eiωtφi(0),

as the equations of motion are then transformed into a system of algebraic equa-
tions:

{ −mω2φi(0) = k
∑

j Aij [φj(0)− φi(0)] = k
∑

j [Aij − zδij ]φj(0)

i = 1, 2, . . .
.

In matrix form, the same equations read

k (zI −A)φ(0) = kLφ(0) = mω2φ(0); (2.9.4)

this formula links the possible values of ω to the eigenvalues of L:

ω2
i =

kλi
m
. (2.9.5)

Since the eigenvalues are in a one-to-one correspondence, for an infinite graph the
spectral distributions satisfy

ρL(λ)dλ = ρ(ω)dω,

and the averaging procedure reads

P̄ (t) =

∫ ∞

0

dω ρ(ω) exp
(

−tmwω2/kz
)

, (2.9.6)

thus completing the relationship between a classical system of masses and springs
and RWs.

The last equation links indissolubly the distribution of the normal modes of
oscillation of the system to the behaviour of the average RW on the corresponding
graph. This analogy goes further, linking the average spectral dimension d̄ to the
low frequency behaviour of ρ(ω).
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3
Random Walks on General Graphs

3.1 RandomWalks on d-Dimensional Regular Lat-

tices

A most powerful technique which can be employed in the study of RWs is the
Fourier transform. Its applicability wholly depends on two conditions: the peri-
odicity of the graph (which therefore needs to be a regular lattice) and the homo-
geneity of its points. In this chapter we introduce the technique, including some
technical details, and apply it to the simplest lattices.

Among the simplest types of graphs are regular d-dimensional cubic lattices
with periodic boundary conditions, which can be computed using Fourier tech-
niques [8]. A point on the lattice is written as x = (x1, . . . , xd). The periodic
boundary conditions read

(x1 + n1N, . . . , xd + ndN) = (x1, . . . , xd) (3.1.1)

where N is the edge of the cubic lattice. Let now Px(t) be the probability that
a random walker starting at some given point - which we call the origin - arrives
at x at time t, while the one-step transition probabilities are given by px, which
satisfy

∑

x
px = 1, as we suppose that the number of walkers is conserved.

In general the px can have non-zero transition probabilities for points which aren’t
nearest-neighbours.
Since the one-step transition probabilities are given by px, the following recurrence
relation holds:

Px(t+ 1) =
∑

y

p(x−y)Py(t). (3.1.2)

The two previous equations immediately entail
∑

x
Px(t) = 1.

The choice of the origin is unimportant, as the lattice is homogeneous.
From the previous equation it immediately follows that

P(x1+n1N,...,xd+ndN)(t) = P(x1,...,xd)(t). (3.1.3)
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Transition probabilities can be Fourier expanded as

p̃(2πx/N) =
∑

y

py exp (2πix·y/N) ;

they satisfy p̃0 = 1 and 0 < p̃x(λ) ≤ 1 when 0 < λ ≤ 1.

3.2 Generating Functions for Regular Lattices

To proceed in the calculations we introduce the generating function

P̃x(λ) =
∞
∑

t=0

λtPx(t), (3.2.1)

which satisfies
∑

x
P̃x(λ) = (1− λ).

Eq.(3.1.2), together with the initial condition P0(0) = 1, yields

P̃x(λ)− δx,0 = λ
∑

y

p(x−y)P̃y(λ).

In order to take advantage of the translational invariance, we introduce the Fourier
expansion of the generating function:

u2πx/N (λ) =
∑

y

Py(λ) exp (2πix·y) . (3.2.2)

It allows one to straightforwardly solve Eq.(3.1.2):

u2πx/N(λ) =
[

1− λp̃(2πx/N)

]−1
,

and by inverting the Fourier expansion we finally obtain

P̃x(λ) = N−d
∑

y

exp (−2πix·y/N)

1− λp̃2πy/N

=
∑

t

λt

[

N−d
∑

y

exp (−2πix·y)
(

p̃2πy/N
)t

]

=
∑

t

λtPx(t).

3.3 Recurrent and Transient Random Walks on

Regular Lattices

It is useful to divide P̃x(λ) into two parts: one singular and one non-singular in
the limit λ→ 1:

P̃x(λ) = (1− λ)−1N−d + φx(λ),
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with

φx(λ) = N−d

′
∑

y

exp(2πix·y/N)

1− λp̃(2πx/N)

. (3.3.1)

In the non-singular part φx(λ), the primed sum runs over y 6= (0, . . . , 0).
Since P̃x(λ = 1) corresponds to the expected number of visits of x starting from
the origin,

∑

t Px(t) = ∞ and the RW is trivially recurrent whatever the value of
N , as long as N is finite.

In the limit N → ∞ some two things happen:

• the singular part (1− λ)−1N−d gets killed,

• the sum over lattice points becomes an integral in θ = limN→∞ 2πy/N :

P̃x(λ) =
1

(2π)d

∫ +π

−π

. . .

∫ +π

−π

ddθ
exp (−ix· θ)
1− λp̃θ

. (3.3.2)

A new singularity at λ = 1 can of course emerge from the integral: to see how this
happens, consider that, at fixed px and large but finite N , p̃(λ = 1) satisfies

p̃(λ = 1) ∼ 1− c

N
,

with c a constant; this entails

φ0(λ = 1) ∼ N−d·N ·
′
∑

x

1 = N2−d.

Therefore, for RWs on regular lattices of d = 1, 2 the number of returns to the
origin is infinite (for d = 2 logarithmic corrections enter the game), and the RW
is recurrent, while when d ≥ 3 the RW is transient.

3.4 The Bethe Lattice

The Bethe lattice, also known as Cayley tree, is a tree with constant coordination
number z. The pathological cases z = 1, corresponding to a pair of vertices, and
z = 2, corresponding to the infinite line, will be ignored, and we will focus on the
case z ≥ 3. Because of the homogeneity of the Bethe lattices, propreties such as
the probabilities of return, or of transition, do not depend on the choice of the
origin.

The Bethe lattice has several interesting characteristic, essentially tied to the
fact that the border of any sphere of Van Hove scales with the volume of the sphere
itself. In fact SR, the number of points at distance R > 1 from a point chosen as
the origin is simply computed as

SR = (z − 1)SR−1;
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Figure 3.1: A Bethe lattice for z = 3.

since S0 = 1 and S1 = z, SR satisfies

SR = z(z − 1)R−1 (3.4.1)

for all R ≥ 1. The number of points in a Van Hove sphere of radius R can be
calculated as a sum over the SR:

NR =

R
∑

l=0

Sl = 1 +

R
∑

l=1

z(z − 1)l−1 = 1 + z

R−1
∑

t=0

(z − 1)t

= 1 + z
(z − 1)R − 1

(z − 1)− 1
=

1

z − 2

(

(z − 2) + z(z − 1)R − z
)

=
z(z − 1)R − 2

z − 2
. (3.4.2)

It is easy to prove that NR is in effect an integer number, in fact

z(z − 1)R − 2 = (z − 2)(z − 1)R + 2(z − 1)R − 2

= (z − 2)(z − 1)R + 2
[

(z − 1)R − 1
]

;

since the second term too can be divided by (z − 2), as

(z − 1)R − 1 = [(z − 2) + 1]R − 1 =
R
∑

l=0

(

R

l

)

(z − 2)l − 1 =
R
∑

l=1

(

R

l

)

(z − 2)l,
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Figure 3.2: The subgraph B1 for z = 3 and its origin O.

NR is indeed an integer.
The fractal dimension for the Bethe Lattice is infinity, since

lim
R→∞

logNR

logR
= +∞,

or more properly there is no number dfrac such that

NR ≤ CRdfrac + E

for some constants C and E.
It is now straightforward to prove that the ratio between surface and volume

of any given sphere of Van Hove tends to a constant:

lim
R→∞

SR

NR
=

(z − 2)

(z − 1)
.

Simple RW and Return Probabilities

Consider now a simple RW on the Bethe lattice. Because of its translational
invariance, we drop the index of the starting point; since all the points at distance
R are equivalent, instead of Pij(t) we write PR(t). The simplest way to proceed is
by calculating the first return probabilities, as they make the best use of the tree
nature of the lattice: each path returning to the origin for the first time at t makes
a first step with probability 1, then performs a RW on the subgraph B1, returning
to O - the origin of B1 - after (t − 2) steps, and finally steps back to the origin
with probability (z − 1)/z.

F0(t) = P B1
0 (t− 2)

1

z
(3.4.3)
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The subgraph B1 is one of the z equivalent subtrees obtained by severing the z
links at the origin of the RW. The RW on B1 ceases to be both simple, as there is
a trap in O of weight (z− 1)/z, and homogeneous, while it retains its isotropy (its
subtrees are equivalent).

Instead of trying to compute P B1
0 (t), we consider the corresponding first return

probabilities F B1
0 (t), and then pass to generating functions; each path contributing

to F B1
0 (t) steps first - with probability (z − 1)/z - into one of the subtrees of B1,

then it performs a RW on said subtree, which is once again B1, and finally steps
back to O with probability 1/z. It has then to satisfy







F B1
0 (t) = z−1

z
P B1
0 (t− 2)1

z
= z−1

z2
P B1
0 (t− 2)

F̃ B1
0 (λ) = z−1

z2
λ2P̃ B1

0 (λ)

. (3.4.4)

The usual relation between the generating functions, Eq.(2.2.3), holds, so we have

z − 1

z2
λ2
[

P̃ B1
0 (λ)

]2

− P̃ B1
0 (λ) + 1 = 0,

which entails

P̃ B1
0 (λ) =

z2

2(z − 1)λ2

(

1−
√

1− 4
z − 1

z2
λ2

)

=
z2

(z − 1)λ2
α(λ/z); (3.4.5)

we put

α(η) =
1

2

(

1−
√

1− 4(z − 1)η2
)

.

The minus sign in front of the square root has been chosen so that

lim
λ→1

P̃ B1
0 (λ) = P B1

0 (t = 0) = 1.

Eq.(3.4.3) yields

F̃0(λ) =
λ2

z
P̃ B1
0 (λ) =

z

2(z − 1)

(

1−
√

1− 4
z − 1

z2
λ2

)

=
z

z − 1
α(λ/z), (3.4.6)

and

P̃0(λ) =
1

1− z
z−1

α(λ/z)
. (3.4.7)

To calculate Fi(t), observe that all the paths linking the origin to i have to tread
a common set of links, which is the only self-avoiding path connecting the two
vertices. Then each of the points on the self-avoiding path will be visited for the
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first time sooner or later, while at all previous times the RW will be on a subgraph
of the Bethe lattice, which is - unsurprisingly - B1. Let tj be the number of steps
before first visiting the j-th vertex on the self-avoiding path: since the events are
independent Pi(t) satisfies

Fi(t) =

(

1

z

)d
∑

t0

· · ·
∑

td−1

P B1
0 (t0) . . . P

B1
0 (td−1)δ(d+

∑
k tk−t),

where d is the chemical distance between the origin and i; evidently Pi(t) only
depends on d. Passing to generating functions allows one to obtain an explicit
expression:

F̃i(λ) =

(

λ

z

)d
[

P̃ B1
0 (λ)

]d

=

[

zα(λ/z)

(z − 1)λ

]d

, (3.4.8)

and

P̃i(λ) = P̃0(λ)F̃i(λ) =

[

zα(λ/z)

(z − 1)λ

]d
1

1− z
z−1

α(λ/z)
. (3.4.9)

By expanding P̃0(λ) in power series, it is possible to obtain the asymptotic be-
haviour of P0(t) as t→ ∞ [17]:

P0(t) ∼
23/2z(z − 1)√
π (z − 2)2

t−3/2 exp

[

−t log
(

z

2
√
z − 1

)]

. (3.4.10)

The exponential law that one obtains on the Bethe lattice is easily understood as
a consequence of the high probability of increasing the distance from the origin at
each step.

3.5 Vibrational Spectrum and Specific Heat of

the Bethe Lattice

Following a paper by Cassi [16], we now exploit Eq.(2.9.6) to obtain meaningful
thermodynamic quantities on the Bethe lattice, namely the vibrational modes
density for low ω and the vibrational specific heat.
The asymptotic behaviour of the average CTRW return times P̄ (t), Eq.(2.9.6),
can be obtained from Eq.(3.4.9) and Eq.(2.8.8):

P̄ (t) ∼ z(z − 1)√
4π (z − 2)2

(

tw
√
z − 1

z

)−3/2

× exp

[

−tw
(

z − 2
√
z − 1

)

z

]

.

Applying standard theorems for asymptotic expansions and Laplace transforms,
one obtains the small ω behaviour of the spectral density ρω, which displays a gap
between ω = 0 and the eigenvalue

ω = ωc =

√

k
(

z − 2
√
z − 1

)

mz
.
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Explicitly

ρω =

{

0 ω < ωc

ω
√

ω2 − ω2
c

z(z−1)−1/4

2π(z−2)2( k
m)

3/2 ω ≥ ωc
. (3.5.1)

The presence of the gap is essentially due to the exponential decay of the return
probabilities, and it entails other important consequences, which we now explore.

Eq.(3.5.1) is a result valid for low frequencies; extending it to high frequencies
is improper, as one immediately faces a divergence. The standard quantization
procedure associates quanta of energy ~ω to modes of frequency ω. To proceed with
the calculations, we set an artificial cut-off ω ≤ ωD - as in Debye approximation -
where ωD satisfies

∫ ωD

ωc

ρ(ω)dω = 1.

Computing ωD is straightforward:

1 =

∫ ωD

ωc

dω ρ(ω) =
z(z − 1)−1/4

2π(z − 2)2
(

k
m

)3/2

∫ ωD

ωc

dω ω
√

ω2 − ω2
c

=
z(z − 1)−1/4

2π(z − 2)2
(

k
m

)3/2
× 1

2

(ω2 − ω2
c )

3/2

3
2

;

as a consequence

ω2
D = ω2

c +
m2

k2

[

6π(z − 2)2

z(z − 1)1/4

]2/3

. (3.5.2)

The expected energy can then be obtained by averaging on the Bose-Einstein
distribution corresponding to the density of states ρ(ω):

E(t) =

∫ ωD

ωc

dω ~ω
ρ(ω)

exp
(

~ω
kT

− 1
) . (3.5.3)

The low temperature limit can be calculated easily: as T → 0, the integral is
dominated by the exponential term, and

E(T ) ∼
∫ ωc+kT/~

ωc

dω ~ωρ(ω) exp

(

−~ω

kT

)

∼ z(z − 1)−1/4

2π(z − 2)2
(

k
m

)3/2

(

kT

~

)

~ωcρ(ωc)×

× exp

(

−~ω

kT

)

=
z(z − 1)−1/4

2π(z − 2)2
(

k
m

)3/2

(

kT

~

)

~ω2
c

√

2ωc
kT

~

=
z(z − 1)−1/4

√
2π(z − 2)2

(

k
m

)3/2

(

kT

~

)3/2

~ω5/2
c exp

(

−~ωc

kT

)

. (3.5.4)
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The specific heat at low temperature is readily obtained by taking the derivative
of the previous equation:

C(T ) =
∂E

∂T
∼ z(z − 1)−1/4

√
2π(z − 2)2

(

k
m

)3/2

(

k~

T

)1/2

ω7/2
c exp

(

−~ωc

kT

)

. (3.5.5)

Because of the gap in the spectrum, in the T → 0 limit that quantum statistics
play no meaningful role, as they give the same results as the Boltzmann statistics
exp

(

−~ωc

kT

)

.

3.6 Bundled Structures

A wide class of structures exhibiting controllable properties, as studied by Cassi
and Regina [13], are the bundled graphs. Bundled graphs are constructed as
follows: on each point of a base graph B, a copy of a so-called fibre graph F is
attached; the only contact point between the fibre and the base is a point f , which
is the same for all fibres.
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Bundled graphs are good models for the geometry and dynamics of polymers
and other inhomogeneous systems. The attentive study of the transport properties
of bundled graphs, which we are going to sketch in this section, highlights a very
rich phenomenology, including anomalous diffusion and unusual distribution for
the probability of return.

The rigorous treatment of RWs on bundled graphs is possible as they can be
separated into two independent RWs, on the base and on the fibres: out of t steps,
let tB be the steps taken on the base. Between a step on the base and the next, the
walker will perform a RW on F , starting from returning to f , with a probability
of death in f which is zBi/(zBi + zFf ); suppose now that all the vertices on the
base have the same coordination number, so that the probability of return for i on
the base is

Pii(t) =

∞
∑

tB=0

∞
∑

t1=0

· · ·
∞
∑

tB+1=0

P B
ii (tB)

(

zB
zB + zFf

)tB

× PF
d (t1) . . . P

F
d (ttB+1)δ

(

t− tB −
∑

i

ti

)

. (3.6.1)

The factor
(

zB
zB + zFf

)tB

is the weight of the steps on the base, P B
ii (t) is the probability of return on B

considered as a stand-alone graph, and PF
d (t) is the probability of return to f on

F , with a trap of weight zB/(zB + zFf ) positioned in f .

Passing to generating functions yields straightforwardly the following expression

P̃ii(λ) = P̃F
d (λ)P̃ B

(

zB λ P̃F
d (λ)

zB + zFf

)

. (3.6.2)

Spectral Dimension

The asymptotic expansion of the probability of return gives the spectral dimension
of the graph as (see Eq.(2.7.1))

Pii(t) ∼ t−d̃/2.

Using Tauberian theorems, Eq.(3.6.2) entails

d̃ =







d̃F dF ≥ 2

4− d̃F dF ≤ 2, d̃B ≥ 4

d̃F + d̃B − d̃F d̃B
2

d̃F ≤ 2, d̃B ≤ 4

. (3.6.3)
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Logarithmic Dimension

A sophisticated expansion of Pii(t) can be introduced as

Pii(t) ∼
∞
∏

i=0

[

l log(t)
]β(i)

, (3.6.4)

where β(i) is called logarithmic dimension, while l log x is defined by

l log x = log
(

l−1 log x
)

,

with 0 log x = x and β(i) = −d̃/2.
Using Tauberian theorems, it is possible to state explicitly the dependence of β(i)
on the spectral dimensions of F and B; when d̃B < 4 and d̃F < 2 the following
holds:

β(i) =



























−1 0 < i < m,
(

1− d̃B
2

) [

βF (mF) + I
(

d̃F
2

)]

− I
(

d̃F
2

)

i = m = mF
(

1− d̃B
2

)

βF (i) + θ(i−mF −mB)βB(i−mF)+

+δ(i−mF −mB)I
(

d̃
2

)

− δ(l −m)I
(

d̃
2

)

,

(3.6.5)
where

• I(x) = 1 for integer x, 0 otherwise;

• m = min {i ≥ 0 s.t. β(i) 6= −1} = mF + δ(d̃B − 2)mB.

When f̃F > 2, β(i) = βF (i) for all i.
When d̃F < 2 and d̃B > 4, the probability of return for the bundled graph can
be obtained from the expression of the same quantity on the fibre alone, replacing
each βF(i) with

{

β(i) = −βF (i)− 2δ(l −mF )I
(

d̃F
2

)

i ≥ mF

β(i) = βF(i) 0 < i < mF
.

The case of d̃F < 2 and d̃B = 4 is the same as the case d̃F < 2 and d̃B > 4 when
mB < −1, and it is the same as d̃F < 2 and d̃B < 4 when mB > −1.
The case of d̃F = 2 is to be treated as d̃F < 2 if F is recursive, and as the case
d̃F > 2 if F is transient.

Exactly the same procedure can be applied to the asymptotic behaviour of the
average distance on the base: when the fibre is recurrent (d̃F ≤ 2), and on the
base considered as a separate graph

〈x2〉B ∼
∞
∏

l=0

[

l log t
]γB(l)
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holds, the projection of the diffusion on the base for the whole bundled graph
satisfies the following:

〈x2〉(t) ∼
∞
∏

l=0

[

l log t
]γ(l)

, (3.6.6)

where

γ(i) =























γB(0)
(

1− d̃F
2

)

i = 0

0 0 < i < mF

γB(0)
[

βF(i) + I
(

d̃F
2

)]

i = mF > 0

γB(0)βF(i) + γB(i−mF ) i > mF

. (3.6.7)

One can now analyse some particular cases.

Comb Lattice. The comb lattice is obtained by using both as base and as fiber
the infinite line. From Eq.(3.6.3), d̃ = 3/2. From the properties of the probability
of return on the infinite line

• βB(0) = −1/2, while βB(i) = 0 for i > 0;

• mB = 1;

• γB(0) = 1, while γB(i) = 0 for i 6= 0.

This entails β(i = 0) = −1/4, β(i) = 0 for i > 0, γ(0) = 1/2, γ(i) = 0 for i > 0,
and

Pii(t) ∼ t−1/4,

〈x2〉(t) ∼ t1/2.

Brush Lattice. The brush lattice is obtained by using an infinite square lattice
as the base and the infinite line as fibre. Since d̃B = 2 and d̃F = 1, d̃ = 2. The
fundamental quantities for the base, where P B

ii (t) ∼ t−1 and 〈x2〉B ∼ t, are

• βB(0) = −1, βB(i) = 0 for all i > 0;

• γB(0) = 1, γB)(i) = 0 for all i > 0;

• mB = 1.

As a consequence β(0) = 1, β(i) = 0 for all i > 0, and

Pii ∼ t−1;

on the other hand γ(0) = −1/2, γ(i) = 0 for all i > 0, which entails

〈x2〉(t) ∼ t1/2,

while considering the displacement on the whole graph 〈r2〉(t) ∼ t−3/2.



4
Three Particles on a Line

In this chapter we are going to present several results on some collective properties
of three independent random walkers on an infinite line. The whole chapter is a
revised version of a manuscript submitted to Physical Review E [1]. In particular,
we have calculated the probability that minimum and maximum distances among
the walkers are in a given range, and we have also derived the asymptotic behaviour
of the probability that the three particles first meet at time t, for large times.

We have performed the calculation in the graph of the inter-particle distances,
which displays several advantages: it reduces the problem to a 2-d lattice, which is
a quite classical trick when dealing with multiple random walkers, it has a simple
and intuitive geometric form, it discards the useless details concerning the absolute
position of the particles while retaining all the meaningful inter-particle relations,
and it allows for a straightforward introduction of inter-particle attraction or re-
pulsion.

For large times, the asymptotic behaviour of the probability distributions of
maximum and minimum mutual distances d, which are strictly non-linear func-
tions, displays to first order a diffusion-like scaling as d2/t, when d is large. At
higher orders, this scaling breaks down and for intermediate distances a richer
behaviour is revealed.

We have also studied two different models for vicious interacting walkers, which
we have been able to map onto the model for independent walkers; the aforemen-
tioned results thus hold in these cases as well.

The chapter is organized as follows: first, we define the system under study
and introduce the inter-particle distance graph; next we compute the exact t→ ∞
asymptotic form of the probability P (~x, t) of finding the walkers at a point ~x in
the distance graph, and then infer the behaviour of the first-return probabilities.
In the following sections we first compute the probability that the minimum and
maximum distances between pairs of adjacent particles are smaller than some d,
then focus on the probability that the walkers are no closer than dinf and no
farther than dsup. We then study two models for vicious random walkers, and
finally analyse our results.
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4.1 The Distance Graph for Three Particles on

a Line

We now take three independent walkers on the same lattice, leaving from i at time
0: the probability P

(3)
1D (t) for all of them to meet at a time t is

P
(3)
1D (t) =

∑

j

(

P lin
ij (t)

)3
.

A good choice of coordinates to tackle this problem is the following: let x be the
distance between the leftmost walker and the central one, and let y be the distance
between the rightmost walker and the central one. A straightforward analysis of
the transition probabilities gives the following results:

• if the position at time (t− 1) is (0, 0):

p ((0, 0) → (0, 0)) =
1

4
,

p ((0, 0) → (0, 2)) = p ((0, 0) → (2, 0)) =
3

8
;

• if the position at time (t− 1) is (x, 0) or (0, y):

p ((x, 0) → (x, 0)) = p ((x, 0) → (x− 2, 2)) = p ((x, 0) → (x, 2)) =
1

4
,

p ((x, 0) → (x+ 2, 0)) = p ((x, 0) → (x− 2, 0)) =
1

8
,

and

p ((0, y) → (0, y)) = p ((0, y) → (2, y − 2)) = p ((0, y) → (2, y)) =
1

4
,

p ((0, y) → (0, y + 2)) = p ((0, y) → (0, y − 2)) =
1

8
;

• if the position at time (t− 1) is (x, y):

p ((x, y) → (x, y)) =
1

4
,

p ((x, y) → (x+ 2, y)) = p ((x, y) → (x− 2, y)) =
1

8
,

p ((x, y) → (x, y + 2)) = p ((x, y) → (x, y − 2)) =
1

8
,

p ((x, y) → (x+ 2, y − 2)) = p ((x, y) → (x− 2, y + 2)) =
1

8
.
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Figure 4.1: The distance graph for the random walk of three particles on a line is
a 2-d lattice with diagonals.

The end result is that P
(3)
1D (t) corresponds to the probability of return to the

origin, for a simple random walk with waiting probability 1
4
, on a 2d structure

with diagonals, as depicted in Fig.4.1, or equivalently on a slice of a triangular
lattice, as in Fig.4.2. On both structures each step corresponds to a change of
two for the reciprocal distances of the particles. Since the graph we have now
obtained is inhomogeneous, a natural way to tackle it is by transforming it into
a full triangular lattice (Fig.4.3). This feat is accomplished by noting that, at
(0, 0), the probability of departing from the origin - which is 6/8 - correspond to
a choice of one among the 6 axes; on the axes of Fig.4.2, on the other hand, the
probability 1/4 of departing from the current axis correspond to the choice between

Figure 4.2: The 2-d lattice with diagonals is equivalent to a triangular lattice.
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Figure 4.3: The full triangular lattice. Each slice corresponds to an ordering of
the three particles, as indicated in the picture; crossing an axis corresponds to
swapping two particles.

two adjacent slices in the full triangular lattice. A cogent interpretation of the full
triangular lattice is obtained by noting that each of the 6 slices correspond to the
possible orderings of the walkers on a 1-D lattice, and that each crossing of an axis
implies a change in this order (see Fig.4.3).

The graphs in Fig.4.1, Fig.4.2 and Fig.4.3 can all be defined as distance
graphs of the multiple random walk we are considering. It is just for compu-
tational simplicity that we will stick from now on to the latter.

This reduction to a 2-d problem is a quite classical trick, but it should be
stressed that it isn’t guaranteed to succeed for multiple random walks in inhomo-
geneous graphs, as it can prove impossible to construct a distance graph; in such
cases, interesting phenomena regarding the probability of meeting can arise [18].

The full triangular lattice is a homogeneous graph, and in every point the
transition probabilities are 1

8
for each of the 6 first neighbours, with probability 1

4

of not moving at all.
The return probabilities for this lattice can be computed via a straightforward

Fourier transform:

P (~x, t) =
9

16π2

∫

d2 ~Kei
3
2

∑
j Kjnj

[

1

4

(

1 + cos

(

3

2
K1

)

+ cos

(

3

2
K2

)

+ cos

(

3

2
K3

))]t

,

where k1 + k2 + k3 = 0, ~x =
∑

j nj~ej is a site on the full triangular lattice and ~ej
is one of the three first-neighbour vectors

~e1 = (1, 0)

~e2 =

(

1

2
,

√
3

2

)

.
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The asymptotic behaviour of the function can be obtained exactly as t → ∞
by the steepest descent method: the maximum value of the expression

1

4

[

1 + cos

(

3

2
K1

)

+ cos

(

3

2
K2

)

+ cos

(

3

2
K3

)]

is obtained for K1 = K2 = 0. The integral is then well approximated by

9

16π2

∫

d2 ~Kei
3
2

∑
j Kjnje−

9
16

t[K2
1+K2

2+K1K2].

The Gaussian integral is straightforwardly solved by the following change of vari-
ables:

l1 = K1 +K2

l2 = K1 −K2
,

which yields

P (~x, t) ∼ 9

32π2

∫

d2~lexp

{

i

[

l1 + l2
2

(n1 − n3) +
l1 − l2

2
(n2 − n3)

]

− 9

64
t
(

3l21 + l22
)

}

=
2√
3π

1

t
exp

{

−4

3

~x2

t

}

, (4.1.1)

where ~x2 = n2
1 + n2

2 + n1n2, and is valid for every point on the lattice as t→ ∞.
Taking into account the fact that each step in the distance graph corresponds

to a distance 2 in the original lattice, the following holds:

Pline(x, y, t) =











6P
(

x
2
~e1 +

y
2
~e2, t

)

{x, y 6= 0}
3P
(

x
2
~e1 +

y
2
~e2, t

)

{x = 0, y 6= 0} ∪ {x 6= 0, y = 0}
P
(

~0, t
)

{x = 0, y = 0}
. (4.1.2)

4.2 Normalization of the Asymptotic Probabil-

ity

The probability in Eq.4.1.1 is asymptotically exact as t→ ∞, and the normaliza-
tion provided is the correct one for the exact initial formula. It proves however
useful to compute in an approximate way the normalization factor, as a way to
test both the saddle point method and the technique we will use later to com-
pute various probability functions. Without further ado, the result is once again
Eq.4.1.1, as we now proceed to prove.

We look for N in the following equation:

1 =
∑

~x

P (~x, t) =
N

t

∑

~x

exp

{

−4

3

~x2

t

}

.
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We now restrict our attention to one of the 6 slices, which is described by the base
vectors ~e1 and ~e2. The sum over the lattice can be written as follows:

∑

~x

= 6
∑

slice

−6
∑

axis

−5P
(

~0, t
)

,

where the second and third term are necessary as the axes and the origin are
considered multiple times in the first term. As a first step, we can evaluate the
weight of these terms:

∑

axis

P (~x, t) =
N

t

∞
∑

i=0

e−
4
3

~x2

t

satisfies
∑

axis

P (~x, t) >
N

t

∫ ∞

0

dx e−
4
3

x2

t =
N

t

1

2

√

3πt

4
=
N

4

√

3π

t

and
∑

axis

P (~x, t) <
N

t

[

1 +

∫ ∞

1

dx e−
4
3

(x−1)2

t

]

=

[

N

t
+
N

4

√

3π

t

]

so that
∑

axis

P (~x, t) =
N

4

√

3π

t
+O(t−1) = O(t−

1
2 ),

and
6
∑

axis

P (~x, t) + 5P
(

~0, t
)

= O(t−
1
2 ).

The next step consists in computing the sum over each slice of the exponential.
This sum is best performed using the variables

{

l = n1 + n2

m = n1 − n2
;

In this base the exponential reads

exp

{

−4
(

3
4
l2 + 1

4
m2
)

3t

}

= exp

{

− l
2

t
− m2

3t

}

.

The sum over the points of the slice,
∑

n1

∑

n2
, is converted into the following sum:

∑

l=0,1,...

l
∑

m=−l,−l+2,...,l−2,l

;

the sum can now be split into two terms, for even and odd l,










∑

~x P (~x, t) = S + T

S =
∑

l=0,2,... e
− l2

t

∑

m=−l,−l+2,...,l e
−m2

3t

T =
∑

l=1,3,... e
− l2

t

∑

m=−l,−l+2,...,l e
−m2

3t .
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Figure 4.4:

Using as sum indices q = l
2
and v = m

2
, S becomes

S = 2
∑

q=0,1,...

e−
4q2

t

∑

v=0,1,...,q

e−
4v2

3t −
∑

q=0,1,...

e−
4q2

t ;

as we have already seen, the second term is O(t
1
2 ), so we’ll drop it and focus on

the double sum, which has now to be bound as we did earlier. It is easily seen that

∑

q=0,1,...

e−
4q2

t

∑

v=0,1,...,q

e−
4q2

3t >

∫

R̃

dq dv exp

{

−4q2

t
− 4v2

3t

}

=

√
3t

4

∫ ∞

0

R dR

∫ π
6

0

dφ e−R2

=
π

16
√
3
t,

where the regions R and R̃ are as in Fig.4.4.
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As to the other bound

∑

q=0,1,...

e−
4q2

t

∑

v=0,1,...,q

e−
4v2

3t =
∑

q

e−
4q2

t +
∞
∑

q=1

∞
∑

v=1

exp

[

−4q2

t
− 4v2

3t

]

<
[

1 +O
(√

t
)]

+
∞
∑

q=0

q
∑

v=0

exp

[

−4(q + 1)2

t
− 4(v + 1)2

3t

]

<

∫

˜̃R

dq dv exp

[

−32(q + 1)2

27t
− 32(v + 1)2

27t

]

+O(t
1
2 )

=

√
3t

4

∫ ∞

0

dr R

∫ π
6

0

dφ e−R2

+O(t
1
2 ) =

π

16
√
3
t+O(t

1
2 ),

which together with the previous result implies

S = 2
π

16
√
3
t +O(t

1
2 ) =

π

8
√
3
t +O(t

1
2 ).

The computation of T is perfectly analogous, with some complications in the
division of the integration regions into subregions. In the end it results that, as
above,

T =
π

8
√
3
t+O(t

1
2 ),

and

1 = 6N

[

π

8
√
3
t+

π

8
√
3
t+O(t

1
2 )

]

,

N =
2√
3π

+O(t−
1
2 ).

The normalized form of the probability is then proved to be as in Eq.4.1.1.

4.3 First Return Probability

It is also easy to give an estimate for the asymptotic probability F (~0, t) of first
return to the origin: the generating functions satisfy

F̃
(

~0, λ
)

= 1− 1

P̃
(

~0, λ
) .

From Eq.4.1.1,

P̃
(

~0, λ
)

=
∑

t

λtP
(

~0, t
)

∼ 2√
3π

log(1− λ),

as λ ∼ 1, so

F̃
(

~0, λ
)

∼ 1−
√
3π

2

1

log(1− λ)
.
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Standard asymptotic series analysis yields

F
(

~0, t
)

∼ 1

t (log t)2

as t→ +∞.

4.4 Euclidean Distance from the Origin

While not physically meaningful for the three-particles problem, the probability
that a random walker on the triangular lattice is inside a circle of radius ρ in the
2-d plane will be useful later. By definition

Qρ(t) =
∑

{~x: |~x|<ρ2}
P (~x, t) .

The calculation is a straightforward generalization of the steps taken earlier: the

regions R̃ and ˜̃R are now of finite radii, respectively ρ and ρ +
√
2. As to the

details, for S the following holds:

√
3πt

2
S >

3
√
3

2
t
π

3

∫
2ρ√
3t

0

dR Re−R2

+O(t
1
2 ) =

√
3πt

4

[

1− e−
4ρ2

3t

]

+ O(t
1
2 ),

√
3πt

2
S <

3
√
3

2
t
π

3

∫

2(ρ+
√

2)√
3t

0

dR Re−R2

+O(t
1
2 ) =

√
3πt

4

[

1− e−
4(ρ+

√
2)2

3t

]

+O(t
1
2 ).

Let now

E(ρ) =

√
3πt

4
e−

4ρ2

3t

(

1− e−
8
3t(

√
2 ρ+1)

)

.

As we’ll be mostly interested in the case 1 ≪ ρ≪ t, we can write

E(ρ) =
2
√
2πρ√
3

e−
4ρ2

3t ,

and √
3πt

2
S =

√
3πt

4

[

1− e−
4ρ2

3t

(

1 +O
(ρ

t

))

]

.

The same procedure holds for T . The contribution of the points on the edges
of each slice is O(t−

1
2 ), and it can be dropped as long as ρ≫ 1; one then obtains

Qρ(t) = 1− e−
4ρ2

3t (1 +O(ρ/t)) . (4.4.1)
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Figure 4.5: The shaded area is Rd, the region of summation for P (dmin < d, t).

4.5 Minimum Distance Between Particles

We have previously defined x and y as the distance between the central particle
and - respectively - the left-most particle and the right-most one. What are the
chances that, at some time t, the minimum between x and y, dmin = min {x, y},
is lower than some given value 2d ? This type of quantity can be of interest, e.g.,
when investigating chemical kinetics, as reactions happen at a limited range.

In the complete triangular lattice, dmin is the distance to the nearest of the
three axes, so the probability that dmin(t) < d is

P (dmin < 2d, t) =
∑

~x∈Rd

P (~x, t) ,

where Rd comprises the lattice points in a region similar to the one shaded in
Fig.4.5.

The region Rd can be divided into two main subregions: a circle of radius
√
3d

and 6 identical infinite beams, each collinear to one of the three main axes. The
weight of the circle is given by Q√

3d(t), while the contribution of the infinite beams
is to be computed now.

We make now two approximations: as a starter, we divide one beam into two
pieces, one comprising all the points at distance greater than

√
3d, the other one

the remaining points. The contribution of the latter is ≈ e−
4d2

t O(t−1), and in
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hindsight we can safely ignore it. The former piece gives the main contribution,
both to the beam and the P (dmin < 2d, t): we approximate it in the rather crude
way, which can be justified for 1 ≪ d≪ t1/2, of considering the distance fixed and
equal to R2 for all the lattice points orthogonal to a given point on the axis.

A procedure analogous to the one employed earlier yields, for 1 ≪ d≪ t1/2,

P (dmin < 2d, t) = 1− e−4d2/t +
6d√
πt

[

1− Erf

(

2d√
t

)]

(

1 +O(d−1)
)

1− e−4y2 +
6y√
π
[1− Erf (2y)]

(

1 +O(d−1)
)

=
6d√
πt

(

1 +O(d−1)
)

− 4(6− π)d2

πt

(

1 +O(d−1)
)

+O

(

d2

t

)3/2

=
6y√
π

(

1 +O(d−1)
)

− 4(6− π)y2

π

(

1 +O(d−1)
)

+O
(

y3
)

(4.5.1)

where we have set y =
√

d2/t; it is worthwhile to explicitly note that the leading
terms of the probability are a function of d2/t, which thus describes the time evo-
lution of a fixed probability surface. This regular diffusion-like behaviour, unlike
in the two-particle case, is not trivial: even though the probability of meeting at a
given point is led, for long times, by a Gaussian propagator, the minimum distance
is a strictly non-linear function of the positions of the particles, so that a priori
it is hazardous to guess this behaviour. Furthermore, the diffusion-like behaviour
is not guaranteed to hold at higher orders because of the O(d−1) error which one
introduces when approximating the sums with integrals.

4.6 Maximum Distance Between Particles

Another quantity of interest is the probability that at any given moment the
maximum distance between two adjacent particles is lower than 2d: the set of
points satisfying dMax < 2d corresponds to the shaded area R in Fig.4.6:

P (dMax < 2d, t) =
∑

~x∈R
P (~x, t) .

A quantity like this can be of interest, e.g., when investigating the robustness of a
dynamic network of wireless devices, whose nodes can move randomly in space [19].

Instead of computing sums, we compute integrals, as we did in the previous
sections: by doing so we introduce errors which are O(d−1), so that we can safely
ignore them as long as 1 ≪ d≪ t; we now divide R into two regions, the circle of
radius d, Cd, and R \ Cd, and write

P (dMax < 2d, t) = Qd(t) +
∑

~x∈R\Cd

P (~x, t) .
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Figure 4.6: The shaded area is R, the region of summation for P (dMax < 2d, t).

The second piece can be written by substituting
{

l = n1+n2

2

m = n1−n2

2

,

and approximated with an integral over the slices as follows:

∑

~x∈R\Cd

P (~x, t) =

(

1

2π

)

12

∫ 2d/
√
t

2d/
√
3t

dq̄
π

3

(

2d√
t
− q̄

√
3− 1

)

e−q̄2
(

1 +O(d−1)
)

.

The result can be stated in an analytic, if somewhat unclear, formula as follows:

P (dMax < 2d, t) = 1 +

{

−3 +
√
3

2
e−

4d2

3t +

√
3 + 1

2
e−

4d2

t

+
(√

3 + 1
)√

π
d√
t

[

Erf

(

2d√
t

)

− Erf

(

2d√
3t

)]}

(

1 +O(d−1)
)

. (4.6.1)

A straightforward computation leads, in the same limits as before, 1 ≪ d ≪ t1/2,
to

P (dMax < 2d) =
4√
3

d2

t

(

1 +O(d−1)
)

− 8

27

(

3 + 4
√
3 +O(d−1)

)

(

d2

t

)2

+
32

405

(

12 + 13
√
3 +O(d−1)

)

(

d2

t

)3

+O

[

d2

t

]4

.



4.7 Particles With Bounded Maximum and Minimum Distance 59

Figure 4.7: The region of summation for P (dmin > 2dinf , dMax < 2dsup, t) is the
shaded area.

4.7 Particles With BoundedMaximum and Min-

imum Distance

To complete the picture, we next compute the probability that the pairs of adjacent
particles are not closer than 2dinf , and not farther apart than 2dsup:

P (dmin > 2dinf , dMax < 2dsup, t) =
∑

Rm

P (~x, t),

where Rm is the shaded region in Fig.4.7. This quantity is of interest in reactions
involving a catalyst, e.g. in a cell, as it is known [20] that an optimal distance
exists at which the reaction is favoured.
As in the previous section, we approximate the sum with an integral, and obtain



60 Three Particles on a Line

P (dmin > 2dinf , dMax < 2dsup, t) =
12√
3π

(

1 +O(d−1
inf)
)

{

∫ (dinf+dsup)/
√
t

2dinf /
√
t

dq

(

q − 2dinf√
t

)

e−q2 +

∫ 2dsup/
√
t

(dinf+dsup)/
√
t

(

2dsup√
t

− q

)

e−q2

}

= 6
(

1 +O(d−1
inf)
)







e−
4d2inf

t + e−
4d2sup

t − 2e−
(dinf+dsup)2

t√
3π

+
2
(

Erf
[

2dinf√
t

]

dinf + Erf
[

2dsup√
t

]

dsup − Erf
[

dinf+dsup√
t

]

(dinf + dsup)
)

√
3πt



 .

(4.7.1)

This exact result is quite cumbersome, but one can extract the leading terms in
the expansion under the conditions 1 ≪ dinf < dsup ≪ t1/2:

P (dmin > 2dinf , dMax < 2dsup, t) =
12
(

d2inf − 2dinfdsup + d2sup
)

√
3πt

(

1 +O(d−1
inf)
)

+

−6
7d4inf − 4d3infdsup − 6d2infd

2
sup − 4dinfd

3
sup + 7d4sup

3
√
3πt2

(

1 +O(d−1
inf)
)

.

As soon as we set dsup = kdinf , the asymptotic diffusion-like behaviour becomes
apparent:

P (dmin > 2dinf , dMax < 2dsup, t) =
12√
3πt

(k − 1)2d2inf
(

1 +O(d−1
inf)
)

.

4.8 Interacting Multiple Random Walks

It is indeed possible to extend the previous results to two different types of inter-
acting multiple random walks.

First consider a random walk, on an infinite line, for three particles which can
stay on the same vertex but never change their ordering. Let x be the distance be-
tween the left-most particle and the central one, and let y be the distance between
the central particle and the right-most one. The motion of the particles can be
easily represented on the slice in Fig.4.2. As long as x and y are both greater than
zero (everywhere outside the axes and the origin), the most straightforward choice
for the transition rates is the same as in the case of non-interacting particles. When
x = 0 or y = 0, instead, the probability distribution for the outcoming configu-
rations are arbitrary, depending on what physical sense we give to the encounters
among particles.
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For the probability of transition on the axes (excluding the origin), we decide
that when two particles try to cross one another they bounce back. This imme-
diately entails the same probability of transition as in the non-interacting case,
and we can once again describe the problem in a graph like the one in Fig.4.3.
The difference is that each triangular slice is a mirror copy of the adjacent ones,
while in the first case each slice carries a specific ordering of the particles. The
probability P nc(~x, t) of finding the three non-crossing particles at given distances
(2x, 2y) is then obtained by summing the probability for non-interacting particles
over all the corresponding points:

P nc(~x, t) =















6P (~x, t) x, y > 0
3P (~x, t) x = 0, y > 0
3P (~x, t) x > 0, y = 0
P (~x, t) x = y = 0

. (4.8.1)

The other quantities, which are already summed over equivalent points, are the
same as in the non-interacting case.

A slightly more complex case is when the three walkers are solid and can
neither sit on the same vertex nor cross each other. In this case the motion can
be described on the interior of the slice in Fig.4.2, i.e. on sites of the form

~x =
x

2
~e1 +

y

2
~e2,

with x, y ≥ 2, which correspond to distances (x, y). Whenever x, y > 2, the
probability of transition are the same as in the non interacting case. When two
particles are adjacent (x = 2 or y = 2, but not both), our choice about bouncing
yields the following probabilities of transition:

p ((2, y) → (2, y)) =
1

4
,

p ((2, y) → (2, y − 2)) = p ((2, y) → (2, y + 2)) =
1

8
,

p ((2, y) → (4, y − 2)) = p ((2, y) → (4, y)) =
1

4
.

When the particles are all adjacent (x = y = 2), the probabilities are as follows:

p ((2, 2) → (2, 2)) =
1

4
,

p ((2, 2) → (2, 4)) = p ((2, 2) → (4, 2)) =
3

8
.

If we now send (x, y) to (x− 2, y− 2), we can immediately recognize that all these
probability are the same as in the case of non-crossing particles. Thus for solid
random walkers the probability function P srw(~x, t) satisfies

P srw(~x, t) = P nc(~x− ~e1 − ~e2), t), (4.8.2)
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Figure 4.8: In all figures, the black lines show the asymptotic behaviour, while red
lines are the results of simulations for dinf = 30, dsup = 100. (a) P (dmin < 2dinf , t)
is plotted together with the first two terms of Eq.4.5.1. (b) P (dMax < 2dsup, t)
and (c) P (dinf < 2dmin, dMax < 2dsup, t) are also plotted together with the second
order behaviour.

and analogously for the other quantities we have computed.

While the choice we have made for the transition probability of adjacent par-
ticles can be justified, from an intuitive point of view, by calling up independence
of the Brownian motion of different particles and momentum conservation in col-
lisions, it should be stressed that it is nevertheless an arbitrary position, and
different choices will yield different results.

4.9 Simulation Results and Discussion

To verify that the asymptotic behaviour is a good approximation at large finite
times, we performed several simulations after obtaining the analytical results.
Leaving aside the technical details, we ran multiple random walks both on the
line and the distance graph, so as to verify each step. The results were comfort-
ing, and we have summarised them in Fig.4.8. The asymptotic behaviour sets in,
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Figure 4.9: (a) The simulation results for P (dmin < 2dinf , t) are plotted with the
exact formula from Eq.4.5.1. (b) P (dMax < 2dinf , t) is plotted with Eq.4.6.1. (c)
The expression for P (dinf < 2dmin, dMax < 2dsup, t) from Eq.(4.7.1) is plotted at
intermediate times together with simulation results. Other choices for dinf and
dsup give similar results
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as expected, when either
√

d2/t or d2/t becomes sufficiently small; what is quite
interesting is that, even at intermediate times, the exact results obtained via the
steepest descent method agree well with the simulations.

In this chapter we explored an area which up to now has been just grazed by
research; we have been able to compute the leading terms of several probability
functions, all related to collective properties of the random walks of three particles,
namely the minimum and maximum distances among particles. For large times
t and large distances d, our results highlight that such probability distributions
display a diffusion-like scaling as d2/t, although they regard non-linear functions of
mutual distances. This regularity, which is hinted at by the Gaussian shape of the
probability of meeting, but is nevertheless non-trivial because of the non-linearity
of the minimum and maximum distances, breaks down for intermediate distances,
where a richer behaviour is revealed as the integral approximation of the sum over
lattice sites no longer holds.

4.10 Further Developments

Two possible directions for further research are: the extension to 4 and more parti-
cles of the present calculations; the study of structures that don’t admit a distance
graph.

When considering n independent particles on a line, with coordinates x1, . . . , xn,
the corresponding distance graphs become ever more complex, but they should
prove analytically manageable. An initial consideration is the following proposi-
tion.

Proposition. The 2n possible choices for the motion of the particles map onto
(2n − 2) different movements in the space of distances, whose coordinates are
di = xi+1 − xi for i = 1, . . . , (n− 1).

While it is evident that the distances will remain untouched when the all the
particles move either to the left or to the right, it is not so obvious that all
the other choices for the xi lead to independent outcomes; to prove that it is
indeed the case, one can proceed by induction: take all the 2n configurations
for n particles, and add a further particle; only the two configurations where
all the particles move left or all the particles move right will yield no change
in the distance coordinates; since for the n particles all the non zero (2n − 2)
configurations yield different shifts by virtue of the inductive hypothesis, all
the (2n+1−2) non zero configurations obtained by adding the (n+1)-th particle
are strictly different. Since for n = 2 the inductive hypothesis is true, it holds
for every n.

As the distance graphs, from 4 particles onwards, become quite difficult to visual-
ize, finding a translational invariant lattice as for the case n = 3 is a geometrical
challenge in itself. Once a method for calculation will have been established for
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arbitrary n, however, interesting quantities, along the lines of the ones computed
in this chapter, will become available even in the large n limit, with a big improve-
ment on the application side (e.g. for mobile wireless networks).

About multiple random walks on structures that do not allow a distance graph not
much can be said in general, since the pretty properties of translational invariance
are lost: one can thus expect queer behaviour to happen for several observables,
in particular for multiple random walks. Among the simplest observables one can
study are the properties of collision of two particles: let

Pij(t)

be the probability that two particles, starting from i, meet in j at time t, and let

Fij(t)

be the probability that the first encounter of the particles happen at time t in j.
Since two particles can have already met before meeting at j, the following holds:

Pij(t) =
∑

τ

∑

k

Fik(τ)Pkj(t− τ) + δijδ0t.

Summing over t and j, the previous equation becomes

Pi =
∑

k

∑

τ

Fik(τ)Pk + 1,

where Pi =
∑

t

∑

k Pik(t); if, as on homogeneous lattices, Pi doesn’t depend on i,
and the graph is recurrent, which entails Pi = ∞, it immediately follows that

∑

τ

∑

k

Fik(τ) = 1,

that is the same as saying that the two particles are bound to meet, sooner or
later. On the other hand, when Pi does depend on i, even on recurrent lattices it
is possible that two particles never meet. The apparent incompatibility between
an infinite average number of encounters and a finite probability of never meeting
can be easily interpreted: the infinite expected number of encounters (Pi = ∞)
may be due to a small number of random walks which clash infinitely often, while
a great number of other pairs of walkers never manage to meet. This kind of
phenomenon is currently under study.
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5
Ising Model: Fundamentals

5.1 Introduction

The Ising model is a rough approximation to the equilibrium statistical mechanics
of a magnet, in which every atom is portrayed as having spin 1/2, and interacts
with its first neighbours only. While the Ising model can correctly describe a
single domain in a ferromagnet, its renown is largely due to the widespread use
that researchers in the most diverse fields make of it and its many generalizations.

The historical importance of the Ising model consists in its being the first
model proved to display a phase transition in the thermodynamic limit. The
story goes along this line: in 1920 Wilhelm Lenz gave his student Ernst Ising
the task of calculating some observables out of a classical approximation to the
quantum Heisenberg problem, on a one-dimensional infinite lattice; this classical
approximation was subsequently called the Ising model.

The system was proven to have no phase transition, and in its 1925 paper [21]
Ising wrongly induced that the model would have no phase transition in higher
dimensions too; the mistake he incurred was to underestimate the geometry of the
system, which is of paramount importance for the mechanics of phase transition.

The error was quickly acknowledged, and Rudolf Peierls proved in 1936 [22]
that the two-dimensional Ising model presented a spontaneous magnetization: he
was able to show that at low enough temperature the fluctuations of the sys-
tem are unable to perturb a magnetized state. Its technique was later refined by
Griffiths [23], and originated several lines of research investigating higher dimen-
sional lattices, as in the works by Dobrushin [24], Isakov [25], Pirogov-Sinai [26],
or Lebowitz and Mazel [27]. The Ising model was then proved to display a phase
transition on all regular lattice of dimension at least two.

As we have seen in the case of random walks, regular lattices do not tell the
whole story, and peculiar phenomena can appear when leaving the assuring grounds
of translational invariance. The next category of graphs which was studied in
depth are fractals, where the self-similarity of the structures allowed to outline
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a comprising picture [28]: the factor determining whether the graphs undergo a
phase transition appears to be its minimum order of ramification, which is linked
to how well the structure is connected at long range.

More general graphs [29–33] have become increasingly popular in the last
twenty years: the main difference with the previous cases is that the metric struc-
ture of the embedding space ceases to play an essential role, as in its most general
form a graph is a topological structure which is not necessarily embeddable in a
finite dimensional Euclidean space. The absence of translational invariance and
scale invariance makes general graphs very difficult to study, as ad hoc techniques
must be employed that usually admit no straightforward generalization.

5.2 The Ising Model

Let G = (P,L) be an arbitrary graph, with #P = N , and let σi = ±1 be a spin
variable for each vertex i ∈ P. We define the Ising Hamiltonian H on a graph
as

H = −
∑

(i,j)∈P×P
Jijσiσj −

∑

i∈P
σihi. (5.2.1)

The couplings Jij are symmetric, so that Jij = Jji, and, since we are defining the
Hamiltonian on the graph G, Jij > 0 iff (i, j) ∈ L. Analogously we could give total
freedom of choice for the couplings, and then define the graph G as the pair made
of the collection of vertices and the set

L = {(i, j)|Jij > 0} .

What matters here is that there is consistency between the non-zero couplings and
the edges of the graph. The parameter hi is an external field, and it is usually set
to a constant value for all the vertices.

Depending on the characteristics of the couplings Jij, one usually differentiates
two main cases:

• Jij ≥ 0 for all i ∈ P: ferromagnetic Ising model,

• Jij ≤ 0 for all i ∈ P: antiferromagnetic Ising model.

A configuration of the system is obtained by specifying the value of each spin
σi in P, and the equilibrium statistical mechanics of the Ising model, at inverse
temperature β = 1/kT , is obtained by associating a Boltzmann weight to each
configuration:

P ({σi}) = Z−1e−βH{σi}, (5.2.2)

where the normalization factor is the partition function

Z =
∑

{σi}
e−βH{σi}. (5.2.3)
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With these definitions, one can compute the thermodynamic average value of any
observable O{σi} as

〈O〉 = Z−1
∑

{σi}
O{σi}e−βH{σi} (5.2.4)

The usual statistical mechanics relations between thermodynamic quantities and
the partition function hold:

• specific Helmholtz free energy F = −kT
N

logZ,

• specific internal energy 〈E〉 = − 1
N

∂ logZ
∂β

,

• specific heat

C =
∂〈E〉
∂T

=
kβ2

N
Var(E) =

kβ2

N

∂2 logZ
∂β2

,

• average spin magnetization

〈σ〉 = 1

N

∑

i∈P
〈σi〉 = − 1

N

∂ logZ
∂h

.

As long as the graph is finite, Z is a finite sum of analytic functions, and is thus
analytic itself: no phase transition is then possible, and all the derivatives are well
defined.

5.3 Infinite Graphs

When the graph is infinite, on the other hand, Z is ill-defined, and to obtain a
meaningful quantity one has to compute the energy density 〈E〉 choosing an ap-
propriate sequence of growing graphs. The most versatile way of accomplishing
this objective is by employing Van Hove spheres (see Sec.1.2), while on lattices
more regular structures can be employed [23]. In two fundamental papers of 1952,
Lee and Yang [34, 35] prove the following

Theorem. In a regular d-dimensional lattice V, take a sequence of growing sub-
lattices VN such that

lim
N→∞

VN = V,

and whose surfaces ∂VN don’t increase faster than (#VN )
(d−1)/d. Then the ther-

modynamic limit

F = lim
N→∞

kT

#VN
logZVN

exists and is independent of the shape of the sublattices. Moreover, F is a con-
tinuous and monotonically decreasing function of the magnetic field h and the
couplings Jij.
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Far more interesting is a second result, which states a sufficient condition for the
analyticity of the free energy: since F = kT/N logZN , its singularities are deter-
mined by the zeros of the partition function. In particular, considering β = 1/kT
as a complex variable, for all finite N the roots of ZN will lie outside the real line,
which is the same as saying that there is no singularity of FN as the temperature
varies. If the same holds in the limit N → ∞, then no phase transition will be
present, as the following theorem states.

Theorem. Let y{σi}(β, Jlm, hn) = e−βH{σi}. If in the complex plane of variable
y{σi} a region R exists, which covers a segment of the real positive axis, such that
for all N no zeros of ZN fall in R, then everywhere in R the quantities

lim
N→∞

1

N

∂k logZN

∂
(

log y{σi}
)k

exist and approach limits analytic in y{σi}. Moreover, limiting procedure and
derivatives commute.

Thus, in order to find possible singularities of the Ising model, or more in general
of the free energy for a statistical model, one can study the distribution of the
roots of the partition function. It is noteworthy that the roots, in the continuous
limit, are ordered along lines which reflect to some extent the symmetries of the
system [35–39]

A less general but powerful result [40], derived from the theorems by Lee and Yang,
concerns the ferromagnetic Ising model (Jij ≥ 0):

Theorem. Let zi = exp−2βhi. If |zi| ≥ 1, which means hi ≥ 0 (it can be always
satisfied as long as all the external fields have the same orientation), then the zeros
of Z satisfy

|z1| = |z2| = · · · = |z#VN
| = 1 (5.3.1)

The previous theorem implies that phase transition, for the Ising model, can occur
at finite temperature only if all the magnetic fields are turned off, as otherwise the
free energy is an analytic function of β even as N → ∞.

The expression of observables as derivatives of logZ is of course useless when
the partition function is not analytic. However, the quantities are well defined for
hi ≡ h 6= 0, as the free energy is analytic by virtue of the previous theorem; the
two limits h→ 0+ and h→ 0− can however yield different results, and indeed they
do in several cases. As a first example, on a 2-dimensional infinite square lattice,
at low temperatures,

lim
h→0+

〈σ〉 > 0,

lim
h→0−

〈σ〉 = − lim
h→0+

〈σ〉 < 0.
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More in general one can easily see that, since the transformation

{

σi → −σi
h→ −h

leaves unchanged exp(−βH{σi}), the following holds:

lim
h→0+

〈σi1σi2 . . . σik〉 = (−)k lim
h→0−

〈σi1σi2 . . . σik〉. (5.3.2)

5.4 Correlation Functions

The spin-spin correlation functions 〈σiσj〉 are important observables, and thus
deserve a particular attention. In a series of papers dating back to 1966 − 1967
[41–43], Griffiths derived several fundamental results on general graphs, which
constitute both the founding stone of a prolific area of research [44–47] and a
powerful tool for investigators.

A first observation is that 〈σiσj〉 can be obtained as a derivative of Z:

〈σiσj〉 = Z−1
∑

{σi}
σiσj exp

{

−β
[

−
∑

Jlmσlσm −
∑

hlσl

]}

=
1

β2

∂2 logZ
∂hi∂hj

. (5.4.1)

Theorem. Griffiths’ Inequalities: for Jij ≥ 0, and under the condition that

• either hi ≡ h > 0,

• or hi ≡ h = 0 and σj = +1 for j ∈ U for some set U ,

• or hi ≡ 0 and no spins are kept fixed,

the following is verified:

〈σiσj〉 ≥ 0 for all i, j (5.4.2)

β−1∂〈σiσj〉
∂Jkm

= 〈σiσjσkσm〉 − 〈σiσj〉〈σkσm〉 ≥ 0 for all i, j, k,m (5.4.3)

〈σiσk〉 ≥ 〈σiσj〉〈σjσk〉 for all i, j, k (5.4.4)

〈σi〉 ≥ 0 for all i (5.4.5)

〈σiσj〉 ≥ 〈σi〉〈σj〉 for all i, j. (5.4.6)

If the sign of the external magnetic field or of the fixed spins is reversed, the two
latter inequalities are reversed, according to Eq.(5.3.2).
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5.5 Magnetization

The mean spin value 〈σi〉 is in general different at every vertex i.

For the case of finite systems, if no external field nor boundary condition is set,
the rule

σi 7→ −σi
leaves the energy unchanged, so that

〈σi〉 = −〈σi〉 ⇒ 〈σi〉 = 0. (5.5.1)

For infinite systems, the same results hold from a formal point of view, as

lim
N→∞

〈σi〉VN
= 0;

however, the expression bears no significance on its own: the states of opposite
magnetization which cancel each other’s contribution can be unable to be explored
from a physical point of view, as in the case of spontaneous magnetization the
thermal fluctuations of the system are not enough to overturn a magnetic ordering,
once that it has been attained. The equilibrium statistical mechanics is then wrong
to some extent, as the system is unable to explore all the phase space. Nevertheless,
meaningful quantities can be computed: observables which are even in the fields
are not zeroed by the averaging process, and can give meaningful results.

When the external field is turned on, it is indeed possible that

lim
h→0+

lim
N→∞

〈σi〉VN
= +µ > 0,

lim
h→0−

lim
N→∞

〈σi〉VN
= −µ < 0,

which is exactly what happens when a spontaneous magnetization occurs.

Likewise, when external spins are held fixed, i.e. a boundary condition is set, it’s
possible that

lim
N→∞

〈σi〉VN
= ±µ,

with µ 6= 0.

The average magnetization of the graph is another meaningful quantity:

m =
1

N

∑

i∈P
σi; (5.5.2)

when averaged on the thermodynamic ensemble for homogeneous lattices, it is
trivially equal to the 〈σi〉, while on general structures it can be zero even though
all the single 〈σi〉 are strictly greater than zero.

Another interesting quantity is the modulus of the magnetization, |m|, which
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can be used to extract useful information about the magnetization properties of
a graph even when neither external field nor fixed spins are set, as it is a strictly
positive quantity which is left untouched by spin reversal.

The same is true for the square magnetization

m2 =
1

N2

∑

i,j∈P
σiσj . (5.5.3)

Even though |m| < 1 implies m2 < |m|, the two quantities have to be both zero
or both non-zero simultaneously: the variance of |m| is

∆|m| = 〈m2〉 − 〈|m|〉2 ≥ 0,

which entails
{

〈m〉2 ≤ 〈|m|〉 ≤
√

〈m2〉
〈|m|〉 ≤

√

〈m2〉 ≤
√

〈|m|〉 ; (5.5.4)

as a consequence, 〈|m|〉 6= 0 is equivalent to 〈m2〉 6= 0.

Both the average square magnetization and the average modulus of the magneti-
zation are strictly positive at all N < ∞. However, as N → ∞, in the absence
of spontaneous magnetization they will both become zero. The easiest way to
understand this process is by analysing the average square magnetization,

〈m2〉 = 1

N2

∑

ij

〈σiσj〉, (5.5.5)

as it immediately highlights the importance of the spin-spin correlation functions:
as N grows, the vast majority of all the pairs (i, j) will be separated by an arbitrary
distance, so that in order for 〈σiσj〉 to remain finite, the number of pairs at fixed
distance must outbalance the decreasing weight of each correlation function.

A simple (and simplistic) way of keeping this into account, which works well
for homogeneous lattices, but is otherwise useless, is as follows: in homogeneous
lattices the correlation functions only depend on the relative distance between the
spins (in general a vector distance), and in the specific case of Euclidean lattices
they just depend on the Euclidean distance (for large lattices in the proximity
of a phase transition). In particular, when the temperature of the system is not
critical, correlation functions decay exponentially to zero, so that

〈m2〉 = 1

N2

∑

ij

〈σiσj〉 ∼
N

N2
→ 0.

At the critical temperature, correlation functions are power-like; even in this case,
〈m2〉 fails to be non zero in the thermodynamic limit: let

〈σiσj〉 ∼ d−α
ij ,
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and write the number of vertices at Euclidean distance at most R from a point as

N(R) ∼ Rdfrac ;

the number of points at distance about R is then approximately Rdfrac−1, and

〈m2〉 ∼ 1

Rdfrac

R
∑

ρ

Rdfrac−1R−α ∼ R−α,

which tends to zero in the thermodynamic limit. The only case in which one
achieves a non-zero average square magnetization is then when the correlation
functions tend to a finite non-zero constant, as we will prove in the following
section.

5.6 A Consideration on the Magnetization of the

Ising Model

In the thermodynamic limit, 〈m2〉 can become zero even though it is a strictly
positive quantity for every finite graph. What exactly is the connection between
this phenomenon and the characteristics of the correlation functions? To answer
this question choose a graph G = (P,L) and consider the measure µ of a set as
defined in Sec.1.3.

Proposition. The existence, in the thermodynamic limit, of a non-zero measure
set of correlation functions, such that all its correlation functions are greater than
some ǫ > 0, is a necessary and sufficient condition for 〈m2〉 to be greater than zero.

If in the thermodynamic limit a subset A ⊂ P × P of measure µ(A) = α > 0
exists such that ∀(i,j)∈A 〈σiσj〉 ≥ ǫ > 0, then

〈m2〉 = lim
N→∞

∑

(i,j)∈P×P

〈σiσj〉
N2

≥ ǫα > 0.

If there is no such subset, then for any given ǫ and for any A ⊂ P × P, a set
B ⊂ A exists which has measure µ(B) = µ(A) and that satisfies 〈σiσj〉 < ǫ for
all (i, j) ∈ P × P. This is true in particular for A = P × P, and for any ǫ

〈m2〉 = lim
N→∞

∑

(i,j)∈P×P

〈σiσj〉
N2

≤ ǫ,

so 〈m2〉 = 0.
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5.7 The Ising Model on an Infinite Line

The simplest exactly solvable lattice is the infinite line, which allows one to intro-
duce the transfer matrix formalism. What is particularly noteworthy is that it is
possible to find a full solution in the presence of an external field.

As anticipated, no phase transition is possible on the line: let all the couplings
be equal to J , let the external field be homogeneous (hi ≡ h), and define the
transfer matrix P as having elements

〈σi|P | σj〉 = exp {β [Jσiσj + h (σi + σj) /2]} , (5.7.1)

or

P =

(

eβ(J+h) e−βJ

e−βJ eβ(J−h)

)

.

Because of the sum over configurations, the partition function Z becomes a trace:

Z =
∑

σ1

· · ·
∑

σN

〈σ1|P | σ2〉 . . . 〈σN−1|P | σN〉

=
∑

σ1

〈σ1|PN | σ1〉

= Tr
(

PN
)

. (5.7.2)

Since Tr
(

PN
)

= λN1 + λN2 , where λi are the eigenvalues of P , one first calculates
them, then turns to the limit for large N , which selects the greatest between the
eigenvalues:

λ± = eβJ
[

cosh βh±
√

sinh2 βh+ e−4βJ

]

;

since λ+ is the greatest eigenvalue,

Z = Tr
(

PN
)

∼ λN+ , (5.7.3)

and the free energy becomes

F = lim
N→∞

−kT
N

logZVN
= −J − kT log

[

cosh βh+

√

sinh2 βh+ e−4βJ

]

. (5.7.4)

It is obvious now that the only singularity point for the free energy at real T and
h is at T = 0, so we can conclude that no phase transition occurs.

Computing the other observables is now straightforward; in particular

〈m〉 = ∂F

∂h
= −kT

sinh βh+ sinhβh coshβh√
sinh2 βh+e−4βJ

cosh βh+
√

sinh2 βh+ e−4βJ
.
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In the limit h → 0±, 〈m〉 = 0, so no spontaneous magnetization occurs at any
non-zero temperature, as anticipated by the analyticity in T of the free energy.

It is noteworthy that computing FN in the reverse order, first taking the limit
h→ 0 and then N → ∞, would have produced the same result: this property fails
just when a phase transition occurs, as then the order in which the limits are taken
decides what the final result is; in particular, the thermodynamic limit needs be
taken first, as otherwise the finite size of each system VN guarantees the absence
of any singularity.

5.8 The Path Expansion of the Ising Model

A powerful technique for dealing with the difficulties of the Ising model on graphs
is the path expansion in zero field: due to the discrete nature of the spin variables,
it is possible to express the partition function as a sum over all the possible loops
which are made by choosing at most once each edge.

A trick is the key to prove the result: when hi ≡ 0 and no spins are held fixed,
the fragment of the Boltzmann weight exp βJijσiσj can be written as

exp βJijσiσj = cosh βJij + σiσj sinh βJij. (5.8.1)

The partition function can then be written as

ZVN
=

∑

{σi}

∏

i,j

[cosh βJij + σiσj sinh βJij]

=
∑

{σi}

∏

i,j

cosh βJij [1 + σiσj tanh βJij] .

The product of all the square brackets on the right hand side is a sum of terms
which display a product of spin variables: whenever any spin variable appears with
an odd power, the sum over configurations of that term can be written as

∑

σl

σ2t+1
l

∑

σi

∑

σk

· · · = +
∑

σi

∑

σk

· · · −
∑

σi

∑

σk

· · · = 0.

The picture described at the beginning of this paragraph now emerges: only those
terms which display an even power for all the spin variables contribute to the
partition function, and these terms correspond exactly to choosing edges (i.e. terms
like σlσm sinh βJlm) in such a way as to make closed loops. In addition to the loops,
a term equal to 1 has to be taken into account. Using the terminology of Sec.1.2,
we call such loops cycles, and write

ZVN
=





∏

(l,m)

cosh βJlm







1 +
∑

γcycle

∏

(i,j)∈γ
tanh βJij



 . (5.8.2)
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Exactly the same procedure yields an expression for the sum over configurations
of the product σiσj exp [−βH{σi}]: here the sum over loops is replaced by a sum
over all the paths γi→j, created by taking at most once each edge, which lead from
i to j. The direct consequence is that

〈σiσj〉 =
∑

γi→j

∏

(i,j)∈γ tanhβJij

1 +
∑

γcycle

∏

(i,j)∈γ tanh βJij
. (5.8.3)

Analogous relations hold for the expectation values of arbitrary products of spin
values 〈σi . . . σk〉, where the sum at the numerator is over all the paths which have
a hanging leg at each of the vertices i, . . . , k.

The path expansion can immediately be applied to the 1-dimensional Ising model:
since no cycle is possible, the denominator in Eq.(5.8.3) is 1, while the only possible
path from i to j is a segment of length dij. Then

〈σiσi+l〉 =
i+l−1
∏

m=i

tanh βJm(m+1).

5.9 The Mermin-Wagner Theorem and its Ex-

tensions

One of the first general results regarding phase transitions was the Mermin-Wagner
theorem [48]; even if it does not regard the Ising model, it is important enough to
be recalled:

Theorem. At finite temperatures, the quantum spin-S Heisenberg model with
isotropic and finite-range exchange interactions on one- or two-dimensional lattices
can be neither ferromagnetic nor antiferromagnetic.

Without any pretence to analyse the details, the Mermin-Wagner theorem, along
with other results both in statistical physics [49] and in quantum field theory
[50], states that on regular lattices continuous symmetries cannot be broken in
dimension lower than or equal to 2.

A powerful extension of the Mermin-Wagner theorem to arbitrary graphs [51]
takes into account whether simple random walks on the structure are recurrent,
this characteristic becoming a substitute for the dimension of the graph. It is
however not applicable to the Ising model.

Theorem. The classical O(n) (n ≥ 2) and quantum Heisenberg ferromagnetic
models on a graph cannot have spontaneous magnetization if simple random walks
on the structure are recurrent on average (see Sec.2.7).

As a simple corollary descending from the definition of recurrence on average,
graphs whose average spectral dimension d̄ is lower than or equal to 2 have no
spontaneous magnetization.
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The classical example of the thesis failing when the symmetry is discrete is the
Ising model itself, as on the infinite plane it shows spontaneous magnetization.
This fact is traditionally explained with the impossibility for thermodynamical
fluctuations to reverse big blocks of oriented spins when the possible orientations
are just up and down, thus leaving the magnetized lattice in a state which cannot
be overturned; on the contrary, when the symmetry is continuous adjacent spins
can be at arbitrarily small angles, thus allowing whole blocks of spins to be flipped
increasing the energy of the system by an infinitesimal amount.

A theorem of this family which can also be applied to the Ising model actually
exists [52], and gives a sufficient condition for spontaneous magnetization:

Theorem. The family of O(n) models shows spontaneous magnetization in the
limit h→ 0± if the graph is transient on average.

This theorem immediately implies that regular lattices with d ≥ 3 have sponta-
neous magnetization, and also allows one to decide the magnetizability of more
exotic structures just by investigating their properties under a random walk. The
weakness of the latter theorem is that it says nothing on a lot of important struc-
tures, including the square lattice, all the planar fractals and many more general
graphs. One of the results of my work as a Ph.D. student has been to devise
two theorems, which can be applied to a huge variety of graphs, stating sufficient
conditions both for magnetizability and non-magnetizability of a graph. They will
be discussed at length in the following two chapters.



6
A Sufficient Condition for No Spontaneous

Magnetization

In this chapter, a theorem is presented which states that a very large class exists
whose graphs, which we call weakly separable, magnetize. Together with an-
other theorem, which the reader will find in the next chapter, it makes a powerful
instrument for determining whether a given graph magnetizes.

This work has been published in Modern Physics Letters B [3].
As a first step towards the proof of our results, we are now going to state some

general results about the Ising model that we’ll need later.

6.1 Combination of Two Points in a Graph

We are now going to prove rigorously that increasing a given coupling Jij to infinity
is equivalent to joining the two points i and j: the same model can thus be studied
on a new graph, where the set of points is changed to P ′ = P \ {i, j} ∪ {k}, and
the new couplings are defined as J ′

km ≡ Jim + Jjm, or J
′
lm ≡ Jlm if l, m 6= k.

Let GN be a given graph and H = −∑i<j Jijσiσj the Ising energy on GN , with
Jij ≤ JMax < ∞ and correlation number zi ≤ zMax < ∞. Now take two point α
and β on GN , and let G ′

N denote the graph obtained by coalescing the point α
and β into γ, with couplings J ′

γδ = Jαδ + Jβδ for every δ in G ′
N .

We prove in the following that the relationship

lim
Jαβ→∞

〈σiσj〉Jαβ

GN
= 〈σiσj〉G′

N

holds uniformly in the thermodynamic limit, so that the double limit

lim
N→∞

lim
Jαβ→∞

〈σiσj〉Jαβ

GN
= 〈σiσj〉G′

N

doesn’t depend on the order of limits.
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The correlation functions are

〈σiσj〉Jαβ

GN
=

Z++ + Z−− −Z+− −Z−+

Z++ + Z−− + Z+− + Z−+
,

where Z++ is the correlation function calculated at σi = +1, σJ = +1, and anal-
ogously for Z−−,Z+− and Z−+. In terms of the coupling Jαβ, the correlations
functions can be written as follows:

Z++ = e+βJαβ
[

Z++
++ + Z++

−− + e−2βJαβ
(

Z++
+− + Z++

−+

)]

,

with Z++
−− denoting the correlation functions with (σi, σj) fixed by the upper inde-

ces, (σα, σβ) by the lower ones. We now define

Zσiσj
conc ≡ Zσiσj

++ + Zσiσj

−− ,

Zσiσj

disc ≡ Zσiσj

+− + Zσiσj

−+ ,

so as to write, exploiting the inversion symmetry of the Ising model,

〈σiσj〉Jαβ

GN
=

Z++
conc − Z+−

conc + e−2βJαβ
(

Z++
disc −Z+−

disc

)

Z++
conc + Z+−

conc + e−2βJαβ
(

Z++
disc + Z+−

disc

) .

Since both the correlation number zl and Jlm are uniformly limited, the energy
difference between two states, differing at most for the spin values at the two points
α, β, is bounded:

−2zMaxJMax ≤ Hσiσj

++ −Hσiσj

+− ≤ 2zMaxJMax,

e−2βzMaxJMax ≤ eβ(H
σiσj
++ −Hσiσj

+− ) ≤ e+2βzMaxJMax.

Defining now
{

Zconc ≡ Z++
conc + Z+−

conc

Zdisc ≡ Z++
disc + Z+−

disc

,

we can write, denoting by
∑′

{σk} the sum over the configurations at fixed α, β, i, j,

Zconc =

∑′

{σk}
(

e−βH++
++ + e−βH++

−− + e−βH+−
++ + e−βH+−

−−

)

=

∑′

{σk}
(

e−βH++
+−e−β(H++

++−H++
+−) + e−βH++

−+e−β(H++
−−−H++

−+)

+ e−βH+−
+−e−β(H+−

++−H+−
+−) + e−βH+−

−+e−β(H+−
−−−H+−

−+)
)

≤ e+2βJMaxzMax

∑′

{σk}
(

e−βH++
+− + e−βH++

−+ + e−βH+−
+− + e−βH+−

−+

)

= e+2βJMaxzMax (Zdisc) .
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An analogous relation holds for every value of σi, σj and also if we exchange Zσiσj
conc

and Zσiσj

disc , so that

e−2βJMaxzMaxZconc ≤ Zdisc ≤ e+2βJMaxzMaxZconc,

e−2βJMaxzMaxZdisc ≤ Zconc ≤ e+2βJMaxzMaxZdisc.

We can therefore write

Zdisc = ηZconc,

where η ∈
(

e−2βJMaxzMax , e+2βJMaxzMax
)

. The correlation function now reads

〈σiσj〉Jαβ

GN
=

Z++
conc −Z+−

conc

(Z++
conc + Z+−

conc) (1 + ηe−2βJαβ)

+e−2Jαβ
Z++

disc − Z+−
disc

(

Z++
disc + Z+−

disc

)

(1 + η−1e−2βJαβ)
.

It is now possible to notice that

〈σiσj〉G′
N
=

Z++
conc −Z+−

conc

Z++
conc + Z+−

conc

,

while
Z++

disc−Z+−
disc

Z++
disc+Z+−

disc

is the correlation function of a graph G ′′
N , equal to G ′

N but for

the couplings J ′′
γδ = Jαδ−Jβδ. Since for any two points, whose distance dij is fixed,

the correlation function is greater than (tanh βJmin)
dij , the following inequality

holds:

〈σiσj〉G′
N

1

1 + ηe−2βJαβ
≤ 〈σiσj〉Jαβ

GN
≤ 〈σiσj〉G′

N
×

×
(

1

1 + ηe−2βJαβ
+

e−2βJαβ

1 + η−1e−2βJαβ (tanhβJmin)
dij

)

.

Since 〈σiσj〉G′
N
doesn’t depend on Jαβ and η ∈

(

e−2βJMaxzMax, e+2βJMaxzMax
)

, the
following limit exists and is independent of the limit order:

lim
N→+∞

lim
Jαβ→+∞

〈σiσj〉Jαβ

GN
= 〈σiσj〉G′∞ .

6.2 Narrowings in Graphs and Correlation Func-

tions

A general result by Griffiths [41] (see Eq.5.4.3) states that
∂〈σiσj〉
∂Jlm

≥ 0; when used
in conjunction with the previous result, it implies that joining points on a graph
increases all the correlation functions.
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Lemma. When all the possible paths between two points i and j share a
common link (l, m), the correlation function satisfies

〈σiσj〉 = 〈σiσl〉 〈σmσj〉 tanhβJlm. (6.2.1)

If all the paths between i and j share a common link, the graph G is made
up of two subgraphs, G1 and G2, connected by the single link Jlm. Employing
the well known path expansion of the correlation functions [53] and supposing
that i ∈ G1 and j ∈ G2, we can write

〈σiσj〉G =

∑G
γ:i→j

∏

(p,q)∈γ tanh βJpq

1 +
∑G

γloop

∏

(p,q)∈γloop tanhβJpq

=

(

∑G1

γ:i→l

∏

(p,q)∈γ tanh βJpq
)

(

1 +
∑G1

γloop

∏

(p,q)∈γloop tanh βJpq
) ·

·

(

∑G2

γ:l→j

∏

(p,q)∈γ tanh βJpq
)

tanh βJlm
(

1 +
∑G2

γloop

∏

(p,q)∈γloop tanh βJpq
)

= 〈σiσl〉G1 〈σlσm〉G2 tanh βJlm;

in the previous equation, the symbols G, G1 and G2 imply that the sums are
to be taken over all the paths available in the relative subgraph.

6.3 Strongly Separable Graphs

We are now going to prove our main result for a class of graph, that we call
strongly separable, that we now define.

Definition. A graph G is strongly separable if, for any integer k, a set Ck ⊂ V ×V
with measure µ(Ck) = 1 exists such that for each pair (i, j) ∈ Ck a collection of k
finite subgraph {I1, . . . , Ik} exists, satisfying

• i ∈ I1 ⊂ · · · ⊂ Ik ⊂ G,

• j is in G \ Iu for all u = 1, . . . , k,

• each Ij is l-disconnectable, that’s to say it can be disconnected from G \Ij

by cutting no more than l links, where l is a constant depending on the
graph.
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The basic idea behind this definition can be traced down to the Peierls argument:
when a very large set is l-disconnectable, flipping all the spins inside it costs
a small amount of energy; when this is true everywhere on a graph, reducing
the magnetization of any given infinite configuration is possible spending a finite
energy.

In practice, we can most easily verify this definition in a Sierpinski gasket: for
each pair (i, j), it is possible to choose the sets Il, l = 1, . . . , k, as follows: Il is
obtained by Il−1 adding a set of triangles such that the number of links is 8 or
less; this can always be accomplished, provided that the dij > 2k+1. Since the set

Bk =
{

(i, j) ∈ P × P : dij > 2k
}

has measure 1, the Sierpinski gasket is strongly separable.

Another example of non trivial strong separability are those bundled graphs in
which the base is a line and each fibre has a finite extension (see Fig.6.1); in this

case, letting d
(b)
ij be the distance on the base,

Bk =
{

(i, j) ∈ P × P : d
(b)
ij ≥ k

}

is appropriate: for each pair (i, j) ∈ Bk, it is sufficient to let I1 be the fibre that i
belongs to, then construct Il by adding to Il−1 the two fibres adjacent to it. The
sets Il are 2-disconnectable and thus the graph is strongly separable.

To perform a quick check of whether a given graph is strongly separable, it suffices
to verify that, for each point i, an arbitrary sequence of growing l-disconnectable
subgraphs, all including i, can be constructed. The key factor here is that the size
of the growing subgraphs doesn’t grow arbitrarily fast for arbitrary points, as in
that case the measure of Bk may be less than 1.

An example of graph which isn’t strongly separable is the 2-d lattice, as in the best
case the number of links to be cut to separate any subgraph grow linearly with its
radius.

6.4 Strongly Separable Graphs Do Not Magne-

tize

We are now to prove the following result:

Theorem. On any strongly separable graph, at any T > 0, 〈M2〉 = 0 in the
thermodynamic limits.

Proof. We are going to prove that all correlation functions tend to zero as the
distance between the spins tends to infinity: for all k and for all the pairs (i, j) ∈
Ck, take a sequence of subgraphs {{i}, I1, . . . , Ik}, each including the previous,
each l-disconnectable and each satisfying j ∈ G \ Iu for u = 1, . . . , k. Notice that
this can be done by virtue of the hypothesis.
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For each Ij, j = 1, . . . , k, first join all the points of the vertex boundary ∂Ij ,
then all the points of the vertex boundary ∂ (G \ Ij), by sending the couplings
between the points belonging to the vertex boundaries to infinity: since Jlm ≤
JMax, the resulting graph G ′ will have no coupling greater than lJMax.

Since G ′ is a graph made up of a sequence of subgraphs connected by just one
link, by iterating k times the relation (6.2.1) we obtain

〈σiσp〉G ≤ 〈σiσp〉G′ ≤ [tanh (βlJMax)]
k . (6.4.1)

Therefore all the correlation functions in Ck tend to zero as the distance between
points goes to infinity and, by virtue of Proposition I, 〈M2〉 = 0 in the thermo-
dynamic limit.

�

One main merit of the previous theorem is that its hypothesis, while being
easily inspectable, gives profound information about the behaviour of the model.

Figure 6.1: Examples of strongly separable graphs: (a) the Sierpinski gasket (b)
a bundled graph with finite fibres.

Some immediate applications are in order: the strongly separable graph condi-
tion is verified for many well known graphs, e.g. the linear chain, the ladder graph,
all the bundled graphs having a linear base and finite fibres (see Fig. 6.1): in each
of these cases the lack of spontaneous magnetization is consistent with the results
from scientific literature. The exactly decimable fractals, as the aforementioned
Sierpinski gasket, are also strongly separable.
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On the other hand, the failure to verify the strong separability condition
is by no means sufficient to imply spontaneous magnetization: as an example,
the comb lattice [54, 55] doesn’t magnetize at finite temperature, even though it
doesn’t verify the hypothesis of the previous theorem. To be able to treat such
cases, we have to introduce a broader class of graphs.

6.5 Weakly Separable Graphs

Figure 6.2: Example of weakly separable graphs: (a) a comb-like lattice (b) the
infinite planes kebab (c) a bundled structure with infinite fibres.

Recalling the definition of bond boundary found in Sec.1.2, we can define the
class of weakly separable graphs.

Definition. A graph is weakly separable when for all integer k > 0 it is possible
to find an infinite set Bk ⊂ P × P such that

• µ(Bk) = 1;

• for all (i, j) ∈ Bk, i and j are separated by at least k distinct bond boundaries,

each of them made of no more than l(k) links, where limk→∞
l(k)
log k

= 0.

As an example, we prove that the kebab lattice is weakly separable. The kebab
lattice is a bundled graph which has an infinite line as base and infinite planes as
fibres (see Fig.6.2b). Let d

(b)
ij be the distance between the projections on the base

of the vertices i and j, and for each k define

Ck =
{

(i, j) : d
(b)
ij > k

}

.
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For each (i, j) ∈ Ck, one can find at least k bond boundaries - made of exactly
one link of the basis - separating the two vertices. Since k is finite, the set of pairs
in P × P \ Ck has zero measure: for any given i, the number of pairs (i, j) not in
Ck grows with the square of the radius of the Van Hove sphere, while the total
number of pairs contained in the sphere grows with its cube, so that

µ (P × P \ Ck) ∝ lim
r→∞

r4

r6
= 0.

6.6 Weakly Separable Graphs Do Not Magnetize

With the definition of weakly separable graph, it is easy to extend the first theorem.

Theorem. For all T > 0, a weakly separable graph satisfies 〈M2〉 = 0 in the
thermodynamic limit.

Proof. Since the graph is weakly separable, for any ǫ′ > 0 a constant k′ exists
such that l(k)

log k
< ǫ′ for all k ≥ k′. Joining the vertices at each bond boundary as

in the previous theorem, it can be proved that 〈M2〉 satisfies

〈M2〉 ≤ [tanh (βJMaxl(k))]
k

for all k ≥ k′. If limk→∞ l(k) is finite, the same reasoning as in the strongly separa-
ble case is valid, and the theorem holds. On the other hand, when limk→∞ l(k) =
∞, for k large enough the expansion

tanhA = exp
(

−2e−2A
)

+O
(

e−4A
)

can be used, and the following holds:

〈M2〉 ≤ exp
(

−2ke−βJMaxl(k)
)

≤ exp
(

−2ke−βJMax(ǫ
′log k)

)

= exp
(

−2k1−βJMaxǫ
′2
)

.

For a given ǫ′ small enough, α = 1 − βJMaxl(k) > 0; as a consequence, for all
ǫ′′ > 0 a k′′ exists such that

exp (−2kα) < ǫ′′,

so for all k ≥ sup {k′, k′′}
〈M2〉 ≤ ǫ′′,

which proves the thesis.

The latter version of our theorem is a big improvement, as the weakly separable
class includes all the tree-like graphs, as well as many types of graphs with infinite
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fibres that are each magnetizable, but fail to do so in a coherent manner when put
together (see Fig. 6.2).

The clearest example here is the kebab of infinite planes [13]: in such a system
an infinite quantity of states exist which have zero magnetization and an energy
only finitely different from the ground state, even in the thermodynamic limit
(these low energy states can be obtained from the ground state e.g. by flipping
the spins on all the planes on the right of a given link).

The statistics of this multitude of states determines the zero magnetization of
the system: while in the presence of a small external field all the planes would
magnetize coherently, in zero field the lack of correlation among planes doesn’t
allow for a non-zero average orientation. This is a perfect example of how different
definitions of spontaneous magnetization give different results on general graphs,
as we discussed in an earlier chapter.

In general, all the bundled graphs having a weakly separable base and infinite
size fibres, none of which of a finite measure, are as a whole weakly separable, and
as such do not magnetize.

As expected, the theorem hypothesis is falsified on d-dimensional regular and
crystal lattices (where the minimum number of links to separate a subgraph of size

N scales as N
d−1
d ), on the Sierpinski carpet [56] and on all the structures we were

able to check that exhibit spontaneous magnetization, yielding a sound check of
its validity.

6.7 Summing Things Up

The procedure we have followed to prove the theorems can be intuitively under-
stood as follows: the fact that the spins must communicate by crossing a small
number of passages makes it impossible to propagate a small effect to a great
distance, and hence no long range order, and thus magnetization, is allowed.

As far as our knowledge goes, all the graphs that display spontaneous magne-
tization are not weakly separable, suggesting that it may be not only a sufficient
condition for the absence of magnetizability, but a necessary one too. Actually
some comments are in order that make this conclusion a little far fetched: on the
one hand, while locally it is quite easy to find a graph displaying a growing l(k)
(e.g. growing ladders or wedge graphs [2, 57]), it is unclear whether a graph with
such characteristics everywhere exists; further research on this subject is needed.
On the other hand, looser conditions over the growth of bond boundaries with k
may as well imply an absence of magnetization.
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7
A Sufficient Condition for Spontaneous

Magnetization

We will now prove a theorem complementary to the one presented in the previous
chapter, which gives a sufficient condition for the magnetization of a graph to
be strictly greater than zero in the thermodynamic limit. This work has been
published on Physical Review E [2].

7.1 Open and Closed Borders in a Graph

In order to state the theorem we first need to extend the definition of boundaries
given in Sec.1.1.

Definition. Given a connected graph G = (P,L), we can define a border B as a
set of bonds that separates exactly two connected subgraphs. It means that two
sets P1,P2 ⊂ P exist such that

• P1 ∩ P2 = ∅ and P1 ∪ P2 = P,

• any path on G from a point of P1 to a point of P2 must contain at least one
bond of B,

• a path exists between any two points in Pi (i = 1, 2) that doesn’t contain
any bond of B.

It is noteworthy that the union of two disjoint borders is not a border itself under
this definition, as it divides the graph into three subgraphs. This is a feature we’ll
later need to avoid overcounting different configurations.

The intuitive idea of open and closed border is actually an artifact created by
our visualizing regular lattices as immersed in a finite dimensional real space: the
seeming adjacency of the vertices creates a contour of the graph, which we use to
define closed and open borders. The fact is that this contour is heavily dependent
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on what particular immersion we employ, and ceases to exist when we consider the
graph for itself. The border in itself has no geometry whatsoever, since it is just
a collection of links, and even the notion of ”continuous” border, without further
specifications, makes no sense from a graph-theoretic point of view: in a general
graph, a border is just a collection of links that splits it into two parts. We now
define open and closed borders with respect to an external set of points, as it will
be useful later.

Definition. Given a border B and a set of points E ⊂ P, we say that B is closed
with respect to the external points set E if either P1 ∩ E = ∅ or P2 ∩ E = ∅,
otherwise B is open.

For any finite subgraph GN of a given graph G, we choose the natural set of external
points E :

E ≡ {i ∈ GN : (i, j) ∈ L for some j ∈ G \ GN} .
Now, given a border Bi that divides GN into two subgraphs Ai and Ci, we define
Ai as

• internal if

– Bi is closed and Ai ∩ E = ∅, or
– Bi is open and Ai contains fewer elements than Ci, or

– Bi is open, Ai has the same size as Ci and the points in Ai linked to Bi

have negative spin;

• external if

– Bi is closed and Ai ∩ E 6= ∅, or
– Bi is open and Ai has more elements than Ci, or

– Bi is open, Ai has the same size as Ci and the points in Ai linked to Bi

have positive spin.

The reason why we need to select a finite subgraph GN is that we need to be able
to count the number of spins in the graph for the previous definitions to make
sense.

7.2 Equivalence Between Sets of Borders and Spin

Configurations

Our next step is to prove that we can substitute the sum over configurations of
the graph with a sum over possible border classes, that we now define.

Definition. A border class is a class C = {C i} of border sets C i =
{

Bi
1, B

i
2, . . . , B

i
Ni

}

,
where i = 1, . . . , NC , such that
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• Bi
u ∩ Bi

v = ∅ for all i = 1, . . . , NC and u, v = 1, . . . , Ni,

• ∪l=1,...,NiBi
l = ∪m=1,...,NjBj

m for all i, j = 1, . . . , NC .

Theorem. To any given border class corresponds one and only one configuration
of spins on P, once we set the value of a single spin.

Proof. To prove that, for any border class and a given spin p ∈ P, we can
construct a single spin configuration, we first choose an arbitrary representative
C i = {Bi

1, . . . , B
i
N} of C and set all the spins to the value of p, then for each

Bi
k ∈ C i we flip all the spins of the subgraph which doesn’t contain p. The result

is independent of the order in which we choose the Bi
k, since each spins changes sign

once for every border that separates it from the fixed spin p, and is independent
of the specific i.
To prove that for any given spin configuration we can create a single border class,
we proceed as follows: let R± be the sets of all plus (minus) spins,

R± ≡ {i ∈ G : σi = ±1} ;
We now choose the subsets R±

i of R±, so that each R±
i is connected, while for all

i 6= j R±
i and R±

j are disconnected; moreover we require that

R± ≡ R±
1 ∪R±

2 ∪ · · · ∪ R±
S ,

R±
i ∩R±

j = ∅ ∀i 6=j .

We are selecting individual clusters of homogeneous spins, so satisfying the above
requisites is always possible. Setting now

∂R±
i ≡

{

(a, b) ∈ L : a ∈ R±
i , b /∈ R±

i

}

,

the sets B± ≡ ∂R±
1 ∪· · ·∪∂R±

S are a collection of links each defined unambiguously,
and furthermore B+ ≡ B−. It may happen that for some i the subgraph G \R±

i is
made of two disconnected subgraphs (e.g. when a ring of plus spins is surrounded
by minus spins); as a consequence ∂R±

i is not a border according to our definition.
In that case it is possible to split ∂R±

i into subsets, so that each of them divides
G into two connected subgraphs. After dealing in this way with all the R±

i , we
are left with a collection of well-defined borders ∂T+

j , with j = 1, . . . , U+, and
∂T−

k , with k = 1, . . . , U− where U+, U− > S. It is still possible that some of the
borders T+

i , while defining exactly the same zones, have no correspondent in T−
i

but, since they nevertheless verify B+ ≡ B−, they belong to the same border class,
completing the proof.

The main consequence of this result is that we can substitute a sum over border
classes for a sum over configurations whenever needed, and we can infer from the
structure of the borders some limiting properties for the spins distributions, as
we’ll see soon. It is worthwhile to explicitly notice that, when we pass from a sum
over configurations to one over borders, and not border classes, we overcount some
borders, as there are more than one representative of each border class: this is not
going to be a problem in the use we’ll make of this result.
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7.3 Generalized Peierls-Griffiths’ Theorem

We can divide the set of all configurations on GN into two classes:

• all the negative spins are internal to some border (class N ),

• at least a negative spin exists that is external to all borders (class P).

The second case implies that every positive spin lies inside some border, since it
must lie on the opposite side of the negative spin which is always external.

We now restrict our attention to the configurations belonging to the first class,
denoting by a subscript N the quantities that pertain to it; we can obtain a good
estimate of the number of negative spins, 〈N−〉N , as follows: the sign of a spin p is
negative if it is contained inside an odd number of borders, positive otherwise; we
obtain a very naive, yet effective, approximation if we consider any spin contained
inside at least one border as negative: letting Ip be 1 if p is inside at least a border,
0 otherwise, we can write

〈N−〉N ≤
∑

p∈G
〈Ip〉.

We are now to give a reasonable estimate of 〈Ip〉: take all the configurations C
with at least one border containing p, call bmin the length of the shortest border
in C containing p and let k be the number of borders containing p, so as to write

〈Ip〉 = Z−1
∑

C|p inside

e−βH = Z−1
∑

bmin≥1

∑

k≥1

∑

C|bmin
k borders

e−βH.

Now fix bmin and consider the configurations containing k borders: if we remove
the shortest border from such a configuration C, we obtain a new configuration
C′ with (k − 1) borders containing p, each of them at least bmin long. C′ will be
present in the partition function Z, but different configurations with k borders C
may give the same C′; defining now µp(b) as the number of possible borders of b
links containing p, the degeneration induced by removing the shortest border is
not greater than µp(bmin). The energy of a configuration C and the corresponding
Boltzmann factor obey

EC ≥ EC′ + 2βJminbmin,

e−βHC ≤ e−HC′e−2βJminbmin ;

if we now limit the sum in the partition functions to those configurations obtained
by removing a border from the numerator, we can write

Z−1
∑

k≥1

∑

C|k borders

e−βH ≤ µp(bmin) e
−2βJminbmin .
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In this way the average number of minus spins is bounded by a function depending
only on the number of borders encircling a given spin:

〈N−〉N ≤
∑

p∈G

∑

bmin

µp(bmin) e
−2βJminbmin ;

this result states that, no matter what the maximum number of spins you can
isolate inside a border is, as long as µp(b) grows at most exponentially the value of
〈N−〉N can be limited at low enough temperatures. An analogous result holds for
configurations of class P when exchanging the roles of positive and negative spins:

〈N+〉P ≤
∑

p∈G

∑

bmin

µp(bmin) e
−2βJminbmin .

Let now µ(b)) = supp µ
p(b). We can now prove the following theorem:

Theorem. If on an infinite graph µ(b) ≤ Ab, definitely for b ≥ b̄ and for some for
some A > 0, then the graph exhibits spontaneous magnetization at large enough
β (low enough temperatures).

Proof. The average modulus of magnetization is |M | = N−1 (N+ −N−); writing
the Boltzmann factor for a configuration C as PC = Z−1e−βH(C), we can write the
following:

〈|M |〉 =
∑

C∈P∪N
|MC| PC =

∑

C∈(P∪N )+

MC PC −
∑

C∈(P∪N )−

MC PC

=

(

∑

C∈N+

MCPC −
∑

C∈N−

MCPC

)

+

(

∑

C∈P+

MCPC −
∑

C∈P−

MCPC

)

=

(

∑

C∈N
MCPC −

∑

C∈P
MCPC

)

+ 2

(

∑

C∈P+

MCPC −
∑

C∈N−

MCPC

)

≥
(

∑

C∈N
MCPC −

∑

C∈P
MCPC

)

= 1− 2

N

(

∑

C∈N
(N−)CPC +

∑

C∈P
(N+)CPC

)

≥ 1− 4

N

∑

p∈V

∑

bmin

µp(bmin) e
−2βJminbmin

≥ 1− 4e−2βJmin

∑

b≥1

µ(bmin) e
−2β(b−1)Jmin ,

When the sum on the last line converges, the equation tells us that, for large
enough β (low temperatures), 〈|M |〉 is greater than a positive constant, so that
spontaneous magnetization on an infinite graph is achieved, while in general 〈|M |〉
is finite for every N , but can tend to zero as N → ∞.
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7.4 Isoperimetric Dimension and Bounding µ(b)

The main problem in employing the previous theorem is determining bounds on
µ(b). The simplest case in which the hypothesis does not hold is a situation in
which for some finite b the number of borders surrounding a given point is infinite.
As a sound check of the validity of the theorem, all the weakly separable [3] graphs,
which do not magnetize, belong to this category.

To further our understanding of the result, we need to present a new parameter.
Given a subgraph A ⊂ G, we define its external boundary ∂A as the set of points
in G \ A that have a bond to a point in A; denoting the number of vertices in A
as |A| we now present the isoperimetric dimension diso as the minimum d such

that ∂A ≥ C· |A| d−1
d . The largest set of points encompassable with b links is thus

smaller than b
diso

diso−1 ; since these points are connected, b
diso

diso−1 is also the maximum
radius of a set including i with a border b, so the set of reachable points, V (b) ⊂ P,

has a cardinality |V (b)| ≤ b
disodfrac
diso−1 .

Given a point p and for each border B, consider B̄, the collection of vertices
contributing to B which are on the inside of B with respect to p. As the two are in
one to one relation once p is chosen, counting the borders is the same as counting
the vertex borders.

As a consequence of the previous paragraphs, the following holds:

Proposition. In a graph with isoperimetric dimension diso > 1, the number of
possible borders surrounding p is bounded by

µp(b) ≤
|V (b)|
∑

q

Nq(b) ≤ b
disodfrac
diso−1 ·NSup(b),

where the sum is over the points q which can be enclosed in a border of size b,
Nq(b) is the maximum number of vertex borders of length b, containing p, which
can be created starting from the point q, and NSup(b) = supq∈V (b)N

p(b).

A border is connected if the corresponding vertex border is a connected set. We
will need the following proposition regarding Np(b) to obtain a general result.

Proposition. The number of connected vertex borders starting from a given point
p grows at most exponentially with b: Np(b) ≤ const·Cb.

Proof. A tree is a graph that has no loops. From each connected subgraph A
we can draw a number of different spanning trees, i.e. trees having the same set
of points P as the original A. For any spanning tree we can construct a path
visiting all its vertices in no less than b − 1 steps, and in no more than 2zMaxb
steps. While the former statement is obvious, we now prove the latter using the
following algorithm: starting from i, choose link and cross it; at each vertex on the
path, choose a link not yet crossed; if there is no free link, step back through the
link from which the path first arrived at the vertex. With this algorithm, each link
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Figure 7.1: The Sierpinski carpet allows for disconnected borders, but they can be
connected with no more with l· b links, so the number of possible borders grows
no faster than an exponential with b, and the graph magnetizes.

is crossed no more than twice, so the path is of no more than 2zMaxb; furthermore,
all the links are crossed, so, since the boundary is connected, all the points are
visited. As a consequence, all the spanning trees of b points starting from a vertex
i can be constructed as paths of b − 1, b, . . . , 2zMaxb steps. Since each step can
be chosen among at most zMax links, the total number of possible spanning trees,
starting from i and made of b vertices, is less than

zb−1
Max + zbMax + · · ·+ z2zMaxb

Max =
z2zMaxb+1
Max − zb−1

Max

zMax − 1
,

and the thesis follows:

Np(b) ≤ const·Cb.

When a vertex border is made of more disconnected parts, µ(b) grows exponentially
if, for all borders, it’s possible to connect all the parts using no more than l· b
vertices, where l is a constant of the graph: in fact in this case to each border of
length b corresponds one connected vertex border of length between b and b· l, so
that

N(b) ≤ Cb + Cb+1 + · · ·+ C l·b =
C l·b+1 − Cb

C − 1
.

Noting that diso > 1 implies that there is no border length b for which µp(b) is
infinite, the previous results can be combined to form the following theorem.

Theorem. For all graphs with isoperimetric dimension diso > 1 and vertex borders
which are connectable with no more than l· b vertices, a finite critical βc <∞ exists
such that for all β > βc spontaneous magnetization is achieved.
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7.5 Applications

To the latter category belong the regular lattices in d ≥ 2 dimensions and crystals
with any kind of elementary cells; we explicitly note that for an Euclidean lattice
in d = 2 dimensions we recover the result by Griffiths [23]. In addition, each vertex
border can be connected with no more than l· b vertices in the Sierpinski carpet
too, which therefore magnetizes, in accord with the existing literature [56] (see
Fig.7.1).

Consider now the ladders of infinitely growing height (see Fig.7.2): they are
structures described, at any offset n on the semi-infinite base line, by a non-
decreasing integer function h(n); as long as the isoperimetric dimension of the
ladder is strictly greater than one (h(n) ≥ A0n

α + B0, for α > 0, A0 > 0 and
B0 > 0) the previous arguments apply, so the ladder magnetizes; on the other
hand, when diso = 1 a little more work is required: the total number V (b) of
vertices which can be included in at least one border of length b can not grow
faster than the number of points on the left of the rightmost border of length
b; the latter is at at offset n(b) = max{n′|b = h−1(n′)}, so that V (b) satisfies

V (b) ∼∑n(b)
i=1 h(i) for large b; when

B0 + A0 log i ≤ h(i) ≤ B1 + A1i
α

for some A0, A1 > 0, B0, B1 ≥ 0 and α ≥ 1, the volume satisfies

V (b) ≤
∫ eb/A0

1

di (B1 + A1i
α) ∼ b

A0

A1

2 (α+ 1)
e2(α+1)b/A0 ,

and since the borders are all connected µ(b) is exponential and the graph mag-

netizes. When instead limn→∞
h(n)
logn

= 0, for all ǫ > 0 and n large enough

h(n) ≤ ǫ logn holds; as a consequence,

V (b) ≥
∫ b

ǫ

0

di h(i) >

∫ b
ǫ

0

di = e
b
ǫ

holds for all ǫ > 0; in this case the sum
∑

b µ(b)e
−2β(b−1)Jmin diverges for all tem-

peratures, so the hypotheses of our theorem are not fulfilled. These results are in
agreement with a result by Chayes and Chayes [57] about more general structures
called d-wedges, where it is proved that h(n) ≥ log n is both a sufficient and a
necessary condition for spontaneous magnetization.

7.6 Discussion

To give a more intuitive interpretation of the theorem we proved, we can proceed
as follows: if the number of borders grows less than exponentially, we can argue
that all of these borders will contain a number of spins increasing slowly with the
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Figure 7.2: Two examples of growing ladder graphs: in (a) all the borders are
connected (remember that, following the definition we use here, a border divides
a graph into exactly two subgraphs, each connected), and as a consequence the
graph will magnetize. In (b) too the borders are connected, and even if the growth
in width of the ladder is very slow (logarithmic) the same result holds.

length of the border; as a consequence, the formation of large clusters of spins in
a magnetized graph will be energetically unfavoured, so that the latter will result
a stable state. On the other hand, if µi(b) grows very fast with b, we expect that
some of the borders will be far from the vertex i, so that more and more vertices
will be enclosed in short (low b) borders; this in turn means that large clusters
of spins can be flipped spending a small amount of energy, so that a magnetized
graph may be unstable with regard to thermal fluctuations.

The condition of our theorem is a strong one, in that it investigates a global
property of the graph. For this reason it can not be a necessary condition for
achieving spontaneous magnetization: if a graph has a part, which has zero mea-
sure in the thermodynamic limit, for which the number of boundaries µp(b) is
greater than any exponential (e.g. a semi-infinite line connected to a point on a
plane), the hypothesis of the theorem is false but the graph as a whole can still
magnetize.

An important, yet straightforward, observation is that whenever a subgraph of
non zero measure exists that is magnetizable, all the graph is magnetizable: in fact
all the correlation functions, as computed on the subgraph, are smaller than or
equal to the corresponding ones in the complete graph; when, on the other hand,
the graph is formed by a collection of zero measure, weakly connected, magnetiz-
able subgraphs (e.g. an infinite collection of parallel planes, each connected via a
single link to the next one), there is no guarantee that 〈|M |〉 > 0.
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7.7 No Man’s Land

Our result about the Ising model on graphs is a further step towards a full com-
prehension of the mechanism of phase transitions on general networks: together
with the sufficient condition for the lack of spontaneous magnetization analysed in
the previous chapter, it allows to ascertain the magnetizability of a large number
of structures with a minimal amount of computation.

There is, however, a gap between the hypotheses for the theorem found here
and the class of weakly separable graphs, as defined in the previous chapter: to
explore it, one must carefully construct graphs for which either µ(b) grows faster
than an exponential, or the weakly separable hypothesis is only slightly invalid.

Since such queer architectures do not belong with graphs portraying physical
structures, their importance outside the mathematical realm is quite limited, and
thus I haven’t further investigated them.



8
Definitions of Magnetization: Some

Considerations

The definition of magnetization we have used in the previous chapters involved
free boundary conditions for the graph and no external magnetic field. There are
however other possibilities, widely used in the scientific literature, that are not
guaranteed to yield the same results. In this chapter we are going to analyse
the relations among different definitions, extending some results from a paper by
Martin-Löf [58] and highlighting some cases deserving attention.

8.1 Some Facts About Correlation Functions

Kelly and Sherman [44] generalized the Griffiths’ inequalities to arbitrary products
of spin variables: letting

σA =
∏

i∈A
σi,

under the condition that Jij ≥ 0, positive or null external field, positive or null
boundary conditions, the following relations hold:

{

〈σR〉 ≥ 0 for all R ⊂ P
〈σRσS〉 − 〈σR〉〈σS〉 ≥ 0 for all R, S ⊂ P . (8.1.1)

In order to easily discuss the different definitions of magnetization, we introduce
the following notation for spin correlation functions [58]:

〈σA〉h,GN ,b

is a correlation function as computed on a (finite) graph GN , under an external
magnetic field h and with boundary conditions chosen in the set {+,−, n}, where
n stands for no boundary conditions. It is understood that one considers the finite
graphs GN as subgraphs of the infinite graph

G = lim
N→∞

GN ,
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and that the boundary is defined as in Sec.1.1.
As noticed by Griffiths, having a positive fixed magnetic field hi ≡ h is the

same as considering all the spins in the graph to be attached to a fictitious vertex
σ0 = +1 with coupling J0i ≡ h; thus, by virtue of

∂〈σR〉
∂Jlm

= 〈σRσlσm〉 − 〈σR〉〈σlσm〉 ≥ 0,

adding a positive magnetic field can only increase the correlation functions, and
hence the magnetization:

〈σiσj〉0,GN ,b ≤ 〈σiσj〉h,GN ,b. (8.1.2)

Since also the boundary conditions can be treated as simple couplings between a
fixed spin and a free one, it is also true that

〈σiσj〉0,GN ,n ≤ 〈σiσj〉h,GN ,b.

The inequality must thus hold in the thermodynamic limit,

〈σiσj〉h,b = lim
N→∞

〈σiσj〉h,GN ,b,

so that

〈σiσj〉0,n ≤ 〈σiσj〉h,b. (8.1.3)

8.2 Correlation Functions and Magnetization

In several papers about the Ising model, the spontaneous magnetization is com-
puted as a local quantity as

m∗
i = lim

h→0+
〈σi〉h,b, (8.2.1)

where the zero field limit is taken after the thermodynamic limit, and the depen-
dence on the boundary is fictitious, provided that the ratio of surface to volume
of the graph goes to zero in the thermodynamic limit, i.e.:

#∂GN

#GN

−→ 0, as N → ∞.

The proof that the dependence on the boundary condition is irrelevant follows.

Proof. Divide the energy of the system in two parts, one accounting for the
external field and the inter-spin interactions, the other for the boundary:

H = H0 +Hb;
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the Boltzmann weight for a configuration {σi} can thus be written as

ρB{σi} = e−βH0{σi}−βHb{σi},

and it is easy to give an estimate on the contribution the partition functions
receives from the boundary conditions: for a finite graph GN ,

−4βJMax#∂GN ≤ H0{σi} ≤ 4βJMax#∂GN ,

and

e−4βJMax#∂GNZ0 ≤ Z ≤ e4βJMax#∂GNZ0,

where we let Z0 denote the contribution to the partition function of H0.
Most importantly, the free energy density of the model can now be bounded:

F 0
N − 4βJMax

#∂GN

#GN
≤ FN ≤ F 0

N + 4βJMax
#∂GN

#GN
,

and as N → ∞ both the free energies converge uniformly, for β ∈ (0, B) (for any
finite B), to the same function, provided that the ratio of surface to volume of the
graph tends to zero.

If we are considering the case with h 6= 0, we also know that the free energy
is an analytic function (see Sec.5.3), and thus all the spin correlation functions
can be computed as its derivatives, so that m∗

p is the same whatever the boundary
condition.

�

One can also inquire about the global magnetization of the structure by averag-
ing over all the vertices; in homogeneous graphs it is obvious that the average
magnetization is just m∗

p, while more in general the quantity

lim
h→0+

〈m〉h = lim
h→0+

lim
N→∞

1

#GN

∑

i

〈σi〉h,GN ,b

can have a rude behaviour, as it can be zero even if all the local magnetizations
are not.

It can be easier to cope with the square magnetization m2: since

〈m2〉h − 〈m〉2h = Var m ≥ 0,

〈m2〉h 6= 0 if 〈m〉h 6= 0.

For 〈m2〉h the observations of Sec.5.6 holds in full generality, so one needs only
study the long-distance correlation functions to know how it behaves.
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8.3 Hierarchies of Correlation Functions

In Eq.8.1.2 we have seen a first example of inequality, which immediately entails
that

〈m2〉0,n = lim
N→∞

1

N

∑

i,j∈P
〈σiσj〉0,GN ,n ≤ 〈m2〉h,b.

Other powerful relations between different magnetizations can be inferred with
some trickery.

Theorem. An important relation tells us that, under positive boundary condi-
tions, the vanishing field limit and the thermodynamic limit can be exchanged:

lim
h→0+

lim
N→∞

〈σR〉h,GN ,+ = lim
N→∞

lim
h→0+

〈σR〉h,GN ,+. (8.3.1)

Proof. In zero field (i.e. performing first the vanishing field limit) the magnetiza-
tion

lim
N→∞

〈σR〉0,GN ,+

exists, since 〈σR〉0,GN ,+ is positive, bounded by 1 and grows with N , as adding links
to the system increases the couplings. The same holds for the thermodynamic limit
in non zero field,

lim
N→∞

〈σR〉h,GN ,+,

and its h → 0+ limit, which can be obtained as a decreasing sequence bounded
from below by zero.

Now to the inequalities at finite N : first we prove that, for all h > 0 and for
all N large enough, so that GN contains all the spins σA,

〈σR〉h,GN′ ,+ ≤ 〈σR〉h,GN ,+

whenever N ′ ≥ N ; this counter-intuitive inequality is entirely due to the positive
boundary conditions, and it is straightforwardly proven by noting that one can
reconstruct the boundary conditions for GN just by coupling all the spins in G ′

N \GN

to a fixed positive spin with infinite intensity; since this means increasing coupling
constants from 0 to infinity, the correlation functions can’t but increase, whence
the inequality (see Fig.8.1).

The latter inequality also holds in the N → ∞ limit:

〈σR〉h,+ = lim
N→∞

〈σR〉h,GN ,+ ≤ 〈σR〉h,GN ,+ (8.3.2)

for all N <∞.
On the other hand, decreasing the external field is the same as decreasing the

coupling of all spins to fixed positive spin, and thus

〈σR〉h′,+ ≤ 〈σR〉h,+
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Figure 8.1: One can reconstruct the + boundary conditions of a contained sub-
graph by taking the limit Ji+ → ∞ for each i ∈ GN ′ \ GN .

whenever h′ ≤ h; combining the inequality in Eq.8.3.2 with the former one entails

lim
h→0+

〈σR〉h,+ ≤ lim
h→0+

〈σR〉h,GN ,+ = 〈σR〉0,GN ,+.

Since this is true for all N <∞, it must also hold in the limit N → ∞, so that

lim
h→0+

〈σR〉h,+ ≤ lim
N→∞

〈σR〉0,GN ,+. (8.3.3)

Now we set off to prove the inverse inequality: for a given N

〈σR〉h,GN ,+ ≥ 〈σR〉h′,GN ,+

if h ≥ h′. When h′ → 0+ the last inequality becomes

〈σR〉h,GN ,+ ≥ 〈σR〉0,GN ,+.

Taking now the thermodynamic limit

〈σR〉h,+ = lim
N→∞

〈σR〉h,GN ,+ ≥ lim
N→∞

〈σR〉0,GN ,+;

finally, taking the limit h→ 0 entails

lim
h→0+

〈σR〉h,+ ≥ lim
N→∞

〈σR〉0,GN ,+, (8.3.4)

and the thesis follows from Eq.8.3.3 and Eq.8.3.4.
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�

We now write the theorem just proved as

〈σR〉0+,+ = 〈σR〉0,+;

with this notation it is easier to state other relations. By virtue of symmetry, it is
evident that

〈σR〉0−,− = (−)#R〈σR〉0+,+.

It is still not clear whether the equation

〈σR〉0+,− = (−)#R〈σR〉0+,+

holds. As a matter of fact it does as long as the ratio of surface and volume of the
graph tends to zero in the thermodynamic limit, as one can prove with the same
considerations about free energy that we employed in Sec.8.2.

We can sum up the results obtained up to this point as follows:

〈σR〉0,n ≤
〈σR〉0,+

=

(−)#R〈σR〉0,−
=

〈σR〉0+,b

=

(−)#R〈σR〉0−,b

(8.3.5)

for all graphs such that

lim
N→∞

#∂GN

#GN
= 0.

8.4 Average Magnetizations

When we deal with the average magnetization,

〈m〉h,GN ,b,

instead of the single spin, or with the average square magnetization,

〈m2〉h,GN ,b,

which are the two most common realizations of the averages

1

(PN)
#R

∑

R∈P#R
N

〈σR〉h,GN ,b

for a graph GN = (PN ,LN), several problems can arise.
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The first decision one has to make is the way the thermodynamic limit is
approached: it is possible either to take the graph as an infinite entity, and compute

〈mR〉infh,b = lim
N→∞

∑

R∈SN⊂P#R

1

#SN
〈σR〉h,b,

where the correlation functions are relative to the infinite graph, or to calculate the
average magnetization on each finite subgraph, and then send its size to infinity,
i.e.

〈mR〉h,b = lim
N→∞

∑

R∈P#R
N

1

(#PN )
#R

〈σR〉h,GN ,b.

The two definitions can actually lead to different results - the latter being lower
than or equal to the former - as in the case of the Bethe lattice discussed below.
Usually the latter way of proceeding will be the best choice in a physical context,
as real structures are all finite, while from a mathematical point of view both
possibilities are viable.

The other point one has to draw attention to is that the pretty relation

〈σR〉0+,+ = 〈σR〉0,+
doesn’t extend naturally to the averaged quantities. Nevertheless, the symmetry
relations hold good, and also in this case the boundary conditions do not matter
as long as an external field is present and the ratio of surface to volume of the
graph tends to zero. Thus, when

lim
N→∞

#∂GN

#GN
= 0,

one can summarize the valid relations as follows:

〈mR〉0,n ≤

〈mR〉0,+

=

(−)#R〈mR〉0,−

6=

〈mR〉0+,n

=

(−)#R〈mR〉0−,n

≤
〈mR〉0+,+ = 〈mR〉0+,−

= =

(−)#R〈mR〉0−,+ = (−)#R〈mR〉0−,−

. (8.4.1)

The same holds for 〈mR〉infh,b .

We will now treat in some detail two limiting cases that have drawn our attention:

• the zero field, no boundary conditions square magnetization yields a different
result than the other cases;

• the ratio of surface to volume doesn’t approach 0 in the thermodynamic
limit.
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8.5 Linear Bundled Graphs

All the bundled graphs [12,13,59] (see Sec.3.6) with linear base whose fibres, taken
as independent graphs, can magnetize, have a schizophrenic behaviour: they dis-
play spontaneous magnetization if and only if boundary conditions or a vanishing
external field are set, as we now proceed to prove.

To have a working example at hand, consider the kebab of infinite planes
of Fig.6.2b, even though any other magnetizable fibre will do: under a positive
external field, cut all the links between different planes, thus reducing 〈m〉, and
then consider the resulting graph as a trivial juxtaposition of independent infinite
planes; under a critical temperature Tc, all the magnetizations of the single planes
are positive, and equal, in the h → 0+ limit; thus the magnetization of the whole
graph will be positive.

When the external field is strictly null and no boundary condition is set, how-
ever, the theorem of Sec.6.6 applies, and no square magnetization 〈m2〉 appears.
Under the frame we adopted in the previous paragraph, each infinite plane (or
fibre) can have a non zero magnetization; however, since each of them can be
randomly positive or negative, the total is zero.

From a statistical point of view, when no boundary conditions are set one is
essentially averaging over all the possible realizations of broken symmetry of the
system.

The Case for Two Fibres

This is also true when considering a pair of attached magnetizable fibres, e.g. two
infinite planes linked by a single edge: as long as you have an external field or fixed
boundary conditions, the total square magnetization is the same as in the single
plane case; on the other hand, when no conditions are set the lack of correlation
between the two parts of the system has a powerful impact.

In a sketchy way, we can write the square magnetization as

〈m2〉 = lim
N→∞

1

N2

∑

ij

〈σiσj〉 = lim
N→∞

1

N2

(

∑

i,j∈S1

+
∑

i,j∈S2

+ 2
∑

i∈S1,j∈S2

)

〈σiσj〉;

letting S1 and S2 denote the two infinite planes, Jlink the coupling of the link
between S1 and S2, and

l = lim
dij→∞

〈σiσj〉 for i, j ∈ S1 or i, j ∈ S2,

by virtue of the Lemma in Sec.6.2, we can write, under no boundary condition,

lim
dij→∞

〈σiσj〉 = l2 tanh βJlink for i ∈ S1 and j ∈ S2.
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It follows that the total magnetization is strongly reduced because of the scarce
connectivity between the two halves of the graph:

〈m2〉 = lim
N→∞

1

N2

(

l
N2

4
+ l

N2

4
+ 2l2

N2

4
tanhβJlink

)

=
l

2
(1 + l tanh βJlink) .

A Matter of Correlation

A similar calculation for a bundled graph shows that the 〈m2〉 = 0 without resort-
ing to the theorem of Sec.6.6. In the same spirit as previously, one can write, for
N fibres of V (N) vertices each,

lim
dij→∞

〈σiσj〉 = tdl2,

if i and j belong to fibres which are separated by d links on the basis, l is the limit
to which the correlation functions tend to on the same fibre, and t = tanh βJlink.
Letting S denote any given fibre, the square magnetization can be written as

〈m2〉 = lim
N→∞

1

N2V 2(N)

(

N
∑

i,j∈S
〈σiσj〉+ 2(N − 1)tl2

∑

i,j∈S
〈σiσj〉+ . . .

+2tN−1l2
∑

i,j∈S
〈σiσj〉

)

= lim
N→∞

1

N2V 2(N)

(

NV 2(N)l + 2(N − 1)V 2(N)l2t

+2(N − 2)V 2(N)l2t2 + · · ·+ 2V 2(N)l2tN−1
)

.(8.5.1)

One can first consider the degenerate case Jlink → ∞, which means that all the
points on the base of the bundled graph are actually only one point, to which
infinite graphs are attached; then t = 1 and

〈m2〉 = lim
N→∞

1

N2V 2(N)

(

NV 2(N)l + 2V 2(N)
N(N − 1)

2
l2
)

= l2,

so that even in this extreme case the magnetization is strongly reduced.
Whenever we’re dealing with a true bundled graph, t < 1, we can bound the

magnetization as follows:

〈m2〉 ≤ lim
N→∞

1

N2V 2(N)

(

NV 2(N)l + 2NV 2(N)l2t
1− tN−1

1− t

)

∼ 2l2t

(1− t)
lim

N→∞
1− tN−1

N
= 0,

so no spontaneous magnetization is achieved, independently of the actual value of
t.

It is worthwhile to specify that, when boundary conditions are set, this calcu-
lation is not correct because the Lemma of Sec.6.2 is no longer valid.
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8.6 Cayley Trees

The other extremal case happens when the ratio of surface to volume of the graph
doesn’t tend to zero in the thermodynamic limit: the Bethe lattice (see Sec.3.4)
of coordination number z is the typical case, as

lim
N→∞

#∂GN

#GN
=
z − 2

z − 1
.

Because of this property and of its peculiar topology, the Bethe lattice displays a
rich phenomenology, which has been widely studied in literature [60–62] and which
we now review.

A first point to note is that almost all the things can behave awkwardly do in
fact so on the Bethe lattice, namely

• the local magnetization is different from the global one,

• different results are obtained for different ways of reaching the thermody-
namic limit,

• almost none of the relations in Sec.8.3 holds.

To be definite, consider the usual Ising energy

H{σi} = −
∑

ij

Jijσiσj − h
∑

i

σi,

where Jij = JAij and Aij is the adjacency matrix of the Bethe Lattice.

Fixed Boundary Conditions

When boundary conditions are set, 〈m〉 > 0, whatever the temperature, also in the
thermodynamic limit: to quickly and effectively see this, take an n-th generation
Bethe Lattice (i.e. one that grows branches up to a chemical distance N from
a root spin) and remove all the links of the graphs but those which connect the
z(z − 1)N−1 spins of the outer shell to the boundary (see Fig.8.2). In this way
the magnetization 〈m〉 can only have decreased; with a bit of algebra, it is easy to
prove that

〈m〉 −→ z − 2

z − 1
tanhβJ(z − 1)

for N → ∞. This result is quite trivial, as setting boundary conditions implies
a very powerful bias (of the order exp βJ(z − 1)) on all the spins which lay near
∂GN : since they are a meaningful part of the total - in fact they account for a
fraction (z−2)/(z−1) in the thermodynamic limit - the magnetization is trivially
non zero.
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Figure 8.2: The outer shell of a z = 3 Bethe lattice.

External Magnetic Field

Things are more complex when a magnetic field is applied to the system, as 〈m〉
depends on the thermodynamic limit is reached. As a starter, one can see [60] that
the root spin σ0 has a finite limit,

〈σ0〉 = lim
h→0+

lim
N→∞

〈σ0〉h,GN ,n > 0,

when T < Tc, for

Tc =
J

(z − 1) log
(

z
z−2

) .

What happens when one computes 〈m〉 now depends on how we approach the
thermodynamic limit.

If we compute
lim
h→∞

lim
N→∞

〈m〉h,GN ,n,

the result is zero at all finite temperatures [60]. The reason for this is that, while
many spins near the root of the lattice have indeed positive magnetization, the
totality of the spins near the border approach smoothly zero as h → 0+, and in
the thermodynamic limit the former spins have no weight, so the graph doesn’t
magnetize.

This way of computing the magnetization makes sense in particular for practical
realization of the lattice, which are not new to science (see e.g. Kopelman et
a. [63]).

While no physical realization of the actually infinite Bethe lattice is possible, one
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can nevertheless study it [62]: in this case the magnetization of each spin is finite
under Tc, and thus one trivially obtains

〈m〉 = 〈σ0〉.

Only the Void

When no external conditions are set, the theorems we proved in the previous chap-
ters apply to the system, and it is indeed very easy to prove that no magnetization
is achieved: in particular, the Cayley tree is a weakly separable graph, so the
theorem of Sec.6.6 applies and

lim
N→∞

〈m2〉0,GN ,n = 0.

Without resorting to the theorem, one can simply employ the observation of
Sec.5.6: since the Bethe lattice is a tree, the correlation function for two spins
at chemical distance d is just

(tanh βJ)d ,

which tends to zero as d→ ∞; since all the correlation functions tend exponentially
to zero, no magnetization is achieved.

Although the calculation of 〈m2〉 for the growing, but finite, Bethe lattice has not
been undertaken, the picture of the phenomenology is nevertheless satisfying, and
we will not delve deeper in that direction.

8.7 Conclusions

In this chapter we have discussed at length about the different types of definitions
of magnetization, the connections which can be drawn among them, and finally
we examined some graphs in order to exemplify our findings.

The variety of behaviours of the Ising model which is found in the jungle of the
possible graphs have been well portrayed, even though one cannot state that it is
in all aspects complete. We have no example, for definiteness, of a graph which
displays no magnetization in the h → 0 limit, 〈m〉0+ = 0, while retaining a long
range order, 〈m2〉0+ > 0. It may prove the case, however, that such structures (if
they indeed exist) are pathological cases of queer architecture; further inquiry is
needed in this direction.
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Le secret d’ennuyer est celui de tout dire.

François-Marie Arouet detto Voltaire (1694-1778)

Di rito e dovere i ringraziamenti al dott. A. Camobreco per aver portato un tocco
di finezza in un mondo Barbaro & Bestiale (cit).



Bibliography

[1] R. Campari and D. Cassi, “Statistics of Reciprocal Distances for Random
Walks of Three Particles in One Dimension”, Phys. Rev. E.

[2] R. Campari and D. Cassi, “Generalization of the Peierls-Griffiths theorem
for the Ising model on graphs”, Phys. Rev. E, 81 (2010), 2, p. 021108.

[3] R. Campari and D. Cassi, “Absence of Spontaneous Magnetization for the
Ising Model on Weakly Separable Graphs”, Mod. Phys. Lett. B, (2011).

[4] R. Burioni, D. Cassi, and A. Vezzani, “Random walks and physical mod-
els on infinite graphs: an introduction”, in V. A. Kaimanovich (editor),
Random Walks and Geometry, pp. 35–71, Berlin, de Gruyter, 2001.

[5] F. Harary and N. A. S. Institute, Graph theory and theoretical physics,
Academic P., London, New York, 1967.
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