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Introduction and Literature Review. 

 

In Italy most of the vehicular traffic is absorbed from the road infrastructures, both for 

commercial interchanges and for private passengers. Annually, the Italian Government 

(“Ministero delle Infrastrutture e dei Trasporti”) draws up a report related to the infrastructures 

and transportation situation (“Conto Nazionale delle Infrastrutture e dei Trasporti”) [1]. In 2009 

the goods transit was equal to 197091 million tons and 62% of this quantity was transported on 

the Italian roadways. The scenario is not different considering the national passenger traffic. In 

fact during the same year, the Italian infrastructures supported 960573 million passing of 

passengers per km, but 92% was supported from road pavements. 

These data highlight the importance to keep high quality level of the roadways, in order to 

provide a proper service to the road users. Moreover, an appropriate maintenance could extend 

the in-service life of the road pavements, taking into consideration the economic aspect. 

Usually, a high quality starts from an accurate design, which is the first and fundamental step. 

Sometime, projects can be supported by a preliminary study, in order to adopt the most suitable 

solution and get the best performance. Obviously, the investigations could be conducted in 

several ways, such as in a laboratory or testing real scale pavement in-situ or running 

simulations using specific software. On the other hand, the existing roadways could be 

rehabilitated adopting different strategies, according to the typology or the conditions of a 

specific road pavement and before a final reconstruction. The restoration of the superficial 

layers is a common technique to increase the serviceability of the roadways and it is often 

connected to the use of reinforcing systems, which eventually can help the lack of support of 

the existing base. However, both solutions could be considered a way to save money, since a 

correct design could guarantee a longer and better performance and a superficial maintenance 

could delay a total reconstruction.  

This research work could be considered related to both the topics mentioned above. In fact, the 
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aim of this study was to set a new investigation method, as a proper support during the design 

of a project, although the whole work focused its attention on road pavements with reinforcing 

systems in a superficial position, which is a typical maintenance solution. There are several 

methods considered a worthy preliminary study before the finale project, such as a laboratory 

investigation or the analysis organized in-situ could provide useful information. However, in the 

last years the simulations are becoming a good technique to obtain reliable results investing less 

money and time. Discrete Element Analysis or Finite Element Analysis represent two examples 

of these new approaches. In particular, this study used this second typology of analyses making 

use of specific software, Abaqus. In fact, it was realized a model of a real scale sample which 

could reproduce a flexible pavement with a superficial reinforcing system. The multilayer 

model were simulated during the in-service conditions, reproducing for instance the passing of a 

vehicle with a fixed inflate pressure of the tyre and the stress/strain output were collected and 

analysed. This examination starting from a preliminary investigation related to the performance 

of the reinforced pavements, checking the differences between the pavements with certain kind 

of nets with the ones considered as a control sample. However, these simulations were 

compared with an analogous investigation carried out in the laboratory of the University of 

Parma. Here three typologies of samples were built (with steel net, with glass grid and without 

any kind of reinforcing system) following a strict procedure, which permitted to get real scale 

samples of a multilayer flexible pavement. Those slabs were tested in the laboratory carrying 

out the corresponding investigations simulated using the Finite Element software. The strain 

responses were collected in definite areas using electrical strain gauges, in order to study the 

distribution of the deformations. Obviously, a preliminary analysis of the information registered 

in the laboratory permitted to examine the diverse performance of the three typologies of slabs, 

likewise after the modelling studies. Finally, the data collected in the laboratory were compared 

with the ones got from the modelling outputs. These comparisons allowed to evaluate the 

reliability of the simulations and to validate the consistency of the results calculated by the 

software Abaqus. Therefore, this research work started with a proper laboratory investigation 

useful as a term of comparison for the Finite Element Analyses, which drew the attention on the 

multilayer flexible pavements with and without reinforcing systems in a superficial position. 

This object was jointed to a parallel evaluation of the reinforced infrastructures. However, this 

study would highlight the possibility to lay the bases for a new investigation method that could 

be related to any kind of road pavements and permit to reduce the laboratory or in-situ 
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investigations. In fact, as mentioned above, a suitable preliminary investigation during the 

design process would permit to avoid premature failures that could put an end to the in-service 

life of a road pavement. 

 

This research work started with an introductory bibliography review, in order to evaluate the 

most relevant studies related to the investigations (simulations or in laboratory) of the 

reinforced road pavements. In the last ten years, the scientific publications put a lot of effort in 

the study of the reinforced pavements from different point of views. At the beginning of the 

XXI century Brown et al. [2] published a paper related to the reinforcing systems in the flexible 

pavements, which summarized the work developed at the University of Nottingham during the 

previous years. They collected data carrying out different tests in the laboratory, such as shear 

tests or flexure tests and investigating the benefits of the introduction of nets (steel, glass or 

polypropylene grids) in different positions of the superficial asphalt layers. This work was the 

basis of many studies until recently, such as the one developed by Rowe et al. [3] in 2009, 

which started from the results collected in the laboratories of Nottingham and highlighted one 

more time the advantage of the use of the reinforcing systems. In fact, they underlined that the 

presence of a net in the flexible pavements could help to prevent the reflective cracking 

phenomena. Moreover, the study related to the use of the reinforces were carried out in-situ, 

where it was possible to check the real effects of this interface systems. Al-Qadi et al. [4] 

started at the end of the last century to work on a proper validation of the data collected at the 

Virginia Tech laboratories (Virginia, USA). In fact, they performed experimental and analytical 

investigations to evaluate the performance of pavement sections with and without geotextile or 

geogrid between sub-grade and base course. Therefore, they monitored a road built in Bedford 

County (Virginia, USA) to quantify the benefits of the geosynthetics, as it was proved from the 

laboratory investigations. However, a full-scale accelerated performance test facility were 

studied in Alabama as well, by Powell [5], where 2.8 km of a multilayer flexible pavements 

were built and half of it were reinforced with a fibreglass geogrid positioned on the bottom of 

asphalt layers. After a preliminary analysis of the material quality control in laboratory, several 

million ESALs were applied on the surface of the experimental pavements in around 5 years 

and the benefits of the interface system were checked. In fact, in the test section, in which the 

geogrid was installed, rutting analyses were conducted, in order to draw conclusions related to 

the use of these reinforcing systems. More research studies were carried out using a full-scale 
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accelerated testing loading (ATLAS) machine at the University of Illinois (USA), where Al-

Qadi et al. [6] tried to quantify the effectiveness of geogrids on low volume flexible pavement 

performance. The results collected in this study showed that the geogrid could reduce the 

horizontal shear deformations of the aggregate layer in the traffic direction. Additionally, it was 

possible to identify the optimal location of the geogrid, in order to obtain the best performance 

of the reinforcing system. In a further study, Perkins et al. [7] worked on a full-scale flexible 

pavement test sections, which was divided into four different area inserting three geosynthetic 

reinforcement products. Even though these sections were built in an indoor facility, they were 

loaded with a heavy vehicle simulator with a dual tire standard truck half axel, in order to 

simulate the real traffic conditions. The results showed the benefits of the reinforcing systems in 

terms of Traffic Benefit Ratio and the higher trend of the stress/strain responses on the control 

sections, the ones without any geosynthetics. 

However, similar investigations could be carried out in the field, where it would be possible to 

monitor and examine a certain area of a real infrastructure with real traffic conditions. This can 

be considered the most realistic scenario, even if the cost in terms of time and money would be 

higher than analogous investigations in a laboratory. With this aim, Cox et al. [8] started to 

work a on a new field test section in Arkansas (USA) trying to understand the relative surface 

deformations due to dynamic loading. This study was conducted on sixteen sections (15 m 

long) reinforced with different geosynthetics and two base thickness, which were compared 

with a control section. The first results showed the effects of the geogrid with the difference 

thickness of base course. In fact, the contribution of the geosynthetics was observed in terms of 

a change in heave in those sections with a thinner base course. At the end of the last century, in 

Europe, the Portuguese Road Administration decided to study the performance of different anti-

reflective cracking solutions placed on a damaged flexible pavement. Therefore, five 

experimental sections were built (using 4 different kinds of interlayer systems) and studied by 

Antunes et al. [9]. The effects of the different solutions adopted were monitored for few years, 

until 2005. The results showed the steel net had the best performance, followed by the section 

where a geotextile impregnated with bitumen was inserted. 

These investigation methods are sometime compared to analogous simulations, which could 

model the laboratory tests or the analyses in-situ. In fact, the results collected at Virginia Smart 

Road, where combined by Al-Qadi et al. [10] with finite element modelling. This research work 

permitted to calibrate the simulations considering the instruments responses, which could 
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evaluate the effectiveness of the steel reinforcement in flexible pavements. At the same time, 

this study permitted to highlight the benefits of these interlayer systems inserted at the bottom 

of the base course. Further investigations were conducted by Tutumluer et al. [11, 12, 13], who 

combined tests in filed, discrete element modelling and finite element simulations. This work 

analysed the flexible pavements reinforced with geogrids inserted on the top of subgrade. Both 

investigation methods (real and modelling) demonstrated an improvement of the pavements 

responses and the performance, where an interlayer system was inserted. 

The research works presented above were related to the performance of the flexible pavements 

with different kinds of reinforcing systems inserted at different depths. However, these 

investigations were also conducted on diverse typologies of roadways, such as rigid pavements 

where a jointed Portland Cement Concrete (PCC) layer is positioned on the bottom of an 

asphalt overlay. In fact, reinforcements could be inserted in the upper asphalt layers to 

rehabilitate an existing pavement or it could be considered an anti-reflective system. For 

instance, Doh et al. [14] carried out a laboratory investigation using multilayer beams composed 

by a jointed PCC layer, an asphalt concrete overlay and a geogrid in the middle. They testes 

four different kinds of grids and a significant retardation of the reflective cracking phenomena 

was observed in the reinforced samples, compared to the ones without any grid. Further studies 

on this kind of road pavements were run in-situ, where the responses of the reinforcements 

could be considered more realistic. In fact, Vervaecke et al. [15] reported the results collected in 

different sites in Belgium (Europe), where anti-cracking interface systems were used to 

rehabilitate existing road pavements consisting of concrete slabs. The different typologies of 

interface systems showed diverse trends. For instance, a steel reinforcement net or a geogrid 

were more efficient than SAMI or non-woven interface system delaying the reflective cracking 

phenomena. Moreover, there are research works which studied the same problems of this kind 

of pavements, but running simulations and avoiding any laboratory investigations as well, as 

tests in field. Kuo et al. [16] designed a Finite Element Model (FEM) of a cracked rigid 

pavement with a reinforced asphalt overlay. They simulated the three basic types of reflective 

cracking propagation, running eighteen FEM analysis cases. The results showed that the best 

positions for the geogrid was at the 1/3 depth of the overlay thickness, in order to obtain the 

maximum predicted service life. Similar studies were conducted at the University of Illinois 

(USA) by Baek et al. [17, 18, 19], who worked on the reflective cracking phenomena in the 

asphalt overlay, laid down on a jointed PCC base. This asphalt surface could be considered as a 
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rehabilitation method which is often reinforced with different kinds of interlayer systems, such 

as steel net or sand anti-fracture. This research worked on FEM analyses that tried to reproduce 

a real scale sample, in order to understand the behaviour of the pavements in the jointed area. 

These investigations permitted to highlight the benefits of the interlayer system to prevent 

reflective cracking phenomena. 

The research works presented above showed different approaches to study reinforced road 

pavements and the versatility of the use of these interlayer systems. However, the bases of this 

research work could be considered the studies carried out at the University of Parma in the last 

year. In fact, Montepara et al. [20, 21, 22, 23, 24] organized a study related to the reinforcing 

systems inserted in flexible multilayer samples. The investigation was conducted in the 

laboratory and in field trying to examine the behaviour of the reinforce pavements compared to 

the unreinforced ones. In fact, the investigations conducted by Montepara et al. started 

collecting data in the field. They tried to laid the bases for a laboratory analysis, which could be 

defined a real scale study. Therefore, the research work presented in this thesis took advantage 

of these previous experiences and results, but tried to move forward with further investigations 

both in the laboratory and working on Finite Element Modelling.  
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CHAPTER 1 

Laboratory. 

 

The laboratory section was carried out on real scale samples of a multilayer road structure that 

would recreate a typical flexible pavement, in order to collect reliable data to validate the 

analogous Finite Element Analyses. Specimens were totally manufactured in the laboratory 

starting from the mixing of the asphalt concretes, passing through the characterization of the 

materials and concluding with the compaction phase. In fact, different kinds of samples were 

realized to reproduce road pavements with or without reinforcing systems. Moreover, this 

laboratory investigation, as well as FE Analyses, simulated the in-service life of road 

pavements, such as the passing of a wheel truck. This phase of the research work was set as a 

strict laboratory study. Moreover, several investigations were necessary to make sure that the 

collected results were trustworthy and comparable with the equivalent Finite Element Analyses. 
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1.1 Asphalt Materials. 

The samples were manufactured using a typical Italian Hot Mix Asphalt, designed following 

Italian CIRS instructions [25], in order to recreate a 3-layers flexible pavement. Hence, three 

different asphalt mixtures were used to create the strata of the specimens, but using alike 

limestone aggregates from Northern Italy and the same natural bitumen (PG 64-28) shown in 

Table 1.1. 

 

Table 1.1 Characteristics of natural bitumen. 

Natural Bitumen 70/100 

Penetration index [dmm] 77.67 

Softening-Point Ring&Ball [°C] 48.3 

Breaking-Point Fraass [°C] -14 

 

The three asphalt concretes were a typical base (0÷30 mm), binder (0÷15 mm) and wearing 

(0÷10 mm). The particle-size curves of the wearing course, the binder layer and the base course 

are shown in Figures 1.1, where the amount of filler is different for base (5.7%) and the 

superficial layers (7.7%). 
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Figure 1.1 Particle-size curves of the wearing course (a), binder layer (b) and base course (c). 

 

 

Moreover, the percentage of bitumen was chosen in the suggested range of the followed 

instructions and building density curves, in order to make the mixtures workable (Figures 1.2). 

 

(a) 

(b) 

(c) 
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Figure 1.2 Density curves of wearing course (a), binder layer (b) and base course (c). 

 

 

At this point, the asphalt materials were prepared using a proper asphalt mixer (Figure 1.3). In 

fact, the aggregates were heated in an oven at the temperature of 150°C and mixed with the 

asphalt binder at the same temperature. Once the mixture was homogeneous, the filler was 

(a) 

(b) 

(c) 
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added in the mixer and the material was put again in an oven at 150°C to make the temperature 

uniform. 

 

 

Figure 1.3 Asphalt Mixer available at the University of Parma. 

 

 

In the following step, these asphalt mixtures were compacted using a heavy compactor 

specifically built up for the University of Parma. However, before the creation of the tested 

samples, it was necessary to set the compaction procedure to obtain the percentage voids 

suggested from the followed Italian instructions with these specific materials. For this reason, 

several slabs were manufactured changing the setting parameters of that heavy compactor, but 

using the same asphalt mixture. In fact, this equipment is composed by a cylindrical 

horizontally pivoted steel cap, placed under a hydraulic press that can give pressure until 35 bar. 

Below this press there is a mobile basement, where it is possible to situate a steel squared 

formwork (500 mm x 500 mm) with different depths. The compaction process takes place when 

the formwork moves back-and-forth on the mobile basement and the hydraulic press gives a 

certain pressure (Figure 1.4). 
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Figure 1.4 Heavy compactor (a), the relative scheme (b) and the same machine during the 

compaction process (c). 

 

 

This movement reproduces the same conditions of a rolling compactor in the field. Moreover, 

setting the hydraulic press at 33 bar means that the compaction of the loose material is carried 

out with a peak pressure of 31 bar. Indeed, it is reasonable to take into account a 5-7% of loss 

during the compaction phase, caused by the shape of the hydraulic pressure pipes. Therefore, 

considering a real rolling compactor of steel with a mass of 12000 kg, its front module weights 

6000 kg and it is 1950 mm long. So, in the field, this can be translated with a pressure of 31 bar 

applied on a strip about 10 mm large below the roller, which is exactly the same level of 

compaction of the heavy compactor used in this research work. Consequently, the equipment 

mentioned above, was used to prepare mono-material slabs where only the number of passing 

(a) 

(c) 

(b) 
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of the press were different, and the applied pressure was the same. As a result, those different 

slabs were cut in several prismatic pieces, in order to check the distribution of the air voids in 

the whole sample (Figure 1.5). 

 

 

Figure 1.5 Mono-material slab (a) and the 25 prisms used for the volumetric analysis (b). 

 

 

After several attempts, a homogeneous percentage of voids in the asphalt mixtures were defined 

and the range prescribed from the followed instructions was reached. In fact, it was possible to 

find a relation between the number of passing of the heavy compactor and the percentage of air 

voids [26]. Moreover, the volumetric properties were collected following the AASHTO or 

ASTM American guidelines, in order to characterize the three asphalt mixtures (Table 1.2). 

 

 

 

 

 

 

 

 

 

 

 

 

  (a) (b) 
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Table 1.2 Volumetric properties of the three asphalt mixtures. 

Volumetric Properties Wearing Binder Base Regulation 

Asphalt Content Pb [%] 6.1 5.7 5.0 (fixed) 

Percent Stone Ps [%] 88.65 90.45 92.26 (fixed) 

Bulk Specific Gravity of Mix Gmb [g/cm
3
] 2.3019 2.3530 2.3989 AASHTO T 166 

Maximum Specific Gravity of  

Mix Gmm [g/cm
3
] 

2.4295 2.4473 2.4664 ASTM D 2041 

Bulk Specific Gravity of  

Aggregates Gsb [g/cm
3
] 

2.4892 2.4935 2.4729 
AASHTO T84 

-T 85 

Percent Voids Total Mix VTM [%] 5.25 3.85 2.74 - 

Voids in Mineral Aggregates VMA [%] 18.02 14.65 10.50 - 

Percent Voids Filled with Asphalt VFA [%] 70.95 73.73 74.09 - 

 

 

After the volumetric characterization, new slabs mono-material were compacted following the 

same procedure explained above, but to collect Dynamic Complex Modulus (|E*|) and 

corresponding Phase Angles (φ) following AASHTO TP 62-03 guideline. In fact, from these 

new slabs were cored 5 cylinders 100 mm diameter and about 150 mm height in the central area 

of the samples (Figure 1.6) and the test was carried out on the 15 cores (three for each asphalt 

mixtures). 

 

 

Figure 1.6 Slabs compacted (a) and cored (b) to obtain cylindrical samples. 

 

 

(a) (b) 
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In Figures 1.7 the mechanical characterization of each asphalt mixture is shown. In fact, from 

those tests three different Master Curves were designed with a sigmoidal shape (see the 

equations on the charts) and the corresponding Black Curves, where the phase angles were 

related to the Dynamic Complex Moduli. 

 

 

(a) 
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Figure 1.7 Dynamic Complex modulus master curves with relative equation and Black 

Diagram for wearing course (a), binder layer (b) and base course (c). 

 

 

(b) 

(c) 
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After these analyses, asphalt mixtures were described from volumetric and mechanical points of 

view and it was possible to state the reliability of the materials was totally guaranteed. 

 

 

 

1.2 Samples. 

The slabs tested in the laboratory were created using the same materials mentioned above as 

well as the same compactor and following the procedure explained in the previous paragraph. In 

that way, three different typologies of real scale samples were assembled as a square with 

500mm size length, the same of the compactor formwork. However, in each specimen three 

asphalt strata with different thickness were created in order to recreate a real flexible pavement, 

as shown in Table 1.3. 

 

Table 1.3 Features of multilayer flexible slabs from top to bottom. 

MULTILAYER FLEXIBLE SLABS 

Stratum Thickness [mm] Maximum aggregate size [mm] 

Wearing course 30 10 

Binder layer 40 15 

Base course 100 30 

 

 

Therefore, the difference among the specimens consisted in inserting a reinforcing system 

positioned between the binder layer and the base course and totally embedded in the upper 

stratum. In one of the typology of slab a hexagonal steel net with transversal reinforcing bars 

was inserted (Figure 1.8) and the characteristics are explained in Table 1.4 (see in the Chapter 2 

Figure 2.10 for the geometric characteristics). 
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Figure 1.8 Steel net reinforcing system (a) and a detail of the double twisted grid. 

 

 

Table 1.4 Features of steel net reinforcing system. 

STEEL NET 

Steel Net Diameter 2.4 mm 

Reinforcing Bar Diameter 4.4 mm 

Longitudinal Stiffness 22.7 MN/m 

Transversal Stiffness 19.5 MN/m 

Longitudinal Nominal Stiffness 35.00 MN/m 

Transversal Nominal Stiffness 50.00 MN/m 

Elastic Modulus (E) 200000 MPa 

 

 

A second typology of slab was equipped with a different kind of reinforce: a glass grid 

composed by a squared mesh and with a thin bitumen film to guarantee a better adhesion with 

Hot Mix Asphalt (Figure 1.9). The characteristics are explained in Table 1.5 (Figure 2.11, 

Chapter 2 for the geometric characteristics). 

 

(a) (b) 
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Figure 1.9 Picture of the glass grid reinforcing system (a) and a detail of the squared net (b). 

 

 

 

Table 1.5 Features of glass grid reinforcing system. 

GLASS GRID 

Longitudinal Nominal Strength 100 KN/m 

Typical Longitudinal Elongation (under max load) <4% 

Transversal Strength 100 KN/m 

Typical Transversal Elongation (under max loading) <4% 

Elastic Modulus (E) 76 GPa 

 

 

However, it was realized control samples, where there was not inserted any reinforcing system. 

That was necessary to make proper comparisons during this laboratory section, as well as in the 

Finite Element Analysis. 

The procedure to assembly the multilayer slabs was divided into two steps. In the first one the 

upper layers (wearing and binder) were compacted one upon the other one. In the second step 

the base courses were created separately. In this way it was possible to monitor and record the 

deformations between the binder layer and the base course, where the reinforcement was 

(a) (b) 
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positioned applying strain gauges. Therefore, in the first step a certain amount of the binder 

mixture was prepared with the asphalt mixer and with this material at the uniform temperature 

of 150°C, a 40 mm thick slab was created using the heavy compactor. When this layer reached 

the room temperature, a wearing course layer 30 mm thick was compacted on the binder layer 

using the wearing mixture prepared with the same procedure mentioned above. In two 

typologies of slabs the reinforcing system were positioned at the bottom of the formwork of the 

compactor and so it was totally embedded into the asphalt mixture of the binder layer In 

particular, the steel net was placed with an entire hexagonal mesh without reinforcing bar in the 

centre area of the samples (Figure 1.10a). Since glass grid has a regular squared shape, it was 

simply positioned at the bottom of the formwork (Figure 1.10b). In the second step, slabs of 100 

mm thick were created with the base mixture in a subsequent stage, but following the same 

procedure of compaction. 

 

  

Figure 1.10 Reinforcing systems positioned in the formwork: steel net (a) and glass grid (b). 

 

 

At the end of these two steps, a suitable procedure to assembly the surface layers and the base 

course was designed to guarantee proper adhesion and connection during the testing phase and 

in order to avoid any debonding phenomenon. It was important to assure the stress/strain 

responses of these real scale samples as an in continuum model. For this reason a shear test was 

design to set and control the interface characteristics. 

 

 

(a) (b) 
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1.3 Shear test. 

The aim of this test was to define a straightforward methodology, in order to prepare real scale 

multilayer samples that could perform as an in-situ road flexible pavement of asphalt concrete 

mixtures during this laboratory section. A preliminary bibliography research showed that this is 

a widespread topic studied in several scientific investigations, to examine the crucial point of 

the interactions between layers in road infrastructures. A useful report created by the Illinois 

Center for Transportation in 2008 is an extensive survey of the most important studies focused 

on this topic [27] in these last years, besides being a reliable laboratory investigation. Therefore, 

a suitable shear test was set based on previous works and after several attempts. Cylinders with 

150 mm diameter and around 60 mm height were manufactured with a Gyratory Compactor set 

at 600 kPa and 100 gyrations. Half of them were realized using the base mixture, but for the 

others binder asphalt concrete was used. In this case it was not important to take into 

consideration the volumetric properties of the samples, since during the shear test the interface 

behaviour was investigated and the most important aspect of the cylinder was the smoothness of 

the surface, the asphalt mixtures used and the aggregate sizes. Those specimens would have just 

recreated the surfaces to be put in contact in the real scale samples. Moreover, any reinforcing 

system was not inserted in the middle of the tested samples, since the presence of an interlocked 

net cannot compromise the effect of the interface shear strength [2]. The two kinds of cylinders 

were put inside the two halves of a non-deformable steel box, dipped in cement mortar, but with 

the interface area clear which was checkable while the tests were carried out. Natural binder 

(PG 64-28) was used to put the surfaces in contact with an amount rate of 0.92 l/m
2
 and was 

spread at the temperature of 150°C on both surfaces in contact. Moreover, the tests were carried 

out using a Material Test System machine (MTS) setting the displacement rate at 0.042 mm/s 

[28] and the pressure normal to the interface shear zone at 0.002 MPa. This value was 

calculated considering the weight of the asphalt material that rested on the interface zone of the 

real scale samples, which is represented by the two surface layers (wearing and binder course). 

These two strata were 70 mm thick (Table 1.3) and the weight is around 4.2 kN, considering a 

slab of 500 mm x 500 mm. This meant that on the cylinders used for the shear tests, 0.35 kN 

were applied using loading cells (Figure 1.11). 
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Figure 1.11 Set-up configuration of the shear test. 

 

 

One more important aspect of the test set-up was related to the pressure applied to make 

perfectly in contact the two halves of the cylinder inserted into the steel box, besides the time of 

the application of this force before the execution of the shear tests. The pressure of 600 kPa of 

the Gyratory Compactor was assumed as a reference, which was the same applied during the 

creation of the cylinders for these shear tests. In summary, it means that the cylinders prepared 

with that Gyratory Compactor were dipped into the cement mortar inside the steel box, and then 

hot natural bitumen at 150°C was spread on the two surfaces which were put in contact. Finally 

the proper adhesion was recreated applying around 10÷11 kN with the two load cells. In few 

minutes (around 3) the load cells reached the maximum value of load and after half an hour the 

load cells were applying a load approximately equal to zero. The test was carried out when the 

bitumen reached the room temperature and the sample could be considered completely adherent 

(Figure 1.12). This “fixing procedure” was executed at room temperature (around 15÷20°C). 

 

Displacement rate = 0.042 mm/s 

0.002 MPa 
0.002 MPa 

Non-deformable 

steel box 

Loading cell 
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Figure 1.12 “Fixing procedure” for the preparation of the shear test samples. 

 

 

Finally, it was fundamental to check if the load applied on the steel box with the two asphalt 

cylinders put inside would have caused permanent deformations. In that case the samples and 

the test itself would have been unreliable. Therefore, a new “test” was set to investigate the 

performance of the three different asphalt mixtures. Hence, on cylindrical samples a constant 

displacement rate was applied, in order to check the behaviour of the material before and post 

the failure range. For this purpose, cores 100 mm diameter taken from those mono-material 

slabs created to get samples to collect Dynamic Complex Moduli were used [see paragraph 1.1 

“Asphalt Materials”]. Those cylindrical specimens could guarantee the same performance of the 

real scale slabs tested in this laboratory section, since they had equivalent features (composition 

of the mixtures and compaction method, as well as volumetric and mechanical characteristics). 

Hence, this test was again carried out using the MTS machine and with the displacement control 

set at 0.084 mm/s until the complete failure of the cylinders. This further investigation was 

carried out at the room temperature (around 15÷20°C), the same set during the “fixing 

procedure”. Figure 1.13 shows few imagines during this investigation. Moreover, in Figure 1.14 

the load-displacement curves are shown for each asphalt mixture (the wearing, binder and base 

respectively). 
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Figure 1.13 Cylindrical samples tested to investigate the elastic behaviour of the asphalt 

mixtures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 
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Figure 1.14 Elastic zone of the wearing course (a), binder layer (b) and base course (c) mixture. 

 

 

The graphs in the last Figure show the range of the elastic zone in the three different mixtures. 

The analysis of those curves highlighted that the elastic range was minimum for the wearing 

asphalt mixture core, which was around 7÷8 kN. Applying this force on a 100 mm diameter 

cylinder, it can be transformed into a pressure of 900÷1000 kPa. Therefore, the asphalt mixtures 

elastic zone 

elastic zone 

elastic zone 

(b) 

(c) 

(a) 
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during the “fixing procedure” of the shear tests could be considered in a range of fully 

elasticity, since the load applied on the shear box (600 kPa) was 30÷40% less than the 

minimum value highlighted in the three previous Figures. After this last control, it was possible 

to state that the set-up of the shear test was trustworthy. 

 

After these fundamental steps, several shear tests were carried out following the procedure 

explained above and at the temperature of 10°C, in order to keep the asphalt mixture in a visco-

elastic domain [29] and avoid any plastic damage. 

Figure 1.15 shows an average of the results collected during the shear tests: the interface shear 

strength versus displacement in mm and the peak value is around 0.60 MPa.  

 

 

Figure 1.15 Results collected during shear test and the maximum interface shear strength. 

 

 

Is it possible to state that this is a suitable interface shear strength according to the purpose of 

this work? In fact, the aim of this shear test was to guarantee a proper adhesion between the 

binder layer and the base course which was created separately and connected during the 

carrying out phase of the real scale slabs during the laboratory section. As mentioned in the 

introduction of this chapter, this consisted on applying a certain pressure which can reproduce 

the traffic load on a multilayer flexible pavement. Consequently, in order to answer to the 

question above, a further investigation became necessary. Therefore, the software BISAR was 

used to reproduce the same multilayer pavements created in the laboratory and simulating the 

passing of a truck wheel. In that way it was possible to check the horizontal stress level at the 

interface between the binder layer and the base course. This software considers a semi-
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indefinite multilayer system, where the asphalt mixtures are isotropic linear elastic. In Figure 

1.16 the Block Report is shown and it summarizes the results coming from the simulation with 

the software BISAR. The horizontal stress between the binder layer and the base course is 

around 16 times less than the peak interface shear strength collected with the shear tests in the 

laboratory. In fact, in Figure 1.16 it is possible to check the value of the horizontal shear stress 

between the binder layer and the base course calculated using BISAR (0.03495 MPa) and to 

compare it with the same datum get from the laboratory investigations (0.57 MPa). Therefore, 

even if BISAR makes a preliminary assumption of linear elasticity and the laboratory shear tests 

considered the material as a visco-elastic mixture, this considerable difference between the two 

values could make the interface shear strength reliable and the two upper surfaces could be 

considered an in-continuum system with the base layer. 

 

 

Figure 1.16 Bisar report with the horizontal stress between base and binder layer highlighted. 

 

 

Consequently, it was possible to state the method set to assembly the slabs for this laboratory 

section was consistent and it permitted to say the multilayer samples could work in continuum. 
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1.4 Test set-up. 

The aim of this work was to analyse the responses of a reinforced flexible pavement during the 

in-service life. So, the laboratory investigations were carried out using the MTS machine and 

setting the temperature at 10°C, in order to maintain the material in a visco-elastic domain. 

Therefore, on the top of the specimens, on the central zone of the wearing course, a circular 

loading mark with 100 mm diameter was set with the purpose of simulating the wheel of a 

truck. Obviously, the dimension of the samples as well as the loading mark could be considered 

on a smaller scale compared with the in-situ situation. However, the set-up of this configuration 

was studied during previous research works at the University of Parma, as regard the real 

conditions [21]. The load matched the inflate pressure of a truck wheel, that normally is set 

around 7 bar. Considering an equivalent axel load in Italy, that is usually 6000 kg, it means a 

load of 5.5 kN applied on the wearing surface of the multilayer laboratory slabs (Figure 1.17). 

 

Inflate Pressure =7 bar

Equivalent axel load 6 ton

Circular Loading Mark  

(radius = 5cm)

5.5 kN

 

Figure 1.17 The correlation between the equivalent axel load and the equivalent laboratory 

investigation. 

 

 

Moreover, the multilayer slabs were tested positioning the specimens on a neoprene stratum 40 

mm thick, in order to recreate a sub-base layer [20]. In fact, this polymeric material can 

simulate 150 mm of sub-base layer with a Deformation Modulus (Md) of 500 kN/mm
2
 and the 

whole tested slab is shown in Figure 1.18. 
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Figure 1.18 The strata of the asphalt multilayer slabs. 

 

 

In order to record the performance of tested slabs, several strain gauges were positioned around 

the load mark and at the interface of the binder and base layers (see paragraph 1.2 “Samples”). 

This equipment consisted of electrical gauges that could register the deformations in one 

direction and they were connected to a National Instrument control unit system. This tool was 

set inserting proper parameters, such as gauge factors, and the calibration was automatic, in 

order to collect reliable results. Moreover, these strain gauges were positioned where the 

highest deformations would have expected. Figure 1.19 shows a scheme of the multilayer slabs 

with strain gauges on the top of the wearing course and on the upper surface of the base 

stratum. These acquisition devices were placed around the load mark and perpendicularly, in 

order to investigate the growth of the deformations on the surface of the slabs in both directions. 

In Figure 1.19 the strain gauges I and L were 60 mm long instead of the ones coloured in red, 

which were 100 mm long. 

 

 

Figure 1.19 Position of the strain gauges on the wearing course (a) and on the base course (b). 

 

 

a) b) 
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Following this set-up, diverse tests were carried out: static and dynamic. The first one was a 

classic creep test, in which the load of 5.5 kN was statically applied for 1000 seconds. At the 

end of this initial loading phase, the load was quickly removed. However, the deformations 

were recorded for further 1000 seconds (Figure 1.20). Consequently, this kind of investigation 

could provide information related to the stress/strain behaviour of these multilayer slabs and the 

respective asphalt mixtures responses during loading phase besides the following recovery step. 

Therefore, this static test could inform about the effects of a heavy vehicle stop on a flexible 

pavement and its consequent effects after its removal. 

 

 

Figure 1.20 Creep test carried out on multilayer slabs. 

 

 

The dynamic tests consisted in applying a sinusoidal load, in order to simulate the repeating 

passing of vehicles. The tests were carried out at two different frequencies: 0.5 Hz and 2 Hz. 

These values are set using the Klomp equation (1), which is an empirical formula. It established 

a relation between frequency and velocity [30]. 

 

                                                           VFrequency 4.0                                                    (1) 

 

In this equation, frequency is expressed in Hz and velocity (V) in km/h. The highest frequency 

selected meant a vehicle speed of 5km/h. While 0.5 Hz corresponded to a vehicle in a 

manoeuvre stage that meant a velocity lower than 5 km per hour. This choice permitted to 

investigate the behaviour of the road pavements under a cyclic passing of vehicles with low 
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speed that is when traffic loads are more important. Using these two load waves, two different 

tests were carried out. In the first one 100 load cycles were applying on the slabs at the two 

different frequencies. However, the second typology was analogous to the first phase of the 

creep mentioned above, even if the loading procedure consisted of a sinusoidal wave instead of 

a constant load. Figure 1.21 shows the load trend at the two frequencies during the dynamic 

tests. 

 

           

Figure 1.21 Sinusoidal test carried out on multilayer slabs at 2 Hz (a) and 0.5 Hz (b). 

 

 

These two different approaches were designed to highlight different aspects of the stress/strain 

responses of the multilayer flexible pavements with and without two different reinforce systems 

and during the in-service life. Moreover, this laboratory investigation could collect reliable data, 

in order to validate the Finite Element Analyses, since it was conducted followed a strict 

procedure. However, before running the tests explained in this paragraph, a further analysis was 

conducted in the laboratory using samples with different shapes. This choice permitted to 

collect information related to the same multilayer flexible pavements with different 

reinforcement studied in this work, but when the structure is at the end of the in-service life. In 

fact, the bibliography research clearly showed that a fair method to emphasize the effects of any 

kind of reinforcing system could be carrying out of those “destroying” tests, which forced road 

pavements to the extreme limits [2, 31, 32]. Moreover, it is a fair starting point to initiate an 

analysis where reinforcing systems are involved. A widespread example could be recognized in 

bending tests because of its easiness of execution. That is the reason why a new laboratory 

investigation was set, before running the tests mentioned above. 

(a) 

 

(b) 
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1.5 Three-point Bending Test. 

As explained above, the aim of these kinds of tests was to lay the basis of this research work 

related to reinforced flexible pavements. Therefore, this investigation could study the 

macroscopic effects of the grids inserted between the binder layer and the base course. This step 

was absolutely necessary before the beginning of a research that can be considered more 

refined, since it pretended to simulate the in-situ condition of a real road pavement. 

Two different shapes of samples were created to carry out three-point bending tests: one was a 

typical beam [33] and the second one was a bi-layer slab more similar to the ones tested over 

this research work. It is important to underline that, in order to guarantee a complete 

repeatability and coherence, both typologies of specimens were created using the same asphalt 

mixtures and following the same compaction procedure explained in paragraph 1.1 and 1.2. 

Keeping this in mind, multilayer beams were suitably built. The samples had the geometry 

showed in Figure 1.22 where it is possible to notice that the thickness of the three asphalt layers 

was equal to the ones picked for the slabs created for this research work: 30 mm of the wearing 

course, 40 mm of the binder layer and 100 mm of the base course (Table 1.3). 

 

 

Figure 1.22 The geometric features of the multilayer beams used for 3-point bending tests. 

 

 

Obviously, three typologies of beams were constructed: one with the steel net, one with the 

glass grid and the last one without any kind of reinforce, as control sample. The specimens 

reinforced with the steel net were divided into two more typologies. In fact, the dimensions of 

the beams could not allow the insert of a whole mesh including the reinforcing bar. Therefore, 

there were beams with steel mesh and others with steel mesh plus bars (Figure 1.23). 
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Figure 1.23 The two typologies of multilayer beams reinforced with steel net: on the left the 

ones without bar and on the right with bar. 

 

 

This issue was totally meaningless for those beams reinforced with glass grid. In fact, the 

smaller dimensions of this kind of mesh permitted to insert the whole geometry in each sample. 

The second typology of samples used to carry out three-point bending tests was the same 

squared slabs 500 mm x 500 mm, but thinner. In fact, these were composed by 2 layers: 30 mm 

of the wearing course and 40 mm of the binder layer. Once more, these specimens were divided 

into three types: one was the control specimens without any kind of reinforce and the others two 

with the net (steel or glass) totally embedded at the bottom of the binder layer. In this case, the 

dimensions of these samples could include the whole geometry of the steel net, such as the 

entire mesh as well as the reinforcing bars. Hence, this second typology of specimens could be 

only divided into three categories. The test set-up was the same in both cases and the data were 

collected using the MTS machine. The tests were run following the regular three-point bending 

configuration and fixing a displacement rate of 0.084 mm/s (Figure 1.24). The investigation was 

totally conducted at 10°C. 
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Figure 1.24 The geometric features of the bi-layer slabs used for three-point bending tests and 

the test set-up. 

 

The graph in Figure 1.25 shows the results collected during the carrying out of the three-point 

bending tests and using the samples with beam shape. Four curves represent the different 

typologies of specimens. Furthermore, the investigation was implemented with an energetic 

analysis, in order to study the different levels of the stores of energy for each type of specimens 

(Figure 1.26). 
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Figure 1.25 The results collected running three-point bending tests on the four typologies of the 

multilayer beams. 

 

Figure 1.26 The energetic analysis of the four typologies of the multilayer beams running 

three-point bending tests. 

 

 

However, the Figure 1.27 shows the output data collected during the analogous tests, but carried 

out using bi-layer slabs. Here there were only three curves: one for each sample. Moreover, in 
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Figure 1.28 it is possible to observe the corresponding store of energy in this second kind of 

samples. 

 

 

Figure 1.27 The results collected running three-point bending tests on the three typologies of 

the bi-layer slabs. 

 

Figure 1.28 The energetic analysis of the four typologies of the bi-layer slabs running three-

point bending tests. 
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The results presented in the Figures above show the different behaviour of the two typologies of 

samples. In fact the peak values of stress or the store of energy is not only different between 

reinforced and unreinforced specimens. But also slabs and multilayer beams provided with the 

same kind of reinforcing system exhibit different behaviours. This is not a brand-new discovery 

[33] and in fact this investigation does not pretend to make any conclusions about the 

performance of reinforcing nets inserted in flexible pavements. It was only a preliminary 

analysis of this research work, in order to demonstrate the macroscopic effects of these grids. 

Moreover, in this laboratory section the reinforcing systems are positioned between the binder 

layer and the base course, which is considered a superficial position and using a precise 

configuration of in-layer flexible infrastructures. Additionally, the asphalt concretes were totally 

mixed in the laboratory and compacted with a heavy compactor that is not a standardized 

equipment. Because of all these reasons, these three-point bending tests could be considered a 

fair starting point for the following analyses executed on the multilayer slabs. This prospective 

permitted to evaluate the data collected and make proper conclusions, useful for this work. 

Three point bending tests permitted to state that both kinds of samples highlight the effects of 

reinforcing systems. Obviously, the study of the graphs in Figure 1.25, 1.26, 1.27 and 1.28 has 

to consider the shape of the curves and not only the peak values of the stress. In fact, the area 

under those curves represented the energy. Table 1.6 shows that the beams with steel net plus 

bars or the bi-layer slabs with the same grid can store more energy than the other specimens. In 

fact, the unreinforced samples (both typologies) could store around 40÷50% more energy than 

the ones with a reinforcing system. 

 

Table 1.6 Energy stored by multilayer beams and bi-layer slabs during 3-point bending tests. 

Samples 
Multilayer beams 

Energy stored [J] 

Bi-layer slabs 

Energy stored [J] 

No Net 166 114 

Steel Net (with bar) 264 215 

Steel Net (no bar) 152 - 

Glass Grid 208 184 

 

On the other hand, control samples are the ones that could reach the highest stress values. 

However, when the failure started they immediately collapsed and the specimens with 
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reinforcing systems showed a better post-failure resistance. This behaviour is evident in both 

typologies of samples: in the multilayer beams (Figure 1.29) the crack arrived straight to the top 

of the samples and the bi-layer slabs (Figure 1.30) broke completely into two parts. 

 

 

Figure 1.29 Three-point bending test carried out of the multilayer beams at the beginning of the 

analysis (a) and the different failure of unreinforced samples (b) and the reinforced ones (c). 

 

 

           

           

Figure 1.30 Three-point bending test carried out of the bi-layer slabs at the beginning of the 

analysis (a) (b) and the different failure of unreinforced samples (c) and the reinforced ones (d). 

 

Consequently, it is reasonable to think that it would be possible to see the effects of the 

reinforcement during the in-service life, which is the analysis planned for this research work. 

(a) (b) 

(c) 

(d) 

(a) (b) (c) 
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1.6 Results. 

Previous paragraphs explained step by step how data were collected and the procedure to get 

reliable and testable samples. In this section of the Chapter, the results are exposed starting 

from the tests carried out on control slabs (without any kind of reinforce) and going through the 

reinforced samples. Moreover, the static tests were divided from the dynamic ones, but the 

positions monitored are the ones showed in Figure 1.19. In addition, conclusions were drawn 

considering each typology of specimens, but also making proper comparisons among the 

analogous investigations carried out on the different kind of slabs. Finally, it is important to 

underline that all the data presented below are an average of several investigations run on 

different specimens (with and without reinforcing systems). 
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Control slabs (without any reinforcing system) 

Figure 1.31 shows the data collected by strain gauges placed in two different areas close to the 

loading mark while a creep test was run on the control slabs. 

 

 

 

Figure 1.31 Creep test on control slab - strain gauges D and N. 

 

 

Table 1.7 highlights the strain peak values and the percentages of the recovered strain collected 

by the strain gauges in position D and N. 
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Table 1.7 Peak value and recovery of control slab during creep test. 

CREEP – CONTROL SLAB 

Strain Gauges Position D N 

Peak value [μstrain] -408 79 

Recovery [%] 60 50 

 

 

Figure 1.32 shows the data collected by strain gauges placed in different areas close to the 

loading mark of the control slabs and applying 100 cycles of a sinusoidal load at 0.5 Hz. 

 

 

 

Figure 1.32 Sinusoidal test (100 cycles, 0.5 Hz) on control slab - strain gauges D and I. 

 

 

Table 1.8 highlights the strain peak values and the wave amplitude of the strain collected by the 

strain gauges in position D and I. 
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Table 1.8 Peak value and wave amplitude of control slab (sinusoidal test 100 cycles, 0.5 Hz). 

SIN 0.5Hz (100 Cycles) – CONTROL SLAB 

Strain Gauges Position D I 

Peak value [μstrain] -173 62 

Wave amplitude [μstrain] 18.6 8.2 

 

 

Figure 1.33 shows the data collected by strain gauges placed in different areas close to the 

loading mark of the control slabs and applying a sinusoidal load at 0.5 Hz for 1000 seconds. 
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Figure 1.33 Sinusoidal test (1000s, 0.5 Hz) on control slab - strain gauges D, I and N. 

 

 

Table 1.9 highlights the strain peak values and the wave amplitude of the strain collected by the 

strain gauges in position D, I and N. 
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Table 1.9 Peak value and wave amplitude of control slab (sinusoidal test 1000s, 0.5 Hz). 

SIN 0.5Hz (1000 seconds) – CONTROL SLAB 

Strain Gauges Position D I N 

Peak value [μstrain] -214 73 42 

Wave amplitude [μstrain] 9.8 7.1 3.9 

 

 

Figure 1.34 shows the data collected by strain gauges placed in different areas close to the 

loading mark of the control slabs and applying 100 cycles of a sinusoidal load at 2 Hz. 

 

 

 

Figure 1.34 Sinusoidal test (100 cycles, 2 Hz) on control slab - strain gauges D and I. 

 

 

Table 1.10 highlights the strain peak values and the wave amplitude of the strain collected by 

the strain gauges in position D and I. 
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Table 1.10 Peak value and wave amplitude of control slab (sinusoidal test 100 cycles, 2 Hz). 

SIN 2Hz (100 Cycles) – CONTROL SLAB 

Strain Gauges Position D I 

Peak value [μstrain] -82 31 

Wave amplitude [μstrain] 15.3 6 

 

 

Figure 1.35 shows the data collected by strain gauges placed in different areas close to the 

loading mark of the control slabs and applying a sinusoidal load at 2 Hz for 1000 seconds. 

 

 

 

Figure 1.35 Sinusoidal test (1000s, 2 Hz) on control slab - strain gauges D and I. 

 

 

Table 1.11 highlights the strain peak values and the wave amplitude of the strain collected by 

the strain gauges in position D and I. 

Table 1.11 Peak value and wave amplitude of control slab (sinusoidal test 1000s, 2 Hz). 
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SIN 2Hz (1000 seconds) – CONTROL SLAB 

Strain Gauges Position D I 

Peak value [μstrain] -204 93 

Wave amplitude [μstrain] 7.5 4.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Slabs reinforced with Steel Net 

Figure 1.36 shows the data collected by strain gauges placed in three different areas close to the 

loading mark while a creep test was run on the slabs reinforced with a steel net between binder 

layer and base course. 
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Figure 1.36 Creep test on slab with steel net - strain gauges D, I and L. 
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Table 1.12 highlights the strain peak values and the percentages of the recovered strain 

collected by the strain gauges in position D, I and L. 

 

Table 1.12 Peak value and recovery of slab with steel net during creep test. 

CREEP – SLAB WITH STEEL NET 

Strain Gauges Position D I L 

Peak value [μstrain] -283 59 61 

Recovery [%] 63 47 49 

 

 

Figure 1.37 shows the data collected by strain gauges placed in different areas close to the 

loading mark of the slabs reinforced with steel net and applying 100 cycles of a sinusoidal load 

at 0.5 Hz. 
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Figure 1.37 Sinusoidal test (100cycles, 0.5Hz) on slab with steel net - strain gauges D, L and N. 

 

 

Table 1.13 highlights the strain peak values and the wave amplitude of the strain collected by 

the strain gauges in position D, L and N. 
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Table 1.13 Peak value and wave amplitude of slab steel net (sinusoidal test 100 cycles, 0.5 Hz). 

SIN 0.5Hz (100 Cycles) – SLAB WITH STEEL NET 

Strain Gauges Position D L N 

Peak value [μstrain] -115 48 31 

Wave amplitude [μstrain] 11.7 6.7 2.9 

 

 

Figure 1.38 shows the data collected by strain gauges placed in different areas close to the 

loading mark of the slabs reinforced with steel net and applying 100 cycles of a sinusoidal load 

at 2 Hz. 

 

 

 

Figure 1.38 Sinusoidal test (100 cycles, 2 Hz) on slab with steel net - strain gauges D and L. 

 

 

Table 1.14 highlights the strain peak values and the wave amplitude of the strain collected by 

the strain gauges in position D and L. 
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Table 1.14 Peak value and wave amplitude of slab steel net (sinusoidal test 100 cycles, 2 Hz). 

SIN 2Hz (100 cycles) – SLAB WITH STEEL NET 

Strain Gauges Position D L 

Peak value [μstrain] -56 17 

Wave amplitude [μstrain] 8.8 5.6 

 

 

Figure 1.39 shows the data collected by strain gauges placed in different areas close to the 

loading mark of the slabs reinforced with steel net and applying a sinusoidal load at 2 Hz for 

1000 seconds. 

 

 

 

Figure 1.39 Sinusoidal test (1000s, 2 Hz) on slab with steel net - strain gauges D and L. 

 

 

Table 1.15 highlights the strain peak values and the wave amplitude of the strain collected by 

the strain gauges in position D and L. 
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Table 1.15 Peak value and wave amplitude of slab steel net (sinusoidal test 1000s, 2 Hz). 

SIN 2Hz (1000 seconds) – SLAB WITH STEEL NET 

Strain Gauges Position D L 

Peak value [μstrain] -123 65 

Wave amplitude [μstrain] 6.0 6.2 
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 Slabs reinforced with Glass Grid 

Figure 1.40 shows the data collected by strain gauges placed in two different areas close to the 

loading mark while a creep test was run on the slabs reinforced with a glass grid positioned 

between binder layer and base course. 

 

 

 

Figure 1.40 Creep test on slab with glass grid - strain gauges D and L. 
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Table 1.16 highlights the strain peak values and the percentages of the recovered strain 

collected by the strain gauges in position D and L. 

 

Table 1.16 Peak value and recovery of slab with glass grid during creep test. 

CREEP – SLAB WITH GLASS GRID 

Strain Gauges Position D L 

Peak value [μstrain] -242 120 

Recovery [%] 84 35 

 

 

Figure 1.41 shows the data collected by strain gauges placed in different areas close to the 

loading mark of the slabs reinforced with glass grid and applying 100 cycles of a sinusoidal 

load at 2 Hz. 

 

 

 

Figure 1.41 Sinusoidal test (100 cycles, 2 Hz) on slab with glass grid - strain gauges D and N. 
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Table 1.17 highlights the strain peak values and the wave amplitude of the strain collected by 

the strain gauges in position D and N. 

 

Table 1.17 Peak value and wave amplitude of slab glass grid (sinusoidal test 100 cycles, 2 Hz). 

SIN 2Hz (100cycles) – SLAB WITH GLASS GRID 

Strain Gauges Position D N 

Peak value [μstrain] -68 16 

Wave amplitude [μstrain] 10.0 3.5 

 

 

Figure 1.42 shows the data collected by strain gauges placed in different areas close to the 

loading mark of the slabs reinforced with steel net and applying a sinusoidal load at 2 Hz for 

1000 seconds. 
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Figure 1.42 Sinusoidal test (1000s, 2 Hz) on slab with glass grid - strain gauges D, N and M. 

 

 

 

Table 1.18 highlights the strain peak values and the wave amplitude of the strain collected by 

the strain gauges in position D, N and M. 

 

Table 1.18 Peak value and wave amplitude of slab glass grid (sinusoidal test 1000s, 2 Hz). 

SIN 2Hz (1000 seconds) – SLAB WITH GLASS GRID 

Strain Gauges Position D N M 

Peak value [μstrain] -195 88 -67 

Wave amplitude [μstrain] 7.1 2.6 2.6 

 

 

 

The results presented above could be analysed following a common scheme and finding a trend 

which could make a connection between the three typologies of slabs. The creep tests 

highlighted the tendency to accumulate more strains than the dynamic tests. The results 

collected during the sinusoidal cyclic tests at different frequencies highlighted that the tendency 

of each typology of samples was to store more deformations when the frequency of the load 

was lower and this could be considered a reasonable behaviour. In fact, the stress on a road 

pavement is usually higher when a vehicle has a lower speed (which corresponded to a lower 

frequency). Moreover, the sinusoidal tests (1000 seconds long) meant different number of the 

load cycles according to the frequency: 2 Hz meant 2000 cycles and 0.5 Hz meant a quarter of 
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cycles (500). Therefore, the amplitude of the waves was bigger in the “slower” investigations 

(0.5 Hz) compared to the analogous tests at 2 Hz. Obviously, these considerations made the 

results reliable, since usually a static load or a lower load frequency are reasonably the cause of 

a higher level of stresses and strains. A further consideration could take into consideration the 

results presented for the slabs reinforced with steel net related to the creep tests. The data 

collected from strain gauges I and L were very similar and with a common trend (Figure 1.36). 

In fact, those monitored positions could be considered analogous (see Figure 1.19) and the 

results met the expectations highlighting a comparable behaviour. 

 

After these preliminary considerations, the data collected permitted to compare the different 

behaviours of the three typologies of slabs, checking the dissimilarities between the reinforced 

and unreinforced samples through the analysis of the carried out tests. The following Figures 

show the data collected from strain gauges positioned in the same area close to the loading mark 

(position D), but placed on the three different kinds of specimens. 

 

Figure 1.43 shows the data collected by strain gauges placed in position D running a creep test 

on the three kinds of slabs. 

 

 

Figure 1.43 Comparison of the creep test carried out on the three typologies of slabs (with no 

net, steel net and glass grid - strain gauges D. 
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Table 1.19 highlights the strain peak values and the percentages of the recovered strain 

collected by the strain gauges in position D on the three different kinds of slabs. 

 

Table 1.19 Peak values and recovery of the three typologies of slabs during creep test. 

CREEP – STRAIN GAUGES D 

Typology of Slab No Net Steel Net Glass Grid 

Peak value [μstrain] -408 -283 -242 

Recovery [%] 60 63 84 

 

 

Figure 1.44 shows the data collected by strain gauges placed in the same area close to the 

loading mark (position D) on the three kinds of slabs and applying 100 cycles of a sinusoidal 

load at 2 Hz. 

 

 

Figure 1.44 Comparison of the sinusoidal test (100 cycles, 2 Hz) carried out on the three 

typologies of slabs (with no net, steel net and glass grid - strain gauges D. 

 

 

Table 1.20 highlights the strain peak values and the wave amplitude of the strain collected by 

the strain gauges in position D on the three kinds of slabs. 
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Table 1.20 Peak value and wave amplitude of the three kinds of slabs (sin. test 100cycles, 2Hz). 

SIN 2Hz (100 cycles) – STRAIN GAUGES D 

Typology of Slab No Net Steel Net Glass Grid 

Peak value [μstrain] -82 -56 -68 

Wave amplitude [μstrain] 15.3 8.8 10.0 

 

 

Figure 1.45 shows the data collected by strain gauges placed in the same areas close to the 

loading mark (position D) of the three kinds of slabs and applying a sinusoidal load at 2 Hz for 

1000 seconds. 

 

 

Figure 1.45 Comparison of the sinusoidal test (1000 s, 2 Hz) carried out on the three typologies 

of slabs (with no net, steel net and glass grid - strain gauges D. 

 

 

Table 1.21 highlights the strain peak values and the wave amplitude of the strain collected by 

the strain gauges in position D on the three kinds of slabs. 
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Table 1.21 Peak value and wave amplitude of the three kinds of slabs (sin. test 1000s, 2 Hz). 

SIN 2Hz (1000 seconds) – STRAIN GAUGES D 

Typology of Slab No Net Steel Net Glass Grid 

Peak value [μstrain] -204 -123 -195 

Wave amplitude [μstrain] 7.5 6.0 7.1 

 

 

The analysis of the results presented in the graphs and tables above highlighted that the 

reinforced samples showed better performance than the unreinforced ones. The trend was to 

accumulate fewer amounts of deformations when reinforcing systems were placed at the 

interface of binder layer and base course. Moreover, the amplitude of the waves of the dynamic 

tests run at 2 Hz (both 100 cycles and 1000 seconds) was smaller for reinforced samples that the 

control slabs. 

The strain gauges positioned on the top of the base course did not collect any reliable 

information, even though the equipments were set trying to follow a strict procedure. The few 

data collected showed a trend not consistent; therefore any analyses or comparisons were 

completely trustworthy. 

 

Hence, this phase of this research work can be considered a preliminary validation step for the 

Finite Element Modelling. However, the investigations conducted on the different slabs 

permitted to make some conclusions about the behaviours of the road pavements with nets 

inserted below the superficial layers. Obviously, this is an additional remark that can be 

included in the final results of this research work, even if it is not the main purpose of this 

study. 
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CHAPTER 2 

Finite Element Analysis. 

 

Finite Element Analyses simulated a real scale sample of a multilayer flexible road pavement 

with or without a reinforcing system and it was possible using specific software, Abaqus 6.9 

[34]. As mentioned in the previous Chapter the aim of this research work was to investigate the 

behaviours of road pavements in real conditions. The creation of a real scale model could 

simulate these conditions. Therefore, these analyses were conducted recreating a 500 mm 

squared samples, composed by three asphalt concrete layers with a circular loading mark on the 

top of the upper stratum. This simulation was analogous to the laboratory investigations 

explained in the previous chapter. In fact, that study could be considered a proper way to 

validate the results collected with these Finite Element Models. Firstly, these simulations started 

with an accurate study of the suitable mechanical and mathematical models, which could 

reproduce the materials behaviours. However, the interactions between the asphalt layers were 

investigated as well as the reinforce interfaces. 

 

 

 

 

 

 

 

1.1 Material Properties. 

The most important aspect of Finite Element Analyses was the simulation of the material 

characteristics, since their behaviours could really influence the responses of the modelling. In 

this research study several materials were involved with different properties, but basically 
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divided into two categories: visco-elastic such as the asphalt mixtures and linear elastic, such as 

the neoprene and the reinforcing systems. 

One of the reinforcing is made of steel and it behaves as the typical isotropic linear elastic 

material. It was simulated inserting in Abaqus the Young modulus (E = 200000 MPa) and the 

Poisson’s ratio (ν = 0.28). Analogously, the glass that composed the glass grid was simply 

reproduced inserting the same parameters: the Young Modulus of 76000 MPa and the Poisson’s 

ratio of 0.22. Finally, the neoprene is a material which behaves again as an isotropic linear 

elastic object. Therefore it was characterized in Abaqus inserting the Young Modulus value (E 

= 400 MPa) and the Poisson’s ratio (ν = 0.40). In fact, these are the typical parameters of a sub-

base layer of a flexible road pavement. In Table 2.1 the linear elastic parameters of each 

material are summarized. 

 

Table 2.1 Elastic parameters of reinforcing systems and neoprene. 

 Steel Net Glass Grid Neoprene 

Young Modulus [MPa] 200000 76000 400 

Poisson’s ratio 0.28 0.22 0.40 

 

 

On the contrary, Hot-Mix Asphalt is a heterogeneous material and its behaviours are strictly 

related to the temperature, time and load application rate. In fact, it should be described using a 

visco-elasto-plastic theory model. However, at medium/low temperatures and short periods of 

loading, it could be simply assumed as a linear visco-elastic material [35]. There are several 

mathematical models to describe this behaviour that is typical of polymeric materials. 

Fractional Derivative Models or Modified Power Laws or Standard Mechanical Models [36] are 

just some examples of these mathematical theories, which obviously describe corresponding 

mechanical models of viscoelasticity, such as the Maxwell model or the Kelvin-Voigt model. 

Figure 2.1 shows the schemes of these two models composed by springs and dashpots 

connected in series or parallel. These elements represent respectively the elastic and the viscous 

aspect of the material. 
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Figure 2.1 Maxwell model: single unit (a) and the generalized model (b) - Kelvin-Voigt model: 

single unit(c) and the generalized model (d). 

 

 

The single unit Maxwell model shown in Figure 2.1(a) is composed by a spring and a dashpot 

in series and its constitutive relation can be represented by the equation (1): 

 

                                                              



 

11


E                                                      
(1) 

 

where: 

ζ is the stress; 

ε the deformation; 

E is the elastic modulus of the spring and  

η the viscosity of the dashpot. 

 

In constant stress condition (ζ = ζ0), the Maxwell model shows that the strains linearly increase 

with respect to time (2): 

 

a) 

b) 

c) d) 
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However, if a constant strain occurs (ε = ε0), the stress gradually decline (3) showing a 

simplification from the polymeric behaviour. 
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On the other hand, the single unit Kelvin-Voigt model shown in Figure 2.1(c) has a different 

governing equation (4), since it is composed by a spring and a dashpot in parallel. 
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Applying a constant stress (ζ = ζ0), the model shows a material that asymptotically decreases 

the rate deformations until a steady-state, but during the recovery it can recuperate this rate 

completely (5). 
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However, when a constant strain is applied (ε = ε0) it tends to a certain value at infinitive time 

(6) and the model shows a less accuracy in describing a viscoelastic material. 
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It is evident that the two mechanical models represent better the viscoelastic behaviour when 

the stress is constant (Kelvin-Voigt) or when the strain is constant (Maxwell). However, this 

research work adopted a generalized Maxwell model to simulate viscoelastic behaviour, which 

is composed by single units of the Maxwell model in parallel and an additional spring (Figure 

2.1(b)). Obviously, the mathematical expression of this model (7) is a summation of the 
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equation (3), which can describe the single units of the Maxwell model in strain constant 

domain. 
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This expression belongs to the Prony series family (8): 
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There are numerous methods for determining the N Prony series parameters (αi and ηi) either 

from relaxation or creep data. These data could be collected carrying out suitable tests, or they 

could be obtained starting from the volumetric properties of the asphalt materials and using the 

Hirsh Model [37]. In this work it was adopted a generalized Maxwell mechanical model starting 

from the relative relaxation moduli that were got from the appropriate laboratory investigations, 

in order to create a proper simulation of the asphalt mixtures in the software Abaqus. 

In Chapter 1, the three asphalt concretes were analyzed from a mechanical point of view, 

collecting Dynamic Complex Moduli (|E*|) and corresponding phase angles (θ) following 

AASHTO TP 62-03. The tests were running at four different temperatures (-10°C, 4.4°C, 

21.1°C and 37.8°C), as well as five diverse frequencies (25 Hz, 10 Hz, 5 Hz, 1 Hz, 0.5 Hz and 

0.1 Hz) and using mono-material cores, got from specific slabs compacted in the laboratory (see 

Chapter 1). The information collected for each asphalt mixture is summarized in Table 2.2. 

Obviously, the source data contained scatters and were pre-smoothed using the Chauvenet's 

criterion. 
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Table 2.2 Dynamic Complex moduli for asphalt mixtures at each temperature and frequency. 

Temperature = -10°C 

Frequency 25 Hz 10 Hz 5 Hz 1 Hz 0.5 Hz 0.1 Hz 

WEARING 
|E*| [MPa] 30126 27111 26361 23237 21297 17254 

Φ [deg] 1.68 3.77 4.48 5.58 7.56 10.63 

BINDER 
|E*| [MPa] 30715 29473 28795 26840 24588 23189 

Φ [deg] 2.85 4.05 4.82 6.93 7.86 9.53 

BASE 
|E*| [MPa] 29683 27526 25934 24093 21926 19501 

Φ [deg] 2.75 4.39 5.13 6.50 7.80 9.70 

 

Temperature = +4.4°C 

Frequency 25 Hz 10 Hz 5 Hz 1 Hz 0.5 Hz 0.1 Hz 

WEARING 
|E*| [MPa] 15761 13493 12511 9213 8369 5533 

Φ [deg] 11.24 13.12 14.37 17.40 19.09 23.78 

BINDER 
|E*| [MPa] 21313 17337 15451 12121 10330 6845 

Φ [deg] 8.81 11.88 13.08 16.88 19.47 23.93 

BASE 
|E*| [MPa] 16749 15200 14352 10683 9213 6235 

Φ [deg] 11.93 12.86 14.36 19.14 21.74 24.14 

 

Temperature = +21.1°C (reference temperature) 

Frequency 25 Hz 10 Hz 5 Hz 1 Hz 0.5 Hz 0.1 Hz 

WEARING 
|E*| [MPa] 9602 7962 6343 3587 2717 1386 

Φ [deg] 17.06 19.94 23.65 27.75 30.68 32.58 

BINDER 
|E*| [MPa] 9743 7603 6157 3414 2566 1262 

Φ [deg] 20.27 22.49 24.42 29.93 31.10 33.19 

BASE 
|E*| [MPa] 10398 8491 6788 3675 2903 1402 

Φ [deg] 19.87 22.54 24.82 29.04 30.82 32.82 
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Temperature = +37.8°C 

Frequency 25 Hz 10 Hz 5 Hz 1 Hz 0.5 Hz 0.1 Hz 

WEARING 
|E*| [MPa] 3255 1956 1475 884 740 527 

Φ [deg] 30.04 29.79 27.77 23.28 21.78 19.06 

BINDER 
|E*| [MPa] 3389 2161 1619 918 762 539 

Φ [deg] 34.73 30.37 28.57 23.87 22.27 19.07 

BASE 
|E*| [MPa] 4400 2799 2036 1125 931 692 

Φ [deg] 32.07 30.85 28.96 25.72 23.84 20.48 

 

 

These data were shifted following the time-temperature superposition principle [38, 39] which 

permits to investigate either the instantaneous or long-term behaviour of visco-elastic materials, 

changing the setting of the temperature and/or frequency. In this way it was possible to design a 

sigmoidal master curve selecting a reference temperature of 21.1°C [40, 41]. The formula of the 

curve is shown in the following equation (9). 
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Where: 

|E*| is the Dynamic Complex Modulus; 

δ is the lower asymptote of the curve; 

(δ + α) is the upper asymptote of the curve; 

β and γ are shape parameters and 

fr is the reduced frequency. 

 

Reduced frequencies were calculated using the Arrhenius shift factor αt (10). 
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The Arrhenius factor (αt) is shown in the following expression (11) which is typical for asphalt 

mixtures: 
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where: 

ΔH is the activation energy; 

R is the universal gas constant, 8.314 J/(°K mol); 

T and Ts are the target temperature and the reference temperature respectively expressed in °K. 

 

In order to calculate a proper Arrhenius shift factor, it was selected the appropriate value of ΔH 

in a proper range for asphalt concretes, which could be considered equal to 147÷272 kJ/mol 

[42]. Among these values, the ones which could minimize the error between data from the 

laboratory (|E*|) and the sigmoidal curve mentioned above were picked using a Simplex 

Method, which is an option available in Office Excel. Moreover, these fittings permitted to 

determine the parameters necessary to draw the sigmoidal curves, as well as the long term 

moduli (E∞) and the instantaneous moduli (E0) for each asphalt mixture (Figure 2.2). As it was 

explained at the beginning of the chapter, these simulations were conducted assuming the same 

set-up mentioned in the chapter related to the analogous laboratory investigations (Chapter 1). 

Therefore, both analyses were run at 10°C in order to keep the material in a visco-elastic 

domain and it was necessary to obtain the characteristics of the asphalt mixtures at that specific 

temperature. For this reason, |E*| values were calculated at 10°C using the master curves 

showed in Figures 2.2. In fact, using the equation of the sigmoidal function it was possible to 

calculate Dynamic Complex Moduli suitable for the wearing course, the binder layer and the 

base course asphalt mixtures at 10°C (Figure 2.3). Analogously, a proper fitting of the phase 

angle data provided these values at 10°C (Figure 2.4). 
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Figure 2.2 Dynamic Complex modulus master curve with relative activation energy, the long-

term and instantaneous moduli for wearing course (a), binder layer (b) and base course (c).
 

 

E0 = 37922 MPa 

E0 = 36213 MPa 

E0 = 33041 MPa 

E∞ = 250 MPa 

E∞ = 220 MPa 

E∞ = 96 MPa ΔH = 163500 J/mol 

ΔH = 166000 J/mol 

ΔH = 147000 J/mol 

(a) 

(b) 

(c) 
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Figure 2.3 Dynamic Complex modulus master curve with the predicted value at 10°C for the 

wearing course (a), binder layer (b) and base course (c). 

(a) 

(b) 

(c) 
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Figure 2.4 Fitting of phase angle data with the predicted value at 10°C for the wearing course 

(a), binder layer (b) and base course (c).
 

(a) 

(b) 

(c) 
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These data were useful to represent the behaviours of asphalt concretes at that temperature and 

to characterize the asphalt mixtures behaviour in Abaqus. At this point, it is important to 

highlight that these data were collected assigning a sinusoidal load and monitoring the 

consequent strains. So the collected data could be considered as stress constant values. 

However, as it was explained above, in this work a generalized Maxwell model was adopted, 

since it describes better the viscoelastic behaviour under a strain constant domain. In fact, 

relaxation data were inserted into the software used for the Finite Element Analyses (Abaqus) 

as the corresponding Prony parameters. Consequently, |E*| data shifted on sigmoidal curves 

were transformed into Shear Complex Moduli (|G*|) assuming asphalt mixtures as an isotropic 

material and using the following relation (12), even if these data are usually collected in a strain 

constant domain. 
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where: 

|G*| is the Shear Complex Modulus; 

|E*| is the Dynamic Complex Modulus and  

ν is the Poisson’s ratio. 

 

At the same time Dynamic Complex Moduli could be transformed into Complex Bulk Moduli 

making the same isotropic hypothesis for the material and using the following relation (13) 

[43]: 
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Moreover, Poisson’s ratio is time/temperature dependent. Hence, it was preliminarily set equal 

to 0.30 for temperatures equal or lower than 4.4°C and 0.35 with temperatures higher than 

4.4°C [16], since this parameter was not directly measured in this research work. Therefore, 

Shear Complex Moduli were arranged on new master curves with the same sigmoidal shape 

with respect to the reduced time (η) on a logarithmic scale. Analogously to the Dynamic 
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Complex Moduli (|E*|), Shear Complex Moduli (|G*|) were calculated at 10°C using the 

equation of the sigmoidal curve. Moreover, in Figure 2.5 the long term values (G∞) as well as 

the instantaneous moduli (G0) were highlighted. 

 

 

 

 

Figure 2.5 Shear Complex modulus curves with the predicted values at 10°C, the instantaneous 

and long-term moduli for the wearing course (a), binder layer (b) and base course (c).
 

 

G0 = 14549 MPa 

G∞ = 38 MPa 

G0 = 13412 MPa 

G∞ = 81 MPa 

G0 = 12237 MPa 

G∞ = 93 MPa 

(a) 

(b) 

(c) 
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The Shear Complex Moduli were divided into the real and imaginary part, which respectively 

represent the storage (G’) and the loss (G’’) parts using the corresponding phase angles (14) 

collected in the laboratory: 
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At the same time it was possible to calculate the same real and imaginary values (G’ and G’’) 

using the Fourier transformation with the Prony parameters in a time domain (15) (16) [36, 44]: 
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where: 

G’(ω) is the storage modulus [MPa]; 

G’’(ω) is the loss modulus [MPa]; 

G0 instantaneous modulus [MPa]; 

ω is the angular frequency [Hz]; 

gi and ηi are the Prony parameters [dimensionless] and 

N is the number or the Prony series parameters. 

 

At this point it was calculated those Prony parameters which could minimize the difference 

between the experimental dynamic moduli got from the laboratory investigations and the ones 

calculated with the Prony mathematical series. A minimization algorithm (Simplex Method) 

was used to optimize the fitting. However, some of these variables were fixed a priori. In fact, 

N was fixed equal to 3, since the relaxation time (ηi) was assumed equal to three decades (0.1 – 

1 – 10 sec.) [45]. However, the angular frequencies were the six ones adopted during the 

Dynamic Complex Modulus |E*| and mentioned above. Obviously, this fitting permitted to 

obtain the Prony parameters for each asphalt mixture as summarized in Table 2.3. Moreover, in 
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the same Table the density values are added, as well as the elastic properties for each asphalt 

concrete, in order to explain the complete characterization of these materials. 

 

Table 2.3 Visco-elastic characteristics of each asphalt mixtures to insert in Abaqus.
 

WEARING COURSE 

gi 0.398763 0.322762 0.267828 

τi 0.1 1 10 

Instantaneous Elastic Modulus (E0) [MPa] 15125 

Poisson’s ratio (ν) 0.35 

Density [g/cm
3
] 2.30 

 

BINDER LAYER 

gi 0.407292 0.347813 0.233963 

τi 0.1 1 10 

Instantaneous Elastic Modulus (E0) [MPa] 18120 

Poisson’s ratio (ν) 0.35 

Density [g/cm
3
] 2.35 

 

BASE COURSE 

gi 0.396557 0.350615 0.241885 

τi 0.1 1 10 

Instantaneous Elastic Modulus (E0) [MPa] 17130 

Poisson’s ratio (ν) 0.35 

Density [g/cm
3
] 2.40 

 

 

The good agreement between the dynamic moduli predicted from the laboratory data and the 

ones calculated with the Prony parameters is showed in Figure 2.6 where the curves represent 

the behaviours (predicted and calculated) of the three asphalt mixtures at 10°C. 
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Figure 2.6 Comparison between the Shear Complex modulus predicted with laboratory 

investigations and calculated with Prony series for each asphalt mixtures (a) (b) (c). 

 

 

The following step was fundamental and permitted to validate these parameters, in order to 

check the reliability of these data which had to reproduce the asphalt mixture behaviours. 

 

(c) 

(b) 

(a) 
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1.1.1 Validation. 

The data calculated above were validated carrying out a specific test that took AASHTO TP 62-

03 as a reference. In fact, the specimens tested for this validation were those cylindrical cores 

(100 mm diameter) used for that AASHTO TP 62-03 test to collect Dynamic Complex Moduli 

and prepared with the three asphalt mixtures created during this research work (see paragraph 

1.1 Chapter 1). In this way, the connection between the laboratory section and the Finite 

Element Analyses was perfectly guaranteed. The test set-up chose one frequency (0.1 Hz and 

100 cycles) and only one temperature, which was the one fixed during the whole study: 10°C. 

The loading rate was set interpolating linearly the amount of load set in AASHTO TP 62-03 test 

at 4.4°C and 21.1°C. Hence, the three kinds of cylindrical cores were subjected to these 

investigations, monitoring the vertical displacements with proper extensimeter. At the same 

time, in Abaqus analogous models were created and they could reproduce the same laboratory 

tests. Cylinders with corresponding geometry were simulated and the same load rate was 

applied, in order to check the vertical deformations of the samples (Figure 2.7). Obviously, the 

asphalt mixtures were simulated as a visco-elastic material inserting those parameters 

summarized in Table 2.3. 

 

 

Figure 2.7 Laboratory investigation (a) and the corresponding simulation in Abaqus (b).
 

 

 

 

(a) 

(b) 
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In Figure 2.8 the vertical deformations of the cylinders in the laboratory were compared to those 

got from the simulations. 

 

 

 

 

Figure 2.8 Laboratory vertical deformations and the corresponding simulated for wearing 

course (a), binder layer (b) and base course (c).
 

 

 

Results showed a good agreement between the vertical displacements collected in the laboratory 

and the simulated ones (FEM). Hence, it was possible to simulate asphalt mixtures using the 

parameters in Table 2.3 and analyse their behaviours as reliable results. 

(b) 

(a) 

(c) 
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1.2 Three-Dimensional Modelling. 

The 3-Dimensional Finite Element modelling recreated a typical flexible pavement composed 

by a three-layer asphalt concrete with different thickness: 30 mm of the wearing course, 40 mm 

of the binder layer and 100 mm of the base course. Moreover, the sub-base stratum was 

simulated with a 40 mm thick neoprene layer. Finally the whole model was a square with a 500 

mm side length and it was reproduced using 3-Dimensional eight-node brick elements with a 

reduced integration (C3D8R) available in Abaqus. The analogy between the geometry of the 

laboratory samples and the corresponding 3-Dimensional models could be verified comparing 

Figure 2.9 with Figure 1.18 (Chapter 1). 

 

 

Figure 2.9 Model with squared meshes (a) and geometry of the modelled sample (b). 

 

 

This analysis simulated a flexible road pavement with a steel reinforcing system or a glass grid 

positioned between the binder layer and the base course. Obviously, a control model without 

any kind of interlayer system was added, in order to make proper comparisons. The steel net 

was simulated as a wire with three different diameter dimensions: the reinforcing bars, the 

double twisted wire and the single wire. The Figure 2.10 shows the shape of this reinforcing 

system and the different dimensions. On the other hand, the glass grid was simulated as 3-

Dimensional elements, 1 mm thick, with a regular squared shape (Figure 2.11). 

 

(b) (a) 
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Figure 2.10 The model of the steel net reinforcing system on the bottom of the binder layer. 

 

 

 

                

Figure 2.11 The model of the glass grid reinforcing system and a detail (a).
 

 

 

In the whole model the mesh sizes were different according to the zone of the specimen. In fact, 

(a) 
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on the top of the upper layer the area close to the loading mark highlights a more refined mesh, 

since it was the target area. However, the dimension of the mesh becomes coarser at the edges 

of the model and outside the zone where strains were monitored (Figure 2.12). This choice 

could save computational time, since a reduced amount of brick elements were used. 

 

            

Figure 2.12 The mesh on the top of the wearing course and a detail of the loading mark (a). 

 

 

An important aspect was related to the boundary conditions and interactions. The bottom part of 

the neoprene layer was fixed, even if it could not be considered as an in-situ condition. In fact, 

the sub-base (simulated using the neoprene layer) in real flexible pavements is laid down on a 

semi-infinite region, which cannot completely block the vertical movements. However, it was 

not possible to recreate this condition during the validation phase of this study in the laboratory, 

therefore this assumption was made. As regarding the interfaces, the tangential behaviours were 

managed by the Coulomb law, which could control the level of the adhesion between the layers 

in contact. In fact, the friction coefficient between the asphalt layers was set equal to 0.7 [46], 

since the three layers of the model could not be considered fully bonded. In fact, in-situ they are 

compacted one upon the other, as well as during the validation investigations in the laboratory. 

Moreover, in the normal direction the interfaces did not allow any separation, when the two 

surfaces were in contact. However, in those models where a reinforcing system was inserted, 

(a) 
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the grids were totally embedded at the bottom of the binder layers and behaved as a unique part. 

On the wearing surface the passing of a vehicular loading, with a tire inflation pressure of 7 bars 

was simulated. It was applied on a circular loading mark of a 100 mm diameter (corresponding 

to 5.5 kN) creating a partition on the upper part of the model with this shape (Figure 2.9 and 

2.12). 

The simulations reproduced the in-service life of a flexible road pavement. A typical creep test 

was run, in order to check the behaviours of the material under a static load. Moreover, 

sinusoidal cycles (100 cycles or 1000 seconds) were simulated using the Fourier equation 

available in Abaqus, in order to reproduce the passing of the above mentioned tire at different 

velocities, which corresponded to different values of frequency. In Figure 2.13 the scenarios 

simulated during these analyses are shown, which are analogous to the laboratory investigations 

(Figure 1.20 – 1.21, Chapter 1). 

 

 

 
Figure 2.13 Creep (a) and sinusoidal test at 2 Hz (b) and 0.5 Hz (c) simulated in Abaqus. 

 

(b) 

 

(a) 

 

(c) 
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In the previous paragraphs the configuration of the three modelling analyses was explained and 

it pretends to reproduce the real scale samples of a multilayer flexible pavement with or without 

reinforcing systems, in order to investigate the in-service behaviours. 

 

 

 

1.3 Results. 

The previous paragraph explained the creation of a Finite Element Model using the software 

Abaqus. In this section, the results are presented showing the deformations close to the loading 

mark. The output results of the control samples without any kind of reinforce are firstly 

analyzed and the data related to the reinforced slabs follow in the subsequent paragraphs. The 

results are presented dividing static tests (creep tests), from the dynamic ones (sinusoidal tests). 

Figure 2.14 shows an example of the output results obtained in Abaqus on the top of the 

wearing course in both directions, x and y. Therefore the subsequent analyses were organized 

following the same approach of the Chapter 1.  
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Figure 2.14 Strain distribution around the loading mark, direction X (a) and Y (b). 

 

 

 

 

 

 

 

 

(b) 

 

(a) 
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The strain distributions were checked in the same area investigated in the laboratory using strain 

gauges close to the loading mark on the surface of the slabs (Figure 2.15). Following the same 

criteria, proper comparisons among the three typologies of simulations were made, in order to 

check to different behaviours of the slabs. 

 

 

Figure 2.15 Position of the strain gauges on the wearing course (a) and on the base course (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(b) 

 

(a) 
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 Control slabs (without any reinforcing system) 

Figure 2.16 shows the strain response of the control slab modelling in two different areas close 

to the loading mark while a creep test was simulated. 

 

 

 

Figure 2.16 Creep test on control slab - strain gauges D and N. 
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Table 2.4 highlights the strain peak values and the percentages of the recovered strain that were 

the output of Abaqus during the modelling investigations in those areas which corresponded to 

the laboratory strain gauges in position D and N. 

 

Table 2.4 Peak value and recovery of control slab during the simulation of the creep test. 

CREEP – CONTROL SLAB 

Area corresponding to the Laboratory 

Strain Gauges Position 
D N 

Peak value [μstrain] -274 83 

Recovery [%] 86 88 

 

 

Figure 2.17 shows the strain response in different areas close to the loading mark of the control 

slabs and applying 100 cycles of a sinusoidal load at 0.5 Hz. 
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Figure 2.17 Sinusoidal test (100 cycles, 0.5 Hz) on control slab - strain gauges D, I and N. 

 

 

Table 2.5 highlights the strain peak values and the wave amplitude of the strain that were the 

output of Abaqus during the modelling investigations in those areas which corresponded to the 

laboratory strain gauges in position D, I and N. 
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Table 2.5 Peak value and wave amplitude of control slab (sinusoidal test 100 cycles, 0.5 Hz). 

SIN 0.5Hz (100 cycles) – CONTROL SLAB 

Area corresponding to the Laboratory 

Strain Gauges Position 
D I N 

Peak value [μstrain] -122 68 25 

Wave amplitude [μstrain] 9.7 7.0 1.8 

 

 

Figure 2.18 shows the strain response in different areas close to the loading mark of the control 

slabs and applying a sinusoidal load at 0.5 Hz for 1000 seconds. 
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Figure 2.18 Sinusoidal test (1000 s, 0.5 Hz) on control slab - strain gauges D, I and N. 

 

 

Table 2.6 highlights the strain peak values and the wave amplitude of the strain that were the 

output of Abaqus during the modelling investigations in those areas which corresponded to the 

laboratory strain gauges in position D, I and N. 
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Table 2.6 Peak value and wave amplitude of control slab (sinusoidal test 1000 s, 0.5 Hz). 

SIN 0.5Hz (1000 seconds) – CONTROL SLAB 

Area corresponding to the Laboratory 

Strain Gauges Position 
D I N 

Peak value [μstrain] -203 94 41 

Wave amplitude [μstrain] 8.9 4.8 1.6 

 

 

Figure 2.19 shows the strain response in different areas close to the loading mark of the control 

slabs and applying 100 cycles of a sinusoidal load at 2 Hz. 

 

 

 

Figure 2.19 Sinusoidal test (100 cycles, 2 Hz) on control slab - strain gauges D and I. 
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Table 2.7 highlights the strain peak values and the wave amplitude of the strain that were the 

output of Abaqus during the modelling investigations in those areas which corresponded to the 

laboratory strain gauges in position D and I. 

 

Table 2.7 Peak value and wave amplitude of control slab (sinusoidal test 100 cycles, 2 Hz). 

SIN 2Hz (100 cycles) – CONTROL SLAB 

Area corresponding to the Laboratory 

Strain Gauges Position 
D I 

Peak value [μstrain] 40 20 

Wave amplitude [μstrain] 6.3 3.5 

 

 

Figure 2.20 shows the strain response in different areas close to the loading mark of the control 

slabs and applying a sinusoidal load at 2 Hz for 1000 seconds. 

 

 

 

Figure 2.20 Sinusoidal test (1000 s, 2 Hz) on control slab - strain gauges D and I. 
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Table 2.8 highlights the strain peak values and the wave amplitude of the strain that were the 

output of Abaqus during the modelling investigations in those areas which corresponded to the 

laboratory strain gauges in position D and I. 

 

Table 2.8 Peak value and wave amplitude of control slab (sinusoidal test 1000 s, 2 Hz). 

SIN 2Hz (1000 seconds) – CONTROL SLAB 

Area corresponding to the Laboratory 

Strain Gauges Position 
D I 

Peak value [μstrain] -195 100 

Wave amplitude [μstrain] 6.2 3.8 

 

 

 

 

 

 

 

 

 Slabs reinforced with Steel Net 

Figure 2.21 shows the strain response of the slab modelled with a steel reinforcing net between 

binder layer and base course in three different areas close to the loading mark while a creep test 

was simulated. 
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Figure 2.21 Creep test on slab with steel net - strain gauges D, I and L. 
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Table 2.9 highlights the strain peak values and the percentages of the recovered strain that were 

the output of Abaqus during the modelling investigations in those areas which corresponded to 

the laboratory strain gauges in position D, I and L. 

 

Table 2.9 Peak value and recovery of slab with steel net during the simulation of the creep test. 

CREEP – SLAB WITH STEEL NET 

Area corresponding to the Laboratory 

Strain Gauges Position 
D I L 

Peak value [μstrain] -173 73 73 

Recovery [%] 97 98 98 

 

 

Figure 2.22 shows the strain response in different areas close to the loading mark of the control 

slabs and applying 100 cycles of a sinusoidal load at 0.5 Hz. 
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Figure 2.22 Sinusoidal test (100cycles, 0.5Hz) on slab with steel net - strain gauges D, L and N. 

 

 

Table 2.10 highlights the strain peak values and the wave amplitude of the strain that were the 

output of Abaqus during the modelling investigations in those areas which corresponded to the 

laboratory strain gauges in position D, L and N. 
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Table 2.10 Peak value and wave amplitude of slab steel net (sinusoidal test 100 cycles, 0.5 Hz). 

SIN 0.5Hz (100 cycles) – SLAB WITH STEEL NET 

Area corresponding to the Laboratory 

Strain Gauges Position 
D L N 

Peak value [μstrain] -89 44 31 

Wave amplitude [μstrain] 7.7 4.1 2.6 

 

 

Figure 2.23 shows the strain response in different areas close to the loading mark of the control 

slabs and applying a sinusoidal load at 0.5 Hz for 1000 seconds. 
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Figure 2.23 Sinusoidal test (1000 s, 0.5 Hz) on slab with steel net - strain gauges D, L and N. 

 

 

Table 2.11 highlights the strain peak values and the wave amplitude of the strain that were the 

output of Abaqus during the modelling investigations in those areas which corresponded to the 

laboratory strain gauges in position D, L and N. 
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Table 2.11 Peak value and wave amplitude of slab steel net (sinusoidal test 1000 s, 0.5 Hz). 

SIN 0.5Hz (1000 seconds) – SLAB WITH STEEL NET 

Area corresponding to the Laboratory 

Strain Gauges Position 
D L N 

Peak value [μstrain] -147 73 49 

Wave amplitude [μstrain] 7.5 4.4 2.3 

 

 

Figure 2.24 shows the strain response in different areas close to the loading mark of the control 

slabs and applying 100 cycles of a sinusoidal load at 2 Hz. 

 

 

 

Figure 2.24 Sinusoidal test (100 cycles, 2 Hz) on slab with steel net - strain gauges D and L. 
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Table 2.12 highlights the strain peak values and the wave amplitude of the strain that were the 

output of Abaqus during the modelling investigations in those areas which corresponded to the 

laboratory strain gauges in position D and L. 

 

Table 2.12 Peak value and wave amplitude of slab steel net (sinusoidal test 100 cycles, 2 Hz). 

SIN 2Hz (100 cycles) – SLAB WITH STEEL NET 

Area corresponding to the Laboratory 

Strain Gauges Position 
D L 

Peak value [μstrain] -33 18 

Wave amplitude [μstrain] 5.2 3.3 

 

 

Figure 2.25 shows the strain response in different areas close to the loading mark of the control 

slabs and applying a sinusoidal load at 2 Hz for 1000 seconds. 

 

 

 

Figure 2.25 Sinusoidal test (100 cycles, 2 Hz) on slab with steel net - strain gauges D and L. 
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Table 2.13 highlights the strain peak values and the wave amplitude of the strain that were the 

output of Abaqus during the modelling investigations in those areas which corresponded to the 

laboratory strain gauges in position D and L. 

 

Table 2.13 Peak value and wave amplitude of slab steel net (sinusoidal test 1000 s, 2 Hz). 

SIN 2Hz (1000 seconds) – SLAB WITH STEEL NET 

Area corresponding to the Laboratory 

Strain Gauges Position 
D L 

Peak value [μstrain] -135 71 

Wave amplitude [μstrain] 5.2 3.1 
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 Slabs reinforced with Glass Grid 

Figure 2.26 shows the strain response of the slab modelled with a glass grid between binder 

layer and base course in two different areas close to the loading mark while a creep test was 

simulated. 

 

 

 

Figure 2.26 Creep test on slab with glass grid - strain gauges D and L. 
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Table 2.14 highlights the strain peak values and the percentages of the recovered strain, which 

were the output of Abaqus during the modelling investigations in those areas which 

corresponded to the laboratory strain gauges in position D and L. 

 

Table 2.14 Peak value and recovery of slab with glass grid during the simulation of creep test. 

CREEP – SLAB WITH GLASS GRID 

Area corresponding to the Laboratory 

Strain Gauges Position 
D L 

Peak value [μstrain] -232 119 

Recovery [%] 97 98 

 

 

Figure 2.27 shows the strain response in different areas close to the loading mark of the control 

slabs and applying 100 cycles of a sinusoidal load at 0.5 Hz. 
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Figure 2.27 Sinusoidal test (100cycles,0.5Hz) on slab with glass grid-strain gauges D, L and N. 

 

 

Table 2.15 highlights the strain peak values and the wave amplitude of the strain that were the 

output of Abaqus during the modelling investigations in those areas which corresponded to the 

laboratory strain gauges in position D, L and N. 
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Table 2.15 Peak value and wave amplitude of slab glass grid (sinusoidal test 100cycles, 0.5Hz). 

SIN 0.5Hz (100 cycles) – SLAB WITH GLASS GRID 

Area corresponding to the Laboratory 

Strain Gauges Position 
D L N 

Peak value [μstrain] -114 59 55 

Wave amplitude [μstrain] 8.5 5.0 4.2 

 

 

Figure 2.28 shows the strain response in different areas close to the loading mark of the control 

slabs and applying a sinusoidal load at 0.5 Hz for 1000 seconds. 
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Figure 2.28 Sinusoidal test (1000 s, 0.5 Hz) on slab with glass grid - strain gauges D, L and N. 

 

 

Table 2.16 highlights the strain peak values and the wave amplitude of the strain that were the 

output of Abaqus during the modelling investigations in those areas which corresponded to the 

laboratory strain gauges in position D, L and N. 
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Table 2.16 Peak value and wave amplitude of slab glass grid (sinusoidal test 1000 s, 0.5 Hz). 

SIN 0.5Hz (1000 seconds) – SLAB WITH GLASS GRID 

Area corresponding to the Laboratory 

Strain Gauges Position 
D L N 

Peak value [μstrain] -184 93 85 

Wave amplitude [μstrain] 7.9 4.7 3.8 

 

 

Figure 2.29 shows the strain response in different areas close to the loading mark of the control 

slabs and applying 100 cycles of a sinusoidal load at 2 Hz. 

 

 

 

Figure 2.29 Sinusoidal test (100 cycles, 2 Hz) on slab with glass grid - strain gauges D and N. 
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Table 2.17 highlights the strain peak values and the wave amplitude of the strain that were the 

output of Abaqus during the modelling investigations in those areas which corresponded to the 

laboratory strain gauges in position D and N. 

 

Table 2.17 Peak value and wave amplitude of slab glass grid (sinusoidal test 100 cycles, 2 Hz). 

SIN 2Hz (100 cycles) – SLAB WITH GLASS GRID 

Area corresponding to the Laboratory 

Strain Gauges Position 
D N 

Peak value [μstrain] 40 19 

Wave amplitude [μstrain] 6.5 3.2 

 

 

Figure 2.30 shows the strain response in different areas close to the loading mark of the control 

slabs and applying a sinusoidal load at 2 Hz for 1000 seconds. 
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Figure 2.30 Sinusoidal test (1000 s, 2 Hz) on slab with glass grid - strain gauges D, N and M. 

 

 

Table 2.18 highlights the strain peak values and the wave amplitude of the strain that were the 

output of Abaqus during the modelling investigations in those areas which corresponded to the 

laboratory strain gauges in position D, N and M. 
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Table 2.18 Peak value and wave amplitude of slab glass grid (sinusoidal test 1000 s, 2 Hz). 

SIN 2Hz (1000 seconds) – SLAB WITH GLASS GRID 

Area corresponding to the Laboratory 

Strain Gauges Position 
D N M 

Peak value [μstrain] -186 85 -61 

Wave amplitude [μstrain] 6.0 2.9 1.8 

 

 

The graphs and tables in the previous paragraphs showed the results coming from the 

simulations of the three different typologies of slabs and modelling different scenarios. It is 

possible to draw conclusions similar to the ones explained in the Chapter 1 related to the 

laboratory investigations. In fact, the static creep tests accumulated a higher level of strains 

compared to the dynamic tests. Moreover, the tests which applied a sinusoidal load at 2 Hz 

showed a lower level of strains accumulated, than the same output get from the analogous tests 

simulated at 0.5 Hz. Equivalent considerations could be drawn for the amplitude of the waves 

of the sinusoidal strain responses. Finally, the analyses of the strain responses in analogous 

positions showed a similar trend. In fact, the graphs related to the creep tests simulated on the 

slabs reinforced with steel net highlighted a comparable behaviour in those areas corresponding 

to the strain gauges I and L (figure 2.21). 

 

After these preliminary considerations, the data got from the modelling permitted to compare 

the different behaviours of the three typologies of slabs, checking the dissimilarities between 

the reinforced and unreinforced samples through the analysis of the singular test simulated. The 

following Figures showed the data collected from strain gauges positioned in the same area 

close to the loading mark, which correspond to the position of the strain gauges D in the 

laboratory, but placed on the three different kinds of specimens. 

 

Figure 2.31 shows the data coming from the strain in the area close to the loading mark of the 

three kinds of slabs, which correspond to the strain gauges in position D (laboratory) and 

running a creep test. 
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Figure 2.31 Comparison of the creep test simulated on the three typologies of slabs (with no 

net, steel net and glass grid - strain gauges D. 

 

 

Table 2.19 highlights the strain peak values and the percentages of the recovered strain that 

were the output of Abaqus during the modelling investigations in those areas which 

corresponded to the laboratory strain gauges in position D on the three different kinds of slabs. 

 

Table 2.19 Peak values and recovery of the three typologies of slabs during creep test. 

CREEP – STRAIN GAUGES D 

Typology of Modelled Slab No Net Steel Net Glass Grid 

Peak value [μstrain] -274 -173 -232 

Recovery [%] 86 97 97 

 

 

Figure 2.32 shows the strain response in the same area close to the loading mark of the three 

kinds of slabs which correspond to the laboratory strain gauges in position D and applying 100 

cycles of a sinusoidal load at 0.5 Hz. 
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Figure 2.32 Comparison of the sinusoidal test (100 cycles, 0.5 Hz) simulated on the three 

typologies of slabs (with no net, steel net and glass grid - strain gauges D. 

 

 

Table 2.20 highlights the strain peak values and the wave amplitude of the strain that were the 

output of Abaqus during the modelling investigations in those areas which corresponded to the 

laboratory strain gauges in position D on the three different kinds of slabs. 

 

Table 2.20 Peak value and wave amplitude of the three kinds of slabs (sin 100 cycles, 0.5 Hz). 

SIN 0.5Hz (100 cycles) – STRAIN GAUGES D 

Typology of Modelled Slab No Net Steel Net Glass Grid 

Peak value [μstrain] -122 -89 -114 

Wave amplitude [μstrain] 10.0 7.7 8.5 

 

 

Figure 2.33 shows the strain response in the same area close to the loading mark of the three 

kinds of slabs which correspond to the laboratory strain gauges in position D and applying a 

sinusoidal load at 0.5 Hz for 1000 seconds. 
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Figure 2.33 Comparison of the sinusoidal test (1000 s, 0.5 Hz) simulated on the three 

typologies of slabs (with no net, steel net and glass grid - strain gauges D. 

 

 

Table 2.21 highlights the strain peak values and the wave amplitude of the strain that were the 

output of Abaqus during the modelling investigations in those areas which corresponded to the 

laboratory strain gauges in position D on the three different kinds of slabs. 

 

Table 2.21 Peak value and wave amplitude of the three kinds of slabs (sin 1000 s, 0.5 Hz). 

SIN 0.5Hz (1000 seconds) – STRAIN GAUGES D 

Typology of Modelled Slab No Net Steel Net Glass Grid 

Peak value [μstrain] -203 -147 -184 

Wave amplitude [μstrain] 8.9 7.5 7.9 

 

 

Figure 2.34 shows the strain response in the same area close to the loading mark of the three 

kinds of slabs which correspond to the laboratory strain gauges in position D and applying 100 

cycles of a sinusoidal load at 2 Hz. 
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Figure 2.34 Comparison of the sinusoidal test (100 cycles, 2 Hz) simulated on the three 

typologies of slabs (with no net, steel net and glass grid - strain gauges D. 

 

 

Table 2.22 highlights the strain peak values and the wave amplitude of the strain that were the 

output of Abaqus during the modelling investigations in those areas which corresponded to the 

laboratory strain gauges in position D on the three different kinds of slabs. 

 

Table 2.22 Peak value and wave amplitude of the three kinds of slabs (sin 100 cycles, 2 Hz). 

SIN 2Hz (100 cycles) – STRAIN GAUGES D 

Typology of Modelled Slab No Net Steel Net Glass Grid 

Peak value [μstrain] -40 -33 -40 

Wave amplitude [μstrain] 6.3 5.2 6.5 

 

 

Figure 2.35 shows the strain response in the same area close to the loading mark of the three 

kinds of slabs which correspond to the laboratory strain gauges in position D and applying a 

sinusoidal load at 2 Hz for 1000 seconds. 
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Figure 2.35 Comparison of the sinusoidal test (1000 s, 2 Hz) simulated on the three typologies 

of slabs (with no net, steel net and glass grid - strain gauges D. 

 

 

Table 2.23 highlights the strain peak values and the wave amplitude of the strain that were the 

output of Abaqus during the modelling investigations in those areas which corresponded to the 

laboratory strain gauges in position D on the three different kinds of slabs. 

 

Table 2.23 Peak value and wave amplitude of the three kinds of slabs (sin 1000 s, 2 Hz). 

SIN 2Hz (1000 seconds) – STRAIN GAUGES D 

Typology of Modelled Slab No Net Steel Net Glass Grid 

Peak value [μstrain] -195 -135 -186 

Wave amplitude [μstrain] 6.2 5.2 6.0 

 

 

The analyses of the results presented in the Figures and tables above highlighted a trend similar 

to the one underlined in the Chapter 1 for the laboratory investigations. In fact, the slabs 

modelled with a reinforcing system showed better performance than the unreinforced ones and 

the tendency was to accumulate fewer amounts of deformations when reinforcing systems were 

placed at the interface of binder layer and base course. Moreover, the amplitude of the waves of 
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the dynamic tests run at 2 Hz (both 100 cycles and 1000 seconds) was smaller for reinforced 

samples that the control slabs. 

An important final remark has to underline that these Finite Element analyses were not an 

average of several simulations. In fact, the models were set and defined (as it was showed in the 

previous paragraphs) and the output were analysed and presented in this paragraph. Software 

like Abaqus cannot give changeable responds and its reliability consisted in a strict preliminary 

work on the design of the model step by step. 
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CHAPTER 3 

Comparison. 

 

The following step of this research work was the comparison of the data collected in the 

laboratory with the results of the Finite Element Analyses. In fact, the experimental 

investigations could be considered the validation of the simulations, in order to build models 

which could recreate real conditions. These modelling works could be a useful tool to 

investigate road pavements in real condition. This study focused the aim on the flexible 

pavements composed by a multilayer asphalt concrete with reinforcing system, but, once a real 

model would be validate, it would be possible to simulate any situation and analyse the 

performance of any road pavement. Finite Element Analyses can save money and time 

comparing to the analogous investigations in laboratory or in-situ. Therefore, the comparison 

between data collected in laboratory and running computational analyses permitted to verify the 

reliability of the Finite Element Modelling. 

 

 

 

 

 

1.1 Comparison. 

The results presented in the two previous chapters were compared, in order to evaluate the 

similarity of the data collected in the laboratory with the ones coming from the simulations. 

Obviously, the comparisons were divided into three sections: the multilayer flexible pavement 

with steel net, the ones with glass grid and the specimens without any kind of reinforcing 

systems (control samples). The results showed the behaviour of the samples in the area close to 
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the loading mark (Figure 3.1) and drew the attention on the shapes of the curves and the level of 

the strains accumulated. 

 

 

Figure 3.1 Position strain gauges on wearing surface and on base course. 

 

 

 

 

 

 Control slabs (without any reinforcing system) 

In the following Figures the results of the control samples (without any reinforce) are presented 

starting from the creep tests and ending with the repeated sinusoidal cycles. Then, the data 

collected in the laboratory with the ones coming from modelling were compared. In fact, Figure 

3.2 shows the strain response in two different positions close to the loading mark and running a 

creep test. 
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Figure 3.2 Creep test on control slab - strain gauges D and N. 

 

 

Table 3.1 compares the strain peak values and the recovery percentages of the strain collected 

by the strain gauges in position D and N in the laboratory with the analogous data got from the 

Finite Element analyses, highlighting the percentage of difference between the two results. 
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Table 3.1 Peak value and recovery of control slab during creep test. 

CREEP – CONTROL SLAB 

Peak value [μstrain] Recovery [%] 

Position 

Monitored 
Lab FEM Difference 

Position 

Monitored 
Lab FEM Difference 

D -408 -274 33 % D 60 86 26 % 

N 79 83 5 % N 50 88 38 % 

 

 

Figure 3.3 shows the strain response of the control samples applying 100 cycles of a sinusoidal 

load at 0.5 Hz. 

 

 

 

Figure 3.3 Sinusoidal test (100 cycles, 0.5 Hz) on control slab - strain gauges D and I. 
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Table 3.2 compares the strain peak values and the wave amplitudes of the strain collected by the 

strain gauges in position D and I in the laboratory with the analogous data got from the Finite 

Element analyses, highlighting the percentage of difference between the two results. 

 

Table 3.2 Peak value and wave amplitude of control slab (sinusoidal test 100 cycles, 0.5 Hz). 

SIN 0.5Hz (100 Cycles) – CONTROL SLAB 

Peak value [μstrain] Wave amplitude [μstrain] 

Position 

Monitored 
Lab FEM Difference 

Position 

Monitored 
Lab FEM Difference 

D -173 -122 9 % D 18.6 9.7 48 % 

I 62 68 29 % I 8.2 7.0 16 % 

 

 

Figure 3.4 shows the strain response of the control samples applying a sinusoidal load at 0.5 Hz 

for 1000 seconds. 
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Figure 3.4 Sinusoidal test (1000s, 0.5 Hz) on control slab - strain gauges D, I and N. 

 

 

Table 3.3 compares the strain peak values and the wave amplitudes of the strain collected by the 

strain gauges in position D, I and N in the laboratory with the analogous data got from the 

Finite Element analyses, highlighting the percentage of difference between the two results. 
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Table 3.3 Peak value and wave amplitude of control slab (sinusoidal test 1000s, 0.5 Hz). 

SIN 0.5Hz (1000 seconds) – CONTROL SLAB 

Peak value [μstrain] Wave amplitude [μstrain] 

Position 

Monitored 
Lab FEM Difference 

Position 

Monitored 
Lab FEM Difference 

D -214 -203 5 % D 9.8 8.9 9 % 

I 73 94 30 % I 7.1 4.8 32 % 

N 42 41 2 % N 3.9 1.6 59 % 

 

 

Figure 3.5 shows the strain response of the control samples applying 100 cycles of a sinusoidal 

load at 2 Hz. 

 

 

 

Figure 3.5 Sinusoidal test (100 cycles, 2 Hz) on control slab - strain gauges D and I. 
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Table 3.4 compares the strain peak values and the wave amplitudes of the strain collected by the 

strain gauges in position D and I in the laboratory with the analogous data got from the Finite 

Element analyses, highlighting the percentage of difference between the two results. 

 

Table 3.4 Peak value and wave amplitude of control slab (sinusoidal test 100 cycles, 2 Hz). 

SIN 2Hz (100 Cycles) – CONTROL SLAB 

Peak value [μstrain] Wave amplitude [μstrain] 

Position 

Monitored 
Lab FEM Difference 

Position 

Monitored 
Lab FEM Difference 

D -82 -40 51 % D 15.3 6.3 60 % 

I 31 20 36 % I 6.0 3.5 42 % 

 

Figure 3.6 shows the strain response of the control samples applying a sinusoidal load at 2 Hz 

for 1000 seconds. 

 

 

Figure 3.6 Sinusoidal test (1000s, 2 Hz) on control slab - strain gauges D and I. 
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Table 3.5 compares the strain peak values and the wave amplitudes of the strain collected by the 

strain gauges in position D and I in the laboratory with the analogous data got from the Finite 

Element analyses, highlighting the percentage of difference between the two results. 

 

Table 3.5 Peak value and wave amplitude of control slab (sinusoidal test 1000s, 2 Hz). 

SIN 2Hz (1000 seconds) – CONTROL SLAB 

Peak value [μstrain] Wave amplitude [μstrain] 

Position 

Monitored 
Lab FEM Difference 

Position 

Monitored 
Lab FEM Difference 

D -204 -195 4 % D 7.5 6.2 17 % 

I 93 100 7 % I 4.9 3.8 22 % 

 

 

 

 

 

 Slabs reinforced with Steel Net 

The next series of Figures compared the results collected with the laboratory slabs reinforced 

with the steel net and the corresponding FE simulations. Figure 3.7 show the data which came 

from creep tests monitored in three different positions close to the loading mark. 
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Figure 3.7 Creep test on slab with steel net - strain gauges D, I and L. 
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Table 3.6 compares the strain peak values and the recovery percentages of the strain collected 

by the strain gauges in position D, I and L in the laboratory with the analogous data got from 

the Finite Element analyses, highlighting the percentage of difference between the two results. 

 

Table 3.6 Peak value and recovery of slab with steel net during creep test. 

CREEP – SLAB WITH STEEL NET 

Peak value [μstrain] Recovery [%] 

Position 

Monitored 
Lab FEM Difference 

Position 

Monitored 
Lab FEM Difference 

D -283 -173 39 % D 63 97 34 % 

I 59 73 19 % I 47 98 51 % 

L 61 73 16 % L 49 98 49 % 

 

 

Figure 3.8 shows the strain response of the samples reinforced with the steel net applying 100 

cycles of a sinusoidal load at 0.5 Hz. 
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Figure 3.8 Sinusoidal test (100 cycles, 0.5 Hz) on slab with steel net - strain gauges D, L and N. 

 

 

Table 3.7 compares the strain peak values and the wave amplitudes of the strain collected by the 

strain gauges in position D, L and N in the laboratory with the analogous data got from the 

Finite Element analyses, highlighting the percentage of difference between the two results. 
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Table 3.7 Peak value and wave amplitude of slab steel net (sinusoidal test 100 cycles, 0.5 Hz). 

SIN 0.5Hz (100 Cycles) – SLAB WITH STEEL NET 

Peak value [μstrain] Wave amplitude [μstrain] 

Position 

Monitored 
Lab FEM Difference 

Position 

Monitored 
Lab FEM Difference 

D -115 -89 23 % D 11.7 7.7 34 % 

L 48 44 8 % L 6.7 4.1 39 % 

N 31 31 0 % N 2.9 2.6 10 % 

 

 

Figure 3.9 shows the strain response of the samples reinforced with the steel net applying 100 

cycles of a sinusoidal load at 2 Hz. 

 

 

 

Figure 3.9 Sinusoidal test (100 cycles, 2 Hz) on slab with steel net - strain gauges D and L. 
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Table 3.8 compares the strain peak values and the wave amplitudes of the strain collected by the 

strain gauges in position D and L in the laboratory with the analogous data got from the Finite 

Element analyses, highlighting the percentage of difference between the two results. 

 

Table 3.8 Peak value and wave amplitude of slab steel net (sinusoidal test 100 cycles, 2 Hz). 

SIN 2Hz (100 cycles) – SLAB WITH STEEL NET 

Peak value [μstrain] Wave amplitude [μstrain] 

Position 

Monitored 
Lab FEM Difference 

Position 

Monitored 
Lab FEM Difference 

D -56 -33 41 % D 8.8 5.2 41 % 

L 17 18 6 % L 5.6 3.3 42 % 

 

 

Figure 3.10 shows the strain response of the samples reinforced with the steel net applying a 

sinusoidal load at 2 Hz for 1000 seconds. 
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Figure 3.10 Sinusoidal test (1000s, 2 Hz) on slab with steel net - strain gauges D and L. 

 

 

Table 3.9 compares the strain peak values and the wave amplitudes of the strain collected by the 

strain gauges in position D and L in the laboratory with the analogous data got from the Finite 

Element analyses, highlighting the percentage of difference between the two results. 

 

Table 3.9 Peak value and wave amplitude of slab steel net (sinusoidal test 1000s, 2 Hz). 

SIN 2Hz (1000 seconds) – SLAB WITH STEEL NET 

Peak value [μstrain] Wave amplitude [μstrain] 

Position 

Monitored 
Lab FEM Difference 

Position 

Monitored 
Lab FEM Difference 

D -123 -135 9 % D 6.0 5.2 16 % 

L 65 71 8 % L 6.2 3.1 50 % 
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 Slabs reinforced with Glass Grid 

Finally the subsequent charts present the compared results collected with samples reinforced 

with the glass grid and Figure 3.11 show the data which came from creep tests monitored in two 

different positions close to the loading mark. 

 

 

 

Figure 3.11 Creep test on slab with glass grid - strain gauges D and L. 
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Table 3.10 compares the strain peak values and the recovery percentages of the strain collected 

by the strain gauges in position D and L in the laboratory with the analogous data got from the 

Finite Element analyses, highlighting the percentage of difference between the two results. 

 

Table 3.10 Peak value and recovery of slab with glass grid during creep test. 

CREEP – SLAB WITH GLASS GRID 

Peak value [μstrain] Recovery [%] 

Position 

Monitored 
Lab FEM Difference 

Position 

Monitored 
Lab FEM Difference 

D -242 -232 4 % D 84 97 13 % 

L 120 119 1 % L 35 98 63 % 

 

 

Figure 3.12 shows the strain response of the samples reinforced with the glass grid applying 100 

cycles of a sinusoidal load at 2 Hz. 
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Figure 3.12 Sinusoidal test (100 cycles, 2 Hz) on slab with glass grid - strain gauges D and N. 

 

 

Table 3.11 compares the strain peak values and the wave amplitudes of the strain collected by 

the strain gauges in position D and N in the laboratory with the analogous data got from the 

Finite Element analyses, highlighting the percentage of difference between the two results. 

 

Table 3.11 Peak value and wave amplitude of slab glass grid (sinusoidal test 100 cycles, 2 Hz). 

SIN 2Hz (100 cycles) – SLAB WITH GLASS GRID 

Peak value [μstrain] Wave amplitude [μstrain] 

Position 

Monitored 
Lab FEM Difference 

Position 

Monitored 
Lab FEM Difference 

D -68 -40 41 % D 10.0 6.5 35 % 

N 16 19 19 % N 1.6 3.2 50 % 
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Figure 3.13 shows the strain response of the samples reinforced with the glass grid applying a 

sinusoidal load at 2 Hz for 1000 seconds. 

 

 

 

 

Figure 3.13 Sinusoidal test (1000s, 2 Hz) on slab with glass grid - strain gauges D, N and M. 
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Table 3.12 compares the strain peak values and the wave amplitudes of the strain collected by 

the strain gauges in position D, N and M in the laboratory with the analogous data got from the 

Finite Element analyses, highlighting the percentage of difference between the two results. 

 

Table 3.12 Peak value and wave amplitude of slab glass grid (sinusoidal test 1000s, 2 Hz). 

SIN 2Hz (1000 seconds) – SLAB WITH GLASS GRID 

Peak value [μstrain] Wave amplitude [μstrain] 

Position 

Monitored 
Lab FEM Difference 

Position 

Monitored 
Lab FEM Difference 

D -195 -186 5 % D 7.1 6.0 15 % 

N 88 85 4 % N 2.6 2.9 9 % 

M -67 -61 9 % M 2.6 1.8 31 % 

 

 

The graphs in the previous Figures illustrated a good agreement between the data collected in 

laboratory and running Finite Element Analyses. The dynamic analyses carried out on the three 

typologies of samples showed curves with similar shapes. Moreover, the waves at different 

frequencies had form and amplitude comparable, especially considering the longest test (1000 

seconds), where the material responses could be considered more stable and reliable than the 

same test run for 100 cycles. The amount of deformations at the end of the dynamic analyses 

was similar for laboratory data and the simulated ones. Furthermore, it is important to highlight 

that the comparisons involved the strain responses of the real scale samples in the area close to 

the load mark, but in two directions, since strain gauges were positioned in perpendicular 

positions. This choice permitted to investigate the whole scenario of the deformations 

highlighting the compressed areas and the tensile zones. A further note has to be related to the 

creep tests. These investigations showed that the trends of the laboratory curves were different 

from the modelling ones in the recovery phase of the test (after the removing of the load). In 

fact, in most of the case the Finite Element software Abaqus could totally recover the 

deformations accumulated in the first 1000 seconds. On the other hand, the laboratory 

investigations highlighted a different behaviour, since the recovery phase was longer than the 

simulated one. In fact, the slabs in the laboratory could completely recover the deformations, 

but this phase was longer than 1000 seconds.  
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The results presented were divided into the three typologies of samples tested, comparing the 

different tests carried out. In fact, the final aim of this research work was not only to make 

proper comparisons among the reinforced road pavements. But it was the creation of a reliable 

Finite Element model useful to study the behaviours of multilayer infrastructures, starting from 

a preliminary investigation in the laboratory as a validation tool. 

 

 

 

It is important to underline that the laboratory results presented in this research work were an 

average among several tests carried out on different samples and using strain gauges in 

analogous positions. It is well known that experimental studies have to be repeated several 

times, in order to obtain reliable data and this means a great effort in terms of time and money. 

However, the simulations were created step by step trying to build a model comparable to those 

specimens tested in the laboratory. The most important phase was the preliminary calibration of 

the data inserted in the software to simulate the asphalt mixture constitutive law. Beside this 

fundamental step, the creation of the models was straightforward and the only tool necessary 

was a common personal computer. These preliminary remarks want to highlight the substantial 

difference between a laboratory investigation and a computational analysis and underline the 

advantages of this second testing method, which is worldwide acknowledged. This research 

work demonstrated the possibility of replacing the laboratory investigations with simulations. In 

fact, the Finite Element Analyses suggested the possibility to limit the work in the laboratory as 

a validation tool, in order to provide reliable results. It would be possible to study the 

performance of road pavements in diverse conditions or scenarios, just taking cores of the 

asphalt mixtures from a test section. In fact, this study started collecting dynamic moduli related 

to the mixes on cylindrical samples, in order to calculate Prony series parameters to insert in the 

software Abaqus. Moreover, using the same specimens, those parameters were validated and, 

following this strict procedure, it was possible to present the agreement between the laboratory 

and modelling results. 

This research work promoted the possibility to study road pavements using Finite Element 

Analyses, in order to investigate their different aspects or performance. In fact, it would be a 

powerful toll to predict the in-service life or to check the consistency of the design. This kind of 

analysis show its versatility as well as the possibility to save money in the preliminary 
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investigations, which are necessary before building any new infrastructures or even during the 

maintenance works. 
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CHAPTER 4 

Conclusions and Future Tasks. 

 

This research work laid the bases for a new investigation method of road pavements and their 

performance. The simulations evaluated in this job could provide useful information for the 

design steps and could avoid problems during the in-service life of the infrastructures. In fact, a 

preliminary modelling section would permit to consider different technical solutions before the 

setting of the final execution project. The infrastructures have diverse characteristics, such as 

different level of traffic or need to maintain specific qualities according to the rendering of 

services. For these reasons, the possibility of testing various design solutions could be 

considered a proper way to save money and time, as well as the possibility to keep higher level 

of service.  

 

The presented results could show that the Finite Element Analyses could behave as a real 

pavement, just passing through a simple laboratory procedure. The first step of the modelling 

section worked on the constitutive laws of the asphalt mixtures and this could be considered a 

fundamental phase. In fact, the geometry of the model as well as the interactions between layers 

was an important aspect, but definite and clear. On the other hand, the characteristics of the 

asphalt concretes could strongly change the output in terms of stress and strain and could 

influence the outputs of the modelling. In fact, Hot Mix Asphalt can be usually considered as a 

visco-elasto-plastic material. However, in this research work a preliminary assumption 

considered the asphalt concretes as a linear visco-elastic mixture. Hence, the modelling was 

built step by step, starting from the setting of the constitutive laws, in order to collect reliable 

results. Moreover, the Finite Element Analyses were supported by a strict laboratory study, 

which was considered the validation procedure. The laboratory investigation was carried out on 

real scale samples with the same characteristics of the simulations created with the Finite 
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Element software (Abaqus). The analyses were run at low/medium temperature (10°C), since in 

that condition the asphalt mixtures can be considered a linear visco-elastic material. Moreover, 

the tests carried out were the reproduction of the in-service life of a real pavement, as well as 

the analogous simulations run in Abaqus. A further important aspect of this research work was 

the typology of the samples tested. In fact, the whole study worked on reinforced flexible 

pavements with different kind of net (steel net or glass grid) and a parallel investigation was 

conducted either with Finite Element modelling or in the laboratory. These analyses permitted 

to understand the behaviours of the multilayer pavements, when these kinds of reinforcing 

systems are positioned in a superficial position, which meant between binder layer and base 

course. This research field cannot be considered a brand-new area and the undoubted 

effectiveness of the reinforcing systems inserted in road pavements were proved by several 

worldwide research works. However, this study emphasized the benefits of reinforcing nets, 

trying to create a new investigation method. In fact, this work could be summarized into two 

different phases (laboratory and modelling), where both investigations kept the same 

characteristics, in order to make proper comparisons. The presented results demonstrated that it 

would be possible to realise Finite Element models to analyse road pavements performance, 

setting a suitable laboratory investigation and considering the percentage of error which usually 

is implied in these works.  

 

However, this study focused its efforts on asphalt multilayer flexible pavements, which are 

typically adopted in Italy. In fact the laboratory investigations and the corresponding Finite 

Element Analyses took advantages from previous research works run at the University of 

Parma, which were based on this kind of roadways (see Introduction and Literature Review). 

Therefore, taking advantage of the results obtained in this work with flexible pavements, new 

laboratory investigations were organized, in order to extend this analysis to different scenarios. 

In fact, new real scale samples were built trying to reproduce a small portion of a rigid 

pavement with structural joint and a reinforced asphalt overlay. This kind of roadways are 

typically adopted in North America or Europe, where climate is severe during the winter or for 

those infrastructures which need to support heavy loads, such as the airports. These new 

specimens were prepared following the same procedure explained in Chapter 1. In fact, three 

different typologies of slabs were built using two reinforcing systems (steel net and glass grid) 

and adding a control sample without any kind of reinforce. Analogously to the flexible slabs, 
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these specimens were manufactured in layers starting from the bottom neoprene stratum, to the 

upper asphalt surface (Table 4.1). 

 

Table 4.1 Features of rigid slabs with an asphalt concrete overlay. 

MULTILAYER RIGID SLABS 

Stratum Thickness [mm] 

Surface layer 40 

Leveling layer 20 

Slurry Seal 10 

Portland Cement Concrete 200 

Neoprene 40 

 

 

The asphalt upper layers (surface and leveling) were mixed using Italian aggregates and natural 

bitumen as well as the same asphalt mixer mentioned in Chapter 1. Moreover the particle size 

curves of the surface and leveling layer are respectively shown in Chapter 1 (Figure 1.1 (b) and 

(a)). In addition to the volumetric and mechanical characteristics are shown in Table 1.2 and 

Figure 1.7. The slurry seal was a mix of fine aggregate (maximum aggregate size 4 mm), 

bituminous emulsion, cement and water and it had the function to embed the reinforcing net, 

besides to connect the asphalt mixtures and the Portland Cement Concrete (PCC) base. In fact, 

the asphalt overlay was laid on a 200 mm thick layer of PCC (Rck = 250) with a structural 

transversal joint of 6 mm. The bottom layer of neoprene could simulate 150 mm of sub-base 

layer with a Deformation Modulus (Md) of 500 kN/mm
2
. These multilayer slabs were a square 

with 50 cm side length (Figure 4.1), since these investigations were analogous to the ones 

carried out on the flexible samples. The two reinforcing systems were the same mentioned in 

Chapter 1: hexagonal steel net and a squared glass grid covered with a thin bituminous film 

(Figure 1.8 – 1.9 and Table 1.4 – 1.5). 
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Figure 4.1 Rigid multiplayer sample with an asphalt overlay. 

 

 

These multilayer slabs were built in two phases. In the first one the PCC was cast in formworks 

divided into two areas, in order to recreate a 6 mm joint in the middle of the slab. After 28 days 

the cement material could reach the perfect maturation and the slabs were removed from the 

formworks. In the second phase, the asphalt layers were compacted one upon the other using 

the heavy compactor available at the University of Parma (Chapter 1, Paragraph 1.1). At the 

bottom of the formwork, the reinforcing system was positioned and covered with a thin layer of 

slurry seal (1 cm). In this way, it was possible to obtain a perfect interlock between the net and 

the slurry seal, since this heterogeneous stratum was placed at the bottom of the formwork and 

compacted with the upper asphalt strata. The subsequent compaction procedure was the same 

one explained in Chapter 1, which was followed to realize the multilayer flexible samples. After 

these two phases, the two halves samples were put together, in order to obtain a proper adhesion 

between the PCC slabs and the asphalt layers. However, before this “fixing procedure”, strain 

gauges were positioned at the bottom of the slurry seal stratum. In fact, these devices permitted 

to investigate the strain distribution at the interface between slurry seal and PCC layer, in the 

same central area where the structural joint created a discontinuity in the PCC base layer 

(Figure 4.2 (a)). Moreover, additional strain gauges were position on the top of the surface 

layer, in the area close to the loading mark, as shown in Figure 4.2 (b). 
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Figure 4.2 Position of the strain gauges on the overlay (a) and on bottom of slurry seal (b). 

 

 

The proper adhesion between asphalt layers and PCC was achieved running a shear test 

analogous to the ones explained in Chapter 1. The test was carried out using two kind of sample 

that could recreate the two different layers in contact (PCC and slurry seal). The test set-up was 

similar to the one adopted for flexible pavements even if the specimens had squared shape (10 

cm length side) with a thickness of 3 cm. They were cut from a slab (50 cm x 50 cm) 

appropriately compacted and composed by the slurry seal stratum (without any kind of 

reinforce) and the leveling layer. The second part of the shear specimens was a Portland Cement 

prism with a squared base of 10 cm length and a thickness around 4 cm. The two halves were 

put in contact with an amount of natural bitumen equal to 0.46 l/m
2
 and following the same 

“fixing procedure” explained in Chapter 1. Shear tests were run using a MTS machine, setting 

the displacement control rate at 0.042 mm/s and the normal pressure at 0.0016 MPa (Figure 

4.3). 

 

 

(a) (b) 
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Figure 4.3 Set-up configuration of the shear test. 

 

 

The tests were carried out at 10°C, in order to keep the asphalt mixtures in a range of 

viscoelasticity. In Figure 4.4 (a) the interface shear strength between PCC and slurry seal is 

shown with respect to the displacement rate in mm. Moreover, Figure 4.4 (b) highlights the 

analogous value calculated with the software BISAR simulating a semi-indefinite pavement 

with linear elastic characteristics and checking the horizontal shear stress between PCC and 

slurry seal. This further investigation was analogous to the one run for flexible slabs (Chapter 1, 

Paragraph 1.3). 

 

Displacement rate = 0.042 mm/s 

0.0016 MPa 0.0016 MPa 
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Figure 4.4 Results collected during shear test and the maximum interface shear strength (a) and 

Bisar report with the horizontal stress between slurry seal and PCC base highlighted (b). 

 

 

The interface shear strength obtained in the laboratory was 7 time higher than the value 

obtained with BISAR. These further investigations laid the bases for the creation of real scale 

slabs composed by PCC and asphalt concrete layers, which could be work and respond as an in-

continuum system. 

 

After these preliminary shear tests, three different kinds of slabs were built following a “fixing 

procedure” analogous to the one explained in Chapter 1 to fix the asphalt mixture layers on the 

top of the PCC base. Subsequently, the slabs were tested in order to simulate the real passing of 

a heavy wheel in correspondence to the structural joint. The investigations were analogous to 

the ones explained in Chapter 1 and were run on the reinforced slabs (with steel net or glass 

grid) and on the specimens without any kind of reinforcing system. The load applied could 

simulate a tire with an inflate pressure of 7 bar and it was positioned on a circular loading mark 

(10 cm diameter) on the central area of the squared slabs. Moreover, the test set-up was the 

same explained in Chapter 1 and the distribution of the strain was collected in the area around 

the loading mark as well as at the interface between PCC and slurry seal. The investigations 

carried out were examined and the data collected were analyzed checking the differences 

(a) 
(b) 
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between the reinforced slabs and the unreinforced ones. However, a preliminary analysis was 

conducted taking into consideration each typology of slab and permitted to draw conclusions 

analogous to Chapter 1 and 2. These introductory examinations highlighted that each kind of 

slab could accumulate a higher level of strain applying a static load. Therefore, the creep tests 

showed a bigger deformation compared to the dynamic tests. Moreover, the tests run at lower 

frequency (0.5 Hz) highlighted a trend to accumulate more deformations compared to the 

corresponding investigations run at higher frequency (2 Hz). Analogously, the analysis of the 

amplitudes of the strain sinusoidal waves showed the same tendency. Furthermore, the 

behaviour of the three different slabs was compared analysing static and dynamic tests. The 

following charts could show an unexpected behaviour of the reinforcing systems with respect to 

the data collected in the laboratory or running Finite Element analyses. Moreover, the strain 

gauges positioned at the interface between asphalt overlay and PCC base did not collect any 

reliable results, since the data did not show any consistent trend. Any results will be presented 

despite the equipments were placed following a strict procedure. 
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Figure 4.5 shows the data collected from strain gauges placed in position D and F running a 

creep test on the three kinds of slabs. 

 

 

 

Figure 4.5 Comparison of the creep test carried out on the three typologies of slabs (with no 

net, steel net and glass grid - strain gauges D and F. 
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Table 4.2 highlights the strain peak values and the percentages of the recovered strain collected 

by the strain gauges in position D and F on the three different kinds of slabs. 

 

Table 4.2 Peak values and recovery of the three typologies of slabs during creep test. 

CREEP – STRAIN GAUGES D 

Typology of Slab No Net Steel Net Glass Grid 

Peak value [μstrain] 312 592 354 

Recovery [%] 45 42 33 

CREEP – STRAIN GAUGES F 

Typology of Slab No Net Steel Net Glass Grid 

Peak value [μstrain] -530 -648 -628 

Recovery [%] 100 98 100 

 

 

Figure 4.6 shows the data collected by strain gauges placed in the same area close to the loading 

mark (position D and F) on the three kinds of slabs and applying 100 cycles of a sinusoidal load 

at 2 Hz. 
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Figure 4.6 Comparison of the sinusoidal test (100 cycles, 2 Hz) carried out on the three 

typologies of slabs (with no net, steel net and glass grid - strain gauges D and F. 

 

 

Table 4.3 highlights the strain peak values and the wave amplitude of the strain collected by the 

strain gauges in position D and F on the three kinds of slabs. 

 

Table 4.3 Peak value and wave amplitude of the three kinds of slabs (sin. test 100 cycles, 2 Hz). 

SIN 2Hz (100 cycles) – STRAIN GAUGES D 

Typology of Slab No Net Steel Net Glass Grid 

Peak value [μstrain] 75 133 71 

Wave amplitude [μstrain] 9.4 7.1 6.0 

SIN 2Hz (100 cycles) – STRAIN GAUGES F 

Typology of Slab No Net Steel Net Glass Grid 

Peak value [μstrain] -139 -181 -125 

Wave amplitude [μstrain] 75.1 70.6 82.0 
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Figure 4.7 shows the data collected by strain gauges placed in the same areas close to the 

loading mark (position D and F) of the three kinds of slabs and applying a sinusoidal load at 2 

Hz for 1000 seconds. 

 

 

 

Figure 4.7 Comparison of the sinusoidal test (1000 s, 2 Hz) carried out on the three typologies 

of slabs (with no net, steel net and glass grid - strain gauges D and F. 

 

 

Table 4.4 highlights the strain peak values and the wave amplitude of the strain collected by the 

strain gauges in position D and F on the three kinds of slabs. 
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Table 4.4 Peak value and wave amplitude of the three kinds of slabs (sin. test 1000s, 2 Hz). 

SIN 2Hz (1000 seconds) – STRAIN GAUGES D 

Typology of Slab No Net Steel Net Glass Grid 

Peak value [μstrain] 203 422 266 

Wave amplitude [μstrain] 0.7 1.9 1.1 

SIN 2Hz (1000 seconds) – STRAIN GAUGES F 

Typology of Slab No Net Steel Net Glass Grid 

Peak value [μstrain] -101 -277 -233 

Wave amplitude [μstrain] 11.6 11.9 12.0 

 

 

 

The analyses of the results were managed similarly to the one conducted on flexible pavements. 

In particular the data collected showed that the steel net could not highlight any benefit. These 

results were different from the ones collected during the laboratory investigations carried out on 

flexible real scale samples. These analyses could be evaluated and read considering different 

point of views. First of all, it is important to underline that this research work started at the 

University of Parma several years ago on flexible pavements and the laboratory investigations 

were set based on the results collected in-situ (see Introduction and Literature Review). This 

preliminary stage permitted to evaluate the shape of the real scale samples, the set-up of the test 

and the characteristic of the load, in order to carry out a reliable laboratory investigation. These 

further studies on rigid pavements with an asphalt concrete overlay were arranged following an 

analogous procedure, but they were not preceded by any studies in-situ on real pavements. The 

rigid slabs were not only different for the thickness of the layers or the material which 

composed the strata, but a discontinuity was set on the PCC base. In fact, a structural 6 mm 

joint split the bottom layer into two parts and the slabs were not homogeneous like the flexible 

ones. This fundamental detail could be considered a possible reason to explain the differences 

checked between the data collected in the laboratory with flexible slabs and the rigid ones. It is 

reasonable to presume that a bigger dimension of the multilayer slabs which comprehend a 

discontinuity could help the real scale samples to exhibit the effect of the reinforcing systems 

during the in service life. Obviously, this interpretation of the results collected could not be 

considered the unique one. In fact, it would be possible to simply state that the data collected 

did not show any benefits of the net positioned at the interface of asphalt overlay and PCC base. 
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This last consideration could be useful to criticize not only the shape of the slabs adopted, but 

also the position of the reinforce, or the use of the slurry seal layer in order to embed the net, or 

the test set-up itself. It is reasonable to state that further investigations that would reach the end 

of the in-service life, would have exhibited more clearly the benefits or the disadvantages of the 

reinforcing systems. In fact, on these rigid slabs with asphalt concrete overlay any preliminary 

analyses were not conducted, such as three point bending tests, in order to highlight the 

macroscopic effects of the nets. On the contrary, these kinds of investigations were carried out 

on flexible multilayer samples before setting the work of this research work (see Chapter 1, 

Paragraph 1.5). 

However, the laboratory investigation explained in this chapter could be considered a starting 

point for further studies related to rigid pavement with an asphalt concrete overlay, starting 

from these criticisms. The first results collected in laboratory could represent the basis to 

organize a research in the field, in order to set a proper laboratory investigation, which could 

represent the suitable validation step for a possible Finite Element Analysis. 
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