
UNIVERSITÀ DEGLI STUDI DI PARMA

Dottorato di Ricerca in Tecnologie dell’Informazione

XXIII Ciclo

A DHT-based Peer-to-peer Architecture

for Distributed Internet Applications

Coordinatore:

Chiar.mo Prof. Carlo Morandi

Tutor:

Chiar.mo Prof. Luca Veltri

Dottorando: Simone Cirani

Gennaio 2011

Alla mia famiglia e a Paola
per l’amore e la fiducia

che mi donate ogni giorno...

Table of Contents

Introduction 1

1 Peer-to-peer Networks 3
1.1 Unstructured and structured P2P networks 4

1.2 Distributed Hash Tables . 6

1.2.1 Chord . 9

1.2.2 Kademlia . 16

1.2.3 Other DHTs . 23

1.2.4 One-hop DHTs . 23

1.3 Bootstrapping . 24

2 A Multicast-based approach to Peer-to-peer Bootstrapping 27
2.1 Introduction . 27

2.2 Solicited vs. Unsolicited Approach 30

2.2.1 Solicited (PULL) approach 30

2.2.2 Unsolicited (PUSH) approach 30

2.3 Simple Algorithm . 31

2.3.1 Synchronized case . 31

2.3.2 Unsynchronized case . 33

2.3.3 Problems with the simple algorithm 33

2.4 Enhanced Algorithm . 36

2.4.1 Estimation of the number of collaborating nodes 36

ii Table of Contents

2.4.2 Scheduling . 37

2.4.3 Algorithm description . 43

3 Distributed Location Service 45
3.1 Motivations for a Distributed Location Service 45

3.1.1 URI information . 47

3.1.2 The IETF P2PSIP Working Group 49

3.1.3 Distributed SIP Location Service 49

3.2 DLS Architecture . 50

3.2.1 Information stored into the DHT 52

3.3 DLS Layers . 53

3.3.1 DLS Layer . 54

3.3.2 Peer Layer . 54

3.3.3 RPC Protocol Layer . 55

3.4 DHT-unaware clients and peer adapters 56

3.5 IETF P2PSIP WG Proposals . 58

3.5.1 dSIP . 58

3.5.2 RELOAD . 59

4 DLS Framework Implementation 65
4.1 RPC Layer . 66

4.2 Peer Layer . 69

4.3 DLS Layer . 72

4.4 Protocol Adapters . 73

4.5 DLS Framework usage . 77

4.6 DLS Framework extension . 81

4.6.1 RPC Protocols . 81

4.6.2 DHT Algorithms . 82

4.6.3 DLS Client Protocols . 83

5 DLS-based Peer-to-peer Applications 85
5.1 P2P VoIP . 85

Table of Contents iii

5.1.1 P2P VoIP Architecture . 86
5.2 Distributed Web Server . 88

5.2.1 DWS Node Architecture 89
5.2.2 DWS Deployment Example 91

5.3 Distributed File System with HDFS 93
5.3.1 HDFS Architecture . 94
5.3.2 DLS-based HDFS . 95
5.3.3 Possible Enhancements . 96

5.4 Peer-to-peer Online Social Networks 98
5.4.1 P2P OSN Architecture . 100
5.4.2 Data Storage . 100
5.4.3 Distributed Storage Service 101
5.4.4 Privacy Enforcement Framework 102
5.4.5 Social Network Services 107

6 Conclusions 109

Bibliography 111

Acknowledgments 115

List of Figures

1.1 Overlay network . 5

1.2 Chord simple node lookup . 10

1.3 Chord scalable node lookup . 13

1.4 Probability of remaining online another hour as a function of uptime 17

1.5 Kademlia k-buckets management policy 20

2.1 Procedure to get the value of Γn,2 40

2.2 Procedure to get the value of Γn,n 40

2.3 Procedure to get the value of Γ7,4 41

2.4 Ratio of non empty slots using mathematical model 42

2.5 Ratio of non empty slots using simulations 42

2.6 Improving hit-ratio and collision-ratio by refining the choice after
detecting a collision . 44

3.1 Applications accessing the DLS 52

3.2 Location Service Layer . 53

3.3 DLS Peer layered architecture . 54

3.4 DLS Client layered architecture 57

3.5 DLS Client (left) with DLS Adapter Peer (right) 57

3.6 RELOAD architecture . 61

4.1 The it.unipr.profiles.communicator package (RPC Layer) 68

4.2 The it.unipr.profiles.dSIP package 69

vi List of Figures

4.3 The it.unipr.profiles.peer package (Peer Layer) 71
4.4 Peer creation through PeerFactory 71
4.5 Information storage . 72
4.6 The it.unipr.profiles.dls package (DLS Layer) 74
4.7 The it.unipr.profiles.adapter package 76
4.8 Extending the DLS framework to support other DHT algorithms . . 84

5.1 SIP trapezoid . 86
5.2 P2P VoIP session with P2P-aware SIP UAs 87
5.3 P2P VoIP session with P2P-unaware SIP UAs 88
5.4 Distributed Web Server scenario 90
5.5 HDFS and DLS integration . 97
5.6 Key distribution tree . 105
5.7 Storing encrypted content in the DSS/DLS 106

List of Tables

3.1 Abstract DLS table representation 51

5.1 DLS content for the DWS for the domain www.dws.org 92
5.2 Evaluation of different key distribution approaches 103
5.3 Evaluation of different approaches for key addition 104
5.4 Evaluation of different approaches for key revocation 104

Listings

4.1 Creating a DLS-based application 78

Introduction

Peer-to-peer technology has become popular primarily due to file sharing applica-
tions, such as Napster, Gnutella, Kazaa, and eMule, which have been the dominant
component of usage of Internet bandwidth for several years. However, peer-to-peer
technology is not all about file sharing. Many famous applications used by millions of
users every day, such as Skype, are applications based on the peer-to-peer paradigm.

The peer-to-peer (P2P) paradigm is a communication model in which multiple
independent and heterogeneous devices interact as equals (peers). In a pure P2P net-
work each node implements functions of both client and server, and either peer can
initiate a communication session at any moment. Nodes are arranged on an over-
lay network, built on top of an existing network, such as the Internet. Many peer-to-
peer applications are based on a particular class of peer-to-peer networks: Distributed
Hash Tables (DHT). DHTs are structured peer-to-peer networks which provide a ser-
vice of information storage and retrieval similar to a regular hash table where keys
are mapped to values, in a scalable, flexible, and self-organizing fashion.

This thesis reports the results of the research activity on applying peer-to-peer
technology beyond file sharing. The work has been focused first on the study and
analysis of existing peer-to-peer network implementations, especially on Distributed
Hash Tables, and the proposals for peer-to-peer protocols presented by the IETF
P2PSIP Working Group. The main research activity has been the definition of a peer-
to-peer architecture, called Distributed Location Service (DLS), which allows the
establishment of direct connections among the endpoints of a communication with-
out the need of central servers. The Distributed Location Service is a DHT-based

2 Introduction

peer-to-peer service which can be used to store and retrieve information about where
resources can be accessed, thus eliminating the need to rely (partially) on the DNS
system and on central location servers, such as SIP Location Services. Access in-
formation is stored in the DLS as key-to-value mappings, which are maintained by
a number of nodes that participate in the DHT overlay the DLS is built upon. The
DLS has been implemented as a framework, by defining a standard set of inter-
faces between the components of the DLS, in order to allow maximum flexibility
on components such as the DHT algorithm and communication protocol in use, as
no assumption has been made in the definition of the DLS architecture. The Kadem-
lia DHT algorithm and the dSIP communication protocol have been implemented and
integrated in the DLS framework in order to create real-world DLS-based application
to show the feasibility of the DLS approach. These demonstrative DLS-based appli-
cations have been realized with the intent to show that peer-to-peer is not just about
file sharing, but real-time communication applications, such as VoIP, distributed file
systems, and Online Social Networks, can also be built on top of a peer-to-peer ar-
chitecture.

Even though the research activity has been conducted independently from the
IETF P2PSIP Working Group, the Distributed Location Service has been eventually
found quite similar to the official proposal, named RELOAD, with whom it shares
several concepts and ideas.

Another aspect that was studied is the issue of bootstrapping in peer-to-peer net-
works. When a node wants to join an existing P2P network, it needs to gather infor-
mation about one node that already belongs to the P2P overlay network which will
then admit the new node. Typically, the discovery of a node that is already participat-
ing in the overlay is made through mechanisms such as caching, pre-configured list
of nodes, or the use of central servers. Even though these approaches have worked
so far, they are not in the true philosophy of peer-to-peer networks, where decen-
tralization, scalability, and self-organization are critical features. A Multicast-based
approach has therefore been defined and validated, with the goal of achieving true
scalability and self-organization.

Chapter 1

Peer-to-peer Networks

A distributed system is a collection of independent computers that appears to its users
as a single coherent system. Relevant features of distributed systems should be:

• Use of heterogeneous computers

• Transparent communication

• Easy to expand and scale

• Permanently available (even though parts of it are not)

A peer-to-peer (or P2P) computer network relies primarily on the computing power
and bandwidth of the participants in the network rather than concentrating it in a re-
latively low number of servers. P2P networks are typically used for connecting nodes
via largely ad hoc connections. Such networks are useful for many purposes. Shar-
ing content files containing audio, video, data or anything in digital format is very
common, and real-time data, such as telephony traffic, is also passed using P2P tech-
nology. A pure peer-to-peer network does not have the notion of clients or servers,
but only equal peer nodes that simultaneously function as both clients and servers
to the other nodes on the network. This model of network arrangement differs from
the client-server model where communication is usually to and from a central server.

4 Chapter 1. Peer-to-peer Networks

An important goal in peer-to-peer networks is that all clients provide resources, in-
cluding bandwidth, storage space, and computing power. Thus, as nodes arrive and
demand on, the system increases and the total capacity of the system also increases.
This is not true in client-server architectures with a fixed set of servers, in which
adding more clients could mean slower data transfer for all users. The distributed
nature of peer-to-peer networks also increases robustness in case of failures by repli-
cating data over multiple peers, and, in pure P2P systems, by enabling peers to find
the data without relying on a centralized index server. In the latter case, there is no
single point of failure in the system. A P2P network usually forms an overlay net-
work, that is, a computer network which is built on top of another network. Nodes
in the overlay can be thought of as being connected by virtual or logical links, each
of which corresponds to a path, perhaps through many physical links, in the underly-
ing network. For instance, many peer-to-peer networks are overlay networks because
they run on top of the Internet. Peer-to-peer networks may be categorized into the
following categories:

• Centralized P2P network such as Napster

• Decentralized P2P network such as Kazaa

• Structured P2P network such as CAN

• Unstructured P2P network such as Gnutella

• Hybrid P2P network (Centralized and Decentralized) such as JXTA

1.1 Unstructured and structured P2P networks

The P2P overlay network consists of all the participating peers as network nodes.
There are links between any two nodes that know each other: if a participating peer
knows the location of another peer in the P2P network, then there is a directed edge
from the former node to the latter in the overlay network.

Based on how the nodes in the overlay network are linked to each other, we can
classify P2P networks as unstructured or structured. An unstructured P2P network is

1.1. Unstructured and structured P2P networks 5

Network

Overlay Network

Figure 1.1: Overlay network

formed when the overlay links are established arbitrarily. Such networks can be easily
constructed as a new peer that wants to join the network can copy existing links of
another node and then form its own links over time. In an unstructured P2P network,
if a peer wants to find a desired piece of data in the network, the query has to be
flooded through the network to find as many peers as possible that share the data. The
main disadvantage with such networks is that the queries may not always be resolved.
Popular content is likely to be available at several peers and any peer searching for it
is likely to find the same thing, but if a peer is looking for rare data shared by only a
few other peers, then it is highly unlikely that search will be successful. Since there
is no correlation between a peer and the content managed by it, there is no guarantee
that flooding will find a peer that has the desired data. Flooding also causes a high
amount of signaling traffic in the network and hence such networks typically have
very poor search efficiency. Most of the popular P2P networks such as Gnutella and

6 Chapter 1. Peer-to-peer Networks

FastTrack are unstructured. Structured P2P networks employ a globally consistent
protocol to ensure that any node can efficiently route a search to some peer that
has the desired resource, even if the resource is extremely rare. Such a guarantee
necessitates a more structured pattern of overlay links. By far the most common type
of structured P2P network is the Distributed Hash Table (DHT), in which a variant
of consistent hashing1 is used to assign ownership of each file to a particular peer, in
a way analogous to a traditional hash table’s assignment of each key to a particular
array slot. Some well known DHTs are Chord, Kademlia, Pastry, Tapestry, and CAN.

1.2 Distributed Hash Tables

Distributed Hash Tables (DHTs) are a class of decentralized distributed systems that
provide a lookup service similar to a hash table: <key,value> pairs are stored in the
DHT, and any participating node can efficiently retrieve the value associated with a
given key. Responsibility for maintaining the mapping from names to values is dis-
tributed among the nodes, in such a way that a change in the set of participants causes
a minimal amount of disruption. This allows DHTs to scale to extremely large num-
bers of nodes and to handle continual node arrivals, departures, and failures. DHT
research was originally motivated, in part, by peer-to-peer systems such as Napster,
Gnutella, and Freenet, which took advantage of resources distributed across the In-
ternet to provide a single useful application. In particular, they took advantage of
increased bandwidth and hard disk capacity to provide a file sharing service. These
systems differed in how they found the data their peers contained. Napster had a cen-
tral index server: each node, upon joining, would send a list of locally held files to the

1Consistent hashing is a scheme that provides hash table functionality in a way that the addition
or removal of one slot does not significantly change the mapping of keys to slots. In contrast, in most
traditional hash tables, a change in the number of array slots causes nearly all keys to be remapped. By
using consistent hashing, only K/n keys need to be remapped on average, where K is the number of
keys, and n is the number of slots. Consistent hashing was introduced in 1997 as a way of distributing
requests among a changing population of web servers. Each slot is then represented by a node in a
distributed system. The addition (joins) and removal (leaves/failures) of nodes only requires K/n items
to be re-shuffled when the number of slots/nodes change.

1.2. Distributed Hash Tables 7

server, which would perform searches and refer the requester to the nodes that held
the results. This central component left the system vulnerable to attacks and law-
suits. Gnutella and similar networks moved to a flooding query model; in essence,
each search would result in a message being broadcast to every other machine in
the network. While avoiding a single point of failure, this method was significantly
less efficient than Napster. Finally, Freenet was also fully distributed, but employed
a heuristic key based routing in which each file was associated with a key, and files
with similar keys tended to cluster on a similar set of nodes. Queries were likely to
be routed through the network to such a cluster without needing to visit many peers.
However, Freenet did not guarantee that data would be found. Distributed Hash Ta-
bles use a more structured key based routing in order to attain both the decentraliza-
tion of Gnutella and Freenet, and the efficiency and guaranteed results of Napster.
One drawback is that, like Freenet, DHTs only directly support exact-match search,
rather than keyword search, although that functionality can be layered on top of a
DHT. DHTs characteristically emphasize the following properties:

• Decentralization: the nodes collectively form the system without any central
coordination.

• Scalability: the system should function efficiently even with thousands or mil-
lions of nodes.

• Fault tolerance: the system should be reliable (in some sense) even with nodes
continuously joining, leaving, and failing.

A key technique used to achieve these goals is that any one node needs to coordinate
with only a few other nodes in the system - most commonly, O(logn) of the n partic-
ipants - so that only a limited amount of work needs to be done for each change in
membership. The structure of a DHT can be decomposed into several main compo-
nents. The foundation is an abstract key space, such as the set of 160-bit strings. A key
space partitioning scheme splits ownership of this key space among the participating
nodes. An overlay network then connects the nodes, allowing them to find the owner
of any given key in the key space. Most DHTs use some variant of consistent hashing

8 Chapter 1. Peer-to-peer Networks

to map keys to nodes. This technique employs a function δ (k1,k2) which defines an
abstract notion of the distance from key k1 to key k2. Each node is assigned a single
key called its identifier (ID). A node with ID i owns all the keys for which i is the
closest ID, measured according to δ . Consistent hashing has the essential property
that removal or addition of one node changes only the set of keys owned by the nodes
with adjacent IDs, and leaves all other nodes unaffected. Contrast this with a tradi-
tional hash table in which addition or removal of one bucket causes nearly the entire
key space to be remapped. Since any change in ownership typically corresponds to
bandwidth-intensive movement of objects stored in the DHT from one node to an-
other, minimizing such reorganization is required to efficiently support high rates of
churn (node arrival and failure). Each node maintains a set of links to other nodes (its
neighbors or routing table). Together these links form the overlay network. A node
picks its neighbors according to a certain structure, called the network’s topology.
All DHT topologies share some variant of the most essential property: for any key
k, the node either owns k or has a link to a node that is closer to k in terms of the
key space distance defined above. It is then easy to route a message to the owner
of any key k using the following greedy algorithm: at each step, forward the mes-
sage to the neighbor whose ID is closest to k. When there is no such neighbor, then
we must have arrived at the closest node, which is the owner of k as defined above.
This style of routing is sometimes called key based routing. Beyond basic routing
correctness, two key constraints on the topology are to guarantee that the maximum
number of hops in any route (route length) is low, so that requests complete quickly;
and that the maximum number of neighbors of any node (maximum node degree) is
low, so that maintenance overhead is not excessive. Of course, having shorter routes
requires higher maximum degree. Some common choices for maximum degree and
route length are as follows, where n is the number of nodes in the DHT, using Big O
notation:

• Degree O(1), route length O(logn)

• Degree O(logn), route length O(logn
log logn)

• Degree O(logn), route length O(logn)

1.2. Distributed Hash Tables 9

• Degree O(n
1
2), route length O(1)

The third choice is the most common, even though it is not quite optimal in terms of
degree/route length tradeoff, because such topologies typically allow more flexibility
in choice of neighbors. Many DHTs use that flexibility to pick neighbors which are
close in terms of latency in the physical underlying network.

1.2.1 Chord

Chord [1] is a distributed lookup protocol that arranges nodes and keys on a circle.
Nodes and keys are assigned a unique m-bit identifier, which is calculated by using
consistent hashing. The SHA-1 algorithm is used as a base hashing function for the
consistent hashing. Typically, a node ID is calculated by hashing the node’s IP address
and a resource’s key is calculated by hashing some keyword that is related to the
resource. IDs and keys map in the same key space. Consistent hashing assigns keys
to nodes as follows. Identifiers are ordered on an identifier circle modulo 2m. Key
k is assigned to the first node whose identifier is equal to or follows (the identifier
of) k in the identifier space. This node is called the successor node of key k, denoted
by successor(k). If identifiers are represented as a circle of numbers from 0
to 2m− 1, then successor(k) is the first node clockwise from k. The identifier
circle is also referred to as the Chord ring. The distance between a node whose ID is
a and another node whose ID is b is computed as (b− a) mod 2m, and is therefore
asymmetric.

Simple node lookup

A lookup operation returns the node that is responsible for a certain identifier, that
is passed as an argument. In Chord, the responsible node is the successor node of
the given id. Lookups could be implemented on a Chord ring with little per-node
state. Each node needs only to know how to contact its current successor node on the
identifier circle. Queries for a given identifier could be passed around the circle via
these successor pointers until they encounter a pair of nodes that straddle the desired
identifier; the second in the pair is the node the query maps to (Figure 1.2).

10 Chapter 1. Peer-to-peer Networks

Algorithm 1 find_successor(): Simple node lookup
n:find_successor(id)

if id ∈ (n,successor] then
return successor;

else /* forward the query around the circle */
return successor : f ind_successor(id);

end if

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Figure 1.2: Chord simple node lookup

1.2. Distributed Hash Tables 11

Scalable node lookup

In order to accelerate lookups, Chord maintains additional routing information. This
additional information is not essential for correctness, which is achieved as long as
each node knows its correct successor. Each node n maintains a routing table with up
to m entries, called the finger table. The ith entry in the table at node n contains the
identity of the first node s that succeeds n by at least 2i−1 on the identifier circle, i.e.,
s = successor(n+ 2i−1), where 1 ≤ i ≤ m (and all arithmetic is modulo 2m).
We call node s the ith finger of node n, and denote it by n.finger[i]. A finger
table entry includes both the Chord identifier and the IP address (and port number) of
the relevant node. We can then report the following definitions:

• successor: the next node on the identifier circle

• predecessor: the previous node on the identifier circle

• finger[k]: first node on circle that succeeds n+2k mod 2m, 0≤ k ≤ m−1

The lookup procedure for a given key is modified as follows:

• a node receives a query for the key

• if the node’s successor is responsible for the given key, it returns the successor
node

• else it returns the highest entry in the finger table that does precedes the key

This modified version of the lookup algorithm guarantees that lookups take at
most O(logm) hops in order to succeed, as it halves the topological distance to the
target (Figure 1.3). It is very important to ensure the correctness of the lookup proce-
dure. The system is stable if and only if each node knows its correct successor.

Join

A node joins a Chord network by contacting the node whose ID immediately fol-
lows its own ID (called the admitting node). The discovery of the admitting node is

12 Chapter 1. Peer-to-peer Networks

Algorithm 2 find_successor(): Scalable node lookup
n:find_successor(id)

if id ∈ (n,successor] then
return successor;

else /* forward the query around the circle */
n̄ = n : closest_preceding_node(id);
return n̄ : f ind_successor(id);

end if

Algorithm 3 closest_preceding_node(): search the local table for the highest prede-
cessor of id
n:closest_preceding_node(id)

for i = m downto 1 do
if n : f inger[i] ∈ (n, id) then

return n : f inger[i];
end if

end for

1.2. Distributed Hash Tables 13

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

Figure 1.3: Chord scalable node lookup

14 Chapter 1. Peer-to-peer Networks

performed by a executing a find_successor() with the joining node ID as an
argument. Once the joining node has found its successor, it sets its successor node to
be the admitting peer and sends to it a notify() procedure that informs the admit-
ting peer that a new predecessor has joined the network. If the joining peer’s ID falls
in the interval between the admitting peer and its predecessor, the admitting peer sets
its predecessor to be the joining peer.

Algorithm 4 create(): create a new Chord ring
n:create()

n : predecessor = null;
n : successor = n;

Algorithm 5 join(): node n joins the Chord ring by contacting node x
n:join(x)

n : predecessor = null;
n : successor = x : f ind_successor(n);

Algorithm 6 notify(): n believes it might be x’s predecessor
n:notify(x)

if x : predecessor = null or n ∈ (x : predecessor,x) then
x : predecessor = n;

end if

Stabilization

Each node calls a stabilize() procedure to check the correctness of the succes-
sor node. The node contacts its successor, which responds with its predecessor. If the
node and the successor’s predecessor coincide, then the system is stable. Otherwise,
the node needs to change its successor to be the successor’s predecessor (as a new
node between the node and the successor may have joined the network). Then the
node would send a notify() to the new successor. Moreover, each node performs

1.2. Distributed Hash Tables 15

a fix_fingers() procedure to ensure its fingers point to the right nodes and a
check_predecessor() procedure to check if the node’s predecessor is still ac-
tive or it has failed.

Algorithm 7 stabilize(): called periodically; verifies n’s immediate successor, and
tells the successor about n
n:stabilize()

x = n : successor : predecessor;
if x ∈ (n,n : successor) then

n : successor = x;
successor : noti f y(n);

end if

Algorithm 8 fix_fingers(): called periodically; refreshes finger table entries
n:fix_fingers()

next = 1;
while next ≤ m do

n : f inger[next] = n : f ind_successor(n+2next−1);
next ++;

end while

Algorithm 9 check_predecessor(): called periodically; checks whether predecessor
has failed
n:check_predecessor()

if n : predecessor has failed then
n : predecessor = null;

end if

Node failure

The correctness of the Chord protocol relies on the fact that each node knows its suc-
cessor. However, this invariant can be compromised if nodes fail. To increase robust-

16 Chapter 1. Peer-to-peer Networks

ness, each Chord node maintains a successor list of size r, containing the node’s first r
successors. If a node’s immediate successor does not respond, the node can substitute
the second entry in its successor list. All r successors would have to simultaneously
fail in order to disrupt the Chord ring, an event that can be made very unlikely with
modest values of r. Assuming each node fails independently with probability p, the
probability that all r successors fail simultaneously is only pr. Increasing r makes
the system more robust. Handling the successor list requires minor changes in the
pseudo-code: node n reconciles its list with its successor s by copying s’s successor
list, removing its last entry, and prepending s to it. If node n notices that its successor
has failed, it replaces it with the first live entry in its successor list and reconciles its
successor list with its new successor. At that point, n can direct ordinary lookups for
keys for which the failed node was the success to the new successor. As time passes,
fix_fingers() and stabilize() procedures will correct finger table entries
and successor list entries pointing to the failed node.

Graceful leave

Since Chord is robust in the face of failures, a node voluntarily leaving the system
could be treated as a node failure. However, two enhancements can improve Chord
performance when nodes leave voluntarily. First, a node n that is about to leave may
transfer its keys to its successor before it departs. Second, n may notify its predecessor
p and successor s before leaving. In turn, node p will remove n from its successor list,
and add the last node in n’s successor list to its own list. Similarly, node s will replace
its predecessor with n’s predecessor. Here we assume that n sends its predecessor to
s, and the last node in its successor list to p. After n’s predecessor has changed its
successor to n’s successor, it sends a notify() to its new successor.

1.2.2 Kademlia

Foreword

An aspect that makes Chord hard to manage is the rigidity of the routing table which
complicates recovery from failed nodes and routing table and precludes proximity-

1.2. Distributed Hash Tables 17

based routing. Moreover, in- and out- distribution are exactly opposite: this prevents
from using incoming traffic to reinforce routing tables. Fixing these aspects has draw-
backs: a bi-directional routing table would be more efficient and flexible but it would
double the routing table size and the number of control messages in order to maintain
the overlay. A main fact in the Chord algorithm is not taken into consideration: in an
ideal case, once a node joins, it never leaves the network. In a realistic case, though, a
randomly selected online node will stay online for another one hour with probability
1
2 . A statistical analysis of nodes’ behavior in a Gnutella network has shown that the
longer a node has been up, the more likely it is to remain up another hour. Figure
1.4 shows the probability of remaining online another hour as a function of uptime.
The x-axis represents minutes. The y-axis shows the the fraction of nodes that stayed
online at least x minutes that also stayed online at least x+60 minutes.

Figure 1.4: Probability of remaining online another hour as a function of uptime

Overview

Kademlia [2] is a DHT for decentralized peer-to-peer networks based on a XOR met-
ric to compute the distance between two nodes on the network that exploits the fact
the that long-time active nodes are most likely to stay active. Each node is assigned

18 Chapter 1. Peer-to-peer Networks

a unique 160-bit identifier, computed exactly as in Chord through the SHA-1 hash
function. Keys are too 160-bit identifiers. The XOR metric defines distance between
two nodes x and y as d(x,y) = x⊕y. The topology has the property that every message
exchanged conveys or reinforces useful contact information. In- and out- distributions
are the same so the network reinforces itself. Kademlia thus minimizes the number of
configuration messages that nodes must send to learn about each other. Configuration
information spreads automatically as a side-effect of key lookups.

XOR metric properties

The XOR metric used by Kademlia offers some interesting and desirable properties
that make it particularly efficient. First of all, it is obvious that d(x,x) = 0 and if
x 6= y,d(x,y) > 0. Distance is, unlike Chord, symmetric, that is: d(x,y) = d(y,x).
Distance offers the triangular property: d(x,y)+d(y,z)≥ d(x,z). Finally, distance is
unidirectional, that is, given a point x and a distance ∆ > 0, there is only one point
y such that d(x,y) = ∆. Unidirectionality ensures that all lookups for the same key
converge along the same path, regardless of the originating node.

System details

For each 0 ≤ i < 160, every node keeps a list of <IP address; UDP port; Node ID>
triples for nodes of distance between 2i and 2i+1 from itself. These lists are called
k-buckets. Since XOR is used as a distance function, a node’s ith k-bucket contains
nodes whose identifiers have the same most significant 159− i bits. Since it is not
relevant to calculate the exact distance between two nodes, but is sufficient to under-
stand which k-bucket a node should belong to, the XOR metric is very efficient as
the distance calculation is actually simplified to counting the number of equal most
significant bits. Each k-bucket is kept sorted by time: least-recently seen node at the
head, most-recently seen at the tail. For small values of i, the k-buckets will gen-
erally be empty (as no appropriate nodes will exist). For large values of i, the lists
can grow up to size k, where k is a system-wide replication parameter. k is chosen
such that any given k nodes are very unlikely to fail within an hour of each other

1.2. Distributed Hash Tables 19

(for example k = 20). When a Kademlia node receives any message (request or re-
ply) from another node, it updates the appropriate k-bucket for the sender’s node ID.
If the sending node already exists in the recipient’s k-bucket, the recipient moves it
to the tail of the list. If the node is not already in the appropriate k-bucket and the
bucket has fewer than k entries, then the recipient just inserts the new sender at the
tail of the list. If the appropriate k-bucket is full, however, then the recipient pings
the k-bucket’s least-recently seen node to decide what to do. If the least-recently seen
node fails to respond, it is evicted from the k-bucket and the new sender inserted at
the tail. Otherwise, if the least-recently seen node responds, it is moved to the tail of
the list, and the new sender’s contact is discarded (Figure 1.5). k-buckets effectively
implement a least-recently seen eviction policy, except that live nodes are never re-
moved from the list. This policy derives from the statistical analysis discussed earlier.
By keeping the oldest live contacts around, k-buckets maximize the probability that
the nodes they contain will remain online. A second benefit of k-buckets is that they
provide resistance to certain DoS attacks. One cannot flush nodes’ routing state by
flooding the system with new nodes. Kademlia nodes will only insert the new nodes
in the k-buckets when old nodes leave the system.

Kademlia protocol

The Kademlia protocol consists of four RPCs: PING, STORE, FIND NODE, and
FIND VALUE.

• PING: The PING RPC probes a node to see if it is online. This RPC involves
one node sending a PING message to another, which presumably replies. This
has a two-fold effect: the recipient of the PING must update the bucket cor-
responding to the sender; and, if there is a reply, the sender must update the
bucket appropriate to the recipient.

• STORE: STORE instructs a node to store a <key,value> pair for later retrieval.
This is a primitive operation, not an iterative one.

• FIND NODE: FIND NODE takes a 160-bit ID as an argument. The recipient
of the RPC returns <IP address; UDP port; Node ID> triples for the k nodes

20 Chapter 1. Peer-to-peer Networks

Figure 1.5: Kademlia k-buckets management policy

1.2. Distributed Hash Tables 21

it knows about closest to the target ID. These triples can come from a single
k-bucket, or they may come from multiple k-buckets if the closest k-bucket is
not full. In any case, the RPC recipient must return k items (unless there are
fewer than k nodes in all its k-buckets combined, in which case it returns every
node it knows about). This is a primitive operation, not an iterative one.

• FIND VALUE: FIND VALUE behaves like FIND NODE, returning <IP ad-
dress; UDP port; Node ID> triples, with one exception: if the RPC recipient
has received a STORE RPC for the key, it just returns the stored value. This is
a primitive operation, not an iterative one.

Node lookup procedure

The most important procedure a Kademlia participant must perform is to locate the k
closest nodes to some given node ID. We call this procedure a node lookup. Kademlia
employs an iterative algorithm for node lookups (although the paper describes it as
recursive). The lookup initiator starts by picking α nodes from its closest non-empty
k-bucket (or, if that bucket has fewer than α entries, it just takes the α closest nodes
it knows of). The initiator then sends parallel, asynchronous FIND NODE RPCs to
the α nodes it has chosen. α is a system-wide concurrency parameter, such as 3. In
the iterative step, the initiator resends the FIND NODE to nodes it has learned about
from previous RPCs. This iteration can begin before all α of the previous RPCs have
returned. Kademlia uses α = 3, as its degree of parallelism. It appears that this value
is optimal. There are at least three approaches to managing parallelism. The first is to
launch α probes and wait until all have succeeded or timed out before iterating. This
is termed strict parallelism. The second is to limit the number of probes in flight
to α; whenever a probe returns a new one is launched. We might call this bounded
parallelism. A third is to iterate after what seems to be a reasonable delay (duration
unspecified), so that the number of probes in flight is some low multiple of α . This
is called loose parallelism. Of the k nodes the initiator has heard of closest to the
target, it picks α that it has not yet queried and resends the FIND NODE RPC to
them. Nodes that fail to respond quickly are removed from consideration until and

22 Chapter 1. Peer-to-peer Networks

unless they do respond. If a round of FIND NODEs fails to return a node any closer
than the closest already seen, the initiator resends the FIND NODE to all of the k
closest nodes it has not already queried. The lookup terminates when the initiator
has queried and gotten responses from the k closest nodes it has seen. When α = 1,
the lookup algorithm resembles Chord’s in terms of message cost and the latency of
detecting failed nodes. Most operations are implemented in terms of the above lookup
procedure:

• iterativeStore: this is the Kademlia storing operation. The initiating node does
an iterativeFindNode, collecting a set of k closest contacts, and then sends a
primitive STORE RPC to each. iterativeStores are used for publishing or repli-
cating data on a Kademlia network.

• iterativeFindNode: this is the basic Kademlia node lookup operation. As de-
scribed above, the initiating node builds a list of k closest contacts using itera-
tive node lookup and the FIND NODE RPC. The list is returned to the caller.

• iterativeFindValue: this is the Kademlia search operation. It is conducted as
a node lookup, and so builds a list of k closest contacts. However, this is done
using the FIND VALUE RPC instead of the FIND NODE RPC. If at any time
during the node lookup the value is returned instead of a set of contacts, the
search is abandoned and the value is returned. Otherwise, if no value has been
found, the list of k closest contacts is returned to the caller.

Join and replication rules

A node joins the network as follows:

• it generates its ID n;

• it inserts the value of some known node c into the appropriate bucket as its first
contact;

• it does an iterativeFindNode for n;

1.2. Distributed Hash Tables 23

• it refreshes all buckets further away than its closest neighbor, which will be in
the occupied bucket with the lowest index.

Data are stored using an iterativeStore procedure, which has the effect of replicating
it over the k nodes closest to the key. If a node, during its uptime, discovers a node
that is closer to some key it currently stores, it send a STORE for that key to the closer
node.

1.2.3 Other DHTs

Chord and Kademlia are not the only DHT algorithm that have been defined. CAN
[3], Pastry [4], and Tapestry [5] are examples of other important proposals of DHT
algorithms. Every DHT algorithm defines its own metrics, topology, and routing
scheme. In CAN, which stands for Content Addressable Network, items are placed in
a d-dimensional lattice (coordinate system). The entire coordinate space is dynami-
cally partitioned among all the nodes in the system such that every node is responsible
for at least one distinct zone within the overall space. Pastry is similar to Chord, as
nodes are arranged on a ring. However, the state information and routing are differ-
ent: each Pastry node maintains a routing table, a neighborhood set and a leaf set.
Tapestry is an extensible infrastructure that provides decentralized object location
and routing focusing on efficiency and minimizing message latency. This is achieved
since Tapestry constructs locally optimal routing tables from initialization and main-
tains them in order to reduce routing stretch. Furthermore, Tapestry allows object
distribution determination according to the needs of a given application. Similarly
Tapestry allows applications to implement multicasting in the overlay network.
All these DHT algorithms however share the same features, that is, they offer lo-
garithmic upper bounds for information storage and retrieval and nodes maintain a
logarithmic state.

1.2.4 One-hop DHTs

In traditional DHTs, nodes keep a limited amount of state information and lookup
procedures typically require multiple hops before reaching the targeted node. Some

24 Chapter 1. Peer-to-peer Networks

scenarios require that lookups take as little time as possible to get executed. One-
hop DHTs have been proposed in order to achieve faster lookup times, by ensuring
that a single hop is needed to reach the target, with high probability. Among other
benefits introduced by one-hop DHTs is the minimization of maintenance network
traffic. The tradeoff to achieve these goals is to keep a much higher amount of state
information (O(n)). D1HT [6] is an implementation of a one-hop DHT based on
Event Detection and Reporting Algorithm (EDRA) technique. The topology of D1HT
resembles Chord’s ring. Since every node should keep information about any other
node in the DHT, events are propagated throughout the overlay so that each node can
detect when other nodes join or leave. Event propagation is essential to ensure that
routing tables are kept consistent and updated reactively to churn events.

1.3 Bootstrapping

Peer-to-peer (P2P) overlay networks are used in those scenarios where decentral-
ization, self-organization, and fault-tolerance are desired. However, P2P systems are
never fully distributed as they typically rely on some centralized network elements or
prior knowledge for bootstrapping, that is, to let new nodes join the overlay. There-
fore, actual decentralization and self-organization cannot be achieved. Although this
is not a problem in current P2P applications over the Internet where some nodes (su-
pernodes) can be considered as permanently connected and sufficiently reliable, this
becomes a problem when applied to very dynamic and self-organizing intranet or en-
terprise networks where all nodes may have a very dynamic behavior, leading to the
impossibility to guarantee any sort of reliable and centralized bootstrap service. The
bootstrapping mechanism can be very sophisticated and can include the verification
of a certificate from the joining peer, as well as the generation of a peer-id that deter-
mines the position of the joining peer inside the overlay. The details of the admission
mechanism are not discussed here, as they depend on the security policy of the over-
lay that the peer is willing to join. However, a peer which is willing to join any P2P
network needs to discover the location of a bootstrap peer to send its join request to.
Current solutions include the use of:

1.3. Bootstrapping 25

• cached mechanisms: a peer maintains a list of previously discovered peers and
tries to contact them; this approach does not solve however the problem when
the peer is trying to join the overlay for the first time as its cached list would
be empty;

• server-based mechanisms: a peer contacts a pre-configured server node (or list
of nodes); this approach has the obvious disadvantage of being server-centric,
which is an antithetical solution for the goal of a purely distributed network
and would create a bottleneck in the network and a possible point of failure;
it is important to say that the failure of the bootstrap server does not affect
the behavior of the P2P overlay, but only prevents new peers from joining the
network;

• multicast-based mechanisms: multicast support is exploited as proposed in
Chapter 2.

The first two approaches have drawbacks. For instance, it might not always be possi-
ble to know in advance a list of nodes that are always active to be used for bootstrap-
ping, caching does not work in case the new node is joining the overlay for the very
first time or if cached nodes are no longer enrolled in the overlay, and server-based
mechanisms might be useless if the server is unreachable. The use of mechanisms
that combine pre-configured lists which are hardcoded into the protocol and caching
has proved to work in practice (i.e. eMule bootstrapping), but it is still potentially
exposed to the risk of failure. Moreover, such mechanisms do not work in all those
scenarios in which the P2P networks are built in a complete distributed and self-
organized manner (for example in case of server-free distributed enterprise networks
or ad-hoc networks). In Chapter 2, a scalable and distributed solution to bootstrapping
based on Multicast is presented.

Chapter 2

A Multicast-based approach to
Peer-to-peer Bootstrapping

2.1 Introduction

The peer-to-peer (P2P) network paradigm has been introduced in order to overcome
some shortcomings of the client-server architecture by providing such features as
decentralization, self-organization, scalability, and fault-tolerance. Bootstrapping is
the initial process through which new nodes can join an existing P2P overlay net-
work. Typically, a joining peer must first contact a bootstrap peer, which is a peer
already enrolled in the overlay. The bootstrap peer is responsible for admitting the
new peer by passing information about other peers so that the new peer can actively
participate in the overlay. Finding a suitable bootstrap peer is therefore a critical is-
sue. Although different P2P systems have been defined and deployed, the problem of
bootstrapping has usually been solved by introducing such mechanisms as the use of
a pre-configured list of nodes, caching, or server-based discovery. Unfortunately, al-
though they work in P2P applications running over the Internet, they show some prob-
lems when applied to very dynamic and self-organizing intranet or enterprise network
scenarios. In fact, in these cases all nodes may join and leave the network very dy-
namically, without the possibility of guaranteeing any sort of permanent centralized

28 Chapter 2. A Multicast-based approach to Peer-to-peer Bootstrapping

service as current bootstrap solutions may require. In this chapter, a multicast-based
bootstrapping mechanism for dynamic and self-organized P2P networks is presented.
The proposed approach describes a new mechanism for discovering a bootstrap node
in a P2P network, which allows a joining peer to discover a proper bootstrap peer
in a real distributed manner. The mechanism, named BANANAS (BootstrAp Node
NotificAtion Service) [7], is based on multicast communications. It provides a com-
pletely distributed, self-organizing and scalable discovery service and employs an
unsolicited approach and well-performs in terms of scalability, load-balancing, and
mean frequency of information exchange. Although the use of IPv4 multicast is cur-
rently not supported amongst the public Internet, it is implemented in several ISPs,
private, or enterprise networks and it is expected in the future to be supported within
more and more IPv4 and IPv6 networks. Cramer et al. [8] have discussed some pos-
sible mechanisms for the bootstrapping process, such as based on: static bootstrap
servers, dynamic web caches, random access probing, multicast, or IPv6 anycast.
The first two mechanisms suffer of the well-known centralization, low reliability,
and non-self-organization problems; random access probing, which consists in trying
several random entry points until a success is reached, may result in large number
of failures and large amount of network traffic. Anycast is also considered as mech-
anism for acquiring an IP address of a potential bootstrap peer, however it is also
pointed out that such mechanism just moves the problem of node selection at the net-
work layer, and has the drawback that it may limit the requesting nodes’ freedom of
choice. The authors also considered multicasting as possible mechanism combined
with the expanding ring search (ERS). ERS in turn works by searching successively
larger areas in the network centered around the source of broadcast. Searching ar-
eas may be limited by using increasing values of TTL (Time To Live). However this
approach has some limitations such as:

• TTL scoping requires “successive containment” property and will not work
with overlapping regions;

• by increasing the TTL, the multicast scope may rapidly expand to a large por-
tion of the entire network resulting in flooding query packets to a very large

2.1. Introduction 29

number of nodes;

• for each TTL value, a proper maximum round-trip time (RTT) has to be con-
sidered (measured or pre-configured).

The authors in [9] propose a bootstrap service based on random access probing. The
bootstrap service relies on a separate, dedicated, and unique P2P bootstrap overlay
where bootstrapping information is stored. The bootstrap overlay is used in order
to exploit random access probing, which proved to be more efficient in large P2P
networks, and can be accessed through two basic methods (lookup() and publish()).
The bootstrap overlay is based on a DHT in order to achieve load balancing among
the participating nodes. However, the bootstrap service still suffers of the following
drawbacks:

• it simply shifts the problem of joining the P2P overlay network to that of join-
ing the P2P bootstrap overlay;

• it is based on DHTs, which may suffer of some security issues, such as poison-
ing or Sybil attacks;

• it relies on a PULL approach, that is, joining nodes issue a request and receive
a response with bootstrapping information; even though a load balancing effort
has been made in order to avoid overloading nodes responsible for the key of a
popular overlay, each node possibly needs to handle an unpredictable number
of requests.

Because of these reasons, we propose a different mechanism which is PUSH-based,
that is, the joining node does not issue any request and bootstrap information is noti-
fied by the service. Moreover, our approach does not require any information storage
system such as DHTs in order to keep bootstrapping information since each node
simply notifies its own presence, thus avoiding the risk of overloading nodes.

30 Chapter 2. A Multicast-based approach to Peer-to-peer Bootstrapping

2.2 Solicited vs. Unsolicited Approach

In this section, we will briefly discuss about the implication of the usage of the PUSH
and PULL approaches in a multicast-based service. Let us consider the case in which
all peers that act as bootstrap nodes or that directly know one or more bootstrap nodes
are enrolled in a multicast group. There are two possible approaches for the discovery
of a bootstrap peer in a multicast fashion.

2.2.1 Solicited (PULL) approach

A peer which tries to join the overlay sends a request to all the nodes in the group
asking for bootstrap nodes; the nodes that would respond to such request would all
be candidates to admit the peer. However, such a solicited mechanism would cause
an overload of the network, especially when many bootstrap nodes are already in the
overlay because all notification responses are sent for each joining node. Note that,
amongst all response messages, only one is used by the requesting peer since only one
bootstrap peer is needed to join the overlay. Moreover, also limiting the total number
of responses from bootstrap nodes does not limit the total amount of messages spread
over the network since it strictly depends on the total joining rate, multiplied by the
cardinality of the multicast group.

2.2.2 Unsolicited (PUSH) approach

All the bootstrap nodes in the multicast group send unsolicited messages to all nodes
in the group to advertise their presence in the overlay as well as their bootstrap infor-
mation. When a node needs to discover a bootstrap node, it simply joins the multicast
group and listens for these messages. This approach potentially may still have sca-
lability issues due to the large number of messages sent over the network. However
in this case, differently from the previous approach, such total amount of sent mes-
sages may be limited, regardless of the actual joining rate. This can be achieved if
the nodes cooperate in order to ensure that the total amount of messages sent over the
multicast group is constant or upper bounded, regardless of the effective number of

2.3. Simple Algorithm 31

collaborating bootstrap nodes. This second approach is the one followed in this work
and appears to be the most efficient for the reasons reported above.

2.3 Simple Algorithm

The goals of the service are to provide a service characterized by an almost constant
rate of messages received and to fairly balance the number of messages sent by nodes.
Both bootstrap and joining nodes join the same multicast group. Each node sees a
timeline divided into slots of length T , where f = 1

T is the average rate at which a
message is to be received by any node in the group. A simple algorithm, which will
be described next, can be used in order to achieve these goals.

2.3.1 Synchronized case

Suppose all nodes are synchronized, that is, their time slots are perfectly aligned. At
the beginning of the slot, each node computes a random time ti, uniformly distributed
in the [0,T] interval. When time ti is reached, the node decides whether to actually
send the message or not, depending on the fact that a message has already been
received between time 0 and time ti. If no message was received, then the node sends
its message, otherwise it waits for the next slot, and repeats the above procedure. In
a given time slot, the message will be sent by the node which computed the shortest
time tmin, and all other nodes will cancel their scheduled message. Let t1, t2, ..., tn be
a set of n independent random variables, uniformly distributed in the interval [0,T].

fTi(ti) =

{
1
T if 0≤ ti ≤ T

0 elsewhere
(2.1)

Integration of fTi(ti) yields the cumulative distribution function of the random vari-
able ti:

FTi(ti) =

0 if ti < 0
ti
T if 0≤ ti ≤ T

1 if ti > T

(2.2)

32 Chapter 2. A Multicast-based approach to Peer-to-peer Bootstrapping

Let tmin = min(t1, t2, ..., tn). We wish to find the cumulative distribution function and
mean value of the random variable tmin.

{tmin ≤ t}= {tmin > t}
′
=

{
n⋂

i=1

{ti > t}
}′

(2.3)

The cumulative distribution function of the random variable tmin can be calculated as
follows:

P(tmin ≤ t) = Pr(min(t1, t2, ..., tn)> t)
′
=

= Pr

{ n⋂
i=1

{ti > t}
}′=

= 1−Pr

({
n⋂

i=1

{ti > t}
})

=

= 1−Pr(ti > t)n =

= 1− (1−P(ti ≤ t))n =

= 1− (1−FTi (t))
n =

= FTmin(t)

Therefore

FTmin(t) =

0 if t < 0

1−
(

1− t
T

)n
if 0≤ t ≤ T

1 if t > T

(2.4)

Derivation of FTmin(t) yields the probability density function fTmin(t):

fTmin(t) =

 n
T

(
1− t

T

)n−1
if 0≤ t ≤ T

0 elsewhere
(2.5)

The mean value of the random variable tmin is:

ε = E {tmin}=
∫ +∞

−∞

fTmin(t)dt =
T

n+1
(2.6)

2.3. Simple Algorithm 33

As the number of nodes increases, the mean departure time value generated by the
elected node decreases, and it will tend to 0 as the number of nodes tends to infinity.
Therefore, a message will be sent at the beginning of each slot and all other messages
will be dropped (not sent). The average rate of messages sent to the group would be
f = 1

T . Moreover, since each round of computation of the random time ti is indepen-
dent from the previous ones and from the other nodes, no assumption can be made
about which node will be elected in a given round, so the probability of a node to be
elected will be 1

n , if n nodes are participating in the group.

2.3.2 Unsynchronized case

Let’s remove the hypothesis about the synchronization of the time slots among the
nodes. In this case, we use the same approach seen above, with one main difference:
the reception of a message is used as a synchronization event among the nodes. To do
so, instead of computing the time of the next scheduled message every T , we com-
pute it starting from one slot after the time of reception or sending a message. This
approach eliminates the need for synchronization among the nodes, but has the disad-
vantage that it may increase the mean time of a message being sent in the group. The
time between two successive messages is the minimum computed time tmin plus T .
Again, let tmin = min(t1, t2, ..., tn). The mean time between two successive messages
is:

E {tmin +T}= E {tmin}+T = ε +T = T · n+2
n+1

(2.7)

However, as n increases, the average time tends to T .

2.3.3 Problems with the simple algorithm

The algorithms sketched above assume that all nodes are able to detect immediately
a received notify message and at the same time stop the sending process scheduled
for the same time slot. Although this is applicable in case of zero network delay, that
is, the case in which the time needed for delivering a message is almost zero, it does
not apply to real-world networks, because of the actual physical time requirements
for a message to be delivered from end to end. On the contrary, it is possible that a

34 Chapter 2. A Multicast-based approach to Peer-to-peer Bootstrapping

message is still sent by one node that has computed a higher random value but that
has not yet received the message from the real winning (elected) node. We call τi

the vulnerability interval for the i-th node, that is, the time needed for the i-th node
to receive the message sent from the elected node. Since in general such τi depends
on node i, to the network topology, and to the current network traffic, we consider
a system vulnerability interval of length τ , which is the worst-case estimation of the
delivery time of a message. Due to the difficulty to estimate the worst-case network
delivery time, any pre-configured upper bound can be considered. We refer to a colli-
sion as the event that a message is sent after the message sent from the actual elected
node. A collision occurs any time a node that scheduled a departure time greater than
the elected node’s does not receive the message sent by the elected node before its
own departure time, due to network delay. We wish to calculate the mean number of
collisions for a network consisting of n nodes. Let tmin be the minimum amongst the
values t1, t2, . . . , tn generated by the n nodes. Since the minimum value is tmin, all the
nodes that have not generated tmin must have generated a value t> tmin. Let’s calculate
the conditioned distribution of t, given the event {t > tmin}. Let t̄ = {t|t > tmin}.

FT̄ (t) = Pr
(
t̄≤ t

)
=

= Pr(t≤ x|t > tmin) =

=
Pr(t≤ t, t > tmin)

Pr(t > tmin)
=

=
Pr(t ≤ t≤ tmin)

1−Pr(t≤ tmin)
=

=

0 if t < tmin

FT (t)−FT (tmin)

1−FT (tmin)
if tmin ≤ t ≤ T

1 if t > T

=

0 if t < tmin
t− tmin

T − tmin
if tmin ≤ t ≤ T

1 if t > T

2.3. Simple Algorithm 35

Therefore the c.d.f. of the random variable t is:

FT̄ (t) =

0 if t < tmin
t− tmin

T − tmin
if tmin ≤ t ≤ T

1 if t > T

(2.8)

Derivation of FT̄ (t) yields:

fT̄ (t) =

{ 1
T − tmin

if tmin ≤ t ≤ T

0 elsewhere
(2.9)

The probability that one of the n− 1 nodes that have not generated the minimum
value tmin generated a value in the interval [tmin, tmin + τ] is:

FT̄ (tmin + τ) =

0 if tmin < 0

τ
T − tmin

if 0≤ tmin ≤ T − τ

1 if tmin > T − τ

(2.10)

We define
p(tmin) = FT̄ (tmin + τ) (2.11)

The probability is function of the minimum value tmin. The probability that k of the
the n−1 nodes generated a value in the interval [tmin, tmin+τ] (that is, the probability
to get k collisions) is: (

n−1
k

)
· p(tmin)

k (1− p(tmin))
n−1−k (2.12)

This probability is function of n, tmin, and k. Given n and tmin, the distribution of the
probability is a discrete binomial distribution, whose mean value is (n− 1)p(tmin).
We can then state that at each round, there will be k collisions in average, where:

E {k}=

{
(n−1) τ

T − tmin
if 0≤ tmin ≤ T − τ

n−1 if tmin > T − τ
(2.13)

As n increases, tmin tends to 0, and therefore the number of collisions tends to the
ratio τ

T · (n−1).

36 Chapter 2. A Multicast-based approach to Peer-to-peer Bootstrapping

2.4 Enhanced Algorithm

In order to avoid the problems outlined in the previous section, an enhanced version
of the algorithm is used. The algorithm first estimates the number of nodes that are
currently enrolled in the group, and then exploits this information to schedule the
time of sending of the message.

2.4.1 Estimation of the number of collaborating nodes

Let us suppose that, each time a node sends a notification message, it includes also its
scheduled departure time ti. The knowledge of the minimum tmin of a set of uniformly
distributed random variables and the number of random variables k whose value be-
longs to the interval [tmin, tmin + τ], is used to estimate the number of such random
variables.
We can invert equation (2.13) to get the number of nodes as a function of the mini-
mum generated time tmin and the mean number of collisions E {k}:

n =

{
E {k} T − tmin

τ +1 if 0≤ tmin ≤ T − τ

E {k}+1 if tmin > T − τ
(2.14)

If we assume that the number of messages that were received in the interval [tmin, tmin+

τ] coincides with the mean number of k (k = E {k}), then it is possible to invert equa-
tion (2.13) to estimate n:

n̂ =

{
k T − tmin

τ +1 if 0≤ tmin ≤ T − τ

k+1 if tmin > T − τ
(2.15)

Since the assumption that k = E {k} was made, the estimation works well if k is big,
and therefore if n is big. n̂ tends to overestimate the actual value of n. We handle the
possibility of undelivered messages by considering the probability of a lost message
ploss = Pr{message is lost}. The number of collisions must be therefore adjusted by
dividing it by ploss.

2.4. Enhanced Algorithm 37

2.4.2 Scheduling

We now want to exploit the information about the number of nodes that are currently
participating in the group to generate a schedule in order to fairly balance the number
of messages among the nodes while respecting the goal of having a constant rate of
sent messages within the group. Let n̂ be the estimated number of nodes. Any node
in the group randomly selects a number between 1 and n̂. The selected number will
correspond to a particular time slot self-assigned to the node. The node will wait until
its time slot and will send its message at a randomly selected time in that interval. The
departure time within the slot is randomized in order to let that, in case two or more
nodes will select the same slot, one node would send its message first and the other
nodes may detect such message and reschedule their message in a successive timeslot.
We will now evaluate this scheduling mechanism. Let n be the number of participants
to the algorithm. Each participant selects a number between 1 and n. Let’s define the
event

En,k = {k different values are selected out of n} .

We wish to calculate the mean value of the k different numbers selected by the n
particpants. Since the selection of the number is independent from participant to par-
ticipant, it may happen that the same number is selected by different participants. If
n is the number of participants and each participant selects a number between 1 and
n, the probability that a total of k different numbers are selected can be written as:

Pr{En,k}= Pn,k =
Xn,k

N
(2.16)

where N is the total number of possible outcomes of the event:

EN = {n particpants select a number between 1 and n independently}

and Xn,k is the total number of outcomes of the event En,k. EN is clearly the event of
generating all the dispositions of n elements from a set of n numbers. The number of
all the outcomes is N = nn. If k = 1, Xn,k = n since there are n possible sets of n values
that contain exactly one value (one for each value). If k ≥ 2, Xn,k can be written by

38 Chapter 2. A Multicast-based approach to Peer-to-peer Bootstrapping

the following formula:

Xn,k =
n!

(n− k)!

n−k

∑
i1=0

ki1
n−k−i1

∑
i2=0

(k−1)i2 · · ·

n−k−
k−2

∑
j=1

i j

∑
ik−1=0

2ik−1 (2.17)

Let’s focus on the case k ≥ 2. If we define

In,k =

{
i ∈ Nk−1 : ‖i‖1 =

k−1

∑
j=1

i j ≤ n− k

}
(2.18)

and the exponentiation of two vectors as

(a1,a2, . . . ,an)
(b1,b2,...,bn)

T
=

n

∏
i=1

(ai)
bi (2.19)

then we can rewrite equation (2.17) as:

Xn,k =
n!

(n− k)! ∑
i∈In,k

(K)iT (2.20)

where
K = (k,k−1, . . . ,2) (2.21)

and
i = (i1, i2, . . . , ik−1) . (2.22)

It is possible to find the cardinality θn,k of the set In,k by the following formula:

θn,k =
(n−1)!

(n− k)! · (k−1)!
=

(
n−1
k−1

)
(2.23)

Now we can define a matrix Yn,k ∈M(θn,k,k−1) as:

Yn,k =

i1
i2
...

iθn,k

 (2.24)

2.4. Enhanced Algorithm 39

We can extend the definition of vector exponentiation to the case of exponentiating a
vector to a matrix. Let a be a vector of n elements and B a matrix ∈M(n,m). Then,
the result of exponentiating vector a to matrix B is a vector of m elements:

aB = (a1,a2, . . . ,an)
(b1,b2,...,bm) =

(
ab1 ,ab2 . . .abm

)
(2.25)

where by bi we denote the i-th column of B (bi has n elements). Now we can write

KY T
n,k =

(
Ki1T

,Ki2T
, . . . ,K

iθn,k
T
)
= γn,k (2.26)

and finally

Γn,k =
∥∥∥γn,k

∥∥∥
1
=

θn,k

∑
j=1

Ki j
T
= ∑

i∈In,k

(K)iT (2.27)

Therefore we can write:
Xn,k =

n!
(n− k)!

·Γn,k (2.28)

Equation (2.28) lets us find the number of different sets of n elements that contain k
different elements when those elements are drawn from a set of n different elements.
Since Γn,k is clearly function of both n and k, our goal is to find a function φ : N2→N
such that φ (n,k) = Γn,k. It is banal to see that Γn,n = 1. Let’s construct a tree whose
branches are all the vectors i ∈ In,k, that is, all the θn,k rows of the matrix Yn,k. The
tree has clearly k−1 levels. Level l is assigned a weight that corresponds to the value
of the l-th element of the vector k = kl . Therefore, levels have weights that vary
from k (the highest level), to 2. At level 1 (weight = k), the tree forks in n− k+ 1
branches. Each branch is labeled with a value that ranges from 0 to n− k. Since each
branch corresponds to a vector of In,k, the last branch (labeled with n−k) cannot fork
anymore since the sum of all labels cannot exceed n− k. Therefore the path towards
the leaf is subsequently followed by branches all labeled with 0. Therefore, such path
leads to a value of kn−k. All other branches create subtrees. The branch labeled with
n− k−1 forks into two subtrees, one with label 0 and one with label 1. The branch
with label 1 has saturated the value of the sum of the labels and therefore there only
one path towards the leaf, which leads to a value of kn−k−1 ·(k−1)1. The other branch
creates again a subtree with labels 0 and 1. The branch with label 1 leads to a value

40 Chapter 2. A Multicast-based approach to Peer-to-peer Bootstrapping

of kn−k−1 · (k− 2)1, while the other one creates another subtree. At level k− 1, the
subtree that results from all branches labeled with 0, create a final subtree with labels
that range from 0 to n− k, leading to values that are 1, 2, 22, ..., 2n−k. The sum of all
values of this subtree is therefore ∑

n−k
i=0 2i = 2n−k+1−1. Figures 2.1 and 2.2 show the

solution for the limit cases Γn,2 and Γn,n.

0 1 2 n− 1 n

← 2

20 21 22

...

2n−1 2n

Figure 2.1: Procedure to get the value of Γn,2

← k

← (k − 1)

...

← 3

← 2

0

0

0

0

0

k0 · (k − 1)0 · ...30 · 20

Figure 2.2: Procedure to get the value of Γn,n

Following the procedure described above, we can get the value of Γn,k by reducing
the problem to all the sub-problems of lower degree, in a recursive fashion. Such a

2.4. Enhanced Algorithm 41

reduction leads to an iterative formulation of the value of Γn,k:
Γn,k =

n−k

∑
i=0

ki ·Γn−1−i,k−1

Γn,n = 1

Γn,2 =
n−2

∑
i=0

2i = 2n−1−1

(2.29)

Figure 2.3 shows an example of the procedure needed to get the value for Γ7,4. With

0 1 2 3

0 1 2 3 0 1 2 0 1 0

0 1 2 3 0 1 2 0 1 0 0 1 2 0 1 0 0 1 0 0

← 4

← 3

← 2

40 · 30 · 20

40 · 30 · 21
40 · 30 · 22

40 · 30 · 23
40 · 31 · 20

40 · 31 · 21
40 · 31 · 22

40 · 32 · 20
40 · 32 · 21

40 · 33 · 20
41 · 30 · 20

41 · 30 · 21
41 · 30 · 22

41 · 31 · 20
41 · 31 · 21

41 · 32 · 20
42 · 30 · 20

42 · 30 · 21
42 · 31 · 20

43 · 30 · 20

Figure 2.3: Procedure to get the value of Γ7,4

some calculations and index substitution it is easy to find an alternative and computa-
tionally more efficient representation for Γn,k. Given the above definition of Γn,k, we
can write:

Γn−1,k =
n−k−1

∑
j=0

k j ·Γn−2− j,k−1 (2.30)

42 Chapter 2. A Multicast-based approach to Peer-to-peer Bootstrapping

Therefore it is easy to demonstrate that:

Γn,k = Γn−1,k−1 + k ·Γn−1,k (2.31)

Even though there is no closed form to express Γn,k, a computer program can easily
show that the mean of the number of non-empty slots tends to be approximately
k ≈ 0.63 · n. Therefore, the scheduling proposed leaves approximately 0.37 · n slots
empty. This result can be derived either by computing the values of Γn,k with the
previous formulation, or by simulating the behavior of the community of participating
nodes. Figures 2.4 and 2.5 show the alignment of our result with those extracted from
simulation.

0 200 400 600 800 1000

70

80

90

100

n

N
on

-e
m
p
ty

sl
ot
s
(%

)

Figure 2.4: Ratio of non empty slots using mathematical model

0 200 400 600 800 1000

70

80

90

100

n

N
on

-e
m
p
ty

sl
ot
s
(%

)

Figure 2.5: Ratio of non empty slots using simulations

2.4. Enhanced Algorithm 43

In order to reduce the number of empty slots the picking could be made between
1 and m = f (n) (with m ≤ n), but collisions would be more luckily to occur. The
handling of empty slots and collisions is discussed in the following section.

2.4.3 Algorithm description

The enhanced version of the algorithm requires two different stages:

1. a synchronization round: this stage is needed in order to let nodes learn about
other nodes, that is, to let them estimate the number of nodes in the group (n̂);
the length of this stage is T ;

2. a notification round: this stage is composed of m = f (n̂) intervals of length T ,
during which nodes send the information about bootstrap nodes in the group;

Synchronization messages are received during synchronization rounds, which occur
with variable period. A synchronization round’s length is T . In this time interval, all
synchronization messages are received. Synchronization messages are ordered by the
reported ti time generated by the sender. After all synchronization messages are re-
ceived, the node counts all the distinct messages that report a ti value that falls in the
[tmin, tmin + τ] range (including its own ti if it is in the range). Using the number k of
such messages and the value of tmin, the node can estimate the number of nodes n̂ that
are present in the network using formula (2.15). The next synchronization round will
occur after m = f (n̂) slots.
The generation of a schedule can be made in a slightly different way than by picking
a random value between 1 and m. Indeed, the statistics of the process remain the same
if each node decides at the i-th slot whether to send the message or not with probabil-
ity p = 1

m− i . The node(s) that decide to send the message compute a random time
ti in the range [0,T] to send the message. If a message is received prior to ti, all the
nodes that decided to send the message cancel their scheduled send. After sending
a message, a node waits until the next synchronization round. After each node has
determined when to send its own message, it also generates a random instant in the
corresponding interval at which to send the message. By doing so, nodes that have

44 Chapter 2. A Multicast-based approach to Peer-to-peer Bootstrapping

picked the same slot do not send their message simultaneously. If a node that has
picked a slot receives a message during that slot, it cancels its scheduled message. In
order to reduce the number of empty slots, a node that has picked an interval x that
was also picked by another node, after canceling the sending of the message, it can
pick another slot between x and m. The positive effect of refining the choice of a slot
by a node after learning about a collision is shown in Figure 2.6.

Hit-ratio

Collision-ratio

0 2 4 6 8

0

20

40

60

80

Refinements

ra
ti

o
(%

)

Figure 2.6: Improving hit-ratio and collision-ratio by refining the choice after detect-
ing a collision

The presence of a synchronization round causes a slight decrease of the rate of infor-
mation exchange since some round is dedicated to collecting information about the
number of nodes that are participating. However, this decrement is not significant in
the case of a high number of participating nodes.

Chapter 3

Distributed Location Service

3.1 Motivations for a Distributed Location Service

Peer-to-peer overlay networks allow participating nodes to communicate without re-
lying on any central server. The communication, either connection-oriented or con-
nectionless, is managed by a collection of intelligent nodes that are responsible for
routing messages correctly towards the destination by implementing the overlay logic.
There are basically two ways to implement peer-to-peer communication:

• to encapsulate the messages in a peer-to-peer protocol, which determines the
next hop towards the recipient;

• to resolve the recipient of the message with a peer-to-peer resolution service to
get a contact where the message will be directly sent.

Some application-layer protocols like SIP [10], SMTP [11], and HTTP [12] use URI
or URL (RFC 3986 [13]) information to identify and address their resources, the
endpoints (peers) of their communications, or simply the recipient of their messages.
The use of an URI-based address mechanism instead of simply using IP addresses
and port numbers is preferred since:

• IP addresses have a geographical distribution and are related to the specific
(and sometimes temporary) network point of attachment of hosts;

46 Chapter 3. Distributed Location Service

• URI may contain more information on the addressed resource (user name, re-
source path, parameters, etc.).

The method used for mapping the URI to the actual next hop toward the recipient de-
pends on the specific URI scheme, protocol type, or service logic. When no specific
mechanism applies, a common way is to use the DNS system for resolving a part of
the given URI representing a fully qualified domain name (FQDN), if present. For
example, an HTTP request to http://www.wonderland.net:8080/download/ is pro-
cessed by an HTTP client agent (e.g. a web browser) by taking the hostport part
(www.wonderland.net:8080) and resolving the hostname www.wonderland.net with
a standard DNS query to the default DNS server. Similarly, when calling a user iden-
tified by the URI sip:alice@wonderland.net;user=phone, the SIP UACs often use
DNS for resolving the FQDN wonderland.net to determinate the next hop SIP node
through which the INVITE message has to be routed. However, such a DNS-based
approach generally suffers of some problems like:

I1) it is server centric; by using standard DNS servers, it uses an architecture that
is intrinsically distributed but not completely reliable, since an entire domain
is normally managed by one or few servers;

I2) it does not allow dynamic name resolution; the association between the FQDN
and the host address (IPv4 or IPv6) is statically configured on DNS servers;
although updates of such binding are possible, the frequency of such updates is
strongly limited by caching mechanisms implemented within the DNS archi-
tecture;

I3) it applies only to the FQDN part of the URI (when present) although some
protocol-dependent information can also be provided within the URI.

Note that, although some protocols such as SIP provide their own location service in
order to handle issue I2, the dependence on DNS still remains, resulting in issues I1
and I3. A possible solution to these issues could be to replace partially or completely
the DNS dependence with a complete distributed and independent P2P location ser-
vice (DLS), for example based on DHT. In such a scenario, whenever an agent wants

3.1. Motivations for a Distributed Location Service 47

to send a request to a resource or agent identified by a given URI, the following steps
may be followed:

S1) the agent processes the URI and decides whether the URI already contains all
information to route the message (for example because it includes a valid IP
address and port number, or because it contains some explicit reference that can
be locally and uniquely resolved to the proper IP address and port number), or
requires an explicit DLS lookup; in the former case the procedure ends here,
while in the latter case step S2 is executed;

S2) in order to obtain a fully routable address (URL) the agent performs a LS
lookup by issuing a DLS get() query;

S3) the returned address (URL) is used as new reference as the next hop or recipient
for the resource request.

This procedure can be extended to the case in which step S2 may return a new URI
(or URL) not routable in the sense of S1. In this case, steps S1, S2, and S3 are re-
peated more times until step S2 returns a finally fully routable-URL. This simple
DLS procedure can be further extended in order to provide dynamic name resolution.
If an agent wants to update its location information or that of a given resource:

S4) the agent performs a LS insertion or update by issuing a DLS put() query with
the proper new URI-to-routable-URL binding.

Since each binding has a time-to-live (expiration) date, such binding is refreshed
through successive DLS put() operations. Step S4 can be used for inserting, refresh-
ing, modifying, or deleting binding information.

3.1.1 URI information

The step S1 described above relies on the decision whether a URI is a pure resource
identifier or it is a routable-URL, here defined as a URL that contains full information
required to completely locate the resource. In order to overcome this ambiguity, two
methods are hereafter considered:

48 Chapter 3. Distributed Location Service

R1) the URI is a routable-URL if it contains an IP address and port number in a
proper hostport field; otherwise (for example if the hostport field contains a
FQDN), an explicit LS query is needed;

R2) an explicit and proper new scheme or scheme parameter is used to distinguish
a pure URI from a routable-URL.

Note that some already defined URI schemes may support parameters in different
formats, may not support new parameters, or may not support parameters at all.
Therefore, with solution R2, in case a proper URI parameter is defined to distinguish
between a routable-URL and a generic URI, some hypothesis are required for the
supported schemes. For this reason, with solution R2, the use of a new URI scheme
is preferred. Examples according to R1 are:

• http://192.168.1.2:8080/download/index.html: it is a routable-URI and does
not require an explicit LS lookup;

• http://www.mydomain.com/download/index.html: it is not routable and requires
an explicit LS lookup.

Examples according to R2 are:

• resource:http://www.mydomain.com/www/index.html: it is a pure URI;

• http://192.168.1.2:8080/download/index.html: it is a routable-URI.

Note that these are only two possible approaches to solve step S1. Other mechanisms
may be also defined and implemented. In the rest of this document we will refer
to routable-URL or contact URI as a URL/URI that contains all the information to
contact the identified resource (or to the next hop toward the resource) without the
use of any external systems. According to this definition, the routable-URL returned
by the iteration of steps S1, S2, and S3 (one or more times), eventually completed by
some location information locally stored, should be resolved in one ore more IPv4 or
IPv6 addresses together with complete protocol and port information. This is what
should happen in the case of a real and complete P2P LS system.

3.1. Motivations for a Distributed Location Service 49

3.1.2 The IETF P2PSIP Working Group

The Internet Engineering Task Force (IETF) is an open standards organization which
develops and promotes Internet standards. The IETF is organized into a number of
different working groups, each of them dealing with a specific topic, even though
some topics require interactions among working groups. The Peer-to-Peer Session
Initiation Protocol Working Group (P2PSIP WG1) is chartered to develop protocols
and mechanisms for the use of the Session Initiation Protocol (SIP) in settings where
the service of establishing and managing sessions is principally handled by a col-
lection of intelligent endpoints, rather than centralized servers as in SIP as currently
deployed. Since its establishment, the P2PSIP WG has been working to create a con-
cept and terminology document, to define a P2PSIP Peer protocol and an optional
P2PSIP Client protocol, and finally to produce a usage document. The work of the
P2PSIP WG has been very productive, yielding hundreds of Internet-drafts and is
currently in its final stage, with the goal of submitting final documents to the Internet
Engineering Steering Group (IESG) between December 2010 and May 2011. During
its lifetime, the P2PSIP WG has defined several proposals for a P2PSIP Peer proto-
col. The most notable of such proposals are dSIP [14] and RELOAD [15] which will
be discussed in the following sections.

3.1.3 Distributed SIP Location Service

The SIP protocol is an application-level signaling protocol defined by the IETF RFC
3261 [10] and used to establish multimedia sessions. SIP is defined as a P2P protocol,
in the sense that, once a session has been established, the multimedia stream flows
among the participants directly. Moreover, some SIP scenarios, such as a “SIP P2P
call”, require nothing but User Agents: in this case, the caller initiates a session by
knowing the callee’s location (i.e. its IP address and port number). However, since
this information is usually not known in advance, in order to be useful and practical
for a public service, SIP relies on some network elements, such as Registrar servers or
Proxy servers, that introduce some degree of centralization and possible failure points

1http://datatracker.ietf.org/wg/p2psip/charter/

http://datatracker.ietf.org/wg/p2psip/charter/

50 Chapter 3. Distributed Location Service

of the architecture. SIP has been investigated for P2P capabilities in order to propose
a version of SIP that does not require central servers. One possible solution to this
problem has been found in realizing a DLS, in order to remove the need for central
servers to resolve the contacts’ addresses to route requests between User Agents.
Because of their nature, DHTs have revealed as a perfect tool to accomplish this
goal, as they can be used to store the user registration information (name address
and location). The distributed SIP LS described above is one example of how a DHT
can be used to create a LS for a given application. Other applications might exploit a
DLS as well. We propose that these location services be merged into a unique DHT
in order to achieve a single DLS that several application might use. This approach is
preferred rather than creating separate location services for each application since:

• only one registry would be used as a single distributed access point;

• the increased number of collaborating nodes would result in a more robust
DHT.

3.2 DLS Architecture

The P2P DLS system [16] should provide a storage and retrieval service for the bind-
ing between a URI, identifying the targeted resource, and one or more mapped con-
tact URIs, which indicate the location where or through which the resource can be
accessed. Together with each contact URI some other information should be stored
like the expiration time, an access priority value, and, optionally, a displayable text
(for example a description of the contact or a readable name). The distributed LS can
be abstractly represented as in table 3.1.
The proposed P2P distributed LS may actually store and retrieve mappings between
a URI (identifying the resource) and one or more URIs in a distributed and reliable
manner. RFC 2397 [17] defines a method to encapsulate any (short) data within a
standard URI. Our LS system in conjunction with RFC 2397 may also be seen as
a system for storing any kind of short data in a distributed P2P manner, providing
a sort of distributed database. It is important to point out that, although a real dis-

3.2. DLS Architecture 51

Table 3.1: Abstract DLS table representation
Key Value

resource-URI-1 contact-URI-1; display-name-1; priority=P1; expires=T1
contact-URI-2; display-name-2; priority=P2; expires=T2
contact-URI-3; display-name-3; priority=P3; expires=T3

resource-URI-2 contact-URI-4; display-name-4; priority=P4; expires=T4

resource-URI-3 contact-URI-5; display-name-5; priority=P5; expires=T5
contact-URI-6; display-name-6; priority=P6; expires=T6

... ...

tributed database would require that the information stored in the DHT should be the
actual data (such as files), the data stored in the DHT should be short as they would be
moved often from node to node as the DHT reorganizes when nodes join and leave.
This is why we prefer using the DHT as a location service, that is, a registry, where
the information stored is not the actual data but rather show how to access that partic-
ular resource. This approach is also preferred as it is up to the application that looks
up the DHT to decide what to do with the location information and what protocol to
eventually use to actually access the resource. Therefore, applications may treat the
DHT as an external registry to consult whenever they need location information. In
order to implement a general purpose DLS we do not specify a particular DHT algo-
rithm: different implementations may use different DHT algorithms (like Kademlia,
Chord, etc.). The main components of such P2P distributed LS are:

C1) a DHT algorithm;

C2) a P2P protocol used for managing the DHT (inserting a new peer, updating the
DHT, etc.);

C3) a protocol used to perform basic LS queries like put(), get() on the distributed
LS, used by DHT-peer and possibly by non-DHT peers; since DHT peers use
C2 for maintaining the DHT, protocol C3 is intended for pure DHT access at
the border of the P2P system.

52 Chapter 3. Distributed Location Service

As pointed out, for component C1 we do not make any particular assumption since
different DHT algorithms should be supported. For component C2 we do not make
any assumption either, even though particular attention has been focused on SIP ex-
tensions defined by the IETF P2PSIP WG [14, 18, 19]. Finally, for component C3
we do not specify a new protocol. Any implementation can consider and use its own
mechanism, according with the other systems it has to interact with. Some examples
are described in the next sections. Note that protocol C2 is also a possible candidate
for C3. Particularly, we have implemented a LS system in which SIP (actually with
some extensions) is used for both C2 and C3 [19]. Note that, if the application in-
cludes the peer, C3 is not needed as the communication between the application and
the peer occurs through basic API calls. In our realization both Kademlia and Chord
DHT algorithm have been implemented and used for C1. Figure 3.1 shows how the
DHT can be used by a generic application.

DLS

DLS/DHT Level

Application

DLS/DHT Level

Application

Figure 3.1: Applications accessing the DLS

3.2.1 Information stored into the DHT

The information stored into the DHT does not include only the contact of the resource
(or service), that is, its routable-URI. Additional information such as:

• an optional display name, to be used as a description or a readable name,

• an expiration time, referring to the time for which the resource is to be consid-
ered fresh (this information can be also used to delete a resource from the DHT
if set to 0),

3.3. DLS Layers 53

• an access priority value

are also stored. This information can be included directly into a single URI, just like
SIP specifies for contact information. Another approach could be to represent the
resource information in XML format allowing also for adding additional parameters
that might be considered useful for the resource.

3.3 DLS Layers

The DLS can be accessed through two simple API calls:

• put(key,value)

• get(key)

where key is a Resource URI (actually its hash), while value is a set of one or more
tuples of display name, contact URI, expiration time, and priority value. The get(key)
method should return the set of the corresponding values (actually the contact in-
formation) associated with the targeted resource. In a network-based application, the
distributed LS could be implemented within a proper LS layer, as shown in Figure
3.2.

TCP/UDP/SCTP/IP

DLS Protocol

Application

DLS interface (put(), get())

Sockets

Figure 3.2: Location Service Layer

The DLS protocol layer includes all the mechanisms and functions to access the
rest of the DLS system implemented on the other nodes, according to the proper P2P

54 Chapter 3. Distributed Location Service

system. Considering a DHT-based P2P DLS infrastructure in which each node (ac-
tually a peer) cooperates to the maintainance of the DLS and underlying DHT, the
previous architecture can be particularized as shown in Figure 3.3. In such architec-
ture, the DLS protocol layer is composed of three sub-layers:

• DLS Layer;

• Peer Layer;

• RPC Protocol Layer.

DHT Algorithm

TCP/UDP/SCTP/IP

RPC(1) Protocol

Peer

DLS

Application

DLS interface (put(), get())

Peer interface (join(), leave(), put(), get())

RPC (request(), respond())

Sockets

Figure 3.3: DLS Peer layered architecture

3.3.1 DLS Layer

The DLS Layer provides the basic LS service to the application layer. It mainly maps
the get() and put() LS methods in the corresponding methods provided by the Peer
Layer, which actually implements the specific DHT algorithm (Kademlia, Chord,
etc.). All P2P-specific functions, such as join() and leave() and peer identification,
are transparent for the application layer and are masqueraded by the DLS Layer.

3.3.2 Peer Layer

The Peer Layer is responsible for dynamic setup and maintenance of the DHT infras-
tructure, interacting with other peers, according to the specific DHT algorithm that

3.3. DLS Layers 55

is being implemented. It completely masquerades to the DLS Layer all the details
about the adopted DHT algorithm by offering a transparent and uniform interface.
As a result, it offers to the DLS Layer only basic operations (which we call DHT
API), which are common to all DHT algorithms:

• join(): this operation is used to let the peer join the overlay;

• leave(): this operation is used to let the peer leave the overlay it is currently
enrolled in, gracefully;

• put(key,value): this operation is used to store a key/value pair in the DHT;

• get(key): this operation is used to retrieve the information associated with the
given key.

On the other side, the actual peer remote calls depend on the chosen DHT algorithm
and are mapped on the underlying RPC protocol.

DHT Algorithm

The DHT Algorithm is the actual logic implemented by the peer and used to store
and retrieve dynamic mappings between keys and values in a distributed fashion. At
this level, the keys are the hashed Resource URIs, while the mapped values are a set
of tuples containing the resource contact information. Note that, according to RFC
2397 [17], which defines a method for mapping any (short) data within a standard
URI, the contact URI information may be used to encapsulate short data in place of
or in addition to the actual resource contact URI. This in turn allows the DHT (and
therefore the DLS) to be used as a generic system for storing any kind of short data
in distributed P2P manner, thus providing a sort of distributed database.

3.3.3 RPC Protocol Layer

The DHT-based P2P system requires that all peers enrolled in the DHT overlay net-
work exchange information for the DHT setup, update, and maintenance. The inter-
action between peers occurs through a request/response model, whose details depend

56 Chapter 3. Distributed Location Service

on the specific DHT algorithm implemented by the Peer Layer. The mapping be-
tween the DHT algorithm logic and the actual communication protocol is provided
by the RPC Protocol Layer. Hence this layer is responsible for transforming the Peer
Layer’s remote DHT methods to proper request/response communication messages.
The RPC protocol may use an underlying transport such as TCP, UDP, SCTP, TLS
or DTLS, depending on the type of the used RPC protocol (reliable/unreliable, mes-
sage/stream oriented, etc.) and on the desired security level. On the receiver side,
this layer is responsible for receiving messages from other peers, parsing them, and
trigger the Peer Layer to execute the appropriate DHT algorithm logic.

3.4 DHT-unaware clients and peer adapters

According to the description of the DLS Layers above, a peer cooperates to maintain
the DHT and the DLS system and provides an interface to the upper level application
for accessing the DLS through the DLS interface at the same time. However, it could
be also interesting to consider other application scenarios in which a node needs to
access the LS service but for some reason (i.e., because it is not aware of the underly-
ing P2P substrate, or it does not have enough resources to take part in the overlay) it
does not belong to the DLS system. As a result, the architecture is decoupled between
nodes (DLS peers) that are aware of the P2P substrate and nodes (DLS clients) that
are not. The architecture of a DLS client is shown in Figure 3.4.
In a DLS client, the DLS layer still offers to the upper application layer the basic Lo-
cation Service operations (put() and get()). However, differently from what happens
within a DLS peer, the DLS layer does not interact directly with the DLS system, but
it maps these operations to proper RPC calls that will be sent to a remote DLS server
node. In general, such RPC protocol could be different from the one used by the Peer
Layer within the DLS system, and for this reason it is here referred to as RPC(2),
as shown in Figure 3.4. In order to effectively allow a DLS client to access the DLS
system, a DLS adapter peer is required. A DLS adapter peer is a regular peer that
participates in the DLS system, but it also acts as a DLS server, which means that
it adds a sort of relay function that allows DLS client requests to be relayed to the

3.4. DHT-unaware clients and peer adapters 57

TCP/UDP/SCTP/IP

RPC(2) Protocol

DLS

Application

DLS interface (put(), get())

RPC (request(), respond())

Sockets

Figure 3.4: DLS Client layered architecture

P2P DLS system. The overall architecture of a DLS client and a DLS adapter peer is
shown in Figure 3.5.

TCP/UDP/SCTP/IP

RPC(2) Protocol

DLS

Application

DLS interface (put(), get())

RPC (request(), respond())

Sockets

TCP/UDP/SCTP/IP

RPC(2) Protocol

DLS

Peer

RPC(1) Protocol

Peer interface

RPC

Sockets

RPC

Sockets

PUT/GET

REQ/RESP

TCP/UDP/SCTP/IP

Figure 3.5: DLS Client (left) with DLS Adapter Peer (right)

Note that protocols RPC(1) and RPC(2) may or may not be the same, as this is
just an implementation issue. It is important to remark that the proposed architecture
is totally generic and independent from the DHT algorithm and RPC protocol used.
Indeed, a DLS system instance is specified by the following three components (as
previously assumed in section 3.2):

• a DHT algorithm;

• a RPC(1) protocol used for managing and maintaining the DHT;

58 Chapter 3. Distributed Location Service

• a RPC(2) protocol used by DLS clients at the border of the P2P infrastructure
to access the DLS system.

3.5 IETF P2PSIP WG Proposals

3.5.1 dSIP

A mature proposal for a SIP-based P2P protocol was dSIP [14], which is a very sim-
ple extension of the SIP protocol with a few new headers added in order to maintain
and manage the DHT. dSIP messages are based on the SIP REGISTER method; this
choice was due to the fact that SIP REGISTER messages are intended to be processed
only by those network elements, such as SIP Proxies, that provide a centralization
point and that can decide whether to process the message or not by checking if they
support the P2P capability. Depending on the implementation, peers can act either as
proxy servers or redirect servers. Clients that are not aware of the P2P substrate can
interact with their peer with the SIP protocol, thus allowing for backward compatibil-
ity towards legacy SIP applications. In this case, the peer would analyze the request
(i.e. a normal SIP INVITE request for another client) from the client and retrieve the
necessary information from the DHT; then the peer would forward the request to the
appropriate endpoint or send a response back to the client. This role of the peer is
called “adapter”. An adapter peer provides therefore a sort of gateway between SIP
and P2PSIP. The peer thus has two main communication interfaces. The first one is
the DHT communication interface, which is used to communicate with other peers in
the DHT. Communication inside the DHT occurs using the dSIP protocol. dSIP mes-
sages are therefore received and sent at this interface. The second interface is what
we call the SIP adapter, which is the interface responsible to provide the adapter
functionality to the peer. The SIP adapter receives and sends regular SIP messages
from and to clients. Other solutions for the P2PSIP architecture protocol which are
not based on SIP are RELOAD [15] and XPP [20].

3.5. IETF P2PSIP WG Proposals 59

3.5.2 RELOAD

Internet-draft draft-ietf-p2psip-base-12 2 defines RELOAD as follows: REsource LO-
cation And Discovery (RELOAD), a peer-to-peer (P2P) signaling protocol for use on
the Internet. It provides a generic, self-organizing overlay network service, allowing
nodes to efficiently route messages to other nodes and to efficiently store and re-
trieve data in the overlay. RELOAD provides several features that are critical for a
successful P2P protocol for the Internet:

• Security Framework: A P2P network will often be established among a set
of peers that do not trust each other. RELOAD leverages a central enrollment
server to provide credentials for each peer which can then be used to authenti-
cate each operation. This greatly reduces the possible attack surface.

• Usage Model: RELOAD is designed to support a variety of applications, in-
cluding P2P multimedia communications with the Session Initiation Protocol
[I-D.ietf-p2psip-sip]. RELOAD allows the definition of new application us-
ages, each of which can define its own data types, along with the rules for their
use. This allows RELOAD to be used with new applications through a simple
documentation process that supplies the details for each application.

• NAT Traversal: RELOAD is designed to function in environments where many
if not most of the nodes are behind NATs or firewalls. Operations for NAT
traversal are part of the base design, including using ICE to establish new
RELOAD or application protocol connections.

• High Performance Routing: The very nature of overlay algorithms introduces
a requirement that peers participating in the P2P network route requests on be-
half of other peers in the network. This introduces a load on those other peers,
in the form of bandwidth and processing power. RELOAD has been defined
with a simple, lightweight forwarding header, thus minimizing the amount of
effort required by intermediate peers.

2http://tools.ietf.org/html/draft-ietf-p2psip-base-12.txt

http://tools.ietf.org/html/draft-ietf-p2psip-base-12.txt

60 Chapter 3. Distributed Location Service

• Pluggable Overlay Algorithms: RELOAD has been designed with an abstract
interface to the overlay layer to simplify implementing a variety of structured
(e.g., distributed hash tables) and unstructured overlay algorithms. This speci-
fication also defines how RELOAD is used with the Chord DHT algorithm,
which is mandatory to implement. Specifying a default “must implement”
overlay algorithm promotes interoperability, while extensibility allows selec-
tion of overlay algorithms optimized for a particular application.

RELOAD is a binary protocol (contrast this with dSIP, which is a text-based pro-
tocol) that integrates the ICE (Internet Connectivity Establishment) protocol [21],
which is intended to allow NAT traversal, a primary issue in the current Internet,
as most clients reside in networks behind network devices, such as NATs and Fire-
walls. RELOAD is the official candidate of the P2PSIP Working Group to become an
Internet standard.

RELOAD Architecture

RELOAD defines a layered architecture aimed to recreate on top of the Internet
model’s transport layer an overlay network which defines its own network, transport,
and application layers. These equivalent layers are implemented in several compo-
nents, as shown in Figure 3.6. The major components of the RELOAD architecture,
from the upper layer to the lower layer, are:

• Usage Layer: this layer implements application-specific usages of the lower
Message Transport; Usages define their own set of data types and behaviors
that describe how to use the services provided by RELOAD.

• Message Transport: this component is used to handle end-to-end reliability,
manage request state for usages, interacts with the Storage component to store
and fetch resources, and delivers response messages to the component that ini-
tiates the request.

• Storage: this component processes messages relating to the storage and re-
trieval of resources; it talks to the Topology Plugin component in order to

3.5. IETF P2PSIP WG Proposals 61

Internet Model

Application

Link

Network

Transport

Internet Model
Equivalent

Application

Message
Transport

Topology
Plugin

Forwarding &
Link

Management

Storage

(Routing)

Transport

Network

Link

RELOAD Architecture

....SIP
Usage

XMPP
Usage

....TLS DTLS

Figure 3.6: RELOAD architecture

62 Chapter 3. Distributed Location Service

manage data replication; it uses the Message Transport to send and receive
resource-related messages.

• Topology Plugin: this component implements the actual logic of the overlay
algorithm in use; it talks to the Message Transport component to send and
receive messages for overlay management; it talks to the Storage component
to manage data replication; it talks to the Forwarding Layer to control message
forwarding.

• Forwarding and Link Management: this component stores and implements
the routing table by providing packet forwarding services between nodes. It
also handles establishing new links between nodes, including setting up con-
nections across NATs using ICE.

• Overlay Link Layer: TLS/TCP [22] and DTLS/UDP [23] are used in RELOAD
as “link-layer” for hop-by-hop communication.

It is possible to see some analogies between the components of the DLS architecture
and those of the RELOAD architecture:

• the RPC Layer of the DLS resembles the functionalities of the Forwarding and
Link Management Layer in RELOAD;

• the Peer Layer of the DLS resembles the functionalities of the Topology Plugin
and Storage components in RELOAD;

• the DLS Layer of the DLS resembles the functionalities of the Usage Layer in
RELOAD.

The Distributed Location Service is very similar to the RELOAD architecture, which
is the official candidate to become an Internet standard. One difference between the
two is that RELOAD natively addresses issues such as NAT/Firewall traversal, while
the DLS needs to rely on external services that allow to establish connections among
nodes that are behind NATs and Firewalls. Another difference, perhaps the major one,
is the fact that RELOAD takes care of routing requests from the initiator to the target,

3.5. IETF P2PSIP WG Proposals 63

while the DLS is used to lookup access information of the target, but the connection
is then managed outside the DLS system.

Chapter 4

DLS Framework Implementation

The DLS Architecture described in Chapter 3 has been implemented and used as a
basis to develop several distributed applications, which will be described in Chap-
ter 5. The implementation is based on the Java programming language and provides
a framework to create instances of Distributed Location Services based on differ-
ent DHT algorithms and RPC protocols. The current implementation supports the
Kademlia DHT algorithm and the dSIP protocol, but the framework is totally exten-
sible to support other DHT algorithms and RPC protocols. The dSIP protocol, which
is an extension of the SIP protocol defined in RFC 3261, has been implemented using
the MjSIP library1, which is a complete Java-based implementation of a SIP stack.
MjSIP provides at the same time the API and implementation bound together into the
MjSIP packages. MjSIP was developed within the Department of Information Engi-
neering of the University of Parma and is available open source under the terms of
the GNU GPL license (General Public License) as published by the Free Software
Foundation.
The extensive use of design patterns in the implementation of the DLS Framework
reflects the fact that no assumption was made on the DHT algorithm and RPC proto-
col that will be used for communication among the DLS nodes. The DLS framework
can therefore be extended and particularized as needed in a clean and simple way,

1http://www.mjsip.org

http://www.mjsip.org

66 Chapter 4. DLS Framework Implementation

while providing a consistent set of interfaces to any layer of the DLS architecture.

4.1 RPC Layer

The lowest layer of a DLS Peer is the RPC Layer. The RPC Layer is implemented
in the it.unipr.profiles.communicator package. This layer is responsible for allowing
the communication of the Peer Layer with other nodes. This layer maps the Peer
Layer’s DHT methods (join(), leave(), get(), and put()) into proper RPC protocol
messages that will be sent to other nodes. The communication model adopted is a
standard request/response model. This means that the DHT operations are performed
as follows:

1. the Peer Layer calls a DHT method;

2. the method is mapped by the RPC Layer into a RPC protocol request message;

3. the RPC Layer sends the request to a node and waits for its response;

4. the response is received by the RPC Layer and parsed;

5. the response is forwarded to the Peer Layer which then subsequently takes the
proper action as specified by the DHT algorithm logic.

The communication among nodes occurs asynchronously. This means that the RPC
Layer’s message forwarding procedure terminates after the message has been sent.
When a response is received, the RPC Layer will then match the response message
to the appropriate request message (transactionality) and notify the Peer Layer of
the reception of the response. It is possible to realize a synchronous model by im-
plementing a blocking behavior for the requests, even though this behavior is to be
implemented on higher layers.
The package basically consists of three interfaces and two classes. The IDHTCom-
municator interface defines the methods that are used to send request and response
messages:

• void request(DHTRequest request, DHTCommunicatorListener listener)

4.1. RPC Layer 67

• void respond(DHTRequest request, DHTResponse response)

The DHTCommunicatorListener interface defines the callback methods that are fired
when messages are received:

• void onDHTRequestReceived(DHTRequest req)

• void onDHTResponseReceived(DHTRequest req, DHTResponse resp)

• void onDHTMessageSent(DHTMessage msg)

The IDHTCommunicatorImpl interface resembles the same methods of the IDHT-
Communicator interface, but is used as a basis to implement the specific behavior
of a particular communication protocol (Strategy Pattern). The IDHTCommunicator
interface is implemented by the DHTCommunicator class, which is where the ac-
tual implementation of the request() and respond() methods resides. The DHTCom-
municator class uses a Strategy Pattern for the implementation of the above meth-
ods: this class has a DHTCommunicatorImpl attribute, whose request() and respond()
methods are called. This attribute is an object that implements the IDHTCommuni-
catorImpl interface and performs the actual sending of messages in its request() and
respond() methods. The advantage of using of a DHTCommunicatorImpl instance
makes it possible to have a clean and uniform interface at the upper layer to per-
form communication, with no reference to the actual RPC protocol in use. In order
to implement communication using a particular RPC protocol, the only thing to do
is just to define a class which extends the abstract DHTCommunicatorImpl class.
This new class will then be used to set the DHTCommunicatorImpl class’s DHT-
Communicator implementation attribute. The DHTCommunicatorListener interface
is implemented in the upper Peer Layer. Figure 4.1 shows the UML diagram for
the it.unipr.profiles.communicator package. The RPC Layer is responsible for both
sending and receiving messages to and from other peers and therefore the implemen-
tation of a RPC protocol needs to take care of the marshalling and unmarshalling
operations. This is needed in order to allow the upper Peer Layer to work with neu-
tral objects, independent from the RPC protocol (DHTMessage, DHTRequest, and

68 Chapter 4. DLS Framework Implementation

it.unipr.profiles.communicator

DHTCommunicator
impl: DHTCommunicatorImpl

DHTCommunicatorImpl

<<interface>>

IDHTCommunicator

 request(request : DHTRequest, listener : DHTCommunicatorListener): void
 respond(request : DHTRequest, response : DHTResponse): void

<<interface>>

IDHTCommunicatorImpl

 request(request : DHTRequest, listener : DHTCommunicatorListener): void
 respond(request : DHTRequest, response : DHTResponse): void

<<interface>>

DHTCommunicatorListener

 onDHTRequestReceived(req : DHTRequest): void
 onDHTResponseReceived(req : DHTRequest, resp : DHTResponse): void
 onDHTMessageSent(msg : DHTMessage): void

it.unipr.profiles.peer

Peer

implements implements

uses

implements

Figure 4.1: The it.unipr.profiles.communicator package (RPC Layer)

DHTResponse class objects, defined in the it.unipr.profiles.message package and sub-
packages). The current implementation of the DLS Framework includes full support
for the dSIP protocol described in the previous chapter. The dSIP protocol is imple-
mented in the it.unipr.profiles.dsip package. Based on the interfaces defined in the
it.unipr.profiles.communicator package, the DSIPCommunicator class, extending the
DHTCommunicatorImpl class, was created. In order to support the marshalling and
unmarshalling of dSIP messages, two additional classes were also created:

• DSIPMessageFactory: this class follows the Factory Pattern and provides static
methods to create dSIP messages from DHTMessage objects (marshalling);

• DSIPMessageParser: this class performs the inverse operation by parsing in-
coming dSIP messages and creating appropriate DHTMessage objects to be
used at the upper Peer Layer (unmarshalling).

Figure 4.2 shows the contents of the it.unipr.profiles.dsip package and its relation
with the it.unipr.profiles.communicator package.

4.2. Peer Layer 69

it.unipr.profiles.communicator

<<interface>>

IDHTCommunicatorImpl

 request(request : DHTRequest, listener : DHTCommunicatorListener): void
 respond(request : DHTRequest, response : DHTResponse): void

DHTCommunicatorImpl

it.unipr.profiles.dsip

DSIPCommunicator

 request(request : DHTRequest, listener : DHTCommunicatorListener): void
 respond(request : DHTRequest, response : DHTResponse): void

DSIPMessageFactory DSIPMessageParser

implements

implements

uses uses

Figure 4.2: The it.unipr.profiles.dSIP package

4.2 Peer Layer

The it.unipr.profiles.peer package holds all the interfaces and classes needed to im-
plement to Peer Layer. The Peer Layer is located between the lower RPC Layer and
the upper DLS Layer. The RPC Layer is transparent to the Peer Layer, which means
that the Peer Layer has no knowledge of the details of the communication (i.e. the
RPC protocol). The only knwoledge that Peer Layer has is the interface that the RPC
Layer offers, that is the pair of IDHTCommunicator and DHTCommunicatorListener
interfaces. The Peer Layer’s responsibility is to manage the peer’s participation in the
DHT overlay. The Peer Layer is therefore responsible to actually let the peer join and
leave the overlay, and perform storage-related operations such as storing and retriev-
ing information to and from the DHT. The DHT algorithm logic resides at this level.
The package consists of a set of interfaces and classes; the core of the Peer Layer is
composed by the following:

• IPeer interface: it defines the methods that a peer must implement to actively

70 Chapter 4. DLS Framework Implementation

participate in the DHT lifecycle; the methods are the ones defined in section
3.3.2 (DHT API);

• IPeerImpl interface: it defines all the methods that a particular DHT algorithm
implementation must implement;

• Peer class: it is a concrete class which implements the IPeer interface; this
class implements the basic behavior for these methods but leaves the details of
the implementation to a class that implements the IPeerImpl interface (Strategy
Pattern), using the same philosophy used for the DHTCommunicatorImpl class;

• PeerImpl class: it is an abstract class which implements the IPeerImpl interface;
this class is the basis for implementing DHT algorithm behavior, which will be
accessed by the Peer (Strategy Pattern);

• DHTListener interface: it defines the callback methods that are called when a
DHT-related operation (the operations defined in the Peer interface) has com-
pleted; the PeerImpl class implements this interface as well;

Figure 4.3 shows the contents of the main components implemented in the it.unipr.
profiles.peer package. Some methods do not report the exact signature for clarity rea-
sons2. Peers are created using a Factory Pattern. Instances are created by calling the
PeerFactory class’s createPeer() method. This approach is needed in order to have a
unique interface for Peer creation while still allowing for new kinds of peer being im-
plemented. The type of peer created depends on the supplied PeerImpl argument that
is being passed. The model for Peer creation and the usage of such model to extend
the framework with different DHT algorithm is shown in Figure 4.4. The Peer Layer
is also responsible for the storage of the part of information for which it is responsi-
ble, according to the DHT algorithm. The Peer class also has a ResourceMap object
which is where all the mappings between URIs and resource contacts are stored. The
components relative to information storage are located in the it.unipr.profiles.resource

2N_ARGS in the argument list means that the method has one or more arguments but we do not
report them, in order to have figures that are more comprehensible; this way we can still use the notation
with no arguments without the risk of ambiguity.

4.2. Peer Layer 71

it.unipr.profiles.peer

<<interface>>
IPeer

 join(bootstrap : Hostport, regTime : int) : DHTRPCId
 leave() : DHTRPCId
 put(uri : ResourceURI, contacts : Vector<ResourceContact>) : DHTRPCId
 get(uri : ResourceURI) : DHTRPCId

Peer
impl: IPeerImpl
communicator: DHTCommunicator
 Peer(impl : IPeerImpl): Peer

<<interface>>

IPeerImpl

 join(bootstrap : Hostport, regTime : int) : DHTRPCId
 leave() : DHTRPCId
 put(uri : ResourceURI, contacts : Vector<ResourceContact>) : DHTRPCId
 get(uri : ResourceURI) : DHTRPCId
 processPeerRegistrationRequest(N_ARGS) : void
 processPeerQueryRequest(N_ARGS) : void
 processResourceRegistrationRequest(N_ARGS) : void
 processResourceQueryRequest(N_ARGS) : void
 processPeerRegistrationResponse(N_ARGS) : void
 processPeerQueryResponse(N_ARGS) : void
 processResourceRegistrationResponse(N_ARGS) : void
 processResourceQueryResponse(N_ARGS) : void

PeerImpl

getRoutingTable() : RoutingTable

<<interface>>

DHTListener

<<interface>>

PeerListener

 onJoinCompleted(N_ARGS) : void
 onLeaveCompleted(N_ARGS) : void

<<interface>>

PutListener

 onPutCompleted(N_ARGS): void

<<interface>>

GetListener

 onGetCompleted(N_ARGS) : void

implements

implements

implements

extends

extends extends

Figure 4.3: The it.unipr.profiles.peer package (Peer Layer)

it.unipr.profiles.peer

Peer
<<interface>>

IPeerFactory

 createPeer(peerInfo : PeerInformation, peerImpl : IPeerImpl) : Peer

PeerFactory

 createPeer(peerInfo : PeerInformation, peerImpl : IPeerImpl) : Peer
 getInstance() : PeerFactory

implements

uses

Figure 4.4: Peer creation through PeerFactory

72 Chapter 4. DLS Framework Implementation

package. The ResourceMap class offers methods to add, get, and remove mappings
in behalf of the Peer class. Again, following a Strategy Pattern, the actual storage
operation is not specified but is left to a ResourceMapImpl object. In fact, it might
be convenient to have different storage policies (such as using a SQLite database
or keeping all the resources in memory) depending on factors, such as the available
memory of the device. A ResourceMap object is created by a ResourceMapFactory.
The storage component of the Peer class is shown in Figure 4.5.

it.unipr.profiles.peer

Peer
resourceMap : ResourceMap

it.unipr.profiles.resource

ResourceMap
impl : ResourceMapImpl
 setResourceMapImpl(impl : ResourceMapImpl) : void

<<interface>>

ResourceMapImpl

 addResource(N_ARGS) : void
 getResource(N_ARGS) : Resource
 removeResource(N_ARGS) : void
 addResourceContact(N_ARGS) : void
 removeResourceContact(N_ARGS) : void
 getKeySet() : Vector<String>
 clear() : void

<<interface>>

ResourceMapListener

 onResourceMapChanged(N_ARGS) : void

implements

implements

uses

Figure 4.5: Information storage

4.3 DLS Layer

The DLS Layer is the uppermost layer of the DLS. It is the access point for applica-
tions that need to access the location serivce provided by the DLS system. The Peer
Layer hides all the details relative to the DHT algorithm and information storage
policy implemented and offers to the DLS Layer only Location service-related func-
tionalities, in the same way as the RPC Layer hides all the details of communcation
to the Peer Layer.
The DLS Layer is implemented in the it.unipr.profiles.dls package. This package con-
sists of two interfaces and an abstract class. The IDLSApplication defines the methods
that can be called to interact with the underlying Peer Layer. This interface is very

4.4. Protocol Adapters 73

similar to the IPeer interface defined in the it.unipr.profiles.peer package, but it differs
from it since the methods return void. The DLSApplication class is the entry point for
any application that uses the DLS system. It implements the IDLSApplication inter-
face as this class has to deal directly with the Peer Layer and it also implements the
DHTListener interface in order to be notified by the Peer Layer when DHT-related
operation are executed. The DLSApplication class wraps an instance of Peer in or-
der to forward requests to the Peer Layer. The DLSApplication class is based on
the Delegation Pattern. The delegation pattern is a design pattern in object-oriented
programming where an object, instead of performing one of its stated tasks, dele-
gates that task to an associated helper object (Inversion of Responsibility). The helper
object is called the delegate. Delegation is dependent upon dynamic binding, as it
requires that a given method call can invoke different segments of code at runtime.
In the DLS framework, the DLSApplication is the class that deals directly with the
underlying Peer Layer to perform DHT-related operations. The DLSApplicationDel-
egate is an interface that defines a set of methods that the DLSApplication will fire at
certain times during its execution. The delegate gets informed of the status of the ope-
rations that the DLSApplication is performing. The decoupling of these components
makes it very easy to change easily the behavior of the application without the need
to extend the application class. Subclassing should be used carefully as it introduces
a tight coupling between the superclass and the subclass, which is considered bad
practice in object-oriented development. The DLSApplicationDelegate is notified by
the DLSApplication when a DHT-related operation will begin and when it ended its
execution. The execution of these operations is therefore asynchronus. However, it is
possible to realize a synchronous behavior at this level, as stated in section 4.1, by
implementing a blocking behavior in the DHTListener methods of a DLSApplication
subclass. Figure 4.6 shows the contents of the it.unipr.profiles.dls package.

4.4 Protocol Adapters

Protocol Adapters are the components that allow DLS Clients, which do not partici-
pate actively in the DLS system, to perform requests to the DLS. Protocol Adapters

74 Chapter 4. DLS Framework Implementation

it.unipr.profiles.dls

<<interface>>

IDLSApplication

 join(bootstrap : Hostport, regTime : int) : void
 leave() : void
 put(uri : ResourceURI, contacts : Vector<ResourceContact>) : void
 get(uri : ResourceURI) : void

DLSApplication
impl : Peer
delegate : DLSApplicationDelegate
 setDelegate(delegate : DLSApplicationDelegate) : void

<<interface>>

DLSApplicationDelegate

 onDLSJoinCalled(N_ARGS) : void
 onDLSLeaveCalled(N_ARGS) : void
 onDLSGetCalled(N_ARGS) : void
 onDLSPutCalled(N_ARGS) : void
 onDLSJoinCompleted(N_ARGS) : void
 onDLSLeaveCompleted(N_ARGS) : void
 onDLSGetCompleted(N_ARGS) : void
 onDLSPutCompleted(N_ARGS) : void

it.unipr.profiles.peer

Peer

<<interface>>

DHTListener

implements

implements

uses

Figure 4.6: The it.unipr.profiles.dls package (DLS Layer)

4.4. Protocol Adapters 75

act like proxy servers to DLS Clients; when a DLS Client needs to access the DLS to
store or retrieve information, the following steps are executed:

1. the DLS Client sends a request (using its own communication protocol, such
as SIP or HTTP) to a DLS Peer’s Protocol Adapter, which is set as a proxy
server;

2. the Protocol Adapter receives the message, parses it, and determines the type
of DLS request that must be performed;

3. the Protocol Adapter tells the peer to execute the appropriate request in the
DLS;

4. when the peer has executed the request, it notifies the protocol adapter about
the results of the request;

5. the Protocol Adapter then handles the results in the most appropriate way (i.e.
forwards the original request to the targeted resource);

6. the Protocol Adapter replies to the DLS Client with the results of the original
request.

The operations performed by the Protocol Adapter and peer are completely hidden
to the DLS Client, which can therefore access the DLS system in a clean way, with-
out any knowledge of the P2P-substrate. The transparency of these operations to the
DLS Client allows any P2P-unaware application to exploit the DLS with no need to
change their implementation.
Support for Protocol Adapters in the DLS Framework resides in the it.unipr.profiles.
adapter package. The package defines the ProtocolAdapter class, which implements
the behavior described previously. The ProtocolAdapter class implements the GetLis-
tener and PutListener interfaces defined in the it.unipr.profiles.peer package, since it
directly deals with the DHT for information storage and retrieval. The ProtocolA-
dapter class includes a ProtocolCommunicator object. A ProtocolCommunicator is
an object that acts as a server for incoming DLS Client requests. The ProtocolCom-
municator is defined as abstract as it can only implement the general behavior needed

76 Chapter 4. DLS Framework Implementation

to interact with the ProtocolAdapter, but the actual implementation of the commu-
nication is left to subclasses. The ProtocolAdapter implements the ProtocolCommu-
nicatorListener so that the ProtocolCommunicator can forward incoming Location
Service requests to it. The other classes in the package are utility classes for internal
operations.
Figure 4.7 shows the contents of the it.unipr.profiles.adapter package.

it.unipr.profiles.adapter

ProtocolAdapter
port : int
peer : PeerImpl
communicator : ProtocolCommunicator

ProtocolCommunicator
listener : ProtocolCommunicatorListener
 start() : void
 stop() : void

<<interface>>

ProtocolCommunicatorListener

 onClientRequestReceived(req : ClientRequest) : void

it.unipr.profiles.peer

PeerImpl

<<interface>>

PutListener

<<interface>>

GetListener

implements

implements

implements

Figure 4.7: The it.unipr.profiles.adapter package

4.5. DLS Framework usage 77

4.5 DLS Framework usage

The DLS framework can be easily used to create DLS-based applications. If there is
no need to override the default behavior of the DLSApplication class, it is sufficient
to instantiate a DLSApplication object and bind it to provided a DLSApplicationDel-
egate object. The DLSApplication object needs a Peer object to be created, which can
be done through the createPeer() method of PeerFactory. Since the DLSApplication
object deals with the lower layers, there is no need to care about the details of the
DHT algorithm or communication. The DLSApplication uses the Peer it wraps to ex-
ploit the P2P substrate in order to store and retrieve information from the DLS. This
way, the user can just focus on developing application-specific behavior and ignore
the details of P2P communication and DHT algorithm.
The typical procedure to create a DLS application is the following:

1. create a Peer object by calling the PeerFactory’s createPeer() method and pass-
ing a new PeerImpl object in order to define the behavior of the peer;

2. set the implementation of the ResourceMapFactory class by calling the method
setResourceMapImpl() and passing an instance of a ResourceMapImpl;

3. create a ResourceMap object by calling the method createResourceMap();

4. set the Peer object’s resource map to the ResourceMap object just created by
calling setResourceMap();

5. set the Peer object’s communicator by calling setDHTCommunicator() and
passing a new instance of a DHTCommunicatorImpl (i.e., a DSIPCommuni-
cator object); at this point the Peer instance is ready to join the peer-to-peer
overlay;

6. create a new instance of a DLSApplication (or one of its subclasses) by passing
the Peer instance;

7. bind an instance of DLSApplicationDelegate to the DLSApplication instance;

78 Chapter 4. DLS Framework Implementation

8. start working with the DLSApplication object; the DLSApplicationDelegate in-
stance will be notified when DLS-related events (i.e., when DLS RPCs are
executed and when they complete), so that application-specific logic can stay
separate from the DLS logic.

It is possible to add Protocol Adapters to the peer by calling the addProtocolAdapter()
method on the Peer instance, if the peer is willing to act as adapter. Listing 4.1 shows
the steps described above to create a DLS application. In this case, there is no need
to override the basic behavior of the DLSApplication class; only a DLSApplication-
Delegate class is created.

/* This class implements the DLSApplicationDelegate interface and shows a

simple usage of the DLS framework. */

package it.unipr.profiles.test;

import java.util.Vector;

import it.unipr.profiles.communicator.DHTCommunicatorImpl;

import it.unipr.profiles.communicator.DHTRPCId;

import it.unipr.profiles.dls.DLSApplication;

import it.unipr.profiles.dls.DLSApplicationDelegate;

import it.unipr.profiles.dsip.DSIPCommunicator;

import it.unipr.profiles.kademlia.KademliaPeerImpl;

import it.unipr.profiles.net.Hostport;

import it.unipr.profiles.peer.PeerFactory;

import it.unipr.profiles.peer.Peer;

import it.unipr.profiles.peer.PeerInformation;

import it.unipr.profiles.resource.ResourceContact;

import it.unipr.profiles.resource.ResourceMapFactory;

import it.unipr.profiles.resource.basic.BasicResourceMap;

import it.unipr.profiles.uri.GenericURI;

import it.unipr.profiles.util.SHA1Generator;

public class MyDLSAppDelegate implements DLSApplicationDelegate {

/* Returns a DLSApplication instance whose peer runs on the specified

hostport and belongs to the given overlay */

private static DLSApplication createDLSApplication(Hostport hp,

String overlay){

String id = SHA1Generator.SHA1(hp.toString());

4.5. DLS Framework usage 79

PeerInformation pi = new PeerInformation(id, hp,

KademliaPeerImpl.algorithm, overlay, KademliaPeerImpl.

dht, 3600);

Peer peer = PeerFactory.getInstance().createPeer(pi, new

KademliaPeerImpl());

DHTCommunicatorImpl dSIPimpl = new DSIPCommunicator(peer);

peer.setDHTCommunicatorImpl(dSIPimpl);

ResourceMapFactory.getInstance().setResourceMapImpl(new

BasicResourceMap());

peer.setResourceMap(ResourceMapFactory.getInstance().

createResourceMap());

DLSApplication app = new DLSApplication(peer);

return app;

}

/* Constructor */

public MyDLSAppDelegate(){

}

/* Application main method */

public static void main(String[] args){

DLSApplicationDelegate delegate = new MyDLSAppDelegate();

DLSApplication app = MyDLSAppDelegate.createDLSApplication(

new Hostport(args[0],Integer.parseInt(args[1]), args[2])

;

app.setDelegate(delegate);

app.join(new Hostport(args[3], Integer.parseInt(args[4]),

3600);

}

/* DLSApplication callback: GET RPC was called */

public void onDLSGetCalled(DLSApplication app, GenericURI target,

DHTRPCId rpcId) {

System.out.println("GET RPC called");

}

/* DLSApplication callback: GET RPC has completed */

public void onDLSGetCompleted(DLSApplication app, boolean status,

GenericURI target, Vector<ResourceContact> results, DHTRPCId

rpcId) {

System.out.println("GET RPC completed: " + status);

}

80 Chapter 4. DLS Framework Implementation

/* DLSApplication callback: JOIN RPC was called */

public void onDLSJoinCalled(DLSApplication app, Hostport bootstrap,

DHTRPCId rpcId) {

System.out.println("JOIN RPC called");

}

/* DLSApplication callback: JOIN RPC has completed */

public void onDLSJoinCompleted(DLSApplication app, boolean status,

DHTRPCId rpcId) {

System.out.println("JOIN RPC completed: " + status);

}

/* DLSApplication callback: LEAVE RPC was called */

public void onDLSLeaveCalled(DLSApplication app, DHTRPCId rpcId) {

System.out.println("LEAVE RPC called");

}

/* DLSApplication callback: LEAVE RPC has completed */

public void onDLSLeaveCompleted(DLSApplication app, boolean status,

DHTRPCId rpcId) {

System.out.println("LEAVE RPC completed");

}

/* DLSApplication callback: PUT RPC was called */

public void onDLSPutCalled(DLSApplication app, GenericURI uri, Vector

<ResourceContact> contacts, DHTRPCId rpcId) {

System.out.println("PUT RPC called");

}

/* DLSApplication callback: PUT RPC has completed */

public void onDLSPutCompleted(DLSApplication app, boolean status,

GenericURI uri, Vector<ResourceContact> contacts, DHTRPCId rpcId

) {

System.out.println("PUT RPC completed");

}

}

Listing 4.1: Creating a DLS-based application

4.6. DLS Framework extension 81

4.6 DLS Framework extension

The DLS framework has been defined and realized in order to be totally extensible,
thus making it possible to implement different DHT algorithms, signaling protocols,
resource map management policies, and protocol adapters. The extensive usage of de-
sign patterns in the implementation of the framework allows to implement extensions
in a clean and simple way, without changing the usage patterns of the framework. It
is therefore possible to think about all the components as pluggable modules that can
be changed independently one from each other, in order to create custom DLS in-
stances depending on the application’s needs. The DLS framework has already been
extended, by implementing the Kademlia DHT algorithm and the dSIP protocol in
order to deploy and test it for real-world applications, but it may happen that for
some applications other DHT algorithm might outperform Kademlia. In this section,
the extension process is explained in detail.

4.6.1 RPC Protocols

As stated above, the dSIP signaling protocol has been implemented and is part of the
DLS framework. Based on the framework architecture, it is possible to implement
and integrate other protocols by creating a new DHTCommunicatorImpl subclass. In
order to do so, it is necessary to implement the following methods:

• request(DHTRequest request, DHTCommunicatorListener listener): this is the
method that specifies how a DHT-related request should be marshaled, sent
to the recipient of the request and which object should be notified when the
response is received;

• respond(DHTRequest request, DHTResponse response): this method specifies
how a response (and its relative request) should be marshaled and sent back to
the sender;

• getSupportedProtocol(): this method returns the supported communication Pro-
tocol;

82 Chapter 4. DLS Framework Implementation

• getPeerURI(PeerContact pc): this method returns the PeerURI for a given Peer-
Contact, that is, the universal identifier used by the protocol to identify the
nodes;

• halt(): this method is used to stop the DHTCommunicator; messages will no
longer be received or sent by the peer.

DHTCommunicatorImpl subclasses also need to provide server-like mechanisms in
order to receive incoming requests. Typically, a DHTCommunicatorImpl listens for
incoming requests on a port, which may be specified by the RPC protocol. When a
request is received, the DHTCommunicatorImpl unmarshals the request message and
passes the request object to the Peer, which will then process the request. Therefore,
proper marshaling/unmarshaling methods must also be implemented.
The use of a standard interface for the DHTCommunicator hides all the details of
the actual communication. The Peer class is not bound to a specific protocol, but
delegates the responsibility of the communication to the DHTCommunicator.

4.6.2 DHT Algorithms

Similarly to RPC protocols, new DHT algorithms can be implemented and integrated
in the framework for use within a DLS system. The DLS framework has built-in
support for the Kademlia DHT algorithm. The process of extending the framework
is extremely simple, as for the integration of new communication protocols, and it
basically consists of creating a class that implements the desired behavior.
First of all, DHT logic resides in the Peer class. When adding support for a new DHT
algorithm, a subclass of the PeerImpl class must be created. The methods that the
subclass must implement are the following (as defined in the IPeerImpl interface):

• join()

• leave()

• get()

• put()

4.6. DLS Framework extension 83

• processPeerRegistrationRequest()

• processPeerQueryRequest()

• processResourceRegistrationRequest()

• processResourceQueryRequest()

• processPeerRegistrationResponse()

• processPeerQueryResponse()

• processResourceRegistrationResponse()

• processResourceQueryResponse()

These methods provide the DHT logic that the peer must implement when perfor-
ming requests and when processing incoming messages from other nodes in the DHT.
Other methods can be overridden if needed to accomplish specific behaviors that are
not implemented by default.
Figure 4.8 shows how to extend the DLS framework to support other DHT algo-
rithms.

4.6.3 DLS Client Protocols

As previously described, the DLS framework can be used to allow access to the DLS
service by nodes that are not part of the DLS/DHT platform. These nodes are called
DLS clients. When a DLS client wants to access the DLS in order to store or retrieve
information, it can do so through the mediation of a node (acting as a Proxy) that
belongs to the DLS system, which is called a DLS adapter peer. The DLS adapter
peer is a regular peer with some added functionalities, which are plugged as modules,
called Protocol Adapters. Protocol Adapters are therefore proxy servers for some
client protocol which can be used to store and retrieve information to and from the
DLS. Creating a new Protocol Adapter is easy with the DLS framework, as the whole
process can be reduced to the creation of a subclass of the ProtocolAdapter class. The

84 Chapter 4. DLS Framework Implementation

it.unipr.profiles.peer

<<interface>>
IPeer

 join(bootstrap : Hostport, regTime : int) : DHTRPCId
 leave() : DHTRPCId
 put(uri : ResourceURI, contacts : Vector<ResourceContact>) : DHTRPCId
 get(uri : ResourceURI) : DHTRPCId

Peer
impl: IPeerImpl
communicator: DHTCommunicator
 Peer(impl : IPeerImpl): Peer

<<interface>>

IPeerImpl

 join(bootstrap : Hostport, regTime : int) : DHTRPCId
 leave() : DHTRPCId
 put(uri : ResourceURI, contacts : Vector<ResourceContact>) : DHTRPCId
 get(uri : ResourceURI) : DHTRPCId
 processPeerRegistrationRequest(N_ARGS) : void
 processPeerQueryRequest(N_ARGS) : void
 processResourceRegistrationRequest(N_ARGS) : void
 processResourceQueryRequest(N_ARGS) : void
 processPeerRegistrationResponse(N_ARGS) : void
 processPeerQueryResponse(N_ARGS) : void
 processResourceRegistrationResponse(N_ARGS) : void
 processResourceQueryResponse(N_ARGS) : void

PeerImpl

getRoutingTable() : RoutingTable

it.unipr.profiles.kademlia

KademliaPeerImpl

it.unipr.profiles.chord

ChordPeerImpl

implements

implements

implements

Figure 4.8: Extending the DLS framework to support other DHT algorithms

ProtocolAdapter class holds already all the details about the interaction with the DLS
platform, so it is sufficient to implement a server-like behavior, that is:

• listen for incoming DLS client requests;

• parse incoming requests;

• forward the request in the DLS in behalf of the DLS client;

• send the response back to the DLS client.

The SIP and HTTP protocols are natively supported in the DLS framework by the
ProtocolAdapter subclasses called SIPAdapter and HttpAdapter. These ProtocolA-
dapter classes have been used to implement some of the demonstrative DLS-based
applications, which will be described in Chapter 5.

Chapter 5

DLS-based Peer-to-peer
Applications

5.1 P2P VoIP

In section 3.1.3, DHTs were introduced to create a distributed SIP Location Service
to implement a peer-to-peer VoIP platform.
The Session Initiation Protocol (SIP) [10] is the IETF standard signaling protocol
defined for initiating, coordinating and tearing down any multimedia real-time com-
munication session between two or more endpoints. Such endpoints are commonly
referred to as SIP User Agents (UAs). According to SIP, in order to setup a multi-
media session a caller UA sends an INVITE request to the callee UA, addressed by
a SIP URI, which may identify either the callee or the actual contact IP address and
port where the callee UA can currently be found. Since the actual contact address of
the callee UA is usually not known in advance by the caller, currently implemented
VoIP systems use the SIP URI to identify the callee. This mechanism requires a way
to dynamically map a user URI to the actual contact address of one or more UAs
where he can be reached. In the standard SIP architecture, this is achieved by SIP
intermediate nodes (like Proxy or Redirect SIP servers) and by a proper registration
mechanism through which SIP UAs update their contact addresses. This results into a

86 Chapter 5. DLS-based Peer-to-peer Applications

call scheme referred to as SIP trapezoid (Figure 5.1) and formed by the caller UA, an
outbound proxy (optional), the destination proxy (which the callee is registered with),
and the callee UA. Unfortunately such an architecture is server-centric and suffers of

INVITE

INVITE

Outbound
Proxy

Caller Callee

Destination
Proxy

BYE

INVITE

Figure 5.1: SIP trapezoid

well-known scalability and availability problems. In order to setup a session in a real
P2P fashion, a fully distributed SIP architecture is needed.

5.1.1 P2P VoIP Architecture

When a caller UA wants to initiate a session with a callee UA, it needs a way to
obtain the actual network address (IP address and port) of the callee. In the stan-
dard SIP architecture, this is usually achieved through the SIP trapezoid scheme. The
goal of the architecture is basically to collapse the SIP trapezoid into a single line,
connecting UAs directly. In order to create a fully distributed architecture for VoIP
applications, SIP URI resolution can be provided by a peer-to-peer network, allow-
ing for storing and lookup operations on SIP URIs. The most suitable peer-to-peer
network type to do this is represented by the Distrubuted Location Service, described

5.1. P2P VoIP 87

in Chapter 3. According to our P2P VoIP architecture [24], the DLS stores mappings
between a URI identifying the resource (the callee UA) and a set of contacts for the
resource (where and how the UA is currently reachable). Such information includes
the routable URL of the UA (containing IP address and port number), an optional
human-readable display name, an expiration time, and an access priority value.
In order to register a UA’s contact in the DLS, it is just needed to perform a put() RPC
in the DLS, either directly (if the UA encapsulates a peer belonging to the DLS) or
through an adapter peer (for instance, if the application is a legacy SIP UAs).
Session establishment requires some additional steps to be performed, which depend
on whether the UA encapsulates a DLS peer or not. In the former case, the following
steps are performed:

1. the caller UA, which encapsulates a DLS peer, perform a DLS get() RPC to
retrieve the contact address of the callee;

2. when the address of the callee has been resolved, the caller UA sends an
INVITE request directly to the callee UA and the session can be established.

An example of session setup between two SIP UAs wich encapsulate DLS peers is
depicted in Figure 5.2. In case the UA does not encapsulate a DLS peer, it needs to set

Caller

DLS get()

2

INVITE

Callee

DLS Peer DLS Peer

DLS

3

1

Figure 5.2: P2P VoIP session with P2P-aware SIP UAs

88 Chapter 5. DLS-based Peer-to-peer Applications

a DLS peer with a proper SIP Adapter module as its outbound proxy. In this scenario,
the steps required to establish a session are the following:

1. the caller UA sends an INVITE request to its outbound proxy, that is, the DLS
SIP adapter peer;

2. the SIP Adapter parses the request and performs a DLS get() RPC to resolve
the callee’s contact address;

3. when the address of the callee has been resolved, the SIP Adapter forwards the
INVITE request to the callee UA and the session can be established.

An example of session setup between two SIP UAs which encapsulate DLS peers is
depicted in Figure 5.3.

Caller

DLS get()

DLS Peer

3

INVITE

Session

INVITE

Callee

DLS
4

1

2

Figure 5.3: P2P VoIP session with P2P-unaware SIP UAs

5.2 Distributed Web Server

The Distributed Web Server (DWS) is a DLS-based application which implements
a distributed HTTP server. When using a DWS, contents, such as files, are stored
on a number of collaborating nodes rather than on a single host. The DWS uses the

5.2. Distributed Web Server 89

DLS service in order to store and retrieve the mappings between resource URIs and
their actual locations. The DWS allows for data replication, which can be achieved
by storing the same information on different hosts. Moreover, contents can be parti-
tioned among the collaborating nodes, for instance for security issues.

5.2.1 DWS Node Architecture

In the DWS system, nodes are applications composed of some modules:

• a DLS Application, which integrates a DLS peer, in order to interact with the
DLS system; the DLS peer also has an HTTP Adapter module in order to be
able to receive requests from P2P-unaware clients;

• an HTTP server to serve requests for resources;

• a Resource Publish daemon (RPD) in order to store and refresh the mappings
of the resources hosted by the HTTP server;

• an optional Resource Replication daemon (RRD), which is used to force repli-
cation of the resources hosted by the HTTP server on other nodes.

The typical scenario for the Distributed Web Server is as follows:

1. an HTTP client (i.e. web browser) issues a request for a particular resource,
hosted in the DWS; the request is sent to the HTTP Adapter of a DLS Peer that
the HTTP client has set to be its proxy;

2. the HTTP Adapter module parses the incoming request and performs a DLS
get() RPC for the targeted resource;

3. when the resource’s address has been resolved, the HTTP Adapter relays the
original request to the appropriate HTTP server, which belongs to a DWS node;

4. when the HTTP server receives the request from the DLS HTTP Adapter peer,
it serves the request, and the response is relayed to the DLS HTTP Adapter
peer and then to the original HTTP client.

90 Chapter 5. DLS-based Peer-to-peer Applications

Such a procedure, depicted in Figure 5.4, is totally transparent to the end user (i.e.
a web browser), which only needs to set a valid DLS HTTP Adapter peer as its
proxy. The proxy behavior can follow different policies. However, the suggested pol-

HTTP
Client

DLS get()

DLS Peer

3HTTP GET

HTTP GET
HTTP

Server

DLS
4

5

6
1

2

Figure 5.4: Distributed Web Server scenario

icy, which is the most general, is to try to resolve in the DLS any resource. If the re-
source cannot be resolved in the DLS, the proxy should act as a regular HTTP proxy
server, using the DNS system to resolve the FQDN part of the resource URI. Once
the resource has been resolved, either totally through the DLS or partially through
the DNS system, the request is relayed and responses are sent back to the originator
client through the DLS HTTP Adapter peer.
The Resource Publish daemon (RPD) is the module responsible for publishing the
mappings between the resources hosted by the HTTP server and their actual location.
The RPD periodically checks the resources hosted by the HTTP server and translates
their path to a URI to be used as a key and a routable-URL. For each hosted resource,
the key-to-value mapping is stored by the RPD through the DLS peer.
The Resource Replication daemon (RRD) is the module responsible for ensuring data
replication in the overall system. Data replication might be needed in order to make

5.2. Distributed Web Server 91

resources available upon the failure of nodes. The RRD can follow different policies
for data replication. Typically, the RRD periodically checks how many copies of a
given resource are available in the DWS. This can be done by executing a DLS get()
RPC for the given resource. If the number of available copies is less than a desired
threshold, the RRD selects some nodes belonging to the DWS and sends an HTTP
PUT request to their HTTP server, so that they can be instructed to store the given
resource. The DWS that receives the resource will then make it available in the DWS
system when its RPD will publish the mapping.

5.2.2 DWS Deployment Example

Let us suppose a Distributed Web Server for the domain www.dws.org is established
among the nodes h1, h2, h3, and h4 and the resources distributed among the nodes as
follows:

• h1→ r1,r2,r3,r4

• h2→ r1,r3,r5,r7

• h3→ r5,r6,r7,r8

• h4→ r2,r4,r6,r8

Resources are therefore assigned as follows:

• r1→ h1,h2

• r2→ h1,h4

• r3→ h1,h2

• r4→ h1,h4

• r5→ h2,h3

• r6→ h3,h4

• r7→ h2,h3

92 Chapter 5. DLS-based Peer-to-peer Applications

• r8→ h3,h4

Each node hi has the following information associated:

• the HTTP server port ps,i

• the HTTP adapter port pa,i

The DLS contents for the DWS are depicted in table 5.1.

Table 5.1: DLS content for the DWS for the domain www.dws.org
Key Value

http://www.dws.org/r1 http://h1 : ps,1/.../r1

http://h2 : ps,2/.../r1

http://www.dws.org/r2 http://h1 : ps,1/.../r2

http://h4 : ps,4/.../r2

http://www.dws.org/r3 http://h1 : ps,1/.../r3

http://h2 : ps,2/.../r3

http://www.dws.org/r4 http://h1 : ps,1/.../r4

http://h4 : ps,4/.../r4

http://www.dws.org/r5 http://h2 : ps,2/.../r5

http://h3 : ps,3/.../r5

http://www.dws.org/r6 http://h3 : ps,3/.../r6

http://h4 : ps,4/.../r6

http://www.dws.org/r7 http://h2 : ps,2/.../r7

http://h3 : ps,3/.../r7

http://www.dws.org/r8 http://h3 : ps,3/.../r8

http://h4 : ps,4/.../r8

Let us suppose that an HTTP client C wants to access the resource r5. In order to do
so, it sets its proxy to be the HTTP Adapter of any of the DWS nodes. C decides to
use the HTTP adapter of node h1 as its proxy. The message flow is the following:

• C sends an HTTP GET request for r5 to the HTTP adapter of node h1, which
is reachable at http://h1 : pa,1 (i.e., GET r5 HTTP/1.1);

5.3. Distributed File System with HDFS 93

• the HTTP adapter of node h1 receives the request and performs a DLS lookup
for r5 on behalf of C;

• the lookup returns two possible locations for r5 (nodes h2 and h3);

• the HTTP adapter of node h1 sends a request for r5 to the selected HTTP server
(i.e., h2, which is reachable at http://h2 : ps,1); the choice on which node to use
might depend on some policy, such as using the access priority value;

• the HTTP server of node h2 receives the request, serves it, and sends its re-
sponse back to the HTTP adapter of node h1;

• the HTTP adapter of node h1 receives the response and relays it back to C.

The whole process of retrieving the resource is transparent to C, which doesn’t need
to know anything about the DWS infrastructure (i.e., h1 belongs to the DWS), but
only sees that node h1 is acting as a regular HTTP proxy.
In the case of failure of node h2, the resource would still be available on node h3, so
the request could still be fulfilled.

5.3 Distributed File System with HDFS

Dealing with huge amounts of data in data mining and user data collection applica-
tions, like Facebook1 and Yahoo2, has become more and more frequent. A solution
to cope with this problem is to spread data over multiple network-connected physi-
cal devices, which increases system complexity and introduces additional potential
points of failure. Moreover, despite the capacity of hard drives as massive storage sys-
tems has increased extremely during years, the speed at which data can be accessed
has not. In order to address this problem, over the years, distributed file systems, such
as Network File System (NFS), Hadoop Distributed File System (HDFS), Amazon
Simple Storage Service (Amazon S3), and Google File System (GFS), have been de-
signed and deployed. Such systems provide access to files stored on multiple hosts

1http://www.facebook.com
2http://www.yahoo.com

http://www.facebook.com
http://www.yahoo.com

94 Chapter 5. DLS-based Peer-to-peer Applications

connected through a computer network transparently to users.
The peer-to-peer network paradigm has been introduced to overcome some limita-
tions of the client-server architecture by adding features, such as scalability, fault-
tolerance, and self-organization. In this section, a solution that integrates peer-to-peer
network support to HDFS is presented, in order to realize a flexible, low-cost and, dy-
namic distributed file system [25].

5.3.1 HDFS Architecture

HDFS uses the concept of blocks of data. The block size is the minimum amount of
data that the system can read and/or write. Stored data are broken into chunks ac-
cording to the block size, which are then stored as independent units. Splitting data
simplifies the storage management as every size computation is related to multiples
of blocks. Blocks are also used as base units for data replication.
In an HDFS cluster, blocks are persistently stored into one or more workers, each one
called datanode, whose job is to read and write data, and periodically send reports of
which data they contain. The file system manager is another node, called namenode.
The namenode manages the filesystem namespace, maintains its hierarchical tree and
the metadata for files and directories in the tree. This information is stored persis-
tently on the namenode’s local disk. The namenode also keeps a registry of all the
blocks of a given file and on which datanodes these blocks are located. The structure
of the entire system is therefore highly dependent on the namenode. Without the na-
menode, the entire file system would be unusable since there is no way to reconstruct
a file from the blocks stored on the datanodes. For this reason, it is important to make
the namenode resilient to failure. This can be achieved by making regular backups
of the persistent state of the file system metadata and writing them to multiple stor-
age devices. These backup jobs can be done continuously by a special node called
secondary namenode, which has to be dedicated to these tasks only as continuous
registry merging could be computing intensive.
HDFS also provides replication methods to avoid data loss. Each time a new block
is written, the namenode should also locate where replicas of the block should be
placed. In common scenarios, every block is replicated three times. A CRC function

5.3. Distributed File System with HDFS 95

applied on every 512 bytes of each block is also normally used to achieve data in-
tegrity. A HDFS cluster is typically made by several (even hundreds) datanodes (data
center), organized in different racks, which are redundant in nature, and one name-
node, that is indeed extremely susceptible to hardware failure.
In order to ensure that HDFS works correctly, all the machines in the cluster should
be pre-configured accordingly: every datanode must know who the namenode is and
where it is located in order to run successfully, and the namenode must know ev-
ery datanode’s location to reach it and make it active during a working session.
The HDFS working environment is extremely static. Therefore, if more machines
are needed to perform a job (because their number has been underestimated), new
machines need to be added to the cluster. On the other hand, if less machines are
needed (because they have been overestimated), some machines would not be used
and would not be operant; in both cases the entire system should be opportunely
rebalanced and configured.

5.3.2 DLS-based HDFS

HDFS is intended to scale well on commodity machines, providing good data transfer
performances with high reliability. HDFS provides methods for balancing the cluster
load and adding/removing datanodes to and from the system. Each machine should
be pre-configured to act as a datanode, which involves knowing exactly where the
namenode is and how to reach it. Also, during system startup, the namenode should
know an initial list of datanodes to work properly. These constrains can limit system’s
functionality in those scenarios which do not guarantee complete staticity, as every
datanode should be configured for accessing a well-known namenode. This means
that if the namenode changes because of a failure or if there is more than one name-
node, each one for a specific, time-limited, working session, every datanode must be
reconfigured. In order to overcome these limitations, a peer-to-peer layer (Kademlia-
based DLS) could be introduced in the architecture to provide a way for datanodes
to dynamically connect and disconnect from an HDFS working session without com-
promising overall system’s performance.
The DLS is used to connect cluster machines one to each other and exchange in-

96 Chapter 5. DLS-based Peer-to-peer Applications

formation among them, with no static configuration needed. The namenode, which
integrates a DLS peer, connects to the overlay and publishes information. When the
namenode joins the overlay it publishes its status and service addresses in the DLS
through successive put RPCs, thus making them accessible to other DLS peers. This
information is then maintained collectively by all the peers participating in the DLS,
but only the namenode can and must keep them fresh. All the information a node
needs in order to become an active HDFS datanode is therefore available in the DLS
and can be retrieved through get RPCs. As a new datanode enters the system, it can
read the needed namenode information from the DLS layer, discover the namenode’s
location and contact it for authentication. As the namonode accepts the new datan-
ode, the datanode becomes part of the HDFS cluster and all the following operations
are done using the HDFS RPC protocol, so that the DLS is not involved anymore and
HDFS performances are preserved. Figure 5.5 shows how namenodes and datanodes
interact with the P2P substrate.
Since the information stored in the DLS has an expiration time associated, if the na-
menode fails, its access information is going to be deleted by the system. In order
to better react to failures, a modified version of the Kademlia protocol has been de-
fined. In case of failure of a node, when the failure is discovered, this information
is propagated in the DHT, thus forcing other DHT nodes to remove the failed node
from their routing tables. This mechanism improves considerably the average time
for DLS-related RPCs with little overhead due to additional network traffic. While
the namenode is unavailable, datanodes begin to poll on the DLS, waiting for the na-
menode or its replacement to become active. As soon as a namenode joins the DLS,
it publishes its access information, so that datanodes can contact it to register and the
system returns to a fully functional status. Therefore, the system itself is responsi-
ble for its functional consistency, thus eliminating the drawbacks of assistance in the
event of failures.

5.3.3 Possible Enhancements

One-hop DHTs [6] appear to fit better into the architecture for our reference sce-
nario. One-hop DHTs provide O(1) lookup procedures. This performance boost can

5.3. Distributed File System with HDFS 97

New Datanode
Peer

Datanode
Peer

Get Namenode
information

Namenode
discovery

Register to
Namenode

Publish
access

information

Insert
Datanode
in HDFS

Datanode
Peer

Namenode
Peer

DLS/DHT

HDFS

1

2b

2a

3

4

Figure 5.5: HDFS and DLS integration

98 Chapter 5. DLS-based Peer-to-peer Applications

be achieved only with O(N) state information, which make these DHTs suitable only
for relatively low numbers of participating nodes. However, this is actually the kind
of applications where such DHTs might offer their full benefits.
Another possible enhancement is to fully distribute the functionalities of the name-
node. This feature would allow the deployment of a HDFS architecture in a purely
P2P fashion. All nodes would collaborate to implement the management of the file
system collectively, thus making the entire architecture more robust, since the name-
node functionalities would be divided among all the peers. The advantages would
therefore be the elimination of single point of failure and increment the performance
for the system since the intermediation of the namenode bottleneck would be no
longer required. Replacing the namenode with a distributed system comes at the price
of overloading all datanodes of all the management of all the information related file
system and the synchronization with the overlay participants. This approach increases
the overall complexity and must be properly designed to ensure that full functionali-
ties are available at any time, even when nodes fail.

5.4 Peer-to-peer Online Social Networks

Over the last few years, peer-to-peer and online social network (OSN) applications
have dramatically changed the world of the Internet, by increasingly gaining their
share of overall network traffic. Both kinds of applications are mainly focused on
single users, who are no longer just service and content consumers but have also
acquired the crucial role of content creators (Web 2.0) and service enablers and
providers (P2P). Despite their growth, these two families of applications are still
considered to be two separate worlds. The reason for this is mainly due to what these
applications are used for: P2P applications are mainly used for file sharing, while
social networks are essentially a means of communications.
The P2P network paradigm has been conceived to overcome some shortcomings of
the client-server architectures by introducing the features of decentralization, sca-
lability, robustness, and self-organization. P2P networks benefit from the aggregate
resources of users, in terms of bandwidth, computational power, storage, rather than

5.4. Peer-to-peer Online Social Networks 99

on a limited centralized architecture. P2P networks actually improve their perfor-
mance when the number of users increases as the overall capacity of the system also
increases. Contrast this with centralized systems, where the growth of the number of
accesses makes the service worse, as the slice of resources allocated to each user gets
smaller and smaller. P2P networks are typically built on an overlay network, which is
built on top of an existing network such as the Internet. The overlay network is built
by establishing virtual (logical) links among the nodes, according to specific rules.
The rules and mechanisms that regulate the creation of overlay links determine the
nature of the P2P network, which might be structured or unstructured.
Social network services present some issues in terms of scalability, robustness, in-
teroperability, and privacy. All these features are achieved mainly by the presence of
centralized entities, whose redundancy allows to basically nullify the downtime of
the service. However, this solution introduces some concerns for a series of reasons.
First, the infrastructure needed to sustain huge, and inherently increasing, amounts
of information and traffic requires enormous economical efforts. Because of this, it
is very difficult for newly born social networks to compete with well-established ser-
vices, such as Facebook3 and MySpace4. Second, despite the development of open
service APIs to allow third-party applications to access and publish content on exist-
ing services, full interoperability is still far from being achieved. Finally, privacy is
basically achieved through user authentication and access privilege policies, which
are usually deployed on centralized systems. Since social network services typically
store (very) personal information about users, efforts have been made to implement
and ensure security. However, there is still some concern about the fact the so many
private information about people are in the hands of few, who may appear as third-
millennium “big brothers”.
In this section, a solution to integrate the world of P2P with social networking is
proposed, in order to address the issues that we have described. The goal is to cre-
ate a P2P infrastructure that resembles existing social networks in terms of available
services, but tries to overcome the problems of centralized architectures by exploi-

3http://www.facebook.com
4http://www.myspace.com

http://www.facebook.com
http://www.myspace.com

100 Chapter 5. DLS-based Peer-to-peer Applications

ting the typical features of distributed systems: scalability, fault-tolerance, and self-
organization.

5.4.1 P2P OSN Architecture

The P2P OSN architecture is based on three basic building blocks or components:
a Distributed Location Service (DLS), a Distributed Storage Service (DSS), and a
Privacy Enforcement Framework (PEF). The DLS (Chapter 3) is a P2P service based
on a Distributed Hash Table (DHT) which allows the storage and retrieval of access
information for any kind of resource, thus allowing the establishment of direct con-
nections among the endpoints of a communication in a pure P2P fashion, without
the need for intermediate nodes. The DLS is also used for storing off-line messages,
posts, and news, and for addressing other resources like images, videos, and other
multimedia resources. The DSS, which is still based on the location service offered
by the DLS, is a distributed platform for the actual storage, publishing, and retrieval
of any multimedia resource. Finally, the PEF provides proper security and privacy
functionalities through public key and symmetric cryptography combined with a key
distribution architecture. Over these building blocks, there are the actual Social Net-
work Services, such as Presence, Instant Messaging (IM) and VoIP, offline messag-
ing, posts, and multimedia content sharing. Let us consider in more details all these
components.

5.4.2 Data Storage

In the proposed OSN architecture, the DLS provides the link function between all
used resources (users, services, multimedia resources, etc.) and their actual contact
address, access protocol, and policy rules. In addition to such access information,
the OSN platform should also provide support for the actual storage and retrieval of
all physical resources (such as profile contents, messages, posts, news, multimedia
files, etc.), in a reliable, scalable and efficient way. For practical convenience, we di-
vide data into two main categories: small data and big data. Small data include all
resources that are not big in nature and that require very small amount of bytes to

5.4. Peer-to-peer Online Social Networks 101

be recorded, ranging from few bytes (user profile information, such as name, email
address, etc.) to some hundreds or thousands of bytes (offline messages, posts, news,
etc.). Instead, big data include all other resources (such as images, audio/video files,
programs, etc.) that range from hundreds of Kbytes to Gbytes or more. Due to the re-
latively small amount of bytes required for small data, according to our architecture,
they are stored directly within the DLS and managed (inserted, replicated, fetched
and deleted) according to the corresponding DHT algorithm. On the other hand, big
data are stored in the Distributed Storage Service, a proper scalable and efficient plat-
form.
Note that, regarding small data, in the proposed implementation, RFC 2397 [17] was
exploited, thus allowing the encapsulation of small data within a URI, in order to
directly use the DLS for both resource registration, and small data storing.

5.4.3 Distributed Storage Service

In section 5.2, the implementation of a distributed web server (DWS) based on a
underlying DLS service was proposed. Such DWS may act as a regular web server to
end users, where resources can be transparently navigated by using any standard web
browser. Under the hood, resources are actually stored in a distributed environment of
different nodes, thus allowing more robustness, scalability, and load balancing. Such
simple distributed web server service has been further extended in order to provide
a distributed, efficient, and scalable storing and publishing mechanism. Storing peers
are chosen from the DLS routing tables (peer lists), and registered on the DLS, which
offers the proper resource location lookup service. Persistence is implemented by a
replication mechanism that allows resource copies to be transferred among the DWS
nodes. Resources are stored to and retrieved from other peers through standard HTTP
or HTTPS protocols. This results in a completely Distributed Storage Service (DSS).
The DSS can be used to share any kind of files.

102 Chapter 5. DLS-based Peer-to-peer Applications

5.4.4 Privacy Enforcement Framework

A crucial aspect in online social networks is the exposure of very personal infor-
mation about users to the world. Concerns about privacy become even more when
considering a distributed environment, where no central authentication authority is
present. In the DLS, data are stored at unrelated points of the overlay network, ac-
cording to the rules defined by the DHT algorithm in use. This means that private
information might be stored on any node, even those which the user does not want to
make his information available to.
In order to solve this problem, a Privacy Enforcement Framework (PEF) is proposed,
that includes both encryption rules and a key distribution architecture used for storing
and retrieving both small and big data.

Evaluation of Key Distribution Techniques

In order to create the PEF, different strategies for key distribution have been consid-
ered. Assume there is a user u. u has a set of friends U = {u1,u2, ...,un}. |U |= n.
u wants to publish a set of resources: R = {r1,r2, ...,rr}. |R|= r.
Assume each user x (or friend) has a pair of public/private keys (K+

x,K−x).
The PEF should make it easy to distribute and revoke keys for encrypting contents
and change access privileges dynamically.

Case 1 - Single user key u creates a key Ku. u communicates Ku to each friend ui ∈
U , encrypted using the public keys of his friends. This is accomplished by performing
n put RPCs in the DLS. u publishes his r resources, encrypted using Ku. This is
accomplished by performing r put RPCs in the DWS.

Case 2 - A key for each resource u creates a key Kri for each resource r ∈ R:
{Kr1,Kr2, ...,Krr}. u publishes his resoruces in the DWS, ecncrypted using resource
keys. This is accomplished by performing r put RPCs in the DWS. u publishes the

5.4. Peer-to-peer Online Social Networks 103

resource keys in the DLS, encrypted using the public keys of his friends. This is
accomplished by performing nr put RPCs in the DLS.

Case 3 - A key for each user, a key for each resource u assigns a key Kui to each
user ui ∈U and a key Kri to each user ri ∈ R. u publishes in the DLS the keys for
each user, encrypted using the public keys of his friends. This is accomplished by
performing n put RPCs in the DLS. u publishes in the DWS his resources, encrypted
using each resource key Kri. This is accomplished by performing r put RPCs in the
DWS. u publishes in the DLS the keys for resources, encrypted using the keys of
friends. This is accomplished by performing nr put RPCs in the DLS.

Case 4 - Binary tree key assignment This technique is based on the binary tree
method for deterministic revocation of privileges [26]. u creates a binary tree, where
every node has a key associated to it, and each leaf is assigned to a friend. Each friend
is assigned a set of keys (the keys that are on the path form the root to their assigned
leaf). This is accomplished by performing n · log2n put RPCs in the DLS. u assigns
a key Kri to each user ri ∈ R. u publishes his resources in the DWS, encrypted using
each resource key. This is accomplished by performing r put RPCs in the DWS. u
publishes the keys associated to resources in the DLS, encrypted using the smallest
subset of keys (let’s say nk) that cover the leaves of desired users (best (typical) case
1, worst case n/2). This is accomplished by performing nk · r put RPCs.

case 1 case 2 case 3 case 4
total keys for users 1 0 n 2n−1

total keys for resources 1 r r r

total DLS put procedures n nr (n+1)r n · log2n+nk · r
total DWS put procedures r r r r

Table 5.2: Evaluation of different key distribution approaches

Evaluation In the case of adding a friend, the operations that need to be performed
in the DLS/DWS are shown in table 5.3. In the case of removing a friend, the ope-

104 Chapter 5. DLS-based Peer-to-peer Applications

case 1 case 2 case 3 case 4
DLS put procedures 1 r r 1

DWS put procedures 0 0 0 0

Table 5.3: Evaluation of different approaches for key addition

rations that need to be performed in the DLS/DWS are shown in table 5.4. Case 1

case 1 case 2 case 3 case 4
DLS put procedures 2n−1 (2n−1) · r (r+1)(2n−1) nk · r
DWS put/remove procedures 2r 2r 2r 0

Table 5.4: Evaluation of different approaches for key revocation

requires less keys to be stored in the DLS, but it suffers of inefficiencies in the case of
changes in U . Case 2 and 3 require more keys to be stored in the DLS, but suffer great
inefficiencies in the case of changes in U . Case 4, finally, requires even more keys to
be stored in the DLS, but offers great flexibility and efficiency in the case of changes
in U . If removing a friend, in case 4 there is no need to remove anything from the
DWS, which is quite desirable since the complexity of this operation is high.

Binary Tree Key Distribution

Suppose any user x in the social network has a pair of public/private keys (Kx
+,Kx

−).
Each user also has a list of friends Ux = {u1,u2, ...,um} (buddy list) that defines which
users have the privilege to access the private contents of x. Let’s also assume, for
simplicity, that |Ux|= m = 2n. x constructs a binary tree Tkx with m leaves, each one
assigned to a user in its buddy list. A key is assigned to each node in the tree as in
Figure 5.6. Each user ui ∈ Ux then stores all the O(log2m+ 1) keys Ki in the path
from the root to its assigned leaf. User x stores all the 2m− 1 keys of the tree. x
publishes all the Ki sets in the DLS with a URI that associates x with each ui and a
value that is the Ki encrypted using Kx

− and Kui
+ in order to ensure both authenticity

and confidentiality.

5.4. Peer-to-peer Online Social Networks 105

k0

k1 k2

k3 k4 k5 k6

k7 k8 k9 k10 k11 k12 k13 k14

u1 u2 u3 u4 u5 u6 u7 u8

Figure 5.6: Key distribution tree

Let M be a message that x is willing to share with a subset L ⊆U of his buddies. x
can encrypt M using a session key KM and obtain a ciphered message C = EKM(M).
x then stores the ciphered message C in the DSS (that is, it stores the reference to the
message M in the DLS, and C is stored on a node that belongs to the DSS). In order
to make M accessible to the users in L, x stores in the DLS a so-called encryption
header HM, which is computed by selecting the smallest subset of keys of the tree
Tkx that covers all the users is L and then encrypting with such keys the session key
KM. Figure 5.7 shows how a user can store encrypted content in the DSS/DLS that is
decryptable only by some selected users.
When a user ui wants to access the message M, it can retrieve C and HM from the
DLS/DSS system. Only if ui ∈ L, HM can be decrypted using one of the keys assigned
to ui to get the session key KM. Once C and KM are available, M can be obtained by
decrypting C: M = DKM(C).
If the message M needs to be accessed by a different set of users L′, in the case x adds
or removes a user from its buddy list, x just needs to select the new smallest subset of

106 Chapter 5. DLS-based Peer-to-peer Applications

User

Buddy
List

K+

K

C

M

Tk

DSS

DLS

encrypt

Subset of
Keys in TK

encryption header

Keys
L

encrypt

encrypt

n

n

M

HM

L

n

Figure 5.7: Storing encrypted content in the DSS/DLS

5.4. Peer-to-peer Online Social Networks 107

keys that covers all the users in L′, compute the new encryption header H ′M, and store
it in the DLS.

5.4.5 Social Network Services

User profiles are persistently stored into the DLS. This information includes the user’s
name, email address, and other significant attributes. Implementing some services,
such as presence, messaging, and media sessions into the proposed P2P social net-
work is quite easy. In general, all the information stored by a user is encrypted using,
at least, its private key K−, in order to ensure authenticity.

Presence

Presence can be implemented by storing presence information about users directly in
the DLS. When a user logs in, it stores his presence information into the DLS (which
has an expiration time and must be kept fresh). Then it checks his list of friends
(which is, in terms of presence services, the list of users who subscribed for user’s
presence notifications) and sends a notification message directly to each of them.
When a user logs out, it removes its presence information from the DLS. In the case
a user does not explicitly log out, its presence information will automatically expire.

IM and VoIP

IM and VoIP services are traditionally implemented through a centric server-based
approach. Within IETF a specific Working Group (P2PSIP) is currently working on
a proper architecture and protocol for moving toward a completely decentralized dis-
tributed VoIP architecture. According to the work done in IETF, any SIP-based instant
messaging and VoIP session can be established by simply performing a lookup ope-
ration in a DLS that in turn can be based on a DHT, such as in our architecture. In
case of a call or a messaging session has to be set-up between two or more user, the
targeted user’s contact is simply retrieved from the DLS, and a direct media session
can then be established between the two endpoints.

108 Chapter 5. DLS-based Peer-to-peer Applications

Offline messaging and media contents

Posting short messages or news relies again on the direct storage of short data within
the DLS DHT, as described in previous sections. Posting multimedia contents, in-
stead, relies on the DSS platform. When a user wants to publish content, it stores into
the DLS a reference to its locally stored resource. When other users want to access
it, they just need to look it up in the DLS and then access it directly. In order for this
data to be available even when the user disconnects, a replication mechanism is im-
plemented in order to ensure that at least a certain number of copies is maintained in
the DSS. Since this kind of operation replicates the media on unrelated points of the
overlay network it is necessary to encrypt the media contents according to the PEF
described earlier, so that no one but authorized users can access it.

Chapter 6

Conclusions

Nowadays, peer-to-peer technology is no longer used to create just file sharing appli-
cations. Many applications have shown how the peer-to-peer paradigm can be effi-
ciently used to implement other kinds of services, such as Skype did with VoIP. The
peer-to-peer model offers great opportunities to market newcomers as it permits to
keep costs down as the infrastructure needed to create the service can be very cheap
or even free.

Several peer-to-peer applications use Distributed Hash Tables (DHT) as a build-
ing block. DHTs are a class of decentralized distributed systems that provide a lookup
service similar to a hash table; (key, value) pairs are stored in a DHT, and any par-
ticipating node can efficiently retrieve the value associated with a given key. Respon-
sibility for maintaining the mapping from keys to values is distributed among the
nodes, in such a way that a change in the set of participants causes a minimal amount
of disruption. This allows a DHT to scale to extremely large numbers of nodes and
to handle continual node arrivals, departures, and failures.

This thesis has addressed the problem of defining a DHT-based peer-to-peer ar-
chitecture to create distributed applications beyond file sharing. The goal of the archi-
tecture was to create a scalable, fault-tolerant, self-organizing lookup service to store
and retrieve access information for resources in order to allow the establishment of
direct connections between the endpoints of the communication with no need of cen-

110 Chapter 6. Conclusions

tral servers.
The activity has been focused on the definition of a Distributed Location Service

(DLS), which acts as a distributed registry where resource access information can
be stored and retrieved. Access information, in the form of key-to-value mappings
(i.e., resource URI to resource URL) is maintained collectively by the peers that
participate in the DHT that is used to build the DLS. The implementation of a DLS
framework has also been realized, by defining a standard set of interfaces between
the components of the DLS, in order to allow maximum flexibility on components
such as the DHT algorithm and communication protocol in use, as no assumption has
been made in the definition of the DLS architecture. The DLS framework allows to
create instances of Distributed Location Services, particularized by their own DHT
algorithm and communication protocol, as needed by the application that is going to
access the DLS.

Based on the DLS architecture and framework, some demonstrative applications
have also been realized, such as peer-to-peer VoIP, a Distributed Web Server, a dis-
tributed File System, and a peer-to-peer Online Social Network. These applications
show how easy distributing Internet applications can be with the support of the DLS
and that peer-to-peer technology is a very efficient tool to create other application
than file sharing. Other interesting applications that have been considered are P2P-
based streaming systems for WebTV, even though the issues that must be addressed
in this kind of applications make them more difficult to realize.

Another direction of the research was the definition of a decentralized, scalable,
and self-configuring bootstrap service for peer-to-peer networks, which is a problem
usually solved with non-P2P approaches. The solution presented is a Multicast-based
notification service which allows new nodes to gather information about nodes that
are already part of a peer-to-peer network in order to be admitted in the overlay. The
proposed solution has been validated and can be easily integrated with the DLS in
order to obtain a true distributed, scalable, fault-tolerant, and self-organizing archi-
tecture that can be used to eliminate the need of central servers in several scenarios.

Bibliography

[1] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for Internet applications.
In Proceedings of the ACM SIGCOMM ’01 Conference, San Diego, California,
August 2001.

[2] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer informa-
tion system based on the XOR metric. Lecture Notes in Computer Science,
2429:53–??, 2002. Available from: http://link.springer.de/link/
service/series/0558/bibs/2429/24290053.htm;http:

//link.springer.de/link/service/series/0558/papers/

2429/24290053.pdf.

[3] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-addressable network. SIGCOMM Comput. Com-
mun. Rev., 31:161–172, August 2001. Available from: http://doi.acm.
org/10.1145/964723.383072, doi:http://doi.acm.org/10.

1145/964723.383072.

[4] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Rachid Guerraoui,
editor, Middleware 2001, volume 2218 of Lecture Notes in Computer Science,
pages 329–350. Springer Berlin / Heidelberg, 2001. Available from: http:
//dx.doi.org/10.1007/3-540-45518-3_18.

http://link.springer.de/link/service/series/0558/bibs/2429/24290053.htm; http://link.springer.de/link/service/series/0558/papers/2429/24290053.pdf
http://link.springer.de/link/service/series/0558/bibs/2429/24290053.htm; http://link.springer.de/link/service/series/0558/papers/2429/24290053.pdf
http://link.springer.de/link/service/series/0558/bibs/2429/24290053.htm; http://link.springer.de/link/service/series/0558/papers/2429/24290053.pdf
http://link.springer.de/link/service/series/0558/bibs/2429/24290053.htm; http://link.springer.de/link/service/series/0558/papers/2429/24290053.pdf
http://doi.acm.org/10.1145/964723.383072
http://doi.acm.org/10.1145/964723.383072
http://dx.doi.org/http://doi.acm.org/10.1145/964723.383072
http://dx.doi.org/http://doi.acm.org/10.1145/964723.383072
http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1007/3-540-45518-3_18

112 Bibliography

[5] B.Y. Zhao, Ling Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D. Ku-
biatowicz. Tapestry: a resilient global-scale overlay for service deployment.
Selected Areas in Communications, IEEE Journal on, 22(1):41 – 53, January
2004. doi:10.1109/JSAC.2003.818784.

[6] Luiz R. Monnerat and Claudio L. Amorim. D1HT: A distributed
one hop hash table. In Proceedings of the 20th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), April 2006.
Available from: http://www.cos.ufrj.br/~monnerat/papers/

Monnerat_et_Amorim_D1HT_2006.pdf.

[7] Simone Cirani and Luca Veltri. A Multicast-based bootstrap mechanism for
self-organizing P2P networks. In Proceedings of the 28th IEEE conference on
Global telecommunications, GLOBECOM’09, pages 6243–6248, Piscataway,
NJ, USA, 2009. IEEE Press. Available from: http://portal.acm.org/
citation.cfm?id=1811982.1812417.

[8] C. Cramer, K. Kutzner, and T. Fuhrmann. Bootstrapping locality-aware P2P
networks. In Networks, 2004. (ICON 2004). Proceedings. 12th IEEE Inter-
national Conference on, volume 1, pages 357 – 361 vol.1, November 2004.
doi:10.1109/ICON.2004.1409169.

[9] Michael Conrad and Hans-Joachim Hof. A generic, self-organizing, and dis-
tributed bootstrap service for peer-to-peer networks. In David Hutchison and
Randy Katz, editors, Self-Organizing Systems, volume 4725 of Lecture Notes in
Computer Science, pages 59–72. Springer Berlin / Heidelberg, 2007. Available
from: http://dx.doi.org/10.1007/978-3-540-74917-2_7.

[10] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC 3261
(Proposed Standard), June 2002. Updated by RFCs 3265, 3853, 4320, 4916,
5393, 5621, 5626, 5630, 5922, 5954, 6026. Available from: http://www.
ietf.org/rfc/rfc3261.txt.

http://dx.doi.org/10.1109/JSAC.2003.818784
http://www.cos.ufrj.br/~monnerat/papers/Monnerat_et_Amorim_D1HT_2006.pdf
http://www.cos.ufrj.br/~monnerat/papers/Monnerat_et_Amorim_D1HT_2006.pdf
http://portal.acm.org/citation.cfm?id=1811982.1812417
http://portal.acm.org/citation.cfm?id=1811982.1812417
http://dx.doi.org/10.1109/ICON.2004.1409169
http://dx.doi.org/10.1007/978-3-540-74917-2_7
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3261.txt

Bibliography 113

[11] J. Klensin. Simple Mail Transfer Protocol. RFC 2821 (Proposed Standard),
April 2001. Obsoleted by RFC 5321, updated by RFC 5336. Available from:
http://www.ietf.org/rfc/rfc2821.txt.

[12] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft
Standard), June 1999. Updated by RFCs 2817, 5785. Available from: http:
//www.ietf.org/rfc/rfc2616.txt.

[13] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier
(URI): Generic Syntax. RFC 3986 (Standard), January 2005. Available from:
http://www.ietf.org/rfc/rfc3986.txt.

[14] D. Bryan, B. Lowekamp, and C. Jennings. dSIP: A P2P Approach to SIP
Registration and Resource Location. Internet-Draft draft-bryan-p2psip-dsip-
00, Internet Engineering Task Force, February 2007. Available from: http:
//tools.ietf.org/id/draft-bryan-p2psip-dsip-00.txt.

[15] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne.
REsource LOcation And Discovery (RELOAD) Base Protocol. Internet-
Draft draft-ietf-p2psip-base-12, Internet Engineering Task Force,
November 2010. Available from: http://tools.ietf.org/id/

draft-ietf-p2psip-base-12.txt.

[16] S. Cirani and L. Veltri. Implementation of a framework for a DHT-based dis-
tributed location service. In Software, Telecommunications and Computer Net-
works, 2008. SoftCOM 2008. 16th International Conference on, pages 279 –
283, September 2008. doi:10.1109/SOFTCOM.2008.4669495.

[17] L. Masinter. The “data” URL scheme. RFC 2397 (Proposed Standard), August
1998. Available from: http://www.ietf.org/rfc/rfc2397.txt.

[18] M. Zangrilli and D. Bryan. A Chord-based DHT for Resource Lookup in
P2PSIP. Internet-Draft draft-zangrilli-p2psip-dsip-dhtchord-00, Internet Engi-

http://www.ietf.org/rfc/rfc2821.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc3986.txt
http://tools.ietf.org/id/draft-bryan-p2psip-dsip-00.txt
http://tools.ietf.org/id/draft-bryan-p2psip-dsip-00.txt
http://tools.ietf.org/id/draft-ietf-p2psip-base-12.txt
http://tools.ietf.org/id/draft-ietf-p2psip-base-12.txt
http://dx.doi.org/10.1109/SOFTCOM.2008.4669495
http://www.ietf.org/rfc/rfc2397.txt

114 Bibliography

neering Task Force, February 2007. Available from: http://tools.ietf.
org/id/draft-zangrilli-p2psip-dsip-dhtchord-00.txt.

[19] Simone Cirani and Luca Veltri. A Kademlia-based DHT for Resource Lookup
in P2PSIP. Obsolete Internet draft, October 2007.

[20] E. Marocco and E. Ivov. Extensible Peer Protocol (XPP). Internet-
Draft draft-marocco-p2psip-xpp-01, Internet Engineering Task Force,
November 2007. Available from: http://tools.ietf.org/id/

draft-marocco-p2psip-xpp-01.txt.

[21] J. Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol for
Network Address Translator (NAT) Traversal for Offer/Answer Protocols. RFC
5245 (Proposed Standard), April 2010. Available from: http://www.ietf.
org/rfc/rfc5245.txt.

[22] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard), August 2008. Updated by RFCs 5746,
5878. Available from: http://www.ietf.org/rfc/rfc5246.txt.

[23] E. Rescorla and N. Modadugu. Datagram Transport Layer Security. RFC 4347
(Proposed Standard), April 2006. Updated by RFC 5746. Available from:
http://www.ietf.org/rfc/rfc4347.txt.

[24] Simone Cirani, Riccardo Pecori, and Luca Veltri. A peer-to-peer secure VoIP
architecture. In 21st International Tyrrhenian Workshop on Digital Communi-
cations (ITWDC), September 2010.

[25] Simone Cirani, Lorenzo Melegari, and Luca Veltri. Peer-to-peer technologies
applied to data warehouses. In Workshop on the Application of Communication
Theory to Emerging Memory Technologies (ACTEMT 2010), December 2010.

[26] Sara Checcoli. A study of combinatorial revocation schemes. Master’s thesis,
University of Padova, June 2007.

http://tools.ietf.org/id/draft-zangrilli-p2psip-dsip-dhtchord-00.txt
http://tools.ietf.org/id/draft-zangrilli-p2psip-dsip-dhtchord-00.txt
http://tools.ietf.org/id/draft-marocco-p2psip-xpp-01.txt
http://tools.ietf.org/id/draft-marocco-p2psip-xpp-01.txt
http://www.ietf.org/rfc/rfc5245.txt
http://www.ietf.org/rfc/rfc5245.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc4347.txt

Acknowledgements

I would like to thank first my Ph.D. tutor, Prof. Ing. Luca Veltri, for the great help,
support, and opportunities he granted to me in these years. It has been a honor and a
pleasure to collaborate with you, and I could not find a better friend to help me and
guide me throughout this path.

I would like to express all my gratefulness and love to my wonderful family, who
supported and encouraged me all my life. Mom and Dad, thank you for your trust
and patience, for being always by my side, helping me, and believing in me. Always.
My wonderful sisters, Alessandra and Maddalena, you have been always a constant
inspiration, I love you so much, and I could never say or do anything that could
express how blessed I am to have you in my life. Jonas, thanks for all your help, if I
have taken this path in my studies, this is because of you. Emil and Emma, I am the
luckiest and proudest uncle in the world! Finally, my grandma Jolanda, thank you for
your support and always remembering me.

Paola, staying with you is the most wonderful gift I could ever receive in my life.
Thank you for loving me, taking care of me, bearing with me, with your sweetness.
Your help and support have been precious and valuable, and I could not make it
without you. You are just too important to me. I love you so much and I wish to stay
with you forever.

A huge thanks goes to my friends Lorenzo, Gianni, Duiz, Fra, Cliff, Lollo, and
Imer for being supportive and giving me such a great time!

Another huge thanks goes to all my band mates, Grinning Shadows (Mario, Sil-
via, Duiz, Lorenz, Rove, Gigi), Dark Lunacy (Mike, Baijkal, Imer, Mary), and Le

116 Acknowledgments

Chatiment De La Secte (Lollo, Thomas), for giving me a great relief valve in music.
I would also say thanks to all the people that I met during these years in lab, es-

pecially Alessandro, with whom it’s been really great to work, Riccardo, with whom
I shared this path since the beginning, and Natalya, with whom it has been great to
share ideas. Another great thanks goes to Marco who helped me many times with
valuable insights.

Finally, I would like to thank all the people that supported me in my life and
helped me in many ways. Thanks, you know who you are...

	Introduction
	Peer-to-peer Networks
	Unstructured and structured P2P networks
	Distributed Hash Tables
	Chord
	Kademlia
	Other DHTs
	One-hop DHTs

	Bootstrapping

	A Multicast-based approach to Peer-to-peer Bootstrapping
	Introduction
	Solicited vs. Unsolicited Approach
	Solicited (PULL) approach
	Unsolicited (PUSH) approach

	Simple Algorithm
	Synchronized case
	Unsynchronized case
	Problems with the simple algorithm

	Enhanced Algorithm
	Estimation of the number of collaborating nodes
	Scheduling
	Algorithm description

	Distributed Location Service
	Motivations for a Distributed Location Service
	URI information
	The IETF P2PSIP Working Group
	Distributed SIP Location Service

	DLS Architecture
	Information stored into the DHT

	DLS Layers
	DLS Layer
	Peer Layer
	RPC Protocol Layer

	DHT-unaware clients and peer adapters
	IETF P2PSIP WG Proposals
	dSIP
	RELOAD

	DLS Framework Implementation
	RPC Layer
	Peer Layer
	DLS Layer
	Protocol Adapters
	DLS Framework usage
	DLS Framework extension
	RPC Protocols
	DHT Algorithms
	DLS Client Protocols

	DLS-based Peer-to-peer Applications
	P2P VoIP
	P2P VoIP Architecture

	Distributed Web Server
	DWS Node Architecture
	DWS Deployment Example

	Distributed File System with HDFS
	HDFS Architecture
	DLS-based HDFS
	Possible Enhancements

	Peer-to-peer Online Social Networks
	P2P OSN Architecture
	Data Storage
	Distributed Storage Service
	Privacy Enforcement Framework
	Social Network Services

	Conclusions
	Bibliography
	Acknowledgments

