
 

 

 

 

 
Università degli Studi di Parma 

Dottorato di Ricerca in Ingegneria Civile 
Ciclo XXII 

 

Investigation of Low Temperature 
Properties of Asphalt Mixture Containing 

Recycled Asphalt Materials 

 
Dissertazione per il Conseguimento del Titolo di Dottore di Ricerca 

 
 

Augusto Cannone Falchetto 
 
 
 
 
 
 
 
 
 
 

Coordinatori del Dottorato 
Prof. Paolo Mignosa, Prof. Gianfranco Forlani 

Tutori 
Prof. Antonio Montepara, Dr. Gabriele Tebaldi, Dr. Mihai O. Marasteanu 

 
 

Parma, Gennaio 2011 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Augusto Cannone Falchetto 2011 



 i

ACKNOWLEDGEMENTS   

 

I would like to express my deepest gratitude to my Tutors Prof. Antonio Montepara and Dr. 

Gabriele Tebaldi for their kind support during these years of my graduate studies. I’m deeply 

thankful to my advisor Dr. Mihai O. Marasteanu for his patience and guidance throughout the 

development of the thesis and for his advices during the three years I spent in the United States. 

I’m also thankful to Prof. Marco Pasetto for the time I spent at the University of Padova. 

 

I would like to thank Mugurel I. Turos, my office mate Ki Hoon Moon, and Dr. Raul Velasquez 

for their help at the University of Minnesota.  

 

I’m thankful to Dr. Elena Romeo and Valentina Rota for their kind help from Italy. 

 

Finally I am deeply thankful to my Mother and my Father because they know that number 5 

will follow number 4…and they know it very well! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iii

ABSTRACT  

 

The use of increased proportions of Reclaimed Asphalt Pavement (RAP) in the construction of 

asphalt pavements has become a top priority due to its economical and environmental benefits. 

Moreover other materials as Recycled Asphalt Shingles (RAS) have recently found their 

applicability in the same field. However in spite of a significant number of studies on the use of 

RAP and RAS, little was done to investigate the behavior at low temperature of pavement 

containing these two types of materials. In this thesis the effect of using three recycled materials 

RAP, Tear off Scrap Shingles (TOSS) and Manufacturer Waste Scrap Shingles (MWSS), on the 

asphalt mixture behavior at low temperature is investigated based on statistical analysis and 

modeling of an extensive set of experiments. The experimental part consisted of three-point 

bending creep tests performed on BBR (Bending Beam Rheometer)  beams (6.25 × 12.5 × 100 

mm) obtained from 17 different asphalt mixtures. Statistical analysis of the effect of RAP, 

TOSS and MWSS on creep stiffness, m-value, thermal stress and critical temperature was 

performed showing that TOSS and MWSS affect asphalt mixture performance only for specific 

amount of RAP. In the theoretical part, asphalt mixtures specimens were analyzed based on 

digital image analysis, micromechanical and analogical models and finite element simulations. 

The volumetric fractions and particle size distributions of the different asphalt mixtures were 

estimated from their binary images after digital processing. The volumetric fraction and the 

average size distribution of aggregates for the 17 asphalt mixtures investigated were found to be 

very similar despite of the varying amount of recycled material contained. Detailed information 

on the internal structure of asphalt mixture was investigated by estimating the spatial correlation 

functions of the beam specimens. No large fluctuation of the functions were detected meaning 

that the microstructure of the asphalt mixtures was not affected by the presence of RAP, TOSS 

and MWSS. Micromechanical and analogical models were used to backcalculate the creep 

stiffness of the binder for a limited number of mixtures and the prediction was compared to the 

creep stiffness obtained from the corresponding extracted binders. A noticeable difference was 

detected with the prediction having much higher values. Finally, two-dimensional finite element 

simulations of three point bending were used to validate the micromechanical an analogical 

model used. 
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Chapter 1. Introduction 

Roadways are one of the most important aspects for the functionality of a country’s economy 

nowadays as well as in the past. In the Roman Empire, roads have served to provide goods, 

supplies and services to human establishments (McNichol, 2005) as well as a faster path for 

army movement. Over centuries, new countries and new cities were built starting from roads 

allowing people to move from one region to another. 

In developed countries where building new roads is not a priority, pavement 

maintenance and preservation have become critically important. More recently economical and 

environmental issues arise as some of the aspects that must also be taken into consideration 

when dealing with pavement design and maintenance. As the world population continues to 

grow, the amount and type of waste generated also continue to grow. The generation of non-

decaying waste materials combined with a growing consumer population, higher disposal fees, 

and increased governmental and environmental regulations have resulted in significant waste 

disposal issues (Watson et al., 1998). 

Over the past 20 to 30 years, a continuing search for recycling alternatives has led 

federal, state, and local agencies to consider a variety of potentially recyclable materials for 

pavements, road base, and other construction applications. The list includes Reclaimed Asphalt 

Pavement (RAP), reclaimed Portland cement concrete, iron blast-furnace slag, fly ash, waste 

tire rubber, waste glass, and roofing shingles. 

Incorporating Reclaimed Asphalt Pavement (RAP) into new pavements significantly 

reduces the usage of new materials, conserves natural resources and solves disposal problems 

(Zofka et al., 2005). According to Federal Highway Administration (FHWA) nearly 30 million 

tons of RAP are recycled into HMA pavements every year making RAP the most recycled 

material in the United States. To address this important issue, National Cooperative Highway 

Research Program  has funded a number of projects such as NCHRP 9-12, Incorporation of 

Reclaimed Asphalt Pavements in the Superpave System, (NCHRP, 2001) and the still active 

NCHRP 9-46, Improved Mix Design, Evaluation, and Materials Management Practices for Hot 

Mix Asphalt with High Reclaimed Asphalt Pavement Content.  

Roofing shingles is another material that is available in large quantity for recycling. 

According to one estimate, about 10 million tons of waste bituminous roofing materials are 

generated within the United States each year (Better Roads, 1997). According to a different 
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reference (Marks and Petermeier, 1997) about 16.8 million m3
 of manufacturing and reroofing 

waste are generated each year within the United States and this waste is typically deposited into 

landfills.  The Research and Development Center of Manville Service Corporation in Denver, 

Colorado, has estimated that asphalt roofing waste includes about 2.1 million tons of asphalt 

binder annually corresponding to almost 10% of all asphalt binder requirements for Hot Mix 

Asphalt used for asphalt pavement. At a cost of 150$/ton, this amounts to over $300 million of 

worth recoverable asphalt cement. As for the case of RAP, the use of recycled asphalt shingles 

in hot mix asphalt (HMA) has been a developing technology for more than two decades with 

increasing acceptance from both government agencies and construction contractors. 

However the use of recycled materials into asphalt pavement can be detrimental to the 

overall mechanical performance of the pavement and of the asphalt mixtures especially at low 

service temperature, due to the presence of aged, oxidized binders that is more brittle and has 

worse relaxation characteristics compared to virgin binders. It is well known that asphalt 

binders are highly temperature-susceptible viscoelastic materials are also subject to oxidative 

aging during pavement service life, that leads to dramatic changes in properties that make 

binders more prone to cracking.   

In cold regions where extreme changes in temperature occur, the typical pavement 

distress is thermal cracking. It manifests as a series of almost regular spaced cracks that develop 

when then material strength limit is overcome.  Low temperature properties of asphalt binders 

and mixtures are evaluated according to AASHTO standards. Bending Beam Rheometer (BBR) 

(AASHTO T 313-02 2006) is used to determine creep compliance of asphalt binder, and Direct 

Tension (DT) Test (AASHTO T 314-02 2002) is used to obtain binder failure stress and strain. 

For asphalt mixtures, Indirect Tension Test, IDT, (AASHTO T 322-03) is used to obtain both 

creep and strength. A much simpler method was recently developed that allows obtaining 

mixture creep compliance using the same BBR device used for testing binders (Marasteanu et 

al., 2009).  

Objective and Research Approach 

The main objective of this dissertation is to investigate the effects of using Recycled Asphalt 

Pavement (RAP) and Recycled Asphalt Shingles (RAS), and in particular Tear-off Scrap 

Shingles – TOSS and Manufacturer Waste Scrap Shingles – MWSS, on asphalt mixture 
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performance at low temperature. To accomplish this objective, the following research approach 

is taken: 

 Investigate how the presence of RAP and RAS influence creep stiffness, m-value, 

thermal stress and critical temperature obtained from three point bending test at low 

temperatures performed on a set of 17 laboratory prepared asphalt mixtures. 

 Based on digital image analysis and estimation of properties such as volumetric 

fraction, determine if the aggregates particle size distribution is affected by the use of 

RAP and RAS. 

 Obtain detailed spatial information of the internal structure of the asphalt mixtures by 

means of digital imaging processing and n-point correlation functions and determine if 

the microstructure of the asphalt mixture is affected by the presence of recycled 

material. 

 Study the effective response of the asphalt mixtures based on micromechanical and 

analogical models and on the back calculation of the bulk properties of the binder 

present in the mixtures (inverse problem). 

 Validate the micromechanical and analogical models with simplified two-dimensional 

finite element simulations. 

Organization 

This thesis is divided into seven Chapters. Chapter 2 includes a general review on asphalt 

mixtures characterization, the use of recycled asphalt materials, the theoretical aspects of n-

point correlation function, micromechanical models, analogical models, and a short description 

of the inverse problem. In Chapter 3 the materials and procedures used in the experimental 

phase are described. Chapter 4 presents the analysis performed on the experimental data 

obtained at low temperatures; visual and statistical analyses of the experimental results are also 

included in this Chapter. Chapter 5 contains the digital image analysis of asphalt mixtures 

specimens; the evaluation of the volumetric fraction of aggregate and grain size distribution is 

presented. This Chapter includes also the algorithm to estimate two- and three-point correlation 

functions of a two-phase material. Chapter 6 presents the modeling of asphalt mixtures 

specimens with micromechanical and analogical models and finite element simulations. Chapter 



 4

7 contains a summary of this dissertation, the conclusions, and recommendations for future 

research. 
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Chapter 2. Literature Review 

First, a brief introduction to linear viscoelasticity concepts and time temperature superposition 

principle is presented. Some examples of research on applications of Reclaimed Asphalt 

Pavement (RAP) and Reclaimed Asphalt Shingle (RAS) in asphalt pavement are then 

described. This is followed by a summary of the theoretical aspects of the n-point correlation 

functions used for description of asphalt mixture microstructure. The chapter concludes with a 

review of micromechanical models for heterogeneous materials, such as asphalt mixtures, as 

well as analogical models for viscoleastic materials, followed by an introduction to solving 

inverse problem and to the correspondence principle concept. 

2.1. Asphalt Mixtures 

Asphalt mixtures can be classified as composite materials consisting of three phases: asphalt 

binder, aggregate, and air voids. A typical volumetric composition of this material is 5% of air 

voids, 20% of asphalt binder, and 75% of aggregate (NCAT, 2009). Similarly to other 

composite materials, the properties of asphalt mixtures are related to the properties of its 

components. The aggregate phase is considered linear elastic and the asphalt binder is 

considered viscoelastic, which results in a viscoelastic composite material with properties 

depending also on temperature (Monismith and Secor, 1962).  

2.1.1. Linear Viscoelasticity 

Boltzmann’s superposition principle is generally used to express the constitutive relationship 

between stresses σ and strains ε for a linear viscoelastic non-aging material (Christensen, 1982; 

Findley et al., 1989) as: 
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Stress can be obtained from equation [2.1] knowing strain history and relaxation modulus E(t). 

Analogously, strain can be computed using equation [2.2] knowing stress history and creep 

compliance function D(t).  
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The three functions, creep compliance, relaxation modulus, and complex modulus, can fully 

describe the behavior of linear viscoelastic materials. The functions are not independent of each 

other and various interconversion methods can be used to move from one function to another 

(Secor and Monismith, 1964; Mead 1994; Park and Kim, 1999; Park and Schapery, 1999; 

Marasteanu and Anderson, 2000).  For example, Hopkins and Hamming (1957) method has 

been used in many asphalt research papers to convert creep compliance to relaxation modulus; 

this method numerically solves the Volterra integral [2.3] assuming uniaxial state of stresses 

and isotropy. 

 
t

dtDtEt
0

)()(             [2.3] 

According to different researchers, asphalt concrete can be assumed as linear viscoelastic at low 

temperatures (Lytton et al., 1993; Buttlar and Roque, 1994; Pellinen and Witczak, 2002).  

2.1.2. Time-Temperature Superposition Principle (TTSP) 

Time temperature superposition principle was first introduced by Leaderman (1943) who stated 

that temperature and time effects can be incorporated into the viscoelastic properties by a 

reduced time function ξ: 
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where: 

t  time, and 

aT (T)  shift factor function of temperature. 

Temperature and shift factor aT are related by the empirical expression proposed by Williams-

Landel-Ferry (WLF) (Williams et al., 1955): 
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where: 

aT   shift factor function of temperature, 

k1 and k2  material constants, 

TS  reference temperature, 

T  actual temperature. 
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Alternatively, Arrhenius law can be used to determine shift factors for asphalt concrete 

(Anderson et al., 1991; Lytton et al., 1993; Marasteanu and Anderson, 1996; Di Benedetto et 

al., 2001; Pellinen and Witczak, 2002). By expressing creep compliance, relaxation modulus or 

complex modulus in term of reduced time ξ and setting a reference temperature TS, it is possible 

to construct a “master curve” that represents the variation of these parameters over different 

temperature regimes. When developing performance prediction models (Wang et al., 2006; Di 

Benedetto et al., 2007; Masad et al., 2007), the above considerations and the need for reliable 

yet simple experimental methods to determine constitutive relations for asphalt mixtures are of 

utmost importance. 

2.2. The Use of RAP and Shingles in Asphalt Pavement 

A lot of work has been done in the past to investigate the use of Reclaimed Asphalt Pavement 

(RAP) and Reclaimed Asphalt Shingles for asphalt pavement applications. Since an exhaustive 

review is beyond the scope of this thesis the next two subsections will present some of the 

research and work that are considered significant for the purpose of this dissertation. 

2.2.1. RAP 

Reclaimed asphalt pavement (RAP) has been used in the United States for more than 25 years 

because of the environmental benefits and costs reduction. Various percentages of RAP content 

are allowed by current specifications depending on the traffic level. In Minnesota, the 

Department of Transportation Specification 2350/2360 (2008) allows up to 40% RAP based on 

the traffic level and binder grade. These values are based on field experience of the 

performance of asphalt pavements built with RAP. However, there is very little information 

available about the effect of RAP on the mechanical properties of the resulting asphalt mixtures. 

In some previous works performed mainly in the 90’s (Little et al., 1981; Jung and 

Vinson, 1993; Jackson and Vinson, 1996; Zubeck and Vinson, 1996; Zubeck et al., 1996; 

McDaniel and Anderson, 2002) it was shown that the structural performance of asphalt 

mixtures containing RAP is in general not very different compared to that of a conventional 

virgin asphalt mixtures. In these studies it was also showed that the properties of the mixtures 

containing RAP are much influenced mainly by the aged RAP binder properties and the amount 

of RAP in the mixture. The increase in viscosity due to aging generally translates into an 
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increase in modulus of the asphalt, which is beneficial for the resistance to permanent 

deformation at high service temperatures; however, it also implies an increase in stiffness and 

brittleness at intermediate and low service temperatures, resulting in reduced resistance to 

fatigue and low temperature cracking. 

Brown (1984) and Meyers et al. (1983) showed that blending charts based on the 

performance grade (PG) specification limits can be developed to determine the maximum and 

minimum amount of virgin or RAP asphalt binder and to select a recycling agent to produce a 

specific PG binder. Kandhal and Foo (1997) performed a study at National Center for Asphalt 

Technology to develop design procedures for asphalt mixtures containing RAP. In this study, a 

graphical method was developed, with a focus on arriving at the proper binder physical 

properties by balancing RAP amount with adjustments to the base binder grade. Lee et al.  

(1999) evaluated RAP effect on binder complex modulus using Rolling Thin Film Oven 

(RTFO) aged binder blends produced with tank binder and binder samples recovered from three 

types of RAP materials. It was showed that adding increased amount of RAP binder to the 

RTFO aged binder the complex modulus drastically increases. With a change from 0% to 100% 

RAP binder, the increase in complex modulus was found to exceed a factor of ten in many 

instances. 

Kandhal et al. (1995) in a previous work showed that the dynamic modulus of asphalt 

mixtures is related to the major distress modes, such as permanent deformation, fatigue, and 

low temperature cracking. Dynamic modulus was also used by Li et al. (2008) to investigate the 

effect of different amount of RAP and different sources on the properties of asphalt mixtures. In 

the same study the low temperature properties of the same recycled mixtures were investigated 

with semicircular bend (SCB) fracture testing. Experimental results indicated that asphalt 

mixtures containing RAP have higher dynamic modulus values than the control mixtures 

containing no RAP. Experimental data also show that the RAP source is not a significant factor 

for the dynamic modulus at low temperatures, although it significantly affects dynamic modulus 

values at high temperatures. In addition to test temperature, the RAP percentage was found to 

significantly affect the SCB fracture resistance of mixtures.  

A modeling based approach to develop a test to determine the presence and amount of 

RAP in post-production mixtures as a practical quality assurance tool was developed by Buttlar 

and Dave (2005). Zofka et al., (2005) investigated the low temperature properties of the asphalt 

binder present in mixtures containing RAP through an experimental work performed on 
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Bending Beam Rheometer (BBR) (AASHTO T 313-02) asphalt mixtures beams coupled with a 

micromechanical modeling and back calculation procedure (Christensen et al., 2003). 

Alternative approaches to the study of Reclaimed Asphalt Pavement are also available 

in literature. Among those of significant relevance are the works of Karlsson and Isacssons 

(2002 and 2003) based on the diffusion of virgin and aged asphalt binder and on the use of 

FTIR-ATR (Fourier Transform Infrared Spectroscopy using Attenuated Total Reflectance). 

2.2.2. Shingles 

Two types of asphalt shingles are mainly available in the roofing market: organic and 

fiberglass. They are composed of four materials: asphalt binder, a paper backing, mineral filler 

and sand-sized aggregates. 

ASTM D 225-07 (2007) standard on organic-backed shingles specifies that organic 

fibers should be primarily used to produce the felt. Felt is first impregnated with hot saturant 

asphalt, then coated on both sides with more asphalt, and finally surfaced with mineral granules. 

The saturant asphalt and the coating asphalt need not be identical; each has a different 

mechanical role within the shingle. 

ASTM D 3462/3462 -10a (2010) presents the specification for glass felt shingles. 

These shingles must be comprised of one or more thicknesses of glass felt, which is defined as a 

thin porous sheet predominantly comprised of glass fibers containing a substantially water-

insoluble binding agent. If more than one layer is used, they must be stuck to each other with a 

continuous layer of asphaltic material. The felt is first impregnated with saturant asphalt and 

then the single or laminated felt is coated on the outside with coating asphalt and granular 

material. This specification allows both the saturant and coating asphalts to be compounded 

with fibers as well as mineral stabilizer. However, since specifications in the past allowed 

asbestos as a backing, some glass shingles cannot be recycled and used in asphalt pavements 

anymore (Newcomb et al., 1993). 

The asphalt cement in roofing shingles is a mixture of two different asphalts, saturant 

and coating. Both are considerably harder than asphalt binders typically used in paving 

applications, with penetration values at 25°C ranging from approximately 20 dmm to about 70 

dmm as opposed to typical values of 50 dmm to 300 dmm for paving asphalts; this is to prevent 

asphalt flow at higher temperature during the warmer season. Granular material provides the 

largest component (by weight) of asphalt roofing shingles. Different aggregates type are used 
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for the production: ceramic granules, headlap granules, backsurfacer sand, and asphalt 

stabilizer.  The most significant in terms of shingle performance are the ceramic-coated colored 

granules. These are small crushed rock particles coated with ceramic metal oxide, Another 

granular component is headlap granules. These are comprised essentially of coal slag ground to 

roughly the same size as the ceramic particles. They make up the largest single portion, by 

weight, of granular material within the shingle. Backsurfacer sand, the smallest granular 

contribution by weight, is washed, natural sand added in small amounts to keep the shingles 

from sticking together while packaged. Finally, powdered limestone is added as an asphalt 

stabilizer. Since shingles are manufactured to high quality standards, these granular materials 

are high quality aggregates typically found in paving mixtures (Newcomb et al., 1993). 

The use of recycled asphalt shingles in hot-mix asphalt (HMA) has been a developing 

technology for more than two decades showing increased interest by both construction 

contractors and government agencies. Several research studies on the use of recycled asphalt 

shingles in HMA mixtures over the past fifteen years were supported by the state of Minnesota. 

Turgeon (1991) investigated the use of recycled tire rubber and shingle scrap in asphalt 

mixtures. The ground shingle scrap significantly reduced asphalt demand and increased 

Marshall stability, however testing on core samples showed low density, low tensile strength 

and high air voids than the reference control mixture. Furthermore mixtures containing shingles 

had lower recovered asphalt penetrations. 

The influence of recycled asphalt shingles on HMA mixture properties was 

investigated by Newcomb et al. (1993). In that study it was found that up to 5% manufacturer 

waste scrap shingles (MWSS) could be used in HMA mixtures with a minimum impact on the 

mixture properties. However a noticeable softening of the mixture, which may result in a 

detrimental effect to the pavement performance, was detected for 7.5% asphalt shingle content. 

Softening was also seen using indirect tensile tests on mixtures containing 10% shingle showing 

that mixture stiffness was adversely decreased when the shingle content exceeded 5% by weight 

of the aggregate, which led to a general acceptance limit of 5% shingle content. In the same 

study the use of tear-off scrap shingles (TOSS) was also investigated; the presence of TOSS 

resulted in an embrittlement or stiffening of the mixture that is not desirable for low 

temperature cracking resistance properties. Moisture sensitivity was also investigated by 

Newcomb et al. (1993). The resilient modulus and tensile strength of the mixtures were tested 

before and after the sample were subjected to partial saturation and freezing for twenty four 
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hours. The reduction of either tensile strength or modulus was used as an indicator of moisture 

induced damage. It was found that the use of MWSS did not significantly change the moisture 

susceptibility of the mixture, but TOSS did. Low temperature cracking was evaluated by 

Newcomb et al. (1993) using an indirect tensile test (IDT) (AASHTO T 322-03). Tensile 

strengths at low temperatures were shown to decrease with increasing shingle content; the 

mixtures made with the TOSS showed a decrease in strain capacity with increased shingle 

content, implying that this material will be more brittle at low temperatures. 

Janisch and Turgeon (1996) performed a study on three test sections in Minnesota. 

From the testing results no significant difference was found between the laboratory data 

mixtures containing shingle and those without shingle. It was also found that the extracted 

asphalt binder in the shingle mixtures was stiffer as expected since the grade of asphalt used in 

shingle manufacturing is stiffer than the asphalt typically used in pavements. 

Button et al. (1996) performed an experimental study to measure the strength, stability, 

creep characteristics, and water susceptibility of modified and unmodified asphalt mixtures 

including  both manufacturing waste and consumer (tear off) waste shingles. Two different 

types of hot mix asphalt, dense-graded and coarse matrix-high binder (CMHB) mixtures were 

studied. It was found that the addition of 5% to 10% roofing waste into the dense-graded and 

CMHB mixtures was detrimental to the engineering properties of the mixtures investigated. 

However, it appeared that quantities of roofing shingles just under 5% would be satisfactory in 

these mixtures. Mixing and compaction temperatures of HMA was also evaluated showing that 

an increase of about 10 to 20°C may be required both in the laboratory and in the field to 

accommodate the relatively stiffer roofing-modified mixtures. 

Long-term performance evaluation of hot mixed asphalt (HMA) pavements containing 

post-manufacturing roofing shingle material was performed by Hanson et al. (1997). The plan 

of study included blending aggregates from North Carolina using three different gradations with 

one source of shingles at three different concentration rates: 0%, 5% and 10% by weight of the 

aggregates. The authors found that the use of post-manufacturing roofing shingle material in 

HMA can produce a pavement equal to or better than a conventional HMA, especially where 

rutting is a principal concern. 

The Georgia Department of Transportation (GDOT) has experimented with the 

recycling of roofing shingles in HMAC by constructing two test sections in 1994 and 1995 

(Watson et al., 1998). From the experimental phase it was found that although viscosity of 
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recovered asphalt from the modified test sections was slightly higher than for the virgin control 

sections, there does not appear to be a negative effect on performance. Due to the warm climate 

thermal cracking was not considered to be a problem while the increased stiffness is actually 

beneficial in reducing rutting susceptibility. 

McGraw et al., (2007) investigated the use of both TOSS and MWSS combined with 

traditional RAP materials. Three different mixtures were prepared with the same PG 58-28: 

20% RAP, 15% RAP plus 5% TOSS, and 15% RAP plus 5% MWSS. The results indicated that 

the two types of shingles performed differently. Both MWSS and TOSS decreased the stiffness 

of the mixtures. However the presence of MWSS did not affect the strength of both mixtures 

and extracted binders while TOSS lowered the strength of the binder significantly at the higher 

test temperature and increased the binder’s critical temperature. The addition of RAS (Recycled 

Asphalt Shingles) lowered the temperature susceptibility of the binders.  

Bonaquist (2007) proposed a method based on the Asphalt Mixture Performance Test 

to evaluate the effective stiffness of RAP and RAS mixtures and the amount of binder mixing 

taken place in those types of mixtures. Binder properties were obtained from mixture master 

curve data compared to recovered binder properties. The amount of binder mixing was obtained 

from the difference in the master curves. 

Recently a study a Mn/DOT (Minnesota Department of Transportation) investigated 

the effect of asphalt binder grade and content, RAP source and content and different shingle 

sources and proportions on HMA mixture properties with the goal of giving recommendations 

toward a comprehensive shingle specification, including the option of using TOSS (Johnson et 

al., 2010). Currently the 2009 Minnesota Department of Transportation (Mn/DOT) 

specifications allow a 5% MWSS replacement for the allowable recycled asphalt pavement 

(RAP) in HMA pavement mixtures. Although there have been pilot projects that have used 

TOSS with and without RAP, there is no provision for the use of TOSS in the current 

specifications (Combined 2350/2360 Mn/DOT specification, 2008). Both laboratory and field 

performance were evaluated on mixtures that incorporated RAP and recycled asphalt shingles 

(RAS) which included both TOSS and MWSS; both asphalt binder and mixture properties were 

tested. Recovered asphalt binder from HMA and RAS were tested for high and low temperature 

properties. The mixtures appeared to be more homogenous with the finer ground TOSS, where 

TOSS tended to demand slightly more asphalt binder compared to MWSS. The asphalt binder 

contained in TOSS is typically stiffer than that contained in MWSS. The differences in binder 
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stiffness resulted in high mixture modulus for the TOSS mixes. Decreasing the shingle content 

from 5% to 3% minimized the observable differences between the MWSS and TOSS shingle 

sources. 

2.3. Microstructural Information 

2.3.1. Volume Fraction Information  

An extensive literature is available for the evaluation of the effective properties Ke of composite 

materials based on the material properties of the components Ki. Among those properties, 

volume fraction is the most important and simplest microstructural information. The effective 

properties of a two-phase material can be estimated using the simple mixture laws given by: 

2211  KKKe   (arithmetic average)     [2.6] 
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Experimental results have shown that [2.6] tends to overestimate the effective property, 

whereas [2.7] underestimate the effective property (Buttlar and Roque, 1996). In the case of 

asphalt mixture when particles are dispersed in a matrix it is crucial to know if the particles and 

matrix phases are connected or not. Hashin and Shtrikman (1963) proposed the following 

bounds [2.8] and [2.9] for the bulk and shear modulus of two phase isotropic composite taking 

into account the connectivity information of the phases while using volume fraction only: 
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where:  
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2121 GGKK  , 

L
cK , U

cK  lower and upper bound on bulk modulus, 

L
cG , U

cG   lower and upper bound on shear modulus, 

21,   volume fractions of phase 1 and 2  21 1   . 

The prediction given by [2.8] and [2.9] were in good agreement with experimental results for 

materials with no significant clustering of particles.  

Self Consistent Method proposed by Hill (1965) provides an alternative approximation 

for the bulk properties of two-phase composite materials. In this model a typical particle is 

inserted in a matrix with unknown effective mechanical properties. However when the contrast 

between the phases is moderate or high, as in the case of asphalt mixtures, Self Consistent 

Method gives poor predictions (Torquato, 1998). Torquato (2000) also showed that Self 

Consistent Methods works properly only when the material has a type of topological symmetry 

that is not a property of asphalt mixture. The self consistent approximations for three-

dimensional two-phase composite proposed in Hill (1965) for the bulk and shear modulus are 

expressed as: 
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where: 

Ke and Ge effective bulk and shear modulus, 

Ki, Gi and i  bulk, shear modulus and volume fraction of the ith phase. 

2.3.2. n-point Correlation Functions  

In addition to the volume fraction, information on the spatial distribution of the 

microcomponents is also required when modeling the effective properties of more complex 

microstructures. In the case of random heterogeneous materials, higher-order microstructural 

information is fundamental; n-point correlation functions, surface correlation function, lineal 

path function, chord-length density function, pore-size functions are some of the most used. 

Due to its relative simplicity compared to the others, n-point and especially 2- and 3-point 
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correlation functions will be considered in this dissertation. The next paragraphs provide a brief 

summary of the definitions and properties of the correlation functions, while detailed definitions 

can be found in the works of Beran (1968), Corson (1974), Berryman (1985), Torquato (2002), 

and Jiao et al. (2007).  

The n-point spatial correlation function measures the probability of finding n points all 

lying on the space occupied by one of the phases of the heterogeneous material (Berryman 

1985). In the case of a two-phase heterogeneous material the 1-point correlation function is the 

probability that any point lies on phase 1; this correspond to the volumetric fraction of phase 1.  

The 2-point correlation function is the probability that two points separated by a specific 

distance are located both in the same phase (for example phase 1). The 3-point correlation 

function is the probability that all the vertices of a triangle in are all located in the same phase 

(phase 1). Figure 2.1 provides a schematic interpretation of the 1-, 2-, and 3-point correlation 

functions. 
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u12r2
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u12

S1 - probability that a randomly selected 
point in material belong to phase of interest, 
volumetric fraction of phase 
 
S2 - probability that two points separated 
distance r are located both in phase of 
interest 
 
S3 - probability of finding all vertices of 
triangle defined by r1, r2 and u12 in phase of 
interest 

 
Figure 2.1. Schematic of sampling for S1, S2 and S3 correlation functions calculation- 

Velasquez (2009) 
 

Torquato (2002) defines the n-point correlation functions of a two-phase random 

heterogeneous material in d-dimensional Euclidian space Rd as: 
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   ensemble averaging, 

)()( xI i   indicator function defined as: 
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d
i RV    volume occupied by the ith phase, 

d
i RV    volume occupied by the other phase.  

The n-point correlation function is translationally invariant for a statistically 

homogeneous material (Figure 2.1).  

 

 

 

Figure 2.2. Examples of statistically homogeneous and inhomogeneous two-phase 
materials - Torquato (2002) 

 

It turns out that the function depends on the differences in the coordinate values of the 

xi vectors but not on their absolute position (Torquato 2002) meaning that the origin of the 

coordinate system is not important. The function can be expressed as: 

),....,,,(),....,,,( 1141312
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321
)(

n
i

nn
i

n xxxxSxxxxS   for all n ≥ 1   [2.14] 

where: 

xij = xj - xi difference between the two vectors xi and xj, 

x1  reference vector selected. 

The 1-point correlation represents the volume fraction i of the ith phase, is constant 

and it is the probability that a randomly selected point in the material belongs to ith phase: 

i
ii xIS  )()()(

1         [2.15] 

The 2-point correlation function ),( 21
)(

2 xxS i   is defined as (Torquato 2002): 
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2 xIxIxxS iii         [2.16] 

In the case of a statistically homogeneous material, the 2-point correlation can be expressed as: 
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where: 

r = x12 = x2 - x1. 

In a more general case, when considering statistically homogeneous and isotropic materials, the 

2-point correlation function does not depend on the orientation of the vector r but only on its 

magnitude (Torquato, 2002). From equation [2.13] it follows that: 

  )()( )(2)( xIxI ii          [2.18] 

and substituting [2.18] into [2.16] it can be shown that for r=0: 
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When microstructure of the material does not present long range order it can be written: 

2)(
2 )(lim i
i

r
rS 


         [2.20] 

Therefore, the initial value of the 2-point correlation functions is i (r = 0) and for very large r 

(r→∞) it reaches the asymptotic limit of i
2. 

The 3-point correlation function for a heterogeneous material can be defined according 

to equation [2.12] as: 
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In the case of a translationally invariant isotropic material, the 3-point correlation function can 

be expressed as: 
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3 urrSrrS ii         [2.22] 

where: 

r1 =  x2 - x1 vector, 

r2 = x3 - x1 vector, and  

u12  cosine of the angle 12 between vectors r1 and r2: 
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Thus for a statistically homogeneous and isotropic material, the 3-point correlation function 

depends on three variables that define a triangle: the magnitudes of two vectors r1 and r2, and 

the angle 12 between these two vectors. The properties of the 3-point correlation function can 

be written as (Berryman 1985): 

)(),,(lim 2
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Assuming that there is no long-range order in the material then 
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The following bounds apply to the 3-point correlation function (Berryman 1985): 
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where: 

1221
2

2
2

13 2 urrrrr         [2.28] 

The calculation of all the n-point correlation functions is required when a complete 

description of the microstructure of a random heterogeneous material as asphalt mixture has to 

be assessed. However, this computation may become particularly complex both analytically and 

numerically (Torquato 2002). Alternative microstructural descriptors are available in literature: 

the 2-point cluster function, for example, presents a more complex form but a lower order 

correlation. It is defined as the probability that two randomly selected points are located in the 

same cluster of the ith phase (Torquato 2002). Lineal path function, which is the probability that 

an entire line segment is located in the ith phase, provides a further option when describing the 

microstructure of a material from a statistical point of view. 

2.4 Composite Materials Models for Asphalt Mixture Characterization 

2.4.1. Micromechanical Models  

At the macroscopic level composite materials are made of two or more phases. Generally one 

phase acts as a continuous matrix, while the others act as inclusion or reinforcement. The 

advantage of mixing two or more materials is given by the possibility of designing a new 

material with specific properties not achievable by a single phase. However, in order to predict 
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the performance of the new composite both the properties of the constituents and high order 

microstructural information are needed. Several types of models, which provide solution for the 

estimation of the microstructural correlation functions for composite materials, are available in 

literature (Torquato, 2002). The effective response Keff of a composite material can be written 

as: 

),,( ΩKK ieff if          [2.29] 

where Ki and i  are the intrinsic properties of the ith phase and its corresponding volumetric 

fraction, and Ω  is a parameter that gives the higher-order microstructural information.  

Asphalt mixtures can be classified as particulate composites that contain aggregate 

particles of various sizes and shapes randomly distributed in matrix of asphalt binder. In several 

research studies, asphalt mixtures are considered as two-phase materials (binder or mastic and 

aggregate) (Papagiannakis et al., 2002; Masad and Somadevan, 2002; Yue et al., 2003; Abbas 

et al., 2004). Asphalt mixture was also evaluated as a three-phase material (large aggregate, 

small aggregate and mastic) with a two step method by Buttlar and Roque (1996), Wang et al. 

(2004) and Li and Metcalf (2005). 

For example the effective properties of asphalt mixture at low temperature were 

evaluated by Buttlar and Roque (1996) using classical micromechanical models. Due to the low 

order microstructural information (volume fractions) used in the models, the response was 

significantly underpredicted. 

The Generalized Self-Consistent Scheme (GSCS) model was implemented by Buttlar 

et al. (1999) to model asphalt mastic.  The predictions of the GSCS model was compared to the 

test results of specimens with different concentrations of particles and investigating three filler 

reinforcement regimes: volume filling, physiochemical effects, and particle interaction. The 

authors concluded that the physiochemical interaction between the particles and the binder is 

mainly responsible for the reinforcement effect of the particles on the mastics. The GSCS is a 

three phase model and represents a special case of the composite spheres model proposed by 

Hashin (Hashin and Shtrikman, 1963). This model consists of an infinite matrix of 

homogeneous material where a spherical inclusion is embedded in and does not take into 

account interaction between particles. Based on finite element simulations and mastic 

micromechanical modeling Masad and Somadevan (2002) found that the average strain in the 

asphalt mastic is three to five times higher than the strain in the mixture The authors also found 

that the mastic can be three to ten times stiffer than the binder. 
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Hashin-Shtrikman (H-S) bounds [2.8] and [2.9] were used by Kim and Little (2004) to 

investigate the stiffening effect of two fillers. Based on experimental results and 

micromechanical analysis it was found that H-S model provides good prediction only for low 

volume fraction of the filler. 

Buttlar and Dave (2005) developed blending charts for Recycled Asphalt Pavements 

(RAP) based on micromechanical modeling. Simple mixture laws ([2.6] and [2.7]), first order 

models and second order models ([2.8] and [2.9]) were used to obtain the effective properties of 

a two-phase material and to construct the charts. 

2.4.2. Higher Order Micromechanical Models 

Zofka et al. (2006) compared different micromechanical models with finite element simulations 

and experimental results of asphalt concrete tested in 3-point bending at low temperatures. The 

finite element simulation was closely matched by the Milton (1981) bounds model. Milton’s 

simplified bounds are described in the following equations [2.30]: 
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2  uuP (Legendre polynomial) 

Milton’s number ζ1 (geometry parameter) can be calculated with: 
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where S3
(1)(r,s,u) is the 3-point correlation function of the material.  Berryman (1985), Torquato 

(1991), and Zofka (2007) proposed approximate expressions for ζ1 as a function of the volume 

fractions. Velasquez (2009), Velasquez et al. (2010) also investigated this model to predict the 

experimental data obtained form 3-point bending test on asphalt mixtures at low temperature 

showing that Milton bounds are wide and poor predictors of the experimental results (Figure 

2.3). 
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Figure 2.3. Milton bounds for granite and limestone mixtures – Velasquez et al. (2010) 
 

Torquato (1998) proposed a three dimensional isotropic two-phase model ([2.32] and [2.33]). It 

presents the geometry parameters  and 2 similar to [2.31], but including, the 2-point 

correlation function as part of the integral. To ensure convergence of the integral, the 2-point 

correlation function is included in the integrand of [2.36] and [2.37].  The effective bulk and 

shear modulus can be expressed as:  
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with phase one and two corresponding to the matrix and dispersions, respectively. The three 

point parameters  and 2 are defined by the following integrals: 
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where, P2 and P4 are the Legendre polynomials of order 2 and 4, respectively. The expressions 

for the Torquato model [2.32] and [2.33] were obtained by truncating an exact series expansion 

for the effective elastic stiffness tensor of two phase materials. For this model there is no 

assumption regarding the geometry of the microstructure but it requires statistical homogeneity 

(Torquato, 1998). Torquato model was applied by Velasquez (2009) and Velasquez et al. (2010) 

to the prediction of the asphalt mixture properties obtained form 3-point bending test. Torquato 

model resulted to be a poor predictor since the estimated relaxation did not match the 

experimental data. The high contrast between the stiffness of the phases and the inability to 

simulate contacts between particles are the main reasons why this model fails. 

2.4.3 Semi-empirical Model 

A semi-empirical model, based on Hirsch model (Hirsch, 1962) was proposed by 

Christensen et al. (2003) to estimate the extensional and shear dynamic modulus. The effective 
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response is obtained assembling the elements of the mixture in parallel and in series (Figure 

2.4).  

          

Figure 2.4. Semi-empirical model proposed by Christensen et al. (2003) 
 

The empirical factor Pc determines the amount of parallel or series elements in the mixtures. 

The general equation for this semi-empirical model is: 
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where: 

Emix  effective modulus of the mixture, 

Eagg, Vagg  modulus and volume fraction of the aggregate, 

Ebinder, Vbinder modulus and volume fraction of binder, and 

Pc   contact volume is an empirical factor defined as:  
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where: 

VFA  voids filled with asphalt binder (%), 

VMA  voids between mineral aggregate (%),and 

P0, P1, P2 fitting parameters. 

Zofka et al. (2005) evaluated the use of Hirsch model (Hirsch, 1962) proposed by 

Christensen (Christensen et al., 2003) to predict the BBR mixture stiffness from the properties 

of the binder. The asphalt binders from the mixtures prepared in this study were extracted and 
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tested in the BBR to obtain the stiffness and the m-values.  The experimentally determined 

binder stiffness values were input in equations [2.38] and [2.39] to predict the mixture stiffness 

based on the volumetric properties measured from the gyratory specimens. Since the predicted 

values were always higher than the measured stiffness values, equation [2.38] was modified. 

The aggregate modulus, Eagg, which is equal to 4,200,000 psi, was replaced with a value of 

2,750,000 psi based on these results and on numerical manipulation.  In order to improve the 

prediction of the laboratory mixture results, a further modification of the Hirsch model was 

proposed by Zofka (2007) introducing a new expression for the parameter Pc [2.40]: 
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E
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c        [2.40] 

where: 

Ebinder  relaxation modulus of the binder in GPa, and 

a  constant equal to 1 GPa. 

The original Hirsch model consistently overpredicted the measured Emix values while 

with the new expression for Pc the model predicted measured Emix relatively well. Hirsch model 

was used by Velasquez (2009) and Velasquez et al. (2010) to estimate the asphalt mixture 

modulus obtained from BBR testing. It was found that Hirsch model predicts fairly well the 

relaxation modulus of the majority of the mixtures investigated. Cannone Falchetto (2010) and 

Cannone Falchetto et al., (2011) applied the Hirsch model to predicts the asphalt mixtures 

creep stiffness starting from the experimental data obtained from binder testing on three point 

bending at low temperature with the Bending Beam Rheometer. Expression [2.38] was coupled 

both with expression [2.39] and [2.40] showing that the two predicted mixtures creep stiffness 

give a lower and upper bound for the experimental curves obtained testing small asphalt 

mixtures beams.   

2.5. Analogical Models 

Different analogical models are available in literature. They may be very simple or much more 

complex and work on discrete or on continuous spectrum. The following paragraphs provide a 

short description of the most interesting models applied to asphalt mixture.  

2.5.1. Discrete Spectrum Models 
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Dashpot and springs constitute the simplest analogical linear viscoelastic models (Ferry, 1980; 

Findley, 1989). When spring and dashpot are assembled is series and in parallel Maxwell and 

Kelvin-Voigt model can be constructed respectively (Figure 2.5). 

 
 

(a) (b) 

Figure 2.5. Maxwell model (a) and Kelvin-Voigt model (b) 
 

Expressions [2.41], [2.42] provide the creep compliance D(t) and the relaxation function R(t) 

for the Maxwell model. 
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where: 

τ  relaxation time τ=η/E. 

The complex modulus for the Maxwell model is: 
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where: 

i  complex number (i2=-1) 

Expressions [2.43], [2.44] provide the creep function D(t) and the relaxation function R(t) for 

the Kelvin-Voigt model. 
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τ  relaxation time τ=η/E, 

δ  Dirac function. 

The complex modulus for the Kelvin-Voigt model is: 

 iEiE )(*         [2.45] 

These two models are not able to describe the complex properties of asphalt material 

but can be used as basic components of more sophisticated models. A satisfactory description of 

the behavior of asphalt binder and concrete (Neifar and Di Benedetto, 2001) can be obtained 

combining two previous model into a Generalized Maxwell Model (n Maxwell elements in 

parallel plus one spring) or into a Generalized Kelvin-Voigt Model (n Kelvin-Voigt elements in 

series plus one spring and one linear dashpot) (Figure 2.6 and Figure 2.7). 

 

Figure 2.6. Generalized Maxwell model 
 
 

 

Figure 2.7. Generalized Kelvin-Voigt model 

 
In the case of discrete number of element and thus for a discrete spectrum the 

relaxation modulus for the Generalized Maxwell model can be expressed as (Ferry, 1980): 
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where: 

τi  relaxation time of the ith  Maxwell element, 

Ei  spectral strength of the ith Maxwell element. 

The complex modulus presents the following expression: 




 


n

i i

i
i i

i
EEiE

1

*

1
)(


        [2.47] 

Increasing the number of element without limit in the Maxwell model it is possible to obtain a 

continuous spectrum representation of the relaxation and complex modulus functions [2.48] and 

[2.49] respectively: 
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where: 

H(τ) dln(τ) is the modulus associated with the relaxation time. 

For a discrete spectrum the relaxation modulus for the Generalized Kelvin-Voigt 

model can be expressed as: 
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2.5.2. Continuous Spectrum Models 

The discrete numbers of elements included into the Generalized Maxwell or Kelvin-Voigt 

models are not always enough to have a satisfactory representation of a complex linear 

viscoelastic material, even though the number of elements can be increased. More advanced 

analogical models with continuous spectrum were proposed by other authors and they can be 

represented by an infinite number of Kelvin-Voigt or Maxwell elements. 

2.5.2.1. Parabolic Element 

A parabolic element is an analogical model that can be schematized as in Figure 2.8. 
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Figure 2.8. Parabolic element 
 

Creep function D(t) and complex modulus E* can be expressed as: 
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where: 

i  complex number (i2=-1) 

E*  complex modulus, 

k  exponent, 

δ  dimensionless constant, 

ω  2π*frequency, 

τ characteristic time varying with temperature accounting for the Time 

Temperature Superposition Principle (TTSP):  

 )()( 0 ST TTa    

aT shift factor at temperature T (can be determined from equation [2.5] WLF), 

τ0 characteristic time determined at reference temperature TS 

Γ  gamma function that can be expressed as: 
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t integration variable, 

n argument of the gamma function. 

2.5.2.2. Huet Model 

k 
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The Huet analogical model (Huet, 1963) is composed of two parabolic elements J1(t)=ath and 

J2(t)=btk plus a spring (stiffness E∞) combined in series. (Figure 2.9) 

 

 

Figure 2.9.  Huet model – (Huet, 1963) 

 
The Huet model was proposed for binders and mixtures and presents a continuous 

spectrum that means it can be schematized by infinity of Kelvin-Voigt elements in series or 

Maxwell elements in parallel. The analytical expression of the Huet model for the creep 

compliance is: 
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where: 

D(t)  creep compliance 

E∞  glassy modulus, 

h, k  exponents such that 0<k<h<1, 

δ  dimensionless constant, 

t  time, 

Γ  gamma function, 

τ characteristic time varying with temperature accounting for the Time 

Temperature Superposition Principle (TTSP):  

 )()( 0 ST TTa    

aT shift factor at temperature T (can be determined from equation [2.5] WLF), 

τ0 characteristic time determined at reference temperature TS. 

k, δ 

h 

E∞ 
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 An expression of the complex modulus for this model is also available [2.55], while 

there is no analytical formula for the relaxation function: 
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where: 

i  complex number (i2=-1) 

E∞  limit of the complex modulus for ωτ→∞ (Glassy modulus), 

ω  2π*frequency 

A modified expression of the Huet model which includes a third term function of τ and 

representing a dashpot in series was proposed by Maillard (Maillard, 2005). The modified 

model was applied to asphalt binder and a sensitivity study in the time domain was performed. 

Huet Model was also used by Cannone Falchetto (2010) and Cannone Falchetto et al., (2011) 

to investigate the creep stiffness of eight binders and sixteen corresponding mixtures obtained 

from three-point bending configuration at low temperatures. The models fitted the data very 

well both for binder and for mixtures.  

2.5.2.3. Huet-Sayegh Model 

Since the Huet model does not perform well for mixes response at very low frequencies and/or 

high temperature, due to the inability to take into account the limiting value of the mixtures 

modulus related to the aggregate skeleton, Sayegh (1965) proposed a new expression [2.56] for 

the complex modulus introducing a spring in parallel into the Huet model (Figure 2.10).  

 

Figure 2.10. Huet-Sayegh model – (Sayegh, 1965) 
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where: 

i  complex number (i2=-1) 

E∞  limit of the complex modulus for ωτ→∞ (Glassy modulus), 

E0  limit of the complex modulus for ωτ→0, 

h, k  exponents such that 0<k<h<1, 

δ  dimensionless constant, 

τ  characteristic time varying with temperature accounting for the Time 

Temperature Superposition Principle (TTSP), and 

ω  2π*frequency. 

Six constants are required from this model (δ, k, h, E∞, E0, and τ0), one more than the 

Huet model. This model was applied by several authors (De La Roche, 1996; Neifar, 1997; 

Olard – Di Benedetto, 2003; Bodin et al., 2004; Wistuba et al., 2006; Chabot et al., 2010) with 

good results in the small strain domain for any range of frequencies and temperatures. It should 

be mentioned that this model presents some limitation when predicting binder modulus at very 

low frequencies where a parabolic element behavior is showed while a linear dashpot would be 

more appropriate. The model was also used by Neifar and Di Benedetto. (2001) to calibrate a 

thermo-visco-plastic law named DBN law. This law allows describing with the same formalism 

different types of mixture behaviors according to the considered loading domain (Olard and Di 

Benedetto, 2005). A three dimensional extension of the DBN was also proposed by the same 

authors (Di Benedetto et al., 2007). It must be finally mentioned that there is no analytical 

expression for creep compliance in the time domain for this model. 

2.5.2.4. 2S2P1D Model and ENTPE Transformation 

An improved Huet-Sayegh model that takes into account the drawback for binder 

characterization was proposed by Di Benedetto and Olard et al. (Olard et al., 2003; Olard, 

2003; Di Benedetto et al. 2004). This model is obtained by the Huet-Sayegh model and adding 

a linear dashpot in series with the two parabolic elements and the spring of rigidity E∞-E0 so 

that at low frequency it is equivalent to a linear dashpot in parallel with a spring of rigidity E0. 
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The scheme of the model is shown in Figure 2.11 and the analytical expression of the complex 

modulus is given by [2.57]. 

 

Figure 2.11. 2S2P1D model – (Olard et al., 2003) 
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where: 

i  complex number (i2=-1) 

E∞  limit of the complex modulus for ωτ→∞ (Glassy modulus), 

E0  limit of the complex modulus for ωτ→0, 

h, k  exponents such that 0<k<h<1, 

δ  dimensionless constant, 

β dimensionless parameter introduced to take into account the newtonian 

viscosity of the linear dashpot 

τ  characteristic time varying with temperature accounting for the Time 

Temperature Superposition Principle (TTSP), and 

ω  2π*frequency. 

The seven constants (δ, β, k, h, E∞, E0, and τ0) required were determined with a minimization 

process from the experimental data at a reference temperature TS=10ºC for a series of binders 

and corresponding mixtures. Each mixture showed the same parameters δ, k, h and β of the 
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associated binder while only the static and glassy modulus (E0 and E∞) and τ0 seemed to be 

peculiar of the specific binder and mixtures. The values of E0 and E∞ for the mixtures were in 

the range of 250 to 1050MPa and 41500 to 45400MPa respectively. From the simple regression 

of the characteristic time of the mixture, τ0mix, on the characteristic time of the corresponding 

binder, τ0binder, at the reference temperature in log scale the authors found the following 

relationship: 

bindermix 00 10            [2.58] 

and applying the time temperature superposition principle: 

)(10)( TT bindermix            [2.59] 

where: 

τ0mix  characteristic time of mixture determined at reference temperature TS, 

τ0binder  characteristic time of binder determined at reference temperature TS, 

τmix  characteristic time of mixture at temperature T, 

τbinder  characteristic time of binder at temperature T, 

α  regression coefficient depending on mixture and aging. 

The value of α was determined in the range 2.66 to 2.82 according to the different mixtures and 

binders investigated for a characteristic time evaluated at TS=10ºC (Olard et al., 2003; Olard, 

2003; Di Benedetto et al. 2004). 

Based on this findings a relationship between the binder and the mix complex moduli 

(considering both the phase angle and the norm of the complex) was proposed [2.60] (Olard et 

al., 2003; Olard, 2003; Di Benedetto et al. 2004): 
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where: 

E*
mix  complex modulus of the mixture, 

E*
binder  complex modulus of the binder, 

E∞mix  glassy modulus of the mixture, 

E0mix  static modulus of the mixture, 

E∞binder  glassy modulus of the binder, 

E0binder  static modulus of the binder, 

T  temperature, 
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ω  2π*frequency, 

α  regression coefficient depending on mixture and aging. 

The expression [2.60] is independent of the rheological model used to construct it and can be 

interpreted as a combination of three transformations (Figure 2.12): 

 a negative translation of value E0_binder  along the real axis, 

 a homothetic expansion starting from the origin with a ratio of  

(E∞_mix - E0_mix)/(E∞_binder - E0_binder), 

 a positive translation of value E0_mix along the real axis. 

 

 
Figure 2.12. Binder to Mixture model scheme – (Di Benedetto et al., 2004) 

 

Expression [2.60] was also validated by Di Benedetto et al. (2004) for different mixtures and 

binders other than those used to derive the transformation. Delaporte et al. (Delaporte et al., 

2007) used the same approach to investigate the linear viscoelastic properties of asphalt binder 

and mastics with and without aging. 

 Note that equation [2.60] can be simply rearranged to obtain E*
binder from E*
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Expressions [2.60] and [2.61] are called ENTPE (École Nationale des Travaux Publics de 

l’État) transformations. 

Cannone Falchetto (2010) and Cannone Falchetto et al., (2011) obtained a formula 

analogous to [2.60] to predict the creep stiffness of asphalt mixtures from the creep stiffness of 

the corresponding asphalt binder (Forward Problem) determined experimentally on the Bending 

Beam Rheometer (BBR) at low temperatures: 
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where: 

Smix(t)  creep stiffness of mixture, 

Sbinder(t)  creep stiffness of binder, 

E∞_mix  glassy modulus of mixture, 

E∞_binder  glassy modulus of binder, 

t  time, 

α  regression parameter which may depend on mix design, expressed as: 

bindermix  10          [2.63] 

where: 

τbinder  characteristic time of binder, 

τmix  characteristic time of mixture, 

Expression [2.62] provided very good predictions for all the eight binder and sixteen mixtures 

investigated.  

2.6. Inverse Problem 

The prediction of a material property based on the measured (or observed) material response 

constitutes the objective of an inverse problem in mechanics. This process is called a parameter 

identification procedure. Two procedures for parameter identification for viscoelastic materials 

were proposed by Ohkami and Swoboda (1999). Both methods contain boundary control 

concept introduced by Ichikawa and Ohkami (1992).  

Amin et al (2002) developed a similar approach by combining FEM simulations with 

inverse scheme. The viscoelastic behavior was modeled by the authors using a 3-parameter 

solid model (Maxwell model parallel with a spring). With a similar approach, FEM simulations 

combined with measured data was used by Bocciarelli et al. (2005) to construct objective 

function; this function was then minimized using trust-region approach.  

Kim and Kreider (2006) used numerical inversion for 2D problem for linear 

viscoelastic homogenous material with 3-7 parameters. Several potential problems with this 

scheme were detected. The solution might not be unique and might depend on the initial guess 
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for optimization method and moreover there is no unique optimization approach that is suitable 

for all problem and material types.  

Zofka et al. (2005) obtained mixture stiffness (inverse of creep compliance) by 

performing Bending Beam Rheometer (BBR) tests on beams of asphalt mixture. The author 

used a modified Hirsch (Hirsch, 1962) model proposed by Christensen (Christensen et al., 

2003) to “back-calculate” the asphalt binder stiffness and m-value. Since brute force was time 

consuming the original equation [2.38] was combined with an alternative procedure to the 

numerical minimization based on the observation that a simple function could be fitted to the 

mix stiffness versus binder stiffness data. Velasquez et al. (2010) using additional experimental 

data developed two expressions for the Pc parameter [2.39] and [2.40]. 

Cannone Falchetto (2010) and Cannone Falchetto et al., (2011) investigated the 

possibility to obtain the creep stiffness of asphalt binder from the creep stiffness of the 

corresponding asphalt mixtures (Inverse Problem) determined experimentally on the Bending 

Beam Rheometer (BBR) at low temperatures. Hirsch model and Huet model coupled with 

ENTPE transformation were used. However Hirsch model results to be a poor predictor, while 

using the inverse of expression [2.62] the experimental curves were matched very well by the 

predicted asphalt binder creep stiffness. 

Zofka (2007) used an inverse scheme based on the Zevin’s method of iterative 

functions (Zevin, 1979; Arutyunyan and Zevin, 1988). The asphalt mixture is treated as a 2-

phase composite material consisting of elastic aggregate particles of arbitrary shape and 

viscoelastic asphalt mastic. 

2.7. Correspondence Principle 

One of the most widely used approach for solving mechanics problems in linear viscoelasticity 

is represented by the correspondence principle (Alfrey, 1944; Tsien, 1950 and Lee 1955). The 

solution of a viscoelastic problem is generally complicated by the presence of both time and 

space variables in the governing differential equations. However, when temperature and 

boundary conditions remain constant, correspondence principle allows the reformulation of the 

viscoelastic problem in Laplace domain (s-domain) as associated elastic problem. Analytical or 

numerical solution such as finite element or boundary element method can then be applied to 

solve the fictitious elastic problem in Laplace space. The inverse Laplace transform can be 

finally used to invert the s-domain results back to the time domain using either analytical or 



 37

numerical methods. One of the limitations of the correspondence principle is represented by the 

Laplace inversion process that in some cases may be source of large errors (Schapery, 1965; 

Graham, 1968; Jordaan and Khalifa 1977, Lee and Kim 1995., Paulino and Jin 2001, Ahn et 

al. 2003, Huang et al. 2006).  

Different approximate inversion methods were proposed and applied to viscoelastic problems 

involving asphalt binders and asphalt mixtures by several authors (Kim et al., 1995; Schapery, 

1965; Daniel et al., 1998; Lundstrom and Isacsson, 2004). However, the accuracy of these 

methods is strongly affected by the complexity of the original viscoelastic problem and thus,  

they might not be satisfactory when solving inverse problems. 
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Chapter 3. Materials and Testing 

3.1. Test Methods for low temperature characterization of asphalt binders 
and mixtures 

The following paragraphs provide a short description of the current test methods used to 

characterize the behavior of asphalt binders and mixtures at low temperature.  

3.1.1. Asphalt Binder Testing 

During the Strategic Highway Research Program (SHRP) two test methods were developed for 

the evaluation of the properties of asphalt binders at low temperatures: the Bending Beam 

Rheometer (BBR) and the Direct Tension (DT) test (Anderson et al., 1994). 

3.1.1.1. Bending Beam Rheometer (BBR) 

The BBR is used to perform low-temperature creep tests on thin beams of asphalt binders 

conditioned at the desired temperature for one hour (AASHTO T 313-02 2006).  The asphalt 

beam (101.6x12.5x6.25mm) is tested in a three-point bending configuration (Figure 3.1). 

 

 

Figure 3.1. BBR equipment for asphalt binder testing 
 

A constant load is applied instantaneously and maintained for all the duration of the test (240s) 

while the deflection at the mid span of the beam is continuously recorded. Correspondence 

principle and elastic solution for a simply supported beam are used to obtain the creep 

compliance. The creep stiffness, S(t), equal to the inverse of the creep compliance, D(t), is 

calculated as: 
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where 

S(t)  flexural creep stiffness, function of time, 

σ  maximum bending stress in the beam, MPa, 

ε(t)  bending strain (mm/mm), unction of time, 

P  constant load = 980±50mN , 

l  length of specimen (101.6mm),  

b  width of specimen (12.5mm), 

h  height of specimen (6.25mm),  

δ(t)  deflection at the midspan of the beam at time t, and 

t  time. 

The m-value which is the slope of log stiffness versus log time curve is computed according to: 
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          [3.2]                                             

Both stiffness and the m-value are used to determine the critical temperature. 

 

Figure 3.2. BBR stiffness and m-value 
 

The m-value can be computed by fitting a polynomial curve of second order to the log of the 

stiffness (log(S(t)) versus log(t) curve: 

ctbtatS  )log())(log()(log 2        [3.3] 

and 

btatm  )log(2)(         [3.4] 
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The critical temperature TCR, (the temperature at which cracking occurs) can be determined as 

the lowest temperature at which the following conditions are satisfied (AASHTO T313-02, 

2006): 

MPatS 300)( 60          [3.5] 

300.0)( 60 tm          [3.6] 

where 

t60  time equal to 60 seconds. 

The binder PG (Performance Grade) low temperature is then determined subtracting 10ºC from 

the temperature determined from the S(t) and m-value limits. This temperature correction, based 

on Time-Temperature Superposition (TTS) principle for linear viscoelastic materials (Anderson 

and Kennedy, 1993) is needed since low temperature pavement performance is correlated to 

creep stiffness obtained after two hours of loading. 

3.1.1.2. Direct Tension (DT) Test 

The Direct Tension (DT) is used to perform uniaxial tension tests at a constant strain rate of 1% 

per minute on dog-bone shaped specimens of asphalt binders until failure (AASHTO T 314-02 

2002). The average stress and strain at failure are obtained from six replicates and for the same 

temperature for which creep stiffness and m-value are measured on BBR. DT strength and 

thermal stress calculation can be used to calculate the critical cracking temperature for the 

specific binder (Bouldin et al., 2000). 

3.1.2. Asphalt Mixture Testing 

3.1.2.1. Indirect Tensile Test (IDT) 

Indirect Tensile test (IDT) (AASHTO T 322-03) is currently used to obtain creep compliance 

and strength of asphalt mixtures at low temperatures (Roque and Buttlar, 1992; Buttlar and 

Roque, 1994; Zhang et al., 1997; Christensen, 1998; Roque et al., 2002). During creep testing 

the cylindrical specimen is vertically loaded with a constant load resulting in an almost uniform 

tensile stress along the diameter of the sample. Four Linear Variable Differential Transducers 

(LDVT’s) are used to measure the vertical and horizontal displacement on both sides of the 

specimen for 1000±2.5s and from this the creep curve is obtained. Creep compliance D(t) is 

calculated according to elastic-viscoelastic correspondence principle, elastic solutions for 
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horizontal and vertical stresses and plane stress Hooke’s law. Strength test of asphalt mixtures 

can also be performed on IDT configuration when appropriate loading mode is applied to the 

specimen. 

3.1.2.2. Bending Beam Rheometer (BBR) test for Asphalt Mixtures 

Three-point bending test is currently the standard procedure used to determine creep 

compliance of asphalt binders at low temperatures (AASHTO T 313-02 2006). The device used 

to perform this test is the Bending Beam Rheometer (BBR) developed during the Strategic 

Highway Research Program (SHRP) (Bahia et al. 1992). In recent years, Zofka et al. (2005, 

2006) and Zofka (2007) investigated the use of BBR to determine the creep compliance of 

asphalt concrete. Good agreement was found between the BBR and IDT testing procedures. 

Velasquez (2009) investigated the representative volume element (RVE) when using BBR to 

test asphalt mixtures beams, and determined that a representative creep stiffness of asphalt 

concrete can be obtained from testing a minimum of three replicates of the thin mixture beams. 

A procedure similar to the one used for binders was proposed by Marasteanu et al., (2009) to 

test thin asphalt mixtures beams with BBR equipment.  A description of the beam preparation is 

detailed in the NCHRP 133 Final report (Marasteanu et al., 2009) and it include several cutting 

steps from the gyratory compacted cylinder through IDT specimens and finally to actual BBR 

beams. An example of a BBR asphalt mixture beam is shown in Figure 3.3, while Figure 3.4 

illustrates a scheme on how the beams are obtained from a cylindrical specimen. 

 

 
 

Figure 3.3. Bending Beam Rheometer with thin asphalt mixture beam (Marasteanu et al., 
2009) 
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Figure 3.4. Asphalt mixture beam preparation – (Marasteanu et al., 2009) 

 

Testing was performed according to AASHTO T 313-02 standard, using higher loads due to the 

higher stiffness of the mixtures and for a longer time (1000s). It was found that good creep 

stiffness results can be obtained using test loads of 1961 mN and 4413 mN at high (PG low 

temperature + 22˚C) and intermediate low temperature levels (PG low temperature + 10˚C), 

respectively. For the lowest temperature level (PG low temperature - 2˚C), the creep stiffness 

can be predicted from the data obtained at the higher two temperatures and from time-

temperature superposition (Marasteanu et al., 2009). 

3.2. Materials and Experimental Work 

The asphalt mixtures used in this study were provided by Minnesota Department of 

Transportation (Mn/DOT) and are part of Mn/DOT research project 2010-08 performed by 

Mn/DOT and Minnesota Pollution Control Agency (MPCA) to determine the effects of using 

varying proportions of recycled asphalt shingles (RAS), reclaimed asphalt pavement (RAP), 

and two different virgin binders on pavement performance (Johnson et al., 2010). Thirty four 

gyratory compacted specimens, two for each of the 17 mixtures investigated, were delivered to 

the Asphalt Pavement Laboratory of the Department of Civil Engineering at University of 
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Minnesota. No information was available about gradation of aggregates and recycled materials 

used. The design of the HMA laboratory mixtures consisted of: 

 Virgin binder and aggregates (No recycled materials); 

 Virgin binder and aggregate plus Recycled Asphalt Pavement (RAP); 

 Virgin binder and aggregate plus Manufacturer Waste Scrap Shingles (MWSS) and 

RAP; 

 Virgin binder and aggregate plus Tear-off Scrap Shingles (TOSS); 

 Virgin binder and aggregate plus Tear-off Scrap Shingles (TOSS) and RAP. 

The virgin aggregate materials used in the mixtures consisted of a pit-run-sand, a quarried ¾ in. 

(19 mm) dolostone, quarried dolostone manufactured sand; it is worth to note that dolostone 

presents similar characteristics to limestone with a very similar stiffness modulus (Martinez et 

al., 2006).  It is also known that a limestone with the carbonate component mainly made up of 

magnesium calcium carbonate (dolomite) is termed dolostone (Bell, 2000). The recycled 

material included in the mixtures consisted of ¾ in. (19 mm) RAP and RAS (either MWSS or 

TOSS). Figure 3.5 presents two pictures of Manufacturer Waste Scrap Shingles (MWSS) and 

Tear-off Scrap Shingles (TOSS). 

 

  

 

Figure 3.5. TOSS (right) and MWSS (left) – (Johnson et al., 2010) 
 

A PG 58-28, non-polymer modified, asphalt binder with specific gravity of 1.036, was used in 

all but two of the RAS/RAP mixtures were a PG 52-34, non-polymer modified, asphalt binder 

was selected  in order to investigate the binder and mixture properties resulting from using a 

softer binder. Table 3.1 presents the mixture design for the 17 mixtures investigated: 
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Table 3.1. Mixture design for the 17 mixtures investigated 

Mix Recycled Material Binder PG VMA VFA Air Voids 

ID Description 
RAP 
(%) 

TOSS 
(%) 

MWSS 
(%) 

58-28 52-34 % % % 

1 PG 58-28 Control 0 0 0 x 15.9 76.6 3.7 
2 15% RAP 15 0 0 x 15.2 72.9 4.1 
3 25% RAP  25 0 0 x 15.3 73.0 4.1 
4 30% RAP  30 0 0 x 15.0 45.4 3.7 
5 15% RAP 5% MWSS 15 0 5 x 15.6 75.0 3.9 
6 15% RAP 5% TOSS 15 5 0 x 15.9 77.2 3.6 
7 25% RAP 5% TOSS 25 5 0 x 15.4 73.9 4.0 
8 25% RAP 5% MWSS 25 0 5 x 14.8 72.5 4.1 
9 25% RAP 5% TOSS  25 5 0 x 15.8 71.8 4.5 
10 25% RAP 5% MWSS  25 0 5 x 15.0 73.5 4.0 
11 25% RAP 3% TOSS 25 3 0 x 15.5 75.3 3.8 
12 25% RAP 3% MWSS 25 0 3 x 15.3 73.7 4.0 
13 15% RAP 3% TOSS 15 3 0 x 16.1 79.4 4.0 
14 15% RAP 3% MWSS 15 0 3 x 16.1 73.8 4.2 
15 10% RAP 5% TOSS 10 5 0 x 16.6 75.0 4.2 
16 15% RAP 5% TOSS* 15* 5 0 x 16.7 77.2 3.8 
17 5% TOSS 0 5 0 x   16.6 76.3 4.0 
*Different RAP Source – millings containing 4.0% asphalt binder 

 

The cylindrical specimens were cut into small beams, six for each of two gyratory 

compacted specimens available for each mixture. A total of 204 beams were obtained (see 

Appendix A for geometric properties of the beams). The asphalt mixture beams were tested in 

the BBR according to the procedure proposed by Marasteanu et al., (2009). Two Test 

temperatures and corresponding loads were selected: a high low temperature level (PG low 

temperature + 22˚C) , corresponding at -6°C with a loads of 1961 mN and an intermediate low 

temperature level (PG low temperature + 10˚C), corresponding at -18°C with a loads of 4413 

mN respectively. The mixture prepared with PG 52-34 binder were also tested at these two 

temperatures. 

BBR tests were also performed on the binder extracted from the mixtures according to 

AASHTO T 313-02 (2006). Extraction and tests were performed at Mn/DOT laboratory and 

were not under the control of the author of this thesis. Moreover, the extracted binders were not 

obtained from the gyratory cylinders from which the asphalt mixture BBR beams were cut, but 

from different cylinder replicates of the same mixtures. For this reason different numbers of 

replicates were tested according to the amount of material the Mn/DOT technicians were able to 

extract. Furthermore, extracted binder was not available for all the mixtures, but only for 

mixtures # 2, 3, 5, 6, 7 and 8. Since BBR results for the original or the extracted binders from 
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the control mixture (virgin materials) were not available, no further details are presented in this 

section about the extracted binder test and no analysis of this data will be performed in Chapter 

4. The data will only be used for comparison in Chapter 6 (Modeling). 
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Chapter 4. Experimental Data Analysis  

In this chapter, the experimental data obtained from BBR creep testing on the seventeen asphalt 

mixtures investigated are analyzed. First, the values of the creep stiffness and the m-value at 60 

seconds are considered and analysis of variance (ANOVA) (Cook and Weisberg, 1999; Oehlert, 

2000; Moore et al., 2008) is used to determine which factors, RAP, TOSS,  MWSS, binder type 

and temperature affect the response (stiffness and m-value). Then the procedure to compute 

thermal stress and critical temperature are outlined and a second set of ANOVA is run to 

evaluate if RAP, TOSS, MWSS, binder type and cooling rate affect thermal stress, at the low 

temperature PG (performance grade), and the critical temperature as well. Two pieces of 

software were used to perform the statistical analysis; Mac ANOVA (MacANOVA v.5.05 

release 1, 2006), a free open source program, and SPSS (SPSS v.17.1, 2008), a commercial 

available software. 

4.1. Creep Stiffness and m-value 

The creep stiffness S(t) and the m-value for the different mixture were calculated according to 

[3.1] to [3.4] and to Marasteanu et al., (2009), for the entire duration of the BBR asphalt 

mixture creep test (1000s). For the purpose of statistical analysis, a reference time of 60s (as in 

the case binder procedure reported in AASHTO T313-02, 2006) was selected. The average 

values for each mixture of the creep stiffness S(t) and the m-value, at t=60s, for the two testing 

temperatures (-6 ºC and -18ºC) and the corresponding coefficients of variation are showed in 

Table 4.1 and plotted in Figure 4.1 and Figure 4.2. A detailed table of the values of creep 

stiffness S(t) and the m-value at t=60s for all the replicates can be found in Appendix B.  
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Table 4.1. S(t) and the m-value, at t=60s, and corresponding CV’s 

Mixture T S(60) Mean CV S(60) m(60) Mean CV m(60) 
ID °C (GPa) % - % 
1 

-6.0 

4.627 18.4 0.287 6.2 
2 6.567 22.1 0.173 7.1 
3 8.626 4.4 0.159 8.2 
4 7.524 8.1 0.168 4.7
5 7.653 8.5 0.174 7.5 
6 9.612 7.4 0.154 9.7 
7 9.542 5.2 0.130 7.7 
8 9.596 14.1 0.136 11.2 
9 6.850 21.3 0.180 10.1 

10 7.599 19.5 0.193 8.1
11 10.307 8.9 0.125 23.9 
12 9.972 23.0 0.135 19.3 
13 7.416 8.0 0.153 6.5 
14 6.568 12.9 0.172 4.2 
15 6.491 11.8 0.164 4.6 
16 8.335 20.7 0.164 5.8
17 6.377 17.2 0.177 5.6 
1 

-18.0 

12.886 10.2 0.153 5.4 
2 15.198 9.3 0.123 7.9 
3 16.885 21.3 0.119 7.1 
4 13.249 9.2 0.117 9.7 
5 16.617 11.6 0.129 5.4 
6 14.943 20.8 0.120 7.5 
7 15.824 18.7 0.111 12.3 
8 14.051 2.6 0.105 6.0 
9 15.023 8.1 0.130 26.3 

10 14.483 12.7 0.145 12.9 
11 17.229 9.0 0.108 5.8 
12 14.586 13.6 0.123 13.3 
13 12.513 8.5 0.117 16.3 
14 13.596 6.5 0.122 12.8 
15 14.187 17.0 0.130 3.0 
16 18.039 22.3 0.129 8.4 
17 14.312 19.6 0.123 14.4 

 

 

 

 

 

 



 49

0

5

10

15

20

25

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C
V

's
 (%

)

C
re

ep
 S

ti
ff

ne
ss

 S
(6

0)
, G

P
a

Mixture Number

-6C -18C CV at -6C CV at -18C

 

Figure 4.1. Creep stiffness S(t) at 60s and CV’s 
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Figure 4.2.  m-value at 60s and CV’s  
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4.1.1. Statistical Analysis 

In the following paragraphs the creep stiffness S(t) and the m-value for different groups of 

mixtures with common characteristics as RAP, TOSS and MWSS content or binder are 

analyzed from a statistical point of view using ANOVA procedure. Creep stiffness S(t) and m-

value are set in turn as response and, according to the different mixture groups selected for the 

analysis, RAP, TOSS, MWSS, binder and temperature were set as factors. As a general 

procedure a full ANOVA analysis based on a linear model is first run taking into account all the 

possible interactions between the factors considered. The assumption of normality and constant 

variance are verified through the use of Box-Cox plot, Residuals plot and Normal Probability 

plot. If required a transformation of the response is performed and the analysis is repeated using 

the transformed data. Then if some interaction terms are not statistically significant, they are 

pulled into the error term and a reduced linear model is used. From this, a final estimate of t-

statistic and p-value for each term is obtained assuming a significance level of 0.05. 

4.1.1.1. Effect of RAP Amount on Creep Stiffness and m-value 

For this analysis the first four mixtures were selected since they don’t include any recycled 

material other than RAP (Reclaimed Asphalt Pavement). Mixture 1 was set as control mixture 

because of the absence of any recycled material in its mix design, while mixtures 2 (15% RAP), 

3 (25% RAP) and 4 (30% RAP) are the test mixtures. The selected response for the ANOVA 

are the creep stiffness S(t) and the m-value at t=60s. Amount of RAP (0%, 15%, 25% and 30%) 

and temperature (-6°C and -18°C) are the factors selected for the analysis. Tables 4.2 and 4.3 

summarize the experimental design and the average values of the selected responses with the 

corresponding coefficients of variation. 

 

Table 4.2. Experimental design for mixtures 1, 2, 3 and 4 

Mixture RAP TOSS MWSS Binder Description 
ID % % % PG Statistics 
1 0 0 0 58-28 Control 
2 15 0 0 58-28 Test 
3 25 0 0 58-28 Test 
4 30 0 0 58-28 Test 
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Table 4.3. S(t) and m-value at t=60s, for mixtures 1, 2, 3 and 4 and CV’s 

Mixture Temp Creep Stiffness(60) m-value(60) 
ID °C Original (GPa) CV(%) m-value CV(%) 

1 
-6 4.627 18.4 0.287 6.2 

-18 12.886 10.2 0.153 5.4 

2 
-6 6.567 22.1 0.173 7.1 

-18 15.198 9.3 0.123 7.9 

3 
-6 8.626 4.4 0.159 8.2 

-18 16.885 21.3 0.119 7.1 

4 
-6 7.524 8.1 0.168 4.7 

-18 13.249 9.2 0.117 9.7 
 

Figure 4.3 shows the histograms of the creep stiffness and m-value for mixtures 1, 2, 3 and 4, 

with the corresponding CV’s for the two testing temperatures. 
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Figure 4.3.  Creep stiffness and m-value at 60s and CV’s for mixtures 1, 2, 3 and 4 
 

Normality and constant variance were checked and log transformation of the stiffness was 

suggested to satisfy the assumptions for ANOVA while no transformation was required for the 

m-value. Full ANOVA including all the interactions between factors (RAP and temperature) 

was performed. The results are shown in Tables 4.4 to 4.7 where: 

SS  Sums of Squares 

df  degrees of freedom 

MS  Mean Squares 

F  F-statistics 

p-value  values to compare to the assumed significance level (0.05). 
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Table 4.4. ANOVA for creep stiffness S(t) at 60s – mixtures 1, 2, 3 and 4 

Source SS df MS F p-value 
Intercept 749.050 1 749.050 175294.0 0.000 
RAP 0.229 3 0.076 17.8 0.000 
Temperature 1.310 1 1.310 306.5 0.000 
RAP• Temperature 0.074 3 0.025 5.8 0.002 
Error 0.167 39 0.004 
Total 750.830 47       

 

Table 4.5. ANOVA for m-value at 60s– mixtures 1, 2, 3 and 4 

Source SS df MS F p-value 
Intercept 1.243 1 1.243 5100.0 0.000 
RAP 0.053 3 0.018 72.6 0.000 
Temperature 0.057 1 0.057 233.9 0.000 
RAP• Temperature 0.017 3 0.006 22.9 0.000 
Error 0.010 39 0.000 
Total 1.380 47       

 

Table 4.6. Coefficient estimates for creep stiffness S(t) at 60s – mixtures 1, 2, 3 and 4 

Coefficients Estimate Std. error t p-value 
Intercept 4.108 0.027 153.94 0.000 
RAP 15% 0.070 0.038 1.85 0.072 
RAP 25% 0.111 0.038 2.94 0.006 
RAP 30% 0.011 0.038 0.29 0.774 
Temperature -0.449 0.038 -11.90 0.000 

 

Table 4.7. Coefficient estimates for m-value at 60s – mixtures 1, 2, 3 and 4 

Coefficients Estimate Std. error t p-value 
Intercept 0.154 0.006 24.08 0.000 
RAP 15% -0.030 0.009 -3.34 0.002 
RAP 25% -0.035 0.009 -3.86 0.000 
RAP 30% -0.036 0.009 -3.99 0.000 
Temperature 0.134 0.009 14.83 0.000 

 

RAP temperature and their interaction are significant at a 0.05 significance level for the creep 

stiffness at 60s. Overall adding RAP increases the creep stiffness, but when looking at the 

single level only the inclusion of 25% of RAP produces a statistically significant creep stiffness 

increment compared to the other levels. As expected, lower creep stiffness is obtained at the 
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higher testing temperature (-6oC) compared to the lower temperature level (-18oC) (see negative 

coefficient -0.449 in Table 4.6 for Temperature). In case of m-value at 60s, all RAP levels are 

statistically significant. Also temperature and its interaction with RAP are significant. Adding 

RAP results in lower m-values, meaning reduced relaxation properties of the mixtures. 

4.1.1.2. Effect of TOSS and MWSS Amounts on Creep Stiffness and m-value 

In this section two mixtures groups were identified. In each of them a constant amount of RAP 

is presents: 15% and 25% for mixtures 2, 5, 6, 13 and 14 and mixtures 3, 7, 8, 11 and 12 

respectively. Tear-off Scrap Shingles (TOSS) and Manufacturer Waste Scrap Shingles (MWSS) 

are included in those mixture groups with three different percentages: 0%, 3% and 5%. Tables 

4.8 and 4.9 exhibit the experimental design for the two mixture groups evaluated. 

Table 4.8. Experimental design for mixtures 2, 5, 6, 13 and 14 

Mixture RAP TOSS MWSS Binder Description 
ID % % % PG Statistics 
2 15 0 0 58-28 Control 
5 15 0 5 58-28 Test
6 15 5 0 58-28 Test 

13 15 3 0 58-28 Test 
14 15 0 3 58-28 Test

 

Table 4.9. Experimental design for mixtures 3, 7, 8, 11 and 12 

Mixture RAP TOSS MWSS Binder Description 
ID % % % PG statistics 
3 25 0 0 58-28 Control 
7 25 5 0 58-28 Test 
8 25 0 5 58-28 Test 

11 25 3 0 58-28 Test 
12 25 0 3 58-28 Test 

 

Two separated ANOVA’s were performed for the two different mixtures groups so that the 

influence of RAP on the effect of the other factors could be disregarded. TOSS (0%, 3% and 

5%), MWSS (0%, 3% and 5%) and temperature (-6°C and -18°C) were set as factors for the 

analysis of variance, while creep stiffness S(t) and m-value at 60s are still the responses. The 

average values of the selected responses and the corresponding CV’s are shown in Tables 4.10 

and 4.11. 
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Table 4.10. S(t) and m-value at t=60s, for mixtures 2, 5, 6, 13 and 14 and CV’s 

Mixture T Creep Stiffness(60) m-value(60) 
ID °C Original (GPa) CV(%) m-value CV(%) 

2 
-6 6.567 22.1 0.173 7.1 

-18 15.198 9.3 0.123 7.9 

5 
-6 7.653 8.5 0.174 7.5 

-18 16.617 11.6 0.129 5.4 

6 
-6 9.612 7.4 0.154 9.7 

-18 14.943 20.8 0.120 7.5 

13 
-6 7.416 8.0 0.153 6.5 

-18 12.513 8.5 0.117 16.3 

14 
-6 6.568 12.9 0.172 4.2 

-18 13.596 6.5 0.122 12.8 
 

Table 4.11. S(t) and m-value at t=60s, for mixtures 3, 7, 8, 11 and 12 and CV’s 

Mixture T Creep Stiffness(60) m-value(60) 
ID °C Original (GPa) CV(%) m-value CV(%) 

3 
-6 8.626 4.4 0.159 8.2 

-18 16.885 21.3 0.119 7.1

7 
-6 9.542 5.2 0.130 7.7 

-18 15.824 18.7 0.111 12.3 

8 
-6 9.596 14.1 0.136 11.2

-18 14.051 2.6 0.105 6.0 

11 
-6 10.307 8.9 0.125 23.9 

-18 17.229 9.0 0.108 5.8

12 
-6 9.972 23.0 0.135 19.3 

-18 14.586 13.6 0.123 13.3 
 

 

Figures 4.4 and 4.5 show the histograms of the creep stiffness and m-value for mixtures 2, 5, 6, 

13 and 14 and or mixtures 3, 7, 8, 11 and 12 with the corresponding CV’s for the two 

temperature levels. 
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Figure 4.4. Creep stiffness and m-value at 60s and CV’s for mixtures 2, 5, 6, 13 and 14 
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Figure 4.5. Creep stiffness and m-value at 60s and CV’s for mixtures 3, 7, 8, 11 and 12 
 

After checking normality and constant variance assumptions a log transformation of the creep 

stiffness was assumed also for this analysis, while the m-value could be evaluated in natural 

scale. The full ANOVA linear model applied to mixtures 2, 5, 6, 13 and 14 showed that, in the 

case of creep stiffness, the interaction term between MWSS and temperature is not significant at 

0.05 level. Thus, a reduced model without this term was assumed. On the other hand, the 

statistical analysis results for m-value showed that all the terms but temperature are not 

statistically significant (Tables 4.12 and 4.13) and thus no significant change of the relaxation 

properties can be expected adding TOSS and MWSS for a 15% RAP content. However, from 

the coefficients tables (Tables 4.14 and 4.15), it is evident that in the case of creep stiffness, 

only TOSS at 3% content has a significant p-value with a negative contribution to the stiffness, 

while the other significant factor, MWSS, affect positively the creep stiffness only when present 

at 5%. 
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Table 4.12. ANOVA for creep stiffness S(t) at 60s – mixtures 2, 5, 6, 13 and 14 

Source SS df MS F p-value 
Intercept 952.753 1 952.753 291792.0 0.000 
Temperature 1.194 1 1.194 365.8 0.000 
TOSS 0.057 2 0.028 8.7 0.001 
MWSS 0.037 2 0.018 5.7 0.006 
Temperature •TOSS 0.064 2 0.032 9.9 0.000 
Error 0.167 51 0.003 
Total 954.272 59       

 

Table 4.13. ANOVA for m-value at 60s – mixtures 2, 5, 6, 13 and 14 

Source SS df MS F p-value 
Intercept 1.214 1 1.214 4768.4 0.000 
Temperature 0.028 1 0.028 109.6 0.000 
TOSS 0.001 2 0.001 2.8 0.068
MWSS 0.000 2 0.000 0.2 0.805 
Temperature •TOSS 0.001 2 0.001 1.4 0.264 
Temperature •MWSS 0.000 2 0.000 0.2 0.789
Error 0.012 49 0.000 
Total 1.256 59       

 

Table 4.14. Coefficient estimates for creep stiffness S(t) at 60s – mixtures 2, 5, 6, 13 and 14 

Coefficients Estimate Std. error t p-value 
Intercept 4.167 0.019 215.42 0.000 
TOSS 3% -0.071 0.030 -2.35 0.023 
TOSS 5% 0.001 0.030 0.03 0.973 
MWSS 3% -0.025 0.024 -1.03 0.309 
MWSS 5% 0.052 0.024 2.20 0.033 
Temperature -0.339 0.019 -17.51 0.000 

 

Table 4.15. Coefficient estimates for m-value at 60s – mixtures 2, 5, 6, 13 and 14 

Coefficients Estimate Std. error t p-value 
Intercept 0.123 0.007 18.92 0.000 
TOSS 3% -0.007 0.009 -0.71 0.479 
TOSS 5% -0.003 0.009 -0.31 0.759 
MWSS 3% -0.002 0.009 -0.18 0.859 
MWSS 5% 0.006 0.009 0.60 0.549 
Temperature 0.054 0.010 5.57 0.000 
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The full analysis of variance linear model for mixtures 3, 7, 8, 11 and 12 showed that only 

temperature is statistically significant when creep stiffness is the response investigated. This is 

also confirmed when the coefficients for the singles factor levels are estimated. In the case of 

m-value only temperature and TOSS main term with both 3% and 5% content affect the 

response when 25% RAP is present in the mixture, thus a decrease in the relaxation properties 

can be expected. It must be mentioned that model assumptions still required a log 

transformation of the creep stiffness. 

Tables 4.16, 4.17, 4.18 and 4.19 present the results of ANOVA and coefficients estimation. 

Table 4.16. ANOVA for creep stiffness S(t) at 60s – mixtures 3, 7, 8, 11 and 12 

Source SS df MS F p-value 
Intercept 902.421 1 902.421 184946.0 0.000 
Temperature 0.693 1 0.693 142.1 0.000 
TOSS 0.022 2 0.011 2.2 0.121 
MW 0.000 2 0.000 0.0 0.995 
Temperature •TOSS 0.012 2 0.006 1.2 0.303 
Temperature •MWSS 0.011 2 0.006 1.1 0.330 
Error 0.215 44 0.005
Total 903.374 54 

 

Table 4.17. ANOVA for m-value at 60s – mixtures 3, 7, 8, 11 and 12 

Source SS df MS F p-value 
Intercept 0.879 1 0.879 2652.7 0.000 
Temperature 0.009 1 0.009 27.3 0.000 
TOSS 0.003 2 0.002 5.0 0.011 
MWSS 0.001 2 0.001 1.9 0.166 
Error 0.016 48 0.000
Total 0.908 54       

 

Table 4.18. Coefficient estimates for creep stiffness S(t) at 60s – mixtures 3, 7, 8, 11 and 12 

Coefficients Estimate Std. error t p-value
Intercept 4.219 0.029 147.94 0.000 
TOSS 3% 0.010 0.042 0.23 0.822 
TOSS 5% -0.026 0.040 -0.64 0.524 
MWSS 3% -0.030 0.042 -0.71 0.483 
MWSS 5% -0.042 0.042 -1.00 0.321 
Temperature -0.283 0.040 -7.03 0.000 
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Table 4.19. Coefficient estimates for m-value at 60s – mixtures 3, 7, 8, 11 and 12 

Coefficients Estimate Std. error t p-value 
Intercept 0.126 0.006 21.67 0.000 
TOSS 3% -0.021 0.008 -2.64 0.011 
TOSS 5% -0.021 0.008 -2.77 0.008 
MWSS 3% -0.002 0.008 -0.26 0.796 
MWSS 5% -0.014 0.008 -1.82 0.076 
Temperature 0.026 0.005 5.22 0.000 

 

4.1.1.3. Effect of Binder Type on Creep Stiffness and m-value 

Two mixtures groups (mixtures 7 and 9 and mixtures 8 and 10) were identified based on the 

different type of binder used to prepare them (PG 58-28 and PG 52-34). The mixtures contained 

25% of RAP. Tables 4.20 and 4.21 show the experimental design. 

Table 4.20. Experimental design for mixtures 7 and 9 

Mixture RAP TOSS MWSS Binder Description 
ID % % % PG statistics 
7 25 5 0 58-28 Control 
9 25 5 0 52-34 Test

 

Table 4.21. Experimental design for mixtures 8 and 10 

Mixture RAP TOSS MWSS Binder Description 
ID % % % PG statistics 
8 25 0 5 58-28 Control 
10 25 0 5 52-34 Test 

 

 

The two ANOVA mixtures group were selected in such a way that the other factors, TOSS and 

MWSS, couldn’t mask the effect of binder. Temperature (-6°C and -18°C) was also considered 

in the statistical analysis. Tables 4.22 and 4.23 present the average values of the creep stiffness 

S(t) and m-value at 60s used as response in the statistical analysis while Figure 4.6 shows the 

bar charts of the same parameters for the mixtures evaluated with the corresponding CV’s for 

the two temperature levels. 
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Table 4.22. S(t) and m-value at t=60s, for mixtures 7 and 9 and CV’s 

Mixture T Creep Stiffness(60) m-value(60) 
ID °C Original (MPa) CV(%) m-value CV(%) 

7 
-6 9542 5.2 0.130 7.7 

-18 15824 18.7 0.111 12.3 

9 
-6 6850 21.3 0.180 10.1 

-18 15023 8.1 0.130 26.3 
 

Table 4.23. S(t) and m-value at t=60s, for mixtures 8 and 10 and CV’s 

Mixture T Creep Stiffness(60) m-value(60) 
ID °C Original (MPa) CV(%) m-value CV(%) 

8 
-6 9596 14.1 0.136 11.2 

-18 14051 2.6 0.105 6.0

10 
-6 7599 19.5 0.193 8.1 

-18 14483 12.7 0.145 12.9 
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Figure 4.6. Creep stiffness and m-value at 60s and CV’s for mixtures 7, 8, 9 and 10 
 

After a transformation of the creep stiffness to a log scale, in order to satisfy the conditions of 

normality and constant variance, a full linear model ANOVA was run for both mixtures 7 and 9 

and mixtures 8 and 10. In both cases, all interaction terms were not statistically significant, and 

only the main effects were further considered. In the following tables the analysis results and 

the coefficient estimates are presented for the mixtures investigated. 
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Table 4.24. ANOVA for creep stiffness S(t) at 60s – mixtures 7 and 9 

Source SS df MS F p-value 
Intercept 372.344 1 372.344 55056.0 0.000 
Temperature 0.434 1 0.434 64.1 0.000 
Binder 0.045 1 0.045 6.7 0.018 
Error 0.135 20 0.007 
Total 372.958 23 

 

Table 4.25. ANOVA for m-value at 60s – mixtures 7 and 9 

Source SS df MS F p-value 
Intercept 0.428 1 0.428 801.3 0.000 
Temperature 0.009 1 0.009 17.0 0.001 
Binder 0.008 1 0.008 14.5 0.001 
Error 0.011 20 0.001 
Total 0.456 23

 

Table 4.26. Coefficient estimates for creep stiffness S(t) at 60s – mixtures 7 and 9 

Coefficients Estimate Std. error t p-value 
Intercept 4.214 0.029 143.78 0.000 
Temperature -0.275 0.034 -8.01 0.000 
Binder -0.089 0.034 -2.59 0.018 

 

Table 4.27. Coefficient estimates for m-value at 60s – mixtures 7 and 9 

Coefficients Estimate Std. error t p-value 
Intercept 0.098 0.008 11.94 0.000 
Temperature 0.040 0.010 4.13 0.001 
Binder 0.037 0.010 3.81 0.001 

 

Table 4.28. ANOVA for creep stiffness S(t) at 60s – mixtures 8 and 10 

Source SS df MS F p-value 
Intercept 375.216 1 375.216 64205.0 0.000 
Temperature 0.341 1 0.341 58.3 0.000 
Binder 0.025 1 0.025 4.2 0.054 
Error 0.117 20 0.006 
Total 375.699 23 

 

 



 61

Table 4.29. ANOVA for m-value at 60s – mixtures 8 and 10 

Source SS df MS F p-value 
Intercept 0.494 1 0.494 1175.5 0.000 
Temperature 0.007 1 0.007 16.8 0.001 
Binder 0.011 1 0.011 26.8 0.000 
Error 0.008 20 0.000 
Total 0.520 23 

 

Table 4.30. Coefficient estimates for creep stiffness S(t) at 60s – mixtures 8 and 10 

Coefficients Estimate Std. error t p-value 
Intercept 4.202 0.029 145.42 0.000 
Temperature -2.44 0.032 -7.64 0.000 
Binder -0.065 0.032 -2.04 0.054 

 

Table 4.31. Coefficient estimates for m-value at 60s – mixtures 8 and 10 

Coefficients Estimate Std. error t p-value 
Intercept 0.107 0.008 13.82 0.000 
Temperature 0.035 0.009 4.10 0.001 
Binder 0.044 0.009 5.18 0.000 

 

Binder PG 52-34 has lower creep stiffness for mixture containing TOSS, while no effect of 

binder is detectable when MWSS are included in the mix design. However, PG 52-34 binder 

has higher m-values compared to PG 58-28 binder providing an indication of better relaxation 

properties. 

4.2. Thermal Stress and Critical Temperature 

One of the most significant pavement distresses in the Northern states of US and in Canada is 

represented by thermal cracking. Thermal stress (σTS) starts to increase in the restrained asphalt 

pavement layers when temperature drops to values well below 0°C. When stress exceeds 

material strength, cracking occurs in the pavement; the critical value of the temperature at 

which this phenomenon takes place is called critical temperature, TCR. A brief description of the 

thermal stress calculation method is hereafter presented. A detailed procedure can be found in 

Appendix B and in Basu (2002) and Moon (2010). 

4.2.1. Thermal Stress Computation Method 
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Assuming a simplified case of a restrained uniaxial viscoelastic beam, thermal strain can be 

computed as [5.1]: 

T                            [5.1] 

where: 

ε  thermal strain, 

α  coefficient of thermal expansion or contraction,  

Δt  temperature variation. 

Considering the constitutive equation [2.1] and expression [2.4] in Chapter 2, substituting [5.1] 

into [2.1] and expressing everything in term of reduced time, a general expression for the 

computation of the thermal stress is obtained [5.2]: 
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where: 

)'(  E  relaxation modulus, 

)'(   strain, 

'   integration variable. 

In this dissertation the procedure used to calculate the thermal stress involves several steps. 

First creep stiffness S(t) and, its inverse, creep compliance D(t)  are obtained from the BBR 

experimental deflection data (equation [3.1] and [5.3]): 
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where: 

D(t)  creep compliance, 

S(t)  creep stiffness, 

t  time.   

Relaxation modulus E(t) is obtained from creep compliance D(t) using Hopkins and Hamming 

(1957) method and CAM model (Marasteanu and Anderson, 1996) is used to generate 

relaxation modulus master curves: 
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where: 

E(t)  relaxation modulus, 

Eg  glassy modulus (generally 3GPa for binder and 30GPa for mixtures), 

v, w  model parameters,  

tc  cross over time, 

t  time.  

According to the different test temperatures used during the experimental phase the curve shift 

factor can be also expressed as: 

TCC
Ta  2110                            [5.5] 

where:  

C1 C2  fitting parameters, 

T  reference temperature, °C, 

In this thesis only two testing temperatures were used: -6°C, and the reference temperature -

18°C. For this reason only one shift factor was required when generating the relaxation 

modulus master curves. 

Thermal stress can then be calculated solving the one dimensional hereditary integral [5.2] with  

numerical Gaussian quadrature with 24 Gauss (Basu. A, 2002). 

It must be mentioned that, when BBR binder creep data is used to obtain mixture thermal stress, 

the values obtained from equation [5.1] have to be multiplied by the empirical Pavement 

Constant (PC=18) proposed by Bouldin et al. (2000). If BBR mixture experimental data are 

available then thermal stresses are calculated directly from equation [5.2]. 

4.2.2. Critical Temperature Evaluation Method 

Thermal stress can be used to determine the critical temperature at which pavement experiences 

cracking. Two methods are generally available (Shenoy, 2002). 

The first requires the use of two experimental devices, Bending Beam Rheometer (BBR) 

(AASHTO T313-02, 2006) and the Direct Tension Tester (AASHTO T314-02, 2002) and it is 

known as dual instrument method (DIM). In the case of asphalt binder critical cracking 

temperature TCR is obtained at the intersection of thermal stress curve with the strength curve as 

shown in Figure 4.7. This approach can be also applied to mixtures, however in this dissertation 

no strength tests were performed on the asphalt mixtures investigated. For this reason the 
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alternative procedure proposed by Shenoy, (2002) was considered for the evaluation of the 

critical temperature.  

In this method, called single asymptote procedure (SAP) a line is fitted to the lowest 

temperature part of the thermal stress curve and the intersection with the temperature axis is 

assumed as critical temperature TCR (Figure 4.8).  

 

 

Figure 4.7. Critical temperature TCR – dual instrument method – (NAPA, 2005) 
 

 

Figure 4.8. Critical temperature TCR – single asymptote method – (Shenoy, 2002) 
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4.2.3. Thermal Stress and Critical Temperature Results Summaries 

In this thesis thermal stress was calculated for the case in which the temperature drops from 

22oC to -40oC in 0.5oC steps at two different rates: 1oC/h and 10oC/h, respectively. The single 

asymptote line was fitted to the two final points of the thermal stress curves: 

Point 1: (xi-1,yi-1) = (-39.5oC, TSC)) and 

Point 2: (xi,yi) = (-40.0oC, TSC))      [5.6] 

Table 4.32 presents the average values of thermal stress at the low PG grade corresponding at 

the testing temperature of -18C for both cooling rates and the corresponding critical 

temperatures, TCR. Thermal stress average value was analyzed at the testing temperature of         

-18C, corresponding to PG low temperature +10C, since this was the lowest testing 

temperature used. 

Table 4.32. Critical temperature TCR and thermal stress for all mixtures 

Mixture σTS -1ºC/h σTS -10ºC/h TCR SAP  -1ºC/h TCR SAP  -10ºC/h 
ID (MPa) (MPa) ºC ºC 
1 1.0 1.9 -26.1 -22.7 
2 2.1 3.6 -21.7 -18.2 
3 2.8 4.5 -20.8 -17.3 
4 2.1 3.6 -20.8 -17.5 
5 2.3 3.9 -22.2 -18.6 
6 3.1 5.0 -17.5 -14.7 
7 3.8 5.8 -18.4 -15.4 
8 3.8 5.6 -18.2 -15.1 
9 1.9 1.7 -22.4 -19.3 

10 1.8 3.4 -21.4 -18.0 
11 3.6 5.6 -17.5 -14.2 
12 3.1 5.0 -17.1 -14.8 
13 2.6 4.1 -19.7 -16.8 
14 2.0 3.5 -20.8 -17.6 
15 1.7 3.0 -22.0 -18.9
16 2.5 4.0 -22.4 -19.0 
17 2.3 3.9 -21.3 -17.7 

 

Thermal stress curves including critical temperature (SAP) plots for all the mixtures can be 

found in Appendix B.  

Figures 4.9 and 4.10 present the bar charts of the thermal stress and critical temperatures for all 

the seventeen mixtures evaluated and for the corresponding temperature cooling rates. 
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Figure 4.9. Thermal stress 
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Figure 4.10.  Critical temperature 
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4.2.4. Statistical Analysis 

Analogously to what was done for the creep stiffness S(t) and the m-value, different groups of 

mixtures with common characteristics are analyzed using ANOVA procedure. Thermal stress 

and critical temperature at PG low temperature +10°C (-18°C) are set as response while RAP, 

TOSS, MWSS, binder and temperature cooling rate are used as factors. ANOVA analysis based 

on a linear model is first run and normality and constant variance assumption are evaluated 

using Box-Cox plot, Residuals plot and Normal Probability plot. If required, a transformation of 

the response is applied and the analysis is repeated using the transformed data. When 

interaction terms are not statistically significant, they are pulled into the error term and a 

reduced linear model is used. From this, a final estimate of t-statistic and p-value for each term 

is obtained assuming a significance level of 0.05.  

4.2.4.1. Effect of RAP Amount on Thermal Stress and Critical Temperature 

The first four mixtures were selected as in section 4.1.1.1 since they don’t include any recycled 

material other than RAP. Control was assigned to mixture 1 due to the absence of any recycled 

material in its mix design, while mixtures 2 (15% RAP), 3 (25% RAP) and 4 (30% RAP) are set 

as test mixtures. Thermal stress and critical temperature (TCR) at PG low temperature +10°C (-

18°C) are the selected response for the ANOVA. Amount of RAP (0%, 15%, 25% and 30%) 

and temperature drop rate (-1°C/h and -10°C/h) are the factors selected for the analysis. Tables 

4.2 and 4.33 summarize the experimental design and the average values of the selected 

responses respectively. 

Table 4.33. Thermal stress and critical temperature, TCR, for mixtures 1, 2, 3 and 4 

Mixture σTS -1ºC/h σTS -10ºC/h TCR SAP  -1ºC/h TCR SAP  -10ºC/h 
ID (MPa) (MPa) ºC ºC 
1 1.0 1.9 -26.1 -22.7 
2 2.1 3.6 -21.7 -18.2 
3 2.8 4.5 -20.8 -17.3
4 2.1 3.6 -20.8 -17.5 

 

 

Thermal stress and critical temperature (TCR) for mixtures 1, 2, 3 and 4 are shown in Figure 4.11 

for the two different cooling rate (-1°C/h and -10°C/h) used during testing. 
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Figure 4.11.  Thermal stress and critical temperature, TCR, for mixtures 1, 2, 3 and 4 
 

Normality and constant variance were checked and no transformation was necessary. Full 

ANOVA including all the interactions between factors (RAP and cooling Rate) was performed 

showing that the interaction is not significant both for thermal stress and critical temperature 

analysis. Tables 4.34 to 4.37 present the results of ANOVA and coefficients evaluation. 

 

Table 4.34. ANOVA for thermal stress - mixtures 1, 2, 3 and 4 

Source SS df MS F p-value 
Intercept 115.563 1 115.563 983.5 0.000 
RAP 10.263 3 3.421 29.1 0.000 
Rate 8.123 1 8.123 69.1 0.000 
Error 1.293 11 0.118
Total 135.240 16       

 

Table 4.35. ANOVA for critical temperature, TCR - mixtures 1, 2, 3 and 4 

Source SS df MS F p-value 
Intercept 6789.760 1 6789.760 7284.8 0.000 
RAP 77.885 3 25.962 27.9 0.000 
Rate 46.923 1 46.923 50.3 0.000 
Error 10.253 11 0.932 
Total 6924.820 16       

 

 

 

 



 69

Table 4.36. Coefficient estimates for thermal stress – mixtures 1, 2, 3 and 4 

Coefficients Estimate Std. error t p-value 
Intercept 0.712 0.192 3.72 0.003 
RAP 15% 1.425 0.242 5.88 0.000 
RAP 25% 2.225 0.242 9.18 0.000 
RAP 30% 1.400 0.242 5.78 0.000 
Rate 1.425 0.171 8.31 0.000 

 

Table 4.37. Coefficient estimates for critical temperature, TCR - mixtures 1, 2, 3 and 4 

Coefficients Estimate Std. error t p-value 
Intercept -26.088 0.540 -48.34 0.000 
RAP 15% 5.275 0.683 7.73 0.000 
RAP 25% 5.350 0.683 7.84 0.000 
RAP 30% 4.475 0.683 6.56 0.000 
Rate 3.425 0.483 7.10 0.000 

 

 

Both RAP and cooling rate are highly significant for both thermal stress and critical 

temperature. All the levels of RAP are highly significant too; increasing RAP content cause an 

increase of thermal stress and of the critical temperature showing a reduced relaxation 

capability of the mixture. As obvious an increase in cooling rate implies an increase of thermal 

stress and of the critical temperature as well. 

4.2.1.2. Effect of TOSS and MWSS Amounts on Thermal Stress and Critical 
Temperature 

The same mixtures groups used in 4.1.1.2 were analyzed in this section. The experimental 

design for the two mixture groups evaluated are shown in Tables 4.8 and 4.9 

For the two different mixture groups two separated ANOVA’s were run; in this way the other 

factors effect was not influenced by the RAP levels. Cooling rate (-1°C/h and -10°C/h), TOSS 

(0%, 3% and 5%) and MWSS (0%, 3% and 5%) were set as factors while thermal stress and 

critical temperature (TCR) at low PG low temperature +10°C (-18°C) are the investigated 

responses. Tables 4.38 and 4.39 show the average values of the selected responses. 
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Table 4.38. Thermal stress and critical temperature, TCR, for mixtures 2, 5, 6, 13 and 14 

Mixture σTS -1ºC/h σTS -10ºC/h TCR SAP  -1ºC/h TCR SAP  -10ºC/h 
ID (MPa) (MPa) ºC ºC 
2 2.1 3.6 -21.7 -18.2 
5 2.3 3.9 -22.2 -18.6 
6 3.1 5.0 -17.5 -14.7

13 2.6 4.1 -19.7 -16.8 
14 2.0 3.5 -20.8 -17.6 

 

Table 4.39. Thermal stress and critical temperature, TCR, for mixtures 3, 7, 8, 11 and 12 

Mixture σTS -1ºC/h σTS -10ºC/h TCR SAP  -1ºC/h TCR SAP  -10ºC/h 
ID (MPa) (MPa) ºC ºC 
3 2.8 4.5 -20.8 -17.3 
7 3.8 5.8 -18.4 -15.4 
8 3.8 5.6 -18.2 -15.1 

11 3.6 5.6 -17.5 -14.2 
12 3.1 5.0 -17.1 -14.8 

 

 

Figures 4.12 and 4.13 show the histograms of the thermal stress and critical temperature for 

mixtures 2, 5, 6, 13 and 14 and or mixtures 3, 7, 8, 11 and 12 for the two cooling rate assumed 

(-1°C/h and -10°C/h). 
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Figure 4.12. Thermal stress and critical temperature, TCR, for mixtures 2, 5, 6, 13 and 14 
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Figure 4.13. Thermal stress and critical temperature, TCR, for mixtures 3, 7, 8, 11 and 12 
 

Assumptions of normality and constant variance were verified. In the case of mixtures 2, 5, 6, 

13 and 14 no transformation was required for thermal stress response while the Box-Cox 

showed that critical temperature was just outside the 95% confidence interval and thus a simple 

log transformation was used to normalize the data. That was not true in the case of mixtures 3, 

7, 8, 11 and 12 were no transformation was needed both for thermal stress and critical 

temperature. However to have a fair comparison critical temperature was log transformed since 

also after transformation the experimental data of TCR were inside the  95% confidence interval 

suggested by the Box-Cox plot. 

After a first analysis of variance it was found that all the possible interactions terms between 

factors were statistically not significant at a 0.05 level. A reduced linear model including only 

the main effect was then assumed both for thermal stress and critical temperature for both 

mixtures 2, 5, 6, 13 and 14 and mixtures 3, 7, 8, 11 and 12. 

Tables 4.40 to 4.43 show the ANOVA results and the coefficients estimates for thermal stress 

and critical temperature in the case of mixtures 2, 5, 6, 13 and 14, when the reduced model is 

applied. 

Table 4.40. ANOVA for thermal stress – mixtures 2, 5, 6, 13 and 14 

Source SS df MS F p-value 
Intercept 77.224 1 77.224 331.6 0.000 
TOSS 3.362 2 1.681 7.2 0.007 
MWSS 0.552 2 0.276 1.2 0.335 
Rate 12.013 1 12.013 51.6 0.000 
Error 3.260 14 0.233 
Total 211.830 20   
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Table 4.41. ANOVA for critical temperature, TCR - mixtures 2, 5, 6, 13 and 14 

Source SS df MS F p-value 
Intercept 60.570 1 60.570 8773.9 0.000 
TOSS 0.097 2 0.048 7.0 0.008 
MWSS 0.003 2 0.002 0.2 0.805 
Rate 0.145 1 0.145 21.0 0.000 
Error 0.097 14 0.007 
Total 172.577 20       

 

Table 4.42. Coefficient estimates for thermal stress – mixtures 2, 5, 6, 13 and 14 

Coefficients Estimate Std. error t p-value 
Intercept 2.050 0.264 7.76 0.000 
TOSS 3% 1.200 0.341 3.52 0.003 
TOSS 5% 0.175 0.341 0.51 0.616 
MWSS 3% 0.250 0.341 0.73 0.476
MWSS 5% -0.275 0.341 -0.81 0.434 
Rate 1.550 0.216 7.18 0.000 

 

Table 4.43. Coefficient estimates for critical temperature, TCR - mixtures 2, 5, 6, 13 and 14 

Coefficients Estimate Std. error t p-value 
Intercept 3.069 0.046 67.44 0.000 
TOSS 3% -0.219 0.059 -3.73 0.002 
TOSS 5% -0.095 0.059 -1.61 0.130 
MWSS 3% 0.025 0.059 0.42 0.678 
MWSS 5% 0.038 0.059 0.66 0.523 
Rate -0.170 0.037 -4.59 0.000 

 

In the case of thermal stress only, TOSS and cooling rate are statistically significant (Table 

4.40). An increase in TOSS causes an increase in thermal stress, but only for a 3% content as is 

shown in table 4.42. Critical temperature is also affected by temperature cooling rate and TOSS 

content, but only up to 3%, beyond which no significant variation in the response is expected. 

MWSS is not statistically significant for both levels. 

The ANOVA results and the coefficients estimates for thermal stress and critical temperature in 

the case mixtures 3, 7, 8, 11 and 12 are presented in Tables 4.44 to 4.47. 
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Table 4.44. ANOVA for thermal stress – mixtures 3, 7, 8, 11 and 12 

Source SS df MS F p-value 
Intercept 165.313 1 165.313 381.5 0.000 
TOSS 2.795 2 1.398 3.2 0.070 
MWSS 2.287 2 1.143 2.6 0.107 
Rate 17.861 1 17.861 41.2 0.000 
Error 6.067 14 0.433 
Total 403.550 20       

Table 4.45. ANOVA for critical temperature, TCR - mixtures 3, 7, 8, 11 and 12 

Source SS df MS F p-value 
Intercept 53.785 1 53.785 8977.8 0.000 
TOSS 0.072 2 0.036 6.0 0.013 
MWSS 0.070 2 0.035 5.8 0.015 
Rate 0.164 1 0.164 27.4 0.000 
Error 0.084 14 0.006 
Total 158.996 20       

 

Table 4.46. Coefficient estimates for thermal stress – mixtures 3, 7, 8, 11 and 12 

Coefficients Estimate Std. error t p-value 
Intercept 2.705 0.361 7.50 0.000 
TOSS 3% 1.100 0.465 2.36 0.033 
TOSS 5% 0.925 0.465 1.99 0.067 
MWSS 3% 1.050 0.465 2.26 0.041 
MWSS 5% 0.350 0.465 0.75 0.465 
Rate 1.890 0.294 6.42 0.000 

 

Table 4.47. Coefficient estimates for critical temperature, TCR – mixtures 3, 7, 8, 11 and 12 

Coefficients Estimate Std. error t p-value 
Intercept 3.032 0.042 71.53 0.000
TOSS 3% -0.120 0.055 -2.20 0.045 
TOSS 5% -0.187 0.055 -3.41 0.004 
MWSS 3% -0.144 0.055 -2.62 0.020
MWSS 5% -0.175 0.055 -3.19 0.007 
Rate -0.181 0.035 -5.24 0.000 

 

From the general ANOVA table (Table 4.44) neither TOSS nor MWSS appear to be statistically 

significant for thermal stress. However also for mixtures 3, 7, 8, 11 and 12 as for the previous 

group of mixtures (2, 5, 6, 13 and 14) those results mask the fact that both TOSS and MWSS 
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are significant up to 3% content inducing an increase in thermal stress. Cooling rate is 

statistically significant as well. 

TOSS and MWSS are both affecting the critical temperature. This is shown by the ANOVA 

table and the coefficients estimate. As for thermal stress, a temperature cooling rate increment 

is positively correlated with the critical temperature. 

4.2.1.3. Effect of Binder Type on Thermal Stress and Critical Temperature 

The same mixtures analyzed in 4.1.1.3 are used hereafter (mixtures 7 and 9 and mixtures 8 and 

10). Binders PG 58-28 and PG 52-34 were used to prepare them; the same amount of RAP, 

25%, is present in each mixture. The mixtures experimental design is shown in Tables 4.20 and 

4.21. Thermal stress and critical temperature are used in this analysis as response while PG and 

cooling rate are set as factors. The average values of the response are summarized in Tables 

4.48 and 4.49 while Figure 4.14 shows the histograms of responses for the mixtures evaluated. 

 

Table 4.48. Thermal stress and critical temperature, TCR, for mixtures 7 and 9 

Mixture σTS -1ºC/h σTS -10ºC/h TCR SAP  -1ºC/h TCR SAP  -10ºC/h 
ID (MPa) (MPa) ºC ºC 
7 3.8 5.8 -18.4 -15.4 
9 1.9 1.7 -22.4 -19.3 

 

 

Table 4.49. Thermal stress and critical temperature, TCR, for mixtures 8 and 10 

Mixture σTS -1ºC/h σTS -10ºC/h TCR SAP  -1ºC/h TCR SAP  -10ºC/h 
ID (MPa) (MPa) ºC ºC 
8 3.8 5.6 -18.2 -15.1 

10 1.8 3.4 -21.4 -18.0 
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Figure 4.14. Thermal stress and critical temperature, TCR, for mixtures 7, 8, 9 and 10 
 

No transformation of the thermal stress and critical temperature was required to satisfy 

normality and constant variance for both mixtures 7 and 9 and mixtures 8 and 10. The full 

ANOVA model showed that for all the responses no interaction term between PG and cooling 

rate was statistically significant. Tables 4.50 to 4.57 present the analysis results and the 

coefficient estimates for the mixtures investigated. 

 

Table 4.50. ANOVA for thermal stress – mixtures 7 and 9 

Source SS df MS F p-value 
Intercept 106.580 1 106.580 124.5 0.000 
Binder 9.680 1 9.680 11.3 0.020 
Rate 5.780 1 5.780 6.8 0.048 
Error 4.280 5 0.856 
Total 126.320 8       

 

 

Table 4.51. ANOVA for critical temperature, TCR – mixtures 7 and 9 

Source SS df MS F p-value
Intercept 2838.811 1 2838.811 18769.0 0.000 
Binder 30.811 1 30.811 203.7 0.000 
Rate 18.911 1 18.911 125.0 0.000 
Error 0.756 5 0.151 
Total 2889.290 8       
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Table 4.52. Coefficient estimates for thermal stress – mixtures 7 and 9 

Coefficients Estimate Std. error t p-value 
Intercept 3.900 0.567 6.88 0.001 
Binder -2.200 0.654 -3.36 0.020 
Rate 1.700 0.654 2.60 0.048 

 

Table 4.53. Coefficient estimates for critical temperature, TCR – mixtures 7 and 9 

Coefficients Estimate Std. error t p-value 
Intercept -18.413 0.238 -77.31 0.000 
Binder -3.925 0.275 -14.27 0.000 
Rate 3.075 0.275 11.18 0.000 

 

Table 4.54. ANOVA for thermal stress – mixtures 8 and 10 

Source SS df MS F p-value 
Intercept 105.125 1 105.125 3091.9 0.000
Binder 9.245 1 9.245 271.9 0.000 
Rate 5.780 1 5.780 170.0 0.000 
Error 0.170 5 0.034
Total 120.320 8       

 

Table 4.55. ANOVA for critical temperature, TCR – mixtures 8 and 10 

Source SS df MS F p-value 
Intercept 2639.011 1 2639.011 359.1 0.000 
Binder 18.911 1 18.911 2.6 0.170 
Rate 20.801 1 20.801 2.8 0.153 
Error 36.746 5 7.349 
Total 2715.470 8       

 

Table 4.56. Coefficient estimates for thermal stress – mixtures 8 and 10 

Coefficients Estimate Std. error t p-value 
Intercept 3.850 0.113 34.10 0.000 
Binder -2.150 0.130 -16.49 0.000 
Rate 1.700 0.130 13.04 0.000 
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Table 4.57. Coefficient estimates for critical temperature, TCR – mixtures 8 and 10 

Coefficients Estimate Std. error t p-value 
Intercept -18.238 1.660 -10.99 0.000 
Binder -3.075 1.917 -1.60 0.170 
Rate 3.225 1.917 1.68 0.153 

 

In the case of mixtures 7 and 9, both binder type (PG) and cooling rate are significant at 0.05 

level both for thermal stress and critical temperature. Moreover, the Performance Grade (PG) is 

negatively correlated with the responses, meaning that using a softer binder (PG 52-34) 

decreases the critical temperature and the stress at the reference low PG grade for the control 

binder (58-28) that in this case is equal to -18°C. 

The same conclusions are not valid in the case of mixtures 8 and 10. In fact, while a softer 

binder reduces thermal stress, as well as a slower rate, it seems that critical temperature is 

unaffected by rate and PG. It must be notice that for the same amount of RAP (25%) mixtures 7 

and 9 contain 5% of TOSS while mixtures 8 and10 contains 5% of MWSS. This may be the 

reason why no significant effect in critical temperature is detected when changing binder grade 

in the last two mixtures. 
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Chapter 5. Image Analysis  

This chapter is divided into three parts. In the first part a short introduction to the digital image 

processing is proposed and the results for the estimation of the volume fraction of the aggregate 

phase for the seventeen mixtures evaluated in this thesis are presented. In the second part a 

simple grain size distribution estimation procedure is outlined and visual comparisons between 

some of the investigated mixtures with common characteristics as RAP, MWSS and TOSS are 

shown. Finally two- and three-point correlation functions are obtained for all the mixtures based 

on a numerical procedure. 

5.1. Digital Image Processing 

The internal structure of heterogeneous materials as asphalt mixtures can be described and 

quantified by processing digital images of the materials. A digital image can be considered as a 

two-dimensional discrete function f (x,y), where f is the intensity of the image at that point (x,y) 

and x and y are spatial its coordinates. Pixels are the elements that from a digital image; each 

pixel has a specific location and intensity value (Gonzales et al. 2004). 

An image can be represented by pixel matrix; in the case of binary images the intensity can take 

the values of 0 for black pixels and 1 for white pixels. The matrix representation of and M×N 

binary image is shown in Figure 5.1. 
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Figure 5.1. Matrix representation and schematic of a M × N binary image (Velasquez et 
al., 2010) 
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Digital image processing (DIP) involves different manipulation tools; they usually are 

mathematical functions as filters or geometric transformation that are applied to the matrix that 

is behind the image representation.  

Eriksen and Wegan (1993) were among the first to make use of image analysis to 

characterize the microstructure of asphalt mixtures. In their work they use images of asphalt 

binders and asphalt mixtures to investigate the microstructure. Yue et al. (1995) estimated 

gradation, shape, and orientation of aggregates in asphalt mixtures using digital image 

processing. 

Digital image analysis and X-ray tomography was used by Masad et al. (1999)  to 

characterize the internal structure of asphalt mixtures prepared in the laboratory with the 

Superpave Gyratory Compactor at different compaction levels. After measuring aggregate 

orientation, gradation, and air void distribution, they concluded that aggregates tend to have a 

preferred orientation up to a certain level of compaction, after which aggregates tend to be 

randomly distributed. 

Traditional and digital image processing methods for characterization of the internal 

structure of asphalt mixtures were compared by Masad and Button (2004). The distribution of 

the aggregates, air voids, and voids in the mineral aggregate (VMA) were quantified with 

conventional volumetric methods that rely on bulk measurements of the material and digital 

imaging methods. Camera and an X-ray computed tomography system were used to capture 

two- and three- dimensional images respectively. It was found that image analysis can be use to 

study differences among compaction methods in the laboratory, to improve the laboratory 

method in connection with what is done in the field, and to evaluate the prediction of the 

asphalt mixtures permeability. 

Aggregate orientations and their effects on engineering properties of asphalt mixtures 

were also well investigated in other works and characterized using imaging techniques (Masad 

et al., 1998; Chen et al., 2001, 2002, 2005). More automated techniques were proposed by Kose 

et al., (2000), Yue et al., (2003), Offrell and Magnusson, (2004) where the manual/subjective 

component of the analysis (usually the selection of the gray scale or black and white threshold) 

is correlated with experimental results. 

Zelelew et al., (2008) and Zelelw (2008) used X-ray CT images to characterize and 

reconstruct the microstructure of asphalt mixture. An improved volumetric threshold algorithm 
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based on global minima percent error and volumetric properties of asphalt mixture was 

implemented for the purpose. 

More Recently Velasquez (2009) and Velasquez et al., (2010) used Digital Image 

Processing to obtain volumetric, microstructure and RVE (Representative Volume Element) 

information on asphalt mixtures to use it as input in micromechanical models. 

5.1.1. Digital Processing Procedure 

A CanoScan D2400u scanner was used to acquire the color (RGB) images of the BBR small 

thin beams on the four major surfaces. However the resolution used was limited to 300dpi due 

hardware and software compatibility issues and also to reduce the amount of disk space 

required to store all the images. This resolution allows for detection of aggregates larger than 85 

m. Since sieve #200 corresponds to 75 m and sieve #100 corresponds to 150 m it is more 

realistic to expect to be able to detect aggregates larger then sieve #100. 

The following procedure was implemented using MATLAB Image Processing Toolbox (2008) 

to convert RGB images of asphalt concrete to binary images, black (0) represents voids + 

asphalt binder + aggregates smaller than 150 m and where white (1) represents aggregates 

larger than 150 m. 

1) Function rgb2gray is used to convert the original RGB image (Figure 5.2a) to gray 

scale (Figure 5.2b). 

2) Function histeq is applied to perform histogram equalization and enhance contrast 

between the two phases (asphalt mastic and aggregates). The gray scale pixel values 

are transformed in such a way that the histogram of the transformed image is uniform 

(Figure 5.2c). 

3) In order to reduce the noise present in the image, especially in large aggregates, 

maximum spatial filter function, ordfilt2, was used (Figure 5.2d). This function is a 

non-linear spatial filter based on the ranking of the pixels contained in the specific 

region of the image. The pixel located in the center of that specific region is replaced 

with the value found from the ranking analysis (Gonzales et al., 2004).   

4) Finally function im2bw is applied to convert the gray scale image to a binary image 

assuming an average threshold of 0.35 (Figure 5.2e). Threshold value selection is a 

well known problem in digital image analysis of asphalt concrete mainly due to the 

difficulty arises from the fact that aggregates in the mix have different colors 
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depending on their origin. Dark colored aggregates can potentially be confused for 

asphalt binder in the analysis. However the threshold in this case was selected based 

the on the known value of VMA (Voids in the Mineral Aggregate) and VFA (Voids 

Filled with Asphalt) and on the image resolution. Since it was known that aggregates 

smaller than 150m couldn’t be detected and that they would became part of the 

mastic (black phase) a threshold value of 0.35 was found appropriate also taking into 

account that all the mixtures have very similar VFA and VMA values. 

 

Figure 5.2 presents the output example of the digital image analysis procedure used in this 

thesis for one side of a asphalt mixture BBR beam. 

 

a)  

b)  

c)  

d)  

e)  

 
Figure 5.2. Digital processing of asphalt mixture BBR beam images 

5.1.2. Volume Fraction 

Volume fractions can be obtained from area fractions when a sufficient large number of two-

dimensional sections of the material are used (Underwood, 1970). However, as a mentioned 
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before, due to the images resolution (300dpi), aggregates smaller than 150 m (i.e. passing 

sieve #100) can not be detected and thus the volumetric fractions of the aggregates obtained 

from the two-dimensional binary images are an underestimation of the real value. In the binary 

image, represented by a matrix of ones and zeros, the aggregate phase is represented by an 

intensity value of one. The total volumetric fraction of the aggregate can be estimated as the 

ratio between the sum of all the elements of the binary matrix and its size (i.e. M x N). For each 

replicate - BBR asphalt mixture beam - the volumetric fraction was obtained as the average 

between the two larger sides of the specimen (~115 × 11.8 mm).  Then the volumetric fraction 

for each mixture was calculated averaging the volumetric fraction of the twelve replicates (six 

for each slice of mixture obtained from the gyratory compacted specimen as described in 

Chapter 3). Table 5.1 and Figure 5.3 present the value of the volumetric fraction for the 

seventeen mixtures investigated and the corresponding coefficient of variation. 

 

Table 5.1. Estimated aggregates volumetric fraction and CV’s 

Mixture Volumetric Fraction CV 
ID % % 
1 75.8 1.43 
2 74.9 2.12 
3 76.4 1.78 
4 75.4 1.30 
5 75.5 2.21 
6 76.8 1.60 
7 75.8 0.99 
8 75.2 1.03 
9 76.7 1.85 
10 75.3 2.86 
11 75.8 1.83 
12 77.0 1.15 
13 77.4 1.99 
14 77.6 1.25 
15 77.5 1.67 
16 76.9 1.76 
17 75.7 2.62 
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Figure 5.3. Estimated mixtures volumetric fraction and CV’s 
 

Since from Table 5.1 the values of the volumetric fractions didn’t seem to be very different 

from mixture to mixture, an ANOVA analysis was run to verify it and a pairwise comparison of 

the mixtures based on the volumetric fraction was also performed. It was found that there is no 

statistically significant difference between the different mixtures evaluated meaning that 

probably all the mixtures were designed with a very similar amount of aggregates even though 

different recycled material are added. 

5.2. Grain Size Distribution 

It is known that true particle size distribution of mixtures containing irregular particles, such as 

asphalt concrete, can not be obtained from 2D image. Schafer and Teyssen (1987) demonstrated 

that aggregate size distributions extracted from two-dimensional sections are generally biased 

towards the finer side due to the random cut of the aggregates. However, two-dimensional 

approximations of the grain size distribution can be useful to compare gradations from different 

type of mixtures and provide a indicative idea on how the asphalt mixtures differ. 
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Some difficulties may arise when estimating the grain size distribution contained in an asphalt 

mixture specimen from two-dimensional images:  

 Not detecting smaller particles due to the resolution of the images, 

 Recognizing two or more particles in contact as one large particle, 

 Assuming that the irregular geometry of the particles is described by ellipses or circles. 

In this thesis the procedure proposed by Velasquez (2009) was adopted and the  grain size 

distribution of BBR asphalt mixture beams specimens was estimated using ImageJ v.1.43 

(2010), a public domain Java (Java 1.6.0_10, 2010) image processing program. The following 

procedure, implemented into a macro, is used for the calculation of the gradation curves 

(Velasquez, 2009):  

 The original RGB (color) image is converted to gray scale (Figure 5.4a). 

 A smooth filter that replaces each pixel with the average of its 3 x 3 neighborhood is 

applied to the gray scale image (Figure 5.4b). 

 Histogram equalization of the original image is applied to enhance contrast (Figure 

5.4c) 

 The conversion of gray scale image to a binary image is performed using a threshold 

cut off and pixels from the edges of black objects are removed by an erosion procedure 

(Figure 5.4d).  

 After deselecting the particles edges in the binary image and the area of each particle is 

calculated. Then, by assuming that particles are circles, the size of each particle is 

estimated by calculating its diameter. 

Obviously, the assumption of having spherical particles, introduces a large degree of 

approximation in the calculations. However, for the purpose of this thesis, it was considered 

appropriate since no further investigation on the orientation of the aggregates is performed. A 

more advanced and precise technique was proposed by the University of Wisconsin in an 

AASHTO draft standard (2010). 
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(a) Original Image 

 
(b) Smoothing 

 
(c) Enhance 

Contrast 

 
(d) Threshold and 

Erosion 
 

Figure 5.4. Digital image procedure for grain size distribution – (Velasquez, 2009) 
 

Velasquez (2009) investigated the error obtained from using the previous procedure when 

several particles are or are not in contact from a computer-generated material with known 

particle size distribution. It was found that the gradation curves for the computer-generated 

material with and without contacting particle are similar with a slight difference of 5% for the 

percent passing of particles with 0.6 mm size (Figure 5.5).  
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Figure 5.5. Grain size distribution for computer-generated material – (Velasquez, 2009) 
 

The gradation of the material containing some particles in contact was  slightly coarser than the 

gradation of the same material with no particles in contact. This result suggested that the 

proposed procedure for estimation of grain size distribution was unable to remove all possible 
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contact between particles, however a good estimation of the gradation of the mixtures 

investigated was obtained by using this procedure. 

The grain size distribution for each asphalt mixtures BBR beam specimen used in this thesis 

was obtained as the average of the grain size distribution calculated on both major sides of the 

beams (~115 × 11.8 mm). The average gradation curves calculated from twelve replicates (six 

BBR asphalt mixtures beams from each of the two asphalt mixture slices cut from two gyratory 

compacted specimen respectively for each mixture type)  and the corresponding coefficients of 

variation are presented in Figures 5.6 - 5.14. Appendix C presents the gradation curves for all 

the specimens from each gyratory cylinder asphalt mixture slice. 
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Figure 5.6. Grain size distribution for mixtures 1 and 2 and CV 
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Figure 5.7. Grain size distribution for mixtures 3 and 4 and CV 
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Figure 5.8. Grain size distribution for mixtures 5 and 6 and CV 
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Figure 5.9. Grain size distribution for mixtures 7 and 8 and CV 
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Figure 5.10. Grain size distribution for mixtures 9 and 10 and CV 
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Figure 5.11. Grain size distribution for mixtures 11 and 12 and CV 
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Figure 5.12. Grain size distribution for mixtures 13 and 14 and CV 
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Figure 5.13. Grain size distribution for mixtures 15 and 16 and CV 
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Figure 5.14. Grain size distribution for mixture 17 and CV 
 

A visual comparison the same mixtures groups for which statistical analysis was performed in 

Chapter 4 are hereafter presented. 
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Figure 5.15. Grain size distribution for mixtures 1, 2, 3, and 4 and CV’s 
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Figure 5.16. Grain size distribution for mixtures 2, 5, 6, 13 and 14 and CV’s 
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Figure 5.17. Grain size distribution for mixtures 3, 7, 8, 11 and 12 and CV’s 
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Figure 5.18. Grain size distribution for mixtures 7, 8, 9 and 10 and CV’s 
 

From a visual comparison, the gradation curves for the four asphalt mixture groups presented in 

Figures 5.15, 5.16, 5.17 and 5.18 are very similar. This may suggest that the gradation curves 

for all mixtures, whether they are made only using  virgin material or they contain RAP, TOSS 

or MWSS recycled material, are very similar. 

5.3. n-point Correlation Functions 

Statistical tools are available to characterize the microstructures of complex materials such as 

asphalt mixture. Jiao et al. (2007) found that the effective mechanical and transport properties 

of heterogeneous materials are function of the microconstituents spatial distribution and not 

only of their volume fraction. Important information for the calculation of improved upper and 

lower bounds of the mechanical properties of materials can be obtained from higher-order 

microstructural functions such as the n-point correlation functions (Torquato 2000).  

In a two-phase heterogeneous material, with the same volume fraction, the spatial distribution 

of its particles can dramatically affect the mechanical properties, as well as the failure 

characteristics (Torquato 2000). For this reason spatial correlation functions can be used as a 

tool to identify fluctuations on the microstructure of a heterogeneous material. An example of a 
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2-point correlation function for two materials with the same volume fraction but with variability 

on spatial distribution of particles is presented in Figure 5.19. 
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Figure 5.19. 2-pint correlation function for two materials with the same volume fraction 
and different particles spatial distribution – (Velasquez, 2009) 

 

Very similar algorithms to those proposed by Velasquez (2009) and Velasquez et al., 

(2010) are adopted in this dissertation to estimate the 2- and 3-point correlation functions of 

asphalt mixtures. These procedures, described in the next sections of this Chapter, make use of 

Monte Carlo simulations to approximate the correlation functions of the material. The binary 

images of the BBR asphalt mixtures specimens obtained in section 5.1 are used for the 

estimation of the spatial correlation functions. However since computation of the 3-point 

correlation function was prohibitive for a laptop computational power it was decide to simply 

the algorithm in order to have at least a one dimensional response of this function. 

5.3.1. 2-point Correlation Function 

The 2- point correlation function can be computed using a discretized expression of equation 

[2.17] and binary images of the microstructure of the investigated material. The following 

discretized version of equation [2.17] was proposed by Berryman (1985) to estimate S2: 
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where: 
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M  height of the digital image, and 

N  width of the digital image.  

The isotropic 2-point correlation function S2(k) is calculated as the average of the values of S2(x, 

y) at a fixed radius k, where S2(x, y) is the two-dimensional estimate provided by equation [5.1]. 

However, since the values of S2(x, y) are generally not known at the specific points of interest, 

Berryman (1985) introduced the following function: 

)sin,cos(ˆ),( 22  kkSkS         [5.2] 

When k·cos and k·sin are not integers, bilinear interpolation can be applied to the 

right-hand side of equation [5.2]. Knowing the values of [5.2], the average 2-point correlation 

function can be evaluated as: 
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where: 

k  less than or equal to half of the minimum dimension of the image. 

However for high resolution images containing a large number of pixels, a brute force method 

is computationally very expensive and therefore prohibited to use in an extensive experimental 

program especially if the computational power available is that of a standard laptop. For this 

reason an alternative approach is represented by Monte Carlo simulations; this can be used to 

estimate the 2-point correlation function of heterogeneous materials at a lower computational 

cost in comparison to brute force methods. 

For the 2-point correlation, the algorithm drops vectors of specific length inclined at a 

random angle in the digital image N number of times and calculates the number of times the end 

points of the vector are in the phase of interest (Figure 5.20). The procedure is repeated for 

vectors of lengths varying from zero to half the size of the image. The function rand(), available 

in MATLAB (2008), was used to randomly generate the location and inclination of each vector.  
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Figure 5.20. Schematic for 2-point correlation function algorithm – (Velasquez et al., 2010)  
 

Velasquez (2009) and Velasquez et al., (2010) using a two-phase randomly generated 

material with 1 = 0.5 determined its 2-point correlation function (Figure 5.21) showing, as 

expected, that the correlation function has the material volumetric fraction 1 as initial value 

and instantaneously decays to 1
2, which is the probability of randomly finding two points in 

phase 1. 
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Figure 5.21. 2-point correlation function for phase 1 of a randomly generated material – 
(Velasquez et al., 2010) 

 

The simplified method was also validated by the same authors comparing the results to the 

analytical exact solution for the Penetrable Sphere Model (Weissberg 1963; Torquato and Stell 

1983; Berryman 1985) and it was found that the results from using the implemented algorithm 

are in good agreement with the theoretical solution. The number of drops N for the estimation 

of the correlation function was determined from the Penetrable Sphere model as well using  a 

material with matrix = 0.26 (white phase) as a balance between computational time and results 
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fluctuation. N > 10,000 provided the best compromise. A comparison of the brute force method 

and the simplified algorithm for a material containing overlapping particles with particles = 0.26 

also indicated that the method based on Monte Carlo simulations provides a good 

approximation of the spatial correlation function with less computational time (Velasquez, 

2009; and Velasquez et al., 2010). 

5.3.1.1. 2-point Correlation Function for Asphalt Mixture 

The binary images of the different specimens were used to compute the 2-point correlation 

functions of the aggregate phase. The 2-point correlation functions for each specimen of the 

seventeen mixtures analyzed in this study are presented in Appendix C. As in the case of 

volume fraction and gradation the single values of the 2-point correlation function for each 

specimen is calculated as average of the two larger sides of the specimen (~115 × 11.8 mm). An 

example of the 2- point correlation function for the six specimen obtained from slice 2 of 

mixture 7 is presented in Figure 5.22. 
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Figure 5.22. 2-point correlation function for aggregate phase, mixture 7 slice 2 
 

Table 5.2 presents a comparison between the 1-point correlation function (the volume fraction 

of aggregate, 1), the calculated 2-point correlation function and the theoretical 2-point 

correlation function (1
2) at r=5mm for all the asphalt mixtures. The average and coefficient of 
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variation of the 2-point correlation function of the aggregate phase for all the different asphalt 

mixtures are presented in Figures 5.23-5.31.  

Table 5.2. 2-point correlation function values comparison 

Mixture Volume fraction S2 at r=5mm S2 Theoretical at r=5mm Difference at r=5mm 
ID - - - % 
1 0.758 0.555 0.574 3.44 
2 0.749 0.540 0.561 3.78 
3 0.764 0.569 0.583 2.44 
4 0.754 0.549 0.568 3.43 
5 0.755 0.557 0.570 2.25 
6 0.768 0.568 0.589 3.67 
7 0.758 0.561 0.574 2.27 
8 0.752 0.560 0.565 0.94 
9 0.767 0.581 0.589 1.27 

10 0.753 0.562 0.567 0.78 
11 0.758 0.560 0.574 2.43 
12 0.770 0.583 0.593 1.60 
13 0.774 0.597 0.600 0.41 
14 0.776 0.595 0.602 1.23 
15 0.775 0.593 0.600 1.16 
16 0.769 0.591 0.591 0.04 
17 0.757 0.559 0.573 2.38 
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Figure 5.23. 2-point correlation function for mixtures 1 and 2 and CV 
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Figure 5.24. 2-point correlation function for mixtures 3 and 4 and CV 
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Figure 5.25. 2-point correlation function for mixtures 5 and 6 and CV 
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Figure 5.26. 2-point correlation function for mixtures 7 and 8 and CV 
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Figure 5.27. 2-point correlation function for mixtures 9 and 10 and CV 
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Figure 5.28. 2-point correlation function for mixtures 11 and 12 and CV 
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Figure 5.29. 2-point correlation function for mixtures 13 and 14 and CV 
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Figure 5.30. 2-point correlation function for mixtures 15 and 16 and CV 
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Figure 5.31. 2-point correlation function for mixture 17 and CV 
 

The 2-point correlation functions calculated for asphalt mixtures materials (Figures 5.23 - 5.31) 

behave similarly for all the seventeen asphalt mixtures investigated. The value of the correlation 

function does not fluctuate as the distance (r) increases. The 2-point correlation function starts 

at approximately aggregate and smoothly drops to aggregate
2 as also shown by the difference 

between the computed and theoretical value (Table 5.2).  For each mixture, no large coefficients 

of variation are observed between the correlation function measured from the twelve BBR beam 

sspecimens. The maximum coefficient of variation calculated is 5.13%. 

5.3.2. 3-point Correlation Function 

Several approaches are available to compute the 3-point correlation function. The use of brute 

force applied to the discretized version of equation [2.21] is however prohibitive in terms of 

computational time. Berryman (1985) proposed a simplified algorithm based on Monte Carlo 
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simulations and on a set of lattice commensurate triangles to approximate the 3-point 

correlation function. He showed that, by using the symmetries of the 3-point correlation 

function, computational time can be reduced. For an isotropic and statistically homogeneous 

material, the 3-point correlation function does not depend on the location or orientation of the 

triangle but only on the size and shape of it. A procedure was proposed by Berryman (1985) to 

define the set of triangles used for the estimation of the spatial correlation function. Three 

integer l, m, and n are used to characterize each triangle (Figure 5.32). In order to avoid 

calculating the probability of the same triangle more than once (redundancy) the following 

conditions are imposed: 

 The length of the longest side of the triangle l is not larger than half of the size of the 

image, 

 A local coordinate system (x′, y′) with origin at the vertex formed by the intersection of 

the longest and shortest side of the triangle is a defined, 

 The longest side l of the triangle is place along the x′ axes. Then, with respect to this 

local coordinate system, the second and third vertex of the triangle are located at (l, 0) 

and (m, n), respectively. 

 To avoid calculating the correlation function for the same triangle more than once 

then: 

2/lm           [5.4] 

mlnm 222          [5.5] 
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Figure 5.32. Schematic of triangles used for calculation of 3-point correlation function – 
(Velasquez et al., 2010) 
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Each triangle defined by the integers (l, m, n) was randomly dropped N number of times in the 

digital image and the number of times (Nhits) the three vertices of the triangle were in the phase 

of interest was counted (Figure 5.23).  The value of the 3-point correlation function for that 

specific triangle is: 

NNnmlS hits /),,(3          [5.6] 
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Figure 5.33. Schematic of Monte Carlo simulations for 3-point correlation function – 
(Velasquez et al., 2010) 

 

The 3-point correlation function was applied by Velasquez (2009) and Velasquez et al., (2010) 

to study the effect of different sizes of beams of asphalt mixture specimen and the 

microstructure of the material. The 3-point correlation function for a randomly generated 

material and the penetrable sphere material was calculated using a set of triangles with the same 

shape but different sizes. The shape of the triangle was defined by L = 3 pixels and M = N =1 

pixel and the size of the triangle was determined by a factor p, that varied from 1 to half the size 

of the image. The set of triangles used to calculate S3 was determined by the following triplets: 

),,(),,( NMLpnml          [5.7] 

It was found that S3 can capture differences in the microstructure of two completely different 

materials, similar to what 2-point correlation function (S2) does. For the random material, the 

spatial correlation function starts at the volumetric fraction of the matrix phase (i.e. white 

pixels) and then instantaneously drops to matrix
3. The authors also showed that, as expected, the 

3-point correlation function of the random material reflects no patterns in the internal structure 

of the material and that the 3-point correlation function for the penetrable spheres model 



 103

behaves similarly to previous research (Berryman, 1985) when N = 100,000 triangle drops are 

used during the simulations. 

5.3.2.1. 3-point Correlation Function for Asphalt Mixture 

The same binary images of the asphalt mixtures BBR beams used for the calculation of the 2-

point correlation function of the different specimens were used also for the computation of the 

3-point correlation function. First a simplified algorithm based on the conditions stated above, 

and very similar to what was proposed by Velasquez (2009) and Velasquez et al., (2010) was 

coded in MATLAB using the random number generator function for the Monte Carlo 

simulations. This algorithm should generate a three-dimensional output. However it was found 

that this is prohibitive for a computational power available in a standard laptop and thus this 

approach was dropped. It was decided to select only a single triangle with fixed proportion and 

varying dimension from one point to half of the size the smaller side of the specimen larger face 

(~115 × 11.8 mm). The set of triangles defined by L = 2, M = 1, N = 1, and p = 0 - 32, was 

selected. This helped to drastically reduce the computation time form more that 5 days for a 

single simulation to few minutes. It must be underlined that this single triangle procedure does 

not provide the entire 3-point correlation function; however, for the purpose of this dissertation 

it was considered a good compromise between computation power and an appropriate response. 

An example of the 3- point correlation function for the six specimen obtained from slice 2 of 

mixture 7 is presented in Figure 5.34. 
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Figure 5.34. 3-point correlation function for aggregate phase, mixture 2 slice 2 
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Table 5.3 presents a comparison between the 1-point correlation function (the volume fraction 

aggregate, 1), the calculated 3-point correlation function and the theoretical 3-point correlation 

function (1
3) for all the asphalt mixtures at p=32. The average and coefficient of variation of 

the 3-point correlation function of the aggregate phase for all the different asphalt mixtures are 

presented in Figures 5.35-5.43. Appendix C contains the plots for the 3-point correlation 

functions for each specimen of the seventeen mixtures analyzed in this dissertation. 

Table 5.3. 3-point correlation function values comparison 

Mixture Volume fraction S3 at p=32 S3 Theoretical at p=32 Difference at p=32 
ID - - - % 
1 0.758 0.424 0.435 2.55 
2 0.749 0.410 0.421 2.57 
3 0.764 0.442 0.446 0.86 
4 0.754 0.421 0.428 1.68 
5 0.755 0.430 0.431 0.22 
6 0.768 0.441 0.452 2.58 
7 0.758 0.435 0.435 0.05 
8 0.752 0.434 0.425 2.08 
9 0.767 0.451 0.452 0.08 

10 0.753 0.438 0.427 2.69 
11 0.758 0.433 0.435 0.44 
12 0.770 0.453 0.457 0.70 
13 0.774 0.472 0.464 1.53 
14 0.776 0.467 0.467 0.00 
15 0.775 0.467 0.465 0.42 
16 0.769 0.466 0.455 2.51 
17 0.769 0.466 0.455 2.51 
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Figure 5.35. 3-point correlation function for mixtures 1 and 2 and CV 
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Figure 5.36. 3-point correlation function for mixtures 3 and 4 and CV 
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Figure 5.37. 3-point correlation function for mixtures 5 and 6 and CV 
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Figure 5.38. 3-point correlation function for mixtures 7 and 8 and CV 
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Figure 5.39. 3-point correlation function for mixtures 9 and 10 and CV 
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Figure 5.40. 3-point correlation function for mixtures 11 and 12 and CV 
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Figure 5.41. 3-point correlation function for mixtures 13 and 14 and CV 
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Figure 5.42. 3-point correlation function for mixtures 15 and 16 and CV 
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Figure 5.43. 3-point correlation function for mixture 17 and CV 
 

The average 3-point correlation functions computed for asphalt mixtures materials (Figures 

5.35 - 5.43) has a similar pattern for all the seventeen asphalt mixtures considered in this thesis. 

No large fluctuations on S3 are observed as the size of the triangle p increases. S3 begins at 

aggregate and smoothly drops to aggregate
3. The maximum coefficient of variation measured for S3 

is 5.86%. 
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Chapter 6. Modeling  

This Chapter deals with the inverse problem in asphalt mixture. The prediction of the asphalt 

binder bulk properties, and specifically of the asphalt binder creep stiffness form the asphalt 

mixture creep stiffness experimental data obtained from BBR testing, is investigated. For this 

purpose two of the models mentioned in Chapter 2 are selected based on literature review and 

previous research: Hirsch model (Hirsch, 1962; Christensen et al., 2003) and Huet model 

(Huet, 1963) and its application to asphalt mixture at low temperature (Cannone Falchetto et 

al., 2011). In order to validate the models the back calculated asphalt binder creep stiffness is 

used as input in a two-dimensional finite element simulation to calculate the original creep 

stiffness of the asphalt mixtures from which the binder stiffness was obtained. 

6.1. Inverse Problem in Low Temperature Asphalt Mixture 
Characterization 

Solving inverse problems is not trivial and may require some sophisticated procedures. Zofka 

(2007) found that Self-Consistent Model (SCM) (Yin et al., 2006) is not a good candidate for 

the inverse problem since it does not produce good prediction in the case of the forward model. 

Analogously, Milton (1981) and GSCS - Generalized Self-Consistent Scheme (Christensen 

1979, Christensen and Lo 1979) – models present complicated expressions and require 

additional adjustment factors. This may results in bigger errors both in the case of forward and 

the potential inverse solutions. 

 In the next sections two models, Hirsch (Christensen et al., 2003) and Huet (Huet, 

1963) and their applications to asphalt mixture characterization at low temperature are used to  

back calculate asphalt binder creep stiffness Sbinder from the corresponding asphalt mixture creep 

stiffness Smix obtained experimentally from BBR asphalt mixtures beams. The calculation will 

be performed on a limited number of the mixtures investigated in this thesis: the selected 

mixtures are 1, 2, 3, 4, 5, 6, 7, and 8 and the specimens considered are those cut from one single 

slice of the mixtures obtained from one single gyratory compacted cylinder. This is done to 

limit the number of simulations and thus the required computational time in the finite element 

simulations (section 6.2 of this Chapter). Moreover to reduce the number of variables involved 

in the problem, time temperature superposition principle was not considered and thus only the 

highest testing temperature data (-6°C) was investigated. This was found to be convenient since 
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BBR experimental data for the extracted binders of mixtures 2, 3, 5, 6, 7 and 8 were available at 

testing temperature of -6°C (Chapter 3). The graphical results of the back calculated and 

extracted asphalt binder creep stiffness are presented at the end of section 6.1. 

6.1.1. Hirsch Model 

In this dissertation the method proposed by Zofka et al. (2005) is used to investigate the inverse 

problem with the Hirsch model. First, based on the volumetric properties of the mixtures (Table 

3.1), plots of binder creep stiffness versus predicted mixture stiffness using modified equation 

[2.38] are generated for binder stiffness values between 50 to 1000MPa as shown in Figures 6.1 

to 6.4 for all the eight mixtures considered. 
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Figure 6.1. Simplified mixture stiffness function for mixtures 1 and 2, T=-6ºC 
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Figure 6.2. Simplified mixture stiffness function for mixtures 3 and 4, T=-6ºC 
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Figure 6.3. Simplified mixture stiffness function for mixtures 5 and 6, T=-6ºC 
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Figure 6.4. Simplified mixture stiffness function for mixtures 7 and 8, T=-6ºC 
 

Based on the alternative formulation of the Hirsch model (Zofka et al., 2005) the value of the 

aggregate modulus for all the eight mixtures investigated in this phase was assumed 

Eagg=3625942psi (25GPa) instead of Eagg=4200000psi (29GPa of [2.38]). The aggregate 

modulus was imposed to be equal for all the mixtures since it was assumed that the aggregate in 

the recycled materials (RAP in particular) was similar to limestone that has, as already 

mentioned in Chapter 3, a modulus close to that of the Dolostone, used as virgin aggregate in 

the mixtures. Then, a very simple function is fitted to the mix log stiffness versus binder log 

stiffness data, as shown in Figures 6.1 to 6.4:  

bEaE bindermix  )ln(         [6.1] 

where a and b are regression parameters. 

Finally, the binder stiffness is simply calculated using equation [6.1] over the entire range of 

loading time. 
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6.1.2. Huet Model and ENTPE Transformation 

Among the analogical models reviewed in Chapter 2 the only model with continuous spectrum 

that presents an expression in the time domain for the creep compliance is the Huet model 

(Huet, 1963) [2.52]. This model does not have the additional dashpot in series and the spring in 

parallel that are present in the 2S2P1D model (Olard et al., 2003; Olard, 2003; Di Benedetto et 

al., 2004) since the BBR experimental data are obtained at low temperatures or high 

frequencies. At low temperature and/or high frequency Huet model and 2S2P1D model give the 

same results while at higher temperatures and/or lower frequencies, the analysis would need to 

use 2S2P1D model. Based on Huet model, an expression that relates asphalt mixture creep 

stiffness and asphalt mixture creep compliance to asphalt binder creep stiffness and asphalt 

binder creep compliance, respectively was found by Cannone Falchetto (2010) and Cannone 

Falchetto et al., (2011) [2.62]. This expression represents a specific case of the ENTPE 

transformation [2.60] (Di Benedetto et al., 2004) in the time domain for low temperatures and 

high frequencies.  In the same work this expression was also used to backcalculate the creep 

stiffness for the asphalt binder from the creep stiffness of the corresponding asphalt mixtures 

(inverse problem) [6.2] and [6.3]: 

mix

binder
bindermix E

E
tDtD

_

_
)10()(



         [6.2] 

binder

mix
bindermix E

E
tStS

_

_
)10()(



         [6.3a] 

mix

binder
mixbinder E

E
tStS

_

_
)10()(



         [6.2b] 

where: 

Smix(t)  creep stiffness of mixture, 

Sbinder(t)  creep stiffness of binder, 

Dmix(t)  creep compliance of mixture, 

Dbinder(t)  creep compliance of binder, 

E∞_mix  glassy modulus of mixture, 

E∞_binder  glassy modulus of binder, 

t  time, 

α  regression parameter which may depend on mix design, expressed as: 
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bindermix  10          [6.4] 

where: 

τbinder  characteristic time of binder, 

τmix  characteristic time of mixture. 

Expressions [6.2], [6.3] and the Huet model (Huet, 1963) are used in this dissertation for the 

backcalculation of the asphalt binder creep stiffness from the corresponding asphalt mixture 

creep stiffness for all the eight mixtures investigated. In order to do that the following Huet 

model equations for asphalt binder and asphalt mixture creep compliance were considered 

(Cannone Falchetto, 2010 and Cannone Falchetto et al., 2011) [6.5] and [6.6]: 
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where 

Dbinder(t), Dmix(t) creep compliance of binder and mixture, 

E∞_binder, E∞_mix glassy modulus of binder and mixture, 

τbinder, τmix characteristic time of binder and mixture. 

h, k  exponents such that 0<k<h<1, 

δ  dimensionless constant, 

t  time, 

Γ  gamma function, 

τbinder  characteristic time of binder, 

τmix  characteristic time of mixture. 

Since the experimental asphalt mixture creep stiffness data were available, expression [6.3a] 

was manipulated using equations [6.4], [6.5] and [6.6], obtaining the following formula: 

binder

mix
binderbindermixmix E

E
khtSkhtS

_

_
)10,,,,(),,,,(



       [6.7] 

The five constants (δ, k, h, E∞, and τ) required by the [6.7] and thus by the embedded Huet 

model are determined through the minimization of the sum of the distances between the 

experimental asphalt mixture creep stiffness and that of expression [6.7] (Huet-ENTPE) at n 

time points [6.8]. 
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where: 

Sexp(t)  experimental creep stiffness, 

SHuet-ENTPE(t) model creep stiffness. 

Since from previous studies (Olard et al., 2003; Olard, 2003; Di Benedetto et al., 2004, 

Cannone Falchetto, 2010 and Cannone Falchetto et al., 2011) it was found that the Huet model 

parameters are the same for binder and corresponding mixture, the only unknown that strictly 

characterizes the difference between asphalt binder and asphalt mixture is represented by the α 

parameter that relates the characteristic time of binder to the characteristic time of mixture. The 

value of α was obtained during the minimization process (equation [6.8]) starting form initial 

values of δ, k, h, E∞, τ and α found in literature (Huet, 1963; Olard et al., 2003; Olard, 2003; Di 

Benedetto et al., 2004, Cannone Falchetto, 2010 and Cannone Falchetto et al., 2011). Figures 

6.5 to 6.8 present the asphalt mixture creep compliance for the experimental data and Huet 

model prediction for the eight mixtures considered and tested at -6°C. The plots present the 

creep compliance curves since it is easier to appreciate the goodness of the fitting compared the 

creep stiffness representation. 
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Figure 6.5. Huet model for mixture 1 and 2, T=-6ºC 
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Figure 6.6. Huet model for mixture 3 and 4, T=-6ºC 
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Figure 6.7. Huet model for mixture 5 and 6, T=-6ºC 
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Figure 6.8. Huet model for mixture 7 and 8, T=-6ºC 
 

Table 6.1 presents the Huet model parameters for the eight asphalt mixtures evaluated and 

corresponding backcalculated asphalt binders while Table 6.2 shows the α parameters. 
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Table 6.1. Huet model parameters for mixtures and corresponding backcalculated binders 

Material δ k h E∞(MPa) Log(τ) 

Binder 

1 4.00 0.20 0.70 3000.00 -1.00 
2 2.07 0.12 0.44 3000.00 -0.73 
3 3.77 0.20 0.59 3000.00 0.11 
4 3.66 0.19 0.54 3000.00 -0.50 
5 5.73 0.25 0.80 3000.00 0.60 
6 2.98 0.16 0.45 3000.00 0.50 
7 3.06 0.15 0.45 3000.00 -0.16 
8 2.53 0.15 0.46 3000.00 -0.22 

Mixtures 

1 4.00 0.20 0.70 30000.00 1.84 
2 2.07 0.12 0.44 30000.00 2.18 
3 3.77 0.20 0.59 30000.00 3.03 
4 3.66 0.19 0.54 30000.00 2.81 
5 5.73 0.25 0.80 30000.00 3.37 
6 2.98 0.16 0.45 30000.00 3.28 
7 3.06 0.15 0.45 30000.00 3.78 
8 2.53 0.15 0.46 30000.00 3.05 

 

Table 6.2. α parameter for mixtures and corresponding backcalculated binders 

Mixture/binder 1 2 3 4 5 6 7 8 
α 2.84 2.91 2.92 3.31 2.76 2.78 3.94 3.27 

 

As expected the characteristic time seems to be peculiar of the specific mixture-binder 

considered. 

6.1.3. Binder Backcalculation Results Comparison 

This section presents a graphical and qualitative comparison between the creep stiffness of 

asphalt binders predicted from the Hirsch model, the Huet-ENTPE formulation and the 

experimentally determined creep stiffness obtained from the extracted asphalt binder using 

BBR testing. As already mentioned in Chapter 3 the extraction and the BBR test on the 

extracted asphalt binder were performed at the Minnesota Department of Transportation and no 

control on the testing was possible. Moreover BBR data on the recovered binders are available 

just up to 240s of testing while the asphalt mixtures were tested up to 1000s in the BBR. For 

this reason, in the following plots, the creep stiffness curves of the extracted binder are shorter 

than those predicted by the models. It must also be mentioned that no extracted asphalt binder 
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data are available for mixtures 1 and 4. Figures 6.9 to 6.12 presents the creep stiffness for the 

back calculated and extracted binders in log scale. 
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Figure 6.9. Creep stiffness of backclaculated and extracted asphalt binder for mixture 1 
and 2, T=-6ºC 
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Figure 6.10. Creep stiffness of backclaculated and extracted asphalt binder for mixture 3 
and 4, T=-6ºC 
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Figure 6.11. Creep stiffness of backclaculated and extracted asphalt binder for mixture 5 
and 6, T=-6ºC 
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Figure 6.12. Creep stiffness of backclaculated and extracted asphalt binder for mixture 7 
and 8, T=-6ºC 

 

A visual comparison between the predictions of the Hirsch model and Huet-ENTPE 

formulation shows that the former model seems to gives and higher estimation of the asphalt 

binder creep stiffness for shorter time and smaller values for longer time. Another particular 

aspect of the Hirsch model is evident from Figure 6.9 mixture 1, where the asphalt binder creep 

stiffness curve bends upward suggesting that for smaller stiffness values the model is affected 

by the aggregate effect. 

On the other hand creep stiffness curves obtained from the ENTPE transformation (coupled 

with Huet model) look smoother and when a comparison is possible they seem to be parallel to 

the extracted binder creep stiffness curves. Overall both Hirsch model and Huet-ENTPE 

formulation predict higher creep stiffness values compared to those measured on the extracted 

Mix 5 Mix 6 

Mix 7 Mix 8 
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binder. An explanation on this point results complicated since an opposite trend, where the 

extracted binder is stiffer than the backcalculated predictions, would have been expected. This 

is because, during chemical extraction, a total blending of virgin and oxidized binder, contained 

in RAP, TOSS or MWSS, should take place providing a rejuvenator effect. Moreover some 

authors such as Bonaquist (2007)  suggested that there may be a partial or little melting of the 

aged shingle binder when mixed with virgin material in the asphalt mixture production plant. 

To further investigate the behavior of the binder results, Huet model (Huet, 1963) was also 

fitted to the experimental determined creep stiffness obtained from the extracted asphalt 

binders. Figures 6.13 to 6.15 present asphalt binder creep compliance curves for the 

experimental data and Huet model predictions for the extracted asphalt binders (# 2, 3, 5, 6, 7 

and 8) tested at -6°C, while Table 6.3 presents the corresponding Huet model parameters: 
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Figure 6.13. Huet model for extracted asphalt binder 2 and 3, T=-6ºC 
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Figure 6.14. Huet model for extracted asphalt binder 5 and 6, T=-6ºC 
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Figure 6.15. Huet model for extracted asphalt binder 7 and 8, T=-6ºC 
 

Table 6.3. Huet model parameters for extracted asphalt binders 

Material δ k h E∞(MPa) Log(τ) 

Binder 

2 3.84 0.12 0.42 3000.00 -2.00 
3 7.70 0.18 0.48 3000.00 -0.87
5 7.19 0.11 0.46 3000.00 -1.18 
6 3.60 0.15 0.34 3000.00 -2.17 
7 4.88 0.11 0.38 3000.00 -1.79 
8 7.14 0.05 0.43 3000.00 -1.63 

 

Table 6.4 shows the difference in percentage between the Huet model parameters obtained from 

back calculation of the asphalt binder creep stiffness (Table 6.1) and those obtained from the 

extracted binder data fitting (Table 6.3). 

Table 6.4. Huet model parameters comparison: mixture predicted vs. extracted  

Binder Difference % 
# δ k h Log(τ) 
2 -85.51 0.00 4.55 -173.97 
3 -104.24 10.00 18.64 -890.91 
5 -25.48 56.00 42.50 -296.67 
6 -20.81 6.25 24.44 -534.00 
7 -59.48 26.67 15.56 -1018.75 
8 -182.21 66.67 6.52 -640.91 

 

From Table 6.4 it is evident that there are significant differences between δ, k, h and logτ 

evaluated from backcalculation and extracted binder fitting, respectively. However is noticeable 

the negative change in the δ and logτ with the highest difference for the characteristic time. 

Varying one by one the single parameters it was found that the main contribution to the 

Binder 7 Binder 8
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translation of the asphalt binder predicted curve is related to the value of the characteristic time. 

However this is not the only contribution. The two parameters δ and k, that indentify the 

behavior of one of the parabolic elements of the Huet model, provide a sort of translation 

combined with a rotation (steepening or flattening) affecting the global shape of the predicted 

curve. Finally h seems to influence the shape of the creep stiffness curve as well, affecting 

mainly curvature. It must be mentioned that these considerations were obtained visually and 

further investigation, through a sensitivity study  is required to provide a deeper understanding 

of each single parameter. 

6.2. Finite Element Investigation of the Inverse Problem Models 

Two-dimensional plane stress finite element models of asphalt mixture BBR beams were used 

to validate the models used in the former sections. 

6.2.1. Detail of Finite Element Simulations 

Three point bending creep test simulations were performed on asphalt mixture beams 

considered as a two phase material, aggregates plus mastic (e.g. asphalt binder + aggregates 

smaller than 250 μm), using ABAQUS (2009). Both phases are assumed to be linear elastic 

materials and the properties used for the simulations are presented in Table 6.3.  

Table 6.5. Material properties for finite element simulations 

Property Value 
E aggregate (GPa) 25 
E mastic (GPa) Know from backcalculation 
 aggregate 0.3 
 mastic 0.3 

 

As in the case of back calculation models a single value of the aggregates modulus was 

assumed (25GPa) considering that the aggregates were mainly made of Dolostone (similar to 

Limestone). The values of the relaxation modulus of mastic were obtained form the back 

calculated and extracted modulus of the asphalt binder, and using the elastic-viscoelastic 

correspondence principle (Findley, 1989) combined with the Euler-Bernoulli elementary beam 

theory. The assumptions of the Euler-Bernoulli beam theory are: material is linear and isotropic, 

plane sections remain plane after load is applied, all material points are on plane stress state and 
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strains and deflections are small (Gere and Timoshenko, 1990). It must be noted that the mastic 

phase used in the finite element simulations is actually a mixture made with fine material with a 

maximum grain size up to 250 μm. This is because the minimum dimension of a single 

triangular finite element used in the meshing of the BBR beam geometry is not smaller than 250 

μm. Based on the stiffening ratios suggested by Buttlar et al. (1999), on the micromechanical 

modeling work proposed by Masad and Somadevan (2002) and on the minimum dimension of a 

single finite element assumed, a stiffening factor of 10 is used for the estimation of the stiffness 

of the mastic starting from the stiffness of the binder. 

The microstructure of the finite element models was extracted from the binary images of the 

asphalt mixtures BBR beams used in Chapter 5. A simple MATLAB (2008) code was written to 

map the pixel matrix of the binary image into a CPS6M elements mesh (i.e. 6-node modified 

quadratic plane stress triangle element) with either aggregate or mastic properties. Those types 

of elements were chosen to allow more flexibility in the reconstruction of an irregular 

microstructure typical of a two-phase heterogeneous random material as asphalt mixture. Figure 

6.16 shows an example of the FEM reconstruction of an asphalt mixture BBR beam. 

 

 

 

 

 

Figure 6.16.  Processed image of asphalt mixture beam used as input structure into 
ABAQUS (red represents mastic and black aggregates) 
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The number of elements included in the mesh was obtained from different trials and based on 

literature. Velasquez (2009) used three different meshes to evaluate the representative volume 

element of asphalt mixtures through uniaxial tension finite element simulations. He found that 

using a mesh of 819000 elements is extremely expensive in terms of computational time and 

that good balance between computational time and minimum size of aggregate simulated in the 

FE models was obtained when a mesh of 900 × 227=204300 elements is used. Zofka (2007) run 

more than 1500 finite element simulations on BBR asphalt mixtures beams both in 2D and 3D 

configuration. In the two dimensional simulation a square mesh with CPS8R elements (plane 

stress quadratic reduced integration element), was used with the side length corresponding to 

0.508mm for a total of 2200 elements. In this dissertation the number of element was limited to 

23130. This was considered a good compromise in terms of microstructure reconstruction 

accuracy and computational time.  

6.2.2. Finite Element Simulations Results 

The asphalt binder creep stiffness obtained from the backcalculation performed with Hirsch 

model, Huet-ENTPE formulation and the experimental determined creep stiffness of the 

extracted binder at -6°C was used as input in the finite element simulations. To further reduce 

the computational time the simulations were run for selected point on the creep stiffness curve 

and specifically for creep stiffness at 8, 15, 30, 60 120, 240 480, 960s. Each simulation was 

performed for each side of the two small sides (~115 × 6.25 mm) of the specific asphalt mixture 

BBR beam specimen and the results averaged. The results of the FEM simulations are 

graphically compared to those obtained experimentally form on the asphalt mixtures beams 

(Figures 6.17 to 6.20). 
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Figure 6.17. Finite element simulation comparison for mixture 1 and 2, T=-6ºC 
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Figure 6.18. Finite element simulation comparison for mixture 3 and 4, T=-6ºC 
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Figure 6.19. Finite element simulation comparison for mixture 5 and 6, T=-6ºC 
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Figure 6.20. Finite element simulation comparison for mixture 7 and 8, T=-6ºC 
 

From the plots it is evident that the finite element simulations that use the back calculated 

asphalt binder stiffness obtained from the Huet model, coupled with the ENTPE transformation, 

[6.7] as input, are more accurate than those performed using the Hirsch model predictions and 

for sure much closer to the asphalt mixture creep stiffness experimental data than what are the 

simulations that use the creep stiffness of the extracted asphalt binder. However, as in the case 

of the back calculation of the asphalt binder creep stiffness, it seems that the simulations based 

on Huet-ENTPE approach and extracted binder data present parallel curves in log scale. 

Overall, based on the finite element simulations, the Huet-ENTPE formulation seems 

to provide the best asphalt binder creep stiffness prediction. Anyway the strong assumption 

made at the beginning of this Chapter of assuming a single identical value for the aggregate 

modulus, may be not realistic. Further information is required on the characteristics of RAP and 

shingles (TOSS and MWSS) included in the different mixtures to elaborate more precise finite 

element simulation since it may be that such an assumption is masking some effects of the 

aggregates and the good results obtained may be biased by this. 

As in the case of asphalt binder creep stiffness, the simulation results obtained from 

the extracted asphalt binder data and those obtained from backcalculation are significantly 

different with higher values for the modeling input. This was expected since the asphalt binder 

creep stiffness of the extracted binder was much smaller than that predicted from both Huet-

ENTPE expression [6.7] and Hirsch model. However, this cannot be related to the finite 

element simulations itself, even though a more sophisticated 3D geometry reconstruction of the 

asphalt mixtures beam through X-Ray CT tomography may provide more accurate results. On 

Mix 7 Mix 8
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the other hand, the price to pay for such an accuracy improvement would be an increased 

computational time of simulations. 

It turns out that also the FE simulations seem to put a spot light on the actual 

interaction between the aged binder (contained in RAP, TOSS and MWSS)  and the virgin 

binder when mixed together both in the case of mixture preparation (laboratory or plant) and 

chemical extraction. As mention in the previous section it may be that the very stiff asphalt 

binder present in the recycled material cannot melt and/or partially blend with the virgin one 

after heating and mixing. However other explanations can be given for significant difference 

between the results. 

In the case of the mixtures containing only RAP, it was hypnotized that the higher 

stiffness showed from the backcalculated binder prediction, compared to that of the extracted 

binder, may be due to an erroneous mixture preparation, where a smaller amount of virgin 

binder was used, resulting in dryer asphalt mixtures. This can lead to much stiffer asphalt 

mixtures. On the other hand, when extraction is performed, the asphalt binder blend obtained 

from virgin and oxidized asphalt binders, presents much different characteristics with smaller 

creep stiffness. 

 When analyzing the results for the four asphalt binders - asphalt mixtures containing 

both RAP and RAS (mixtures # 5, 6, 7 and 8) particular attention should be carried since one of 

the basic components of shingles is paper backing. This material has fibrous characteristics and 

thus it significantly contribute to the stiffness of the asphalt mixtures. However when binder 

extraction is performed fiber are washed away during the extraction process and thus their 

contribution to the asphalt binder creep stiffness is then removed. This may be an explanation to 

the significantly higher results obtained from asphalt binder creep stiffness backcalculation 

compared to the extracted asphalt binder creep stiffness. Analogous conclusions were drawn by 

Cascione et al. (2010) when investigating the dynamic modulus of asphalt mixtures containing 

both RAP and RAS and the PG grade of the corresponding extracted asphalt binder. It must be 

also mentioned that the detection of fibers is not possible during the scanning process and thus 

they cannot be represented in the finite element simulations. 

As for backcalculation models and for Hirsch model in particular, it is known that 

micromechanical models present some limitations since their formulations relate asphalt 

binders and asphalt mixtures properties in a fundamental way. On the other hand, Huet -ENTPE 

expression [6.7] can be categorized as phenomenological model. The advantage of this type of 
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model is that they are directly fitted to the experimental data. However, little is known about the 

physical meaning of the parameters they are built on. For this reason a more in dept study 

should be carried on to investigate how δ, k, h, E∞, and τ affect the predicted properties. 
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Chapter 7. Conclusion and Closing Remarks 

7.1. Summary 

In this dissertation, the use of different type of recycled asphalt materials in asphalt pavement 

with applications to low temperatures was investigated based on statistical analysis and 

modeling of an extensive set of experiments. 

The experimental part consisted of three-point bending creep tests performed in the 

Bending Beam Rheometer (BBR) on thin asphalt mixtures beams with dimensions 6.25 × 12.5 

× 101.6 mm. Seventeen asphalt mixtures were tested at two low pavement service temperature 

levels: high temperature level (PG low limit + 22˚C), intermediate temperature level (PG low 

limit + 10˚C). 

Statistical analyses were performed to compare the results of the different mixtures 

based on the experimental data obtained. The influence of Reclaimed Asphalt Pavement (RAP), 

Tear-off Scrap Shingles (TOSS) and Manufacturer Waste Scrap Shingles (MWSS) on the 

asphalt mixtures creep stiffness, m-value, thermal stress and critical temperature were 

investigated using ANOVA. 

In the theoretical part, the different asphalt mixtures specimens (two-dimensional 

projections of the beams) were analyzed based on digital image analysis, micromechanical and 

analogical models, and finite element modeling. The volumetric fractions and particle size 

distributions of the different mixtures were estimated from their binary images after digital 

processing. Detailed information on the internal structure of the asphalt mixtures material was 

investigated by calculating the 2- and 3-point correlation functions of the BBR specimens.  

For a limited number of mixtures, micromechanical Hirch model and analogical Huet 

model coupled with ENTPE trasnformation were used to backcalculate the asphalt binder bulk 

properties (asphalt binder creep stiffness) of the binder present in the mixtures (inverse 

problem) and compared to the asphalt binder creep stiffness experimental data provided by the 

Minnesota Department of Transportation. Finally the results from two-dimensional finite 

element simulations of three point bending test, based on the reconstructed microstructure of 

the asphalt mixture beams, were used to validate the models used in the backcalculation of the 

mixture asphalt binder mechanical properties. 

7.2. Conclusion 
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Several conclusions can be drawn from the different Chapters and sections of this thesis. 

For asphalt mixture creep stiffness and m-value it can be concluded that: 

 Significant increase in asphalt mixture creep stiffness is experienced for a 25% RAP 

content when RAP is the only recycled material included in the mixtures. On the other 

hand a significant decrease of the m-value and thus of the relaxation properties of the 

mix are shown for all RAP percentage investigated. 

 For a fixed RAP content of 15% mixtures containing up to 3% of Tear-off Scrap 

Shingles (TOSS) presents a decrease in creep stiffness. On the other hand when 5% 

Manufacturer Waste Scarp Shingles (MWSS) are added to the mix creep stiffness 

increases significantly. Neither TOSS nor MWSS statistically affect the m-value. 

 Tear-off Scrap Shingles and Manufacturer Waste Scrap Shingles do not affect the 

creep stiffness of mixtures designed with 25% of RAP. However an increase in TOSS 

is negatively correlated to the m-value resulting in mixture with poorer relaxation 

properties.  

 When using softer binder there is a decrease in creep stiffness for asphalt mixtures 

containing 5% of Tear-off Scrap Shingles, while there is no binder type effect when 

Manufacturer Waste Scrap Shingles are present. An increase in m-values is however 

experienced for softer binder meaning that using a PG 52-34 is beneficial to the 

relaxation characteristics of the mixtures. 

The main findings for thermal stress and critical temperature can be summarized as follow 

 When only RAP is present in the mixtures both cooling rate and RAP content are 

statistically significant. They are positively correlated with thermal stress and critical 

temperature meaning that, for an increase in RAP content and cooling rate, there is an 

increase in thermal stress and critical temperature resulting in a more brittle and 

temperature susceptible mixture. 

 For mixture containing 15% of RAP cooling rate has a positive correlation with 

thermal stress and critical temperature. However the contribution of Recycled Asphalt 

Shingles to thermal stress is highly significant only for TOSS at 3% resulting in an 

increase of the stress in the pavement. A significant critical temperature increase is 

experienced only for a TOSS content of 3%. 

 When 25% of RAP is present in the mixtures there is a significant increase in thermal 

stress when TOSS or MWSS are present up to a 3%. Critical temperature is affected 
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by all the factors levels showing an increase as the recycled material content increases. 

Cooling rate is positively correlated both with thermal stress and critical temperature. 

 A softer binder type shows to be statistically significant and negatively correlated with 

thermal stress. As a result softer binder helps reducing the thermal stress in pavement. 

However depending on the type of recycled material included in the mixtures (TOSS 

or MWSSS) it may not be helpful in decreasing the critical temperature of the specific 

mixture. 

From the digital image analysis it was found that: 

 The volumetric fraction and the average distribution of aggregates for the different 

asphalt mixtures are very similar suggesting that the mixtures were designed for the 

same amount of aggregate in volume even though they include various type of 

recycled asphalt material. 

 Based on the average values of the particle size distribution obtained from two-

dimensional images, the mixtures show very similar gradation curves. This impression 

is also confirmed by a visual comparison of the mixtures with similar characteristics in 

terms of RAP, Tear-off Scrap Shingles (TOSS) and Manufacturer Waste Scrap 

Shingles (MWSS) content. 

 The 2- and 3-point correlation functions calculated for asphalt mixtures behave 

similarly to what would be expected from a theoretical solution using the penetrable 

spheres model. No large variations are observed between the 2- and 3-point correlation 

functions. The results contained in S2 and S3 suggest that there is no unexpected pattern 

in the asphalt mixtures microstructure and thus that the recycled materials added to the 

mixtures do not deviate the distribution of the mixtures constituents, and in particulars 

of the aggregates, from that of a typical random heterogeneous material. 

From the modeling section it can be concluded that: 

 The Hirsch model and the Huet model, coupled with the ENTPE transformation, 

predict higher asphalt binder creep stiffness than those obtained from the Bending 

Beam Rheometer testing on the extracted asphalt binder.  

 In general the asphalt binder creep stiffness obtained using Huet-ENTPE formulation  

are parallel to the creep stiffness of the extracted asphalt binder up to 240s in log scale. 

 The two dimensional finite element simulations performed using as input the asphalt 

binder creep stiffness obtained from Hirsch model, Huet-ENTPE approach and from 
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the extracted binder suggest that, under the assumed hypothesis on the aggregates 

properties, the ENTPE transformation, with the embedded Huet model, provides a 

good estimation of the asphalt binder creep stiffness of the mixtures investigated. On 

the other hand Hirsch model doesn’t seem to give good asphalt binder creep stiffness 

predictions. 

 The two dimensional finite element simulations seem also to indicate that the creep 

stiffness of the extracted asphalt binder is not representative of the real properties of 

the binder when in the mix. This is something expected since extraction results in a 

complete blending of the different binder present in the mixtures and coming from 

different sources (virgin, RAP, TOSS and MWSS). 

 The fibrous materials contained in RAS may contribute to the global stiffness of the 

recycled asphalt mixtures, however they may be just one of the reason for the 

difference between the backcalculated and extracted asphalt binder creep stiffness.  

7.3. Recommendations and Future Work 

Based on the findings from this dissertation, the following recommendations for future work are 

made: 

 Include all the recycled materials type investigated (RAP, TOSS and MWSS) in the 

mix design so that the interaction between Tear-off Scrap Shingles and Manufacturer 

Waste Scrap Shingles may be evaluated in terms of asphalt mixture creep stiffness, m-

value, thermal stress and critical temperature. 

 Improve the algorithm for the calculation of the grain size distribution to solve the 

difficulty of having several particles in contact.  

 Investigate the orientation of the particles in the mixtures since this may give more 

insight on the influence of Reclaimed Asphalt Pavement (RAP), Tear-off Scrap 

Shingles (TOSS) and Manufacturer Waste Scrap Shingles (MWSS) on the asphalt 

mixtures microstructure. 

 Evaluate the complete 3-point correlation function. 

 Conduct a sensitivity study on Huet model parameter to investigate how they are 

related to the predicted properties.  
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 Evaluate the Huet model and ENTPE transformation on a larger number of mixtures 

containing different amount of RAP since this may help in finding an expression for 

the α parameter. 

 Run two-dimensional finite element models with finer mesh so to reduce the effect of 

coarser particle size in the mastic phase. 
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Appendix A. (Chapter 3)  

A.1. Beam Dimensions 
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Table A.1. Asphalt mixtures BBR beams geometric properties 

Mixture Binder Recycled Material Replicate Dimension 
ID PG RAP (%) TOSS (%) MW (%) # Width (mm) Thickness (mm) 

1-1 58-28 0 0 0 

3 12.46 6.38 
5 12.45 6.79 
6 12.45 6.60 
7 12.47 6.40 
8 12.51 6.37 
10 12.57 6.42 

1-2 58-28 0 0 0 

3 12.55 6.14 
4 12.69 6.30 
5 12.70 6.01 
6 12.71 6.58 
8 12.89 6.60 
9 12.96 6.21 

2-1 58-28 15 0 0 

3 12.55 6.63 
4 12.45 6.58 
5 12.46 6.30 
6 12.40 6.39 
7 12.31 6.28 
8 12.27 6.47 

2-2 58-28 15 0 0 

3 12.49 5.89 
4 12.48 6.91 
5 12.37 6.93 
6 12.52 6.52 
7 12.41 6.89 
8 12.44 6.76 

3-1 58-28 25 0 0 

3 12.44 6.48 
4 12.42 6.32 
5 12.39 6.68 
6 12.33 6.58 
7 12.29 6.57 
8 12.22 6.45 

3-2 58-28 25 0 0 

3 12.36 6.39 
4 12.35 6.49 
5 12.48 6.10 
6 12.51 6.57 
7 12.50 6.56 
8 12.47 6.32 

4-1 58-28 30 0 0 

3 12.37 6.88 
4 12.37 6.84 
5 12.38 6.98 
6 12.34 6.69 
7 12.34 6.48 
8 12.34 6.67 

4-2 58-28 30 0 0 

3 12.44 6.38 
4 12.56 6.24 
5 12.60 6.30 
6 12.66 6.53 
7 12.65 6.57 
8 12.70 6.58 

5-1 58-28 15 0 5 

3 12.23 6.16 
4 12.25 6.52 
5 12.40 6.56 
6 12.45 6.49 
7 12.52 6.51 
8 12.57 6.27 

5-2 58-28 15 0 5 

3 12.47 6.48 
4 12.47 6.07 
5 12.49 6.34 
6 12.55 6.33 
7 12.59 6.36 
8 12.65 6.23 
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Mixture Binder Recycled Material Replicate Dimension 
ID PG RAP (%) TOSS (%) MW (%) # Width (mm) Thickness (mm) 

6-1 58-28 15 5 0 

3 12.58 6.64 
4 12.63 6.56 
5 12.59 6.56 
6 12.54 6.47 
7 12.58 6.61 
8 12.47 6.52 

6-2 58-28 15 5 0 

3 12.33 6.44 
4 12.42 6.56 
5 12.47 6.50 
6 12.51 6.44 
7 12.57 6.53 
8 12.65 6.45 

7-1 58-28 25 5 0 

3 12.61 6.46 
4 12.55 6.37 
5 12.44 6.62 
6 12.37 6.51 
7 12.36 6.46 
8 12.27 6.57 

7-2 58-28 25 5 0 

3 12.39 6.56 
4 12.44 6.61 
5 12.51 6.58 
6 12.55 6.47 
7 12.51 6.40 
8 12.57 6.27 

8-1 58-28 25 0 5 

3 12.65 6.43 
4 12.57 6.32 
5 12.50 6.34 
6 12.45 6.54 
7 12.44 6.47 
8 12.41 6.92 

8-2 58-28 25 0 5 

3 12.45 6.66 
4 12.38 6.51 
5 12.37 6.63 
6 12.33 6.60 
7 12.27 6.44 
8 12.15 6.45 

9-1 52-34 25 5 0 

3 12.56 6.73 
4 12.53 6.75 
5 12.47 6.82 
6 12.49 6.70 
7 12.35 6.56 
8 12.40 6.68 

9-2 52-34 25 5 0 

3 12.63 6.73 
4 12.59 6.60 
5 12.61 6.56 
6 12.58 6.56 
7 12.61 6.55 
8 12.57 6.61 

10-1 52-34 25 0 5 

3 12.30 6.66 
4 12.27 6.50 
5 12.28 6.56 
6 12.30 6.55 
7 12.31 6.47 
8 12.29 6.49 

10-2 52-34 25 0 5 

3 12.3/9 6.50 
4 12.38 6.66 
5 12.33 6.48 
6 12.38 6.61 
7 12.31 6.35 
8 12.34 6.48 
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Mixture Binder Recycled Material Replicate Dimension 
ID PG RAP (%) TOSS (%) MW (%) # Width (mm) Thickness (mm) 

11-1 58-28 25 3 0 

3 12.46 6.63 
4 12.42 6.56 
5 12.71 6.55 
6 12.61 6.63 
7 12.53 6.50 
8 12.44 6.55 

11-2 58-28 25 3 0 

3 12.50 6.67 
4 12.45 6.54 
5 12.47 6.58 
6 12.63 6.62 
7 12.48 6.60 
8 12.47 6.58 

12-1 58-28 25 0 3 

3 12.45 6.60 
4 12.60 6.48 
6 12.50 6.70 
7 12.51 6.71 
9 12.51 6.60 
10 12.56 6.19 

12-2 58-28 25 0 3 

3 12.56 6.65 
4 12.52 6.49 
5 12.53 6.75 
6 12.54 6.64 
7 12.47 6.46 
8 12.48 6.59 

13-1 58-28 15 3 0 

3 12.57 6.41 
4 12.59 6.54 
5 12.64 6.45 
6 12.65 6.44 
7 12.80 6.56 
8 12.78 6.50 

13-2 58-28 15 3 0 

3 12.45 6.50 
4 12.41 6.26 
5 12.37 6.61 
6 12.29 6.07 
7 12.31 6.56 
10 12.22 6.48 

14-1 58-28 15 0 3 

3 12.70 6.55 
4 12.72 6.66 
5 12.77 6.60 
6 12.87 6.50 
7 12.90 6.48 
8 13.01 6.58 

14-2 58-28 15 0 3 

3 12.54 6.49 
4 12.60 6.70 
5 12.63 6.58 
6 12.67 6.46 
7 12.70 6.52 
8 12.74 6.64 

15-1 58-28 10 5 0 

3 12.83 6.50 
5 12.67 6.54 
6 12.67 6.58 
7 12.65 6.68 
8 12.61 6.03 
10 12.59 6.50 

15-2 58-28 10 5 0 

3 12.86 6.36 
4 12.84 6.67 
5 12.74 6.57 
6 12.66 6.38 
7 12.66 6.46 
8 12.57 6.43 
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Mixture Binder Recycled Material Replicate Dimension 
ID PG RAP (%) TOSS (%) MW (%) # Width (mm) Thickness (mm) 

16-1 58-28 15* 5 0 

3 12.26 6.58 
4 12.31 6.59 
5 12.36 6.58 
6 12.47 6.65 
7 12.54 6.50 
8 12.62 6.58 

16-2 58-28 15* 5 0 

3 12.32 6.69 
4 12.43 6.61 
5 12.50 6.64 
6 12.52 6.55 
7 12.48 6.53 
8 12.59 6.42 

17-1 58-28 0 5 0 

3 12.37 6.56 
4 12.44 6.50 
5 12.49 6.34 
6 12.54 6.57 
7 12.56 6.64 
8 12.62 6.50 

17-2 58-28 0 5 0 

3 12.52 6.47 
5 12.59 6.48 
6 12.49 6.59 
7 12.44 6.46 
8 12.43 6.53 
10 12.44 6.62 

 

*Different RAP source 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 152

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 153

Appendix B. (Chapter 4)  

B.1. Aspahlt Mixtures Creep Stiffness and m-value 
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Table B.1. Asphalt mixtures BBR creep stiffness and m-value 

Mixture Binder Recycled Material Replicate Temperature S(60) m(60) 
ID PG RAP (%) TOSS (%) MW (%) # (ºC) (MPa) - 

1-1 58-28 0 0 0 

3 -6 7863.5 0.183 
5 -6 6400.6 0.266 
6 -18 11941.5 0.151 
7 -6 4148.4 0.296 
8 -18 14232.8 0.154 

10 -18 10818.3 0.131 

1-2 58-28 0 0 0 

3 -6 9153.3 0.220 
4 -18 14057.8 0.159 
5 -6 4123.9 0.296 
6 -18 12471.8 0.161 
8 -18 13791.3 0.165 
9 -6 8119.0 0.206 

2-1 58-28 15 0 0 

3 -6 11477.9 0.151 
4 -18 11510.6 0.106 
5 -6 5211.6 0.135 
6 -18 14068.9 0.095 
7 -6 7307.5 0.169 
8 -18 15364.1 0.127 

2-2 58-28 15 0 0 

3 -6 5472.2 0.194 
4 -18 16809.3 0.138 
5 -6 6850.4 0.187 
6 -18 17436.9 0.138 
7 -6 8300.2 0.200 
8 -18 15995.9 0.136 

3-1 58-28 25 0 0 

3 -6 7929.5 0.185 
4 -18 11639.8 0.107 
5 -6 8586.5 0.167 
6 -18 17048.3 0.126 
7 -6 8963.1 0.140 
8 -18 17571.2 0.126 

3-2 58-28 25 0 0 

3 -6 8991.7 0.150 
4 -18 18607.3 0.122 
5 -6 8522.4 0.158 
6 -18 14325.7 0.120 
7 -6 8761.9 0.153 
8 -18 22118.7 0.111 

4-1 58-28 30 0 0 

3 -6 8654.5 0.157 
4 -18 13909.9 0.111 
5 -6 7384.8 0.167 
6 -18 15356.3 0.134 
7 -6 6784.6 0.174 
8 -18 14115.4 0.139 

4-2 58-28 30 0 0 

3 -6 7729.1 0.169 
4 -18 10544.2 0.116 
5 -6 7381.2 0.162 
6 -18 13662.9 0.105 
7 -6 7210.3 0.176 
8 -18 11903.4 0.100 

5-1 58-28 15 0 5 

3 -6 7690.8 0.195 
4 -18 14520.8 0.128 
5 -6 7652.0 0.180 
6 -18 14908.6 0.133 
7 -6 9358.2 0.167 
8 -18 18198.7 0.113 

5-2 58-28 15 0 5 

3 -6 6676.0 0.156 
4 -18 15276.7 0.129 
5 -6 7158.6 0.179 
6 -18 18714.0 0.134 
7 -6 7380.5 0.164 
8 -18 18080.8 0.136 
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Mixture Binder Recycled Material Replicate Temperature S(60) m(60) 
ID PG RAP (%) TOSS (%) MW (%) # (ºC) (MPa) - 

6-1 58-28 15 5 0 

3 -6 10308.5 0.116 
4 -18 12000.7 0.120 
5 -6 9940.6 0.157 
6 -18 17942.9 0.124 
7 -6 10085.8 0.151 
8 -18 15243.2 0.133 

6-2 58-28 15 5 0 

3 -6 8567.3 0.173 
4 -18 11171.1 0.105 
5 -6 10471.9 0.161 
6 -18 15941.2 0.128 
7 -6 8295.2 0.165 
8 -18 17358.8 0.113 

7-1 58-28 25 5 0 

3 -6 11376.6 0.117 
4 -18 18087.8 0.071 
5 -6 5461.8 0.104 
6 -18 19695.0 0.124 
7 -6 10346.3 0.118 
8 -18 15869.3 0.106 

7-2 58-28 25 5 0 

3 -6 8371.8 0.161 
4 -18 11381.5 0.094 
5 -6 7874.8 0.145 
6 -18 17311.6 0.123 
7 -6 8423.8 0.119 
8 -18 12903.1 0.103 

8-1 58-28 25 0 5 

3 -6 9909.9 0.126 
4 -18 19759.6 0.150 
5 -6 8819.7 0.127 
6 -18 13369.8 0.092 
7 -6 11121.9 0.139 
8 -18 12774.9 0.084 

8-2 58-28 25 0 5 

3 -6 8000.7 0.150 
4 -18 14819.4 0.118 
5 -6 8773.4 0.159 
6 -18 25252.8 0.135 
7 -6 10949.3 0.115 
8 -18 15239.4 0.128 

9-1 52-34 25 5 0 

3 -6 6288.1 0.161 
4 -18 14225.4 0.096 
5 -6 8842.2 0.205 
6 -18 16296.6 0.144 
7 -6 5393.0 0.188 
8 -18 13333.5 0.143 

9-2 52-34 25 5 0 

3 -6 7848.3 0.161 
4 -18 10129.0 0.085 
5 -6 7087.5 0.176 
6 -18 14792.0 0.152 
7 -6 5641.6 0.190 
8 -18 16064.7 0.160 

10-1 52-34 25 0 5 

3 -6 10633.7 0.159 
4 -18 14315.5 0.163 
5 -6 7106.9 0.211 
6 -18 14626.5 0.160 
7 -6 8176.4 0.195 
8 -18 11419.8 0.124 

10-2 52-34 25 0 5 

3 -6 5490.0 0.195 
4 -18 15427.1 0.159 
5 -6 6361.5 0.202 
6 -18 13646.9 0.129 
7 -6 7825.8 0.195 
8 -18 17461.3 0.136 
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Mixture Binder Recycled Material Replicate Temperature S(60) m(60) 
ID PG RAP (%) TOSS (%) MW (%) # (ºC) (MPa) - 

11-1 58-28 25 3 0 

3 -6 9962.4 0.148 
4 -18 9326.0 0.053 
5 -6 4788.1 0.155 
6 -18 19725.2 0.120 
7 -6 12795.4 0.114 
8 -18 17063.2 0.122 

11-2 58-28 25 3 0 

3 -6 14202.6 0.155 
4 -18 15144.5 0.085 
5 -6 9253.9 0.094 
6 -18 15565.4 0.103 
7 -6 9217.3 0.143 
8 -18 17482.3 0.099 

12-1 58-28 25 0 3 

3 -6 7417.7 0.143 
4 -18 15444.6 0.131 
6 -18 9945.5 0.082 
7 -6 13269.5 0.094 
9 -6 9181.5 0.141 

10 -18 13101.3 0.112 

12-2 58-28 25 0 3 

3 -6 8977.1 0.124 
4 -18 17327.6 0.135 
5 -6 11810.0 0.170 
6 -18 16192.6 0.134 
7 -6 9175.1 0.134 
8 -18 15502.3 0.143 

13-1 58-28 15 3 0 

3 -6 7075.5 0.151 
4 -18 12717.7 0.086 
5 -6 8236.3 0.142 
6 -18 12197.7 0.117 
7 -6 7526.2 0.146 
8 -18 14926.0 0.135 

13-2 58-28 15 3 0 

3 -6 6612.4 0.155 
4 -18 11734.3 0.111 
5 -6 7221.6 0.176 
6 -18 11032.9 0.115 
7 -6 7825.8 0.146 

10 -18 12472.2 0.136 

14-1 58-28 15 0 3 

3 -6 7764.6 0.177 
4 -18 15286.6 0.127 
5 -6 7068.8 0.163 
6 -18 14318.7 0.133 
7 -6 6325.0 0.170 
8 -18 13736.6 0.125 

14-2 58-28 15 0 3 

3 -6 5663.8 0.167 
4 -18 12945.5 0.087 
5 -6 7172.8 0.176 
6 -18 11701.0 0.121 
7 -6 5410.4 0.181 
8 -18 13589.3 0.137 

15-1 58-28 10 5 0 

3 -6 7347.3 0.173 
5 -6 6080.9 0.160 
6 -18 12432.4 0.123 
7 -6 6921.4 0.179 
8 -18 13994.5 0.127 

10 -18 11555.2 0.122 

15-2 58-28 10 5 0 

3 -6 5211.8 0.159 
4 -18 14093.6 0.143 
5 -6 6848.5 0.164 
6 -18 12980.7 0.134 
7 -6 6538.3 0.152 
8 -18 20063.9 0.134 
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Mixture Binder Recycled Material Replicate Temperature S(60) m(60) 
ID PG RAP (%) TOSS (%) MW (%) # (ºC) (MPa) - 

16-1 58-28 15* 5 0 

3 -6 8314.7 0.170 
4 -18 12946.4 0.131 
5 -6 5507.4 0.172 
6 -18 25134.3 0.135 
7 -6 10511.3 0.160 
8 -18 12429.1 0.100 

16-2 58-28 15* 5 0 

3 -6 8774.3 0.146 
4 -18 19429.6 0.138 
5 -6 7573.6 0.168 
6 -18 18840.9 0.135 
7 -6 9330.6 0.166 
8 -18 19456.3 0.136 

17-1 58-28 0 5 0 

3 -6 6039.6 0.158 
4 -18 13007.9 0.125 
5 -6 5939.2 0.180 
6 -18 11387.5 0.120 
7 -6 7797.9 0.174 
8 -18 10117.3 0.114 

17-2 58-28 0 5 0 

3 -6 7429.8 0.179 
5 -6 5206.2 0.193 
6 -18 15588.4 0.160 
7 -6 5849.3 0.180 
8 -18 13537.1 0.102 

10 -18 22233.0 0.117 

 

*Different RAP source 
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B.2. Thermal Stress Computation Procedure 

The following section present a general procedure of thermal stress  calculation used in this 

dissertation. The computational process involves two main steps: first relaxation modulus E(t) 

master curves are generated and then Gaussian quadrature approximation method is applied to 

calculate the thermal stress. 

From Bending Beam Rheometer (BBR) test on asphalt mixtures the creep stiffness is calculated 

as:  

)(4)(
)(

3

3

thb

lP

t
tS







        [B.1] 

where 

S(t)  flexural creep stiffness, function of time, 

σ  maximum bending stress in the beam, MPa, 

ε(t)  bending strain (mm/mm), unction of time, 

P  constant load = 980±50mN , 

l  length of specimen (101.6mm),  

b  width of specimen (12.5mm), 

h  height of specimen (6.25mm),  

δ(t)  deflection at the midspan of the beam at time t, and 

t  time. 

The creep compliance D(t) is obtained as the inverse of the creep stiffness: 

)(

1
)(

tS
tD           [B.2] 

The relaxation modulus E(t) and creep compliance D(t) are related through the Volterra 

integral: 

 
t

dtttDtEt
0

')'()'(          [B.3] 

Using Laplace transform [B.3] can be rewritten as: 

 

2

1
)()(

s
sDsE           [B.4] 
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However the use of Laplace domain to manipulate the relaxation modulus E(t) and creep 

compliance D(t) is often not convenient when the inverse Laplace transform is applied. An 

alternative numerical approach was implemented by Hopkins and Hamming (1957) to calculate 

E(t) as function of D(t) and vice versa. Basu (2002) and Moon (2010) used this procedure to 

convert the experimental determined BBR creep compliance to relaxation modulus. This 

interconversion procedure involves different steps: 

1. Time interval tn is selected 

1000,2,1,0 1000210  tttt        [B.5] 

2. The creep compliance D(tn) is obtained from the experimentally determined creep 

stiffness S(tn) according to: 

)(

1
)(

n
n tS

tD          [B.6] 

3. The function f(t) is defined as: 


t

dttDtf
0

)()(         [B.7] 

4. The value of the f(t) is calculated using the trapezoidal rule: 

)())()((
2

1
)()( 111 nnnnnn tttDtDtftf       [B.8] 

5. Combining equations [B.3] and [B.8] the following discretized expression is obtained: 
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6. Each integral of equation [B.9] is expressed as function of f(t) as: 
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where: 
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7. Finally [B.9] can be restated as: 
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8. and solving for )( 2/1ntE the previous expression becomes: 
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with the following set of initial conditions: 

 0)( 0 tf  

0)( 0 tE  
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After the interconversion procedure the relaxation modulus E(t) master curves are constructed 

using the CAM model (Marasteanu and Anderson, 1996): 
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where: 

E(t)  relaxation modulus, 

Eg  glassy modulus (generally 3GPa for binder and 30GPa for mixtures), 

v, w  model parameters,  

tc  cross over time, 

t  time.  

In this thesis two different temperature levels were used during testing: PG low temperature + 

22˚C and PG low temperature + 10˚C and thus a single shift factor was determined from the 

relaxation modulus E(t) master curves. However hereafter a more general case in which all 

three temperature level are assumed is considered and outlined. An example of a master curve 

obtained from three testing temperatures and with the application of CAM models is presented 

in Figure B.1 (Moon, 2010). This master curve requires two shift factors. 
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Figure B.1 Relaxation modulus master curve – (Moon, 2010) 
 

The shift factors are calculated according to: 

Shift factor 1: aT1

Shift factor 2: aT2
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TCC
Ta  21101                                    [B.15] 

TKK
Ta  21102                                          [B.16] 

where:  

C1, C2, K1, K2 fitting parameters, 

T  reference temperature, °C. 

Generally the intermediate temperature level corresponding for BBR asphalt mixture testing to  

PG low temperature + 10˚C is assumed as reference temperature and its relaxation modulus 

curve is set as reference curve which the other curve are shifted to. As a consequence shift 

factor aT1 relates the relaxation modulus master curve at reference temperature to the relaxation 

modulus master curve at lower temperature while shift factor aT2 relates the relaxation modulus 

master curve at reference temperature to the relaxation modulus master curve at higher 

temperature. After a log transformation of the two shift factors: 

TCCaT  211log                                   [B.17] 

TKKaT  212log                                    [B.18] 

Introducing [B.17] and [B.18] into [B.14], the CAM model expression can be rewritten as: 
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  
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
   vtat

g
cT

v

w
EtE logloglog 2101log)(log                               [B.20] 

The five constants (v, w, tc, aT1 and aT2) required by the CAM model are then determined fitting 

at the same time expressions [B.19] and [B.20] to the experimentally determined data running a 

minimization with a least squares error limit of 0.03-10.  

Considering the case for the single shift factor aT1 (the case for aT2 would be analogous), the 

following expression for temperature can be assumed: 

tCTT i  0                                        [B.21] 

where:  

C0  constant temperature drop rate, 

Ti  initial temperature, (22°C in this dissertation). 

Substituting [B.21] into equation [B.15] the shift factor aT1 can be expressed as: 

tCCtCCTCCtCTCCTCC
T

iia 43022102121 10101010 )()(
1

                             [B.22] 

And after a simple manipulation: 
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tCtCCCC
T Aa 44343 10101010 01                                      [B.23] 

Assuming time temperature superposition principle it can be written that: 

),(),( 0 TEtTE                                        [B.24] 

and 

)(Ta

t

T

                                       [B.25] 

where:  

T0  reference temperature, and 

ξ  reduced time. 

Formula [B.25] can be re-expressed in integral form: 


t

TT tTa

dt

Ta

t

0
)]'([

'

][
                                      [B.26] 

where:  

t’  arbitrary time prior to time t. 

Introducing [B.23] into [B.26] the reduced time can be rewritten as: 
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where:  
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The stress is calculated according to: 
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where:  

0C

T
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Expressing the monodimensional strain as: 

T                       [B.31] 
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and substituting in [B.29] the stress can be expressed according to: 

 
 








t t

d
T

EdE
0

'
'

)(
)'('

'

)'(
)'()( 





                 [B.32] 

where:  

ξ’  arbitrary reduced time prior to ξ. 

Since  

tCT  0                        [B.33] 

and its partial derivative with respect to ξ is: 
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it is possible to rewrite equation [B.32] as: 
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It is finally possible to introduce the CAM model into equation [B.35]: 
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Analytical integration is unpractical for equation [B.36]. For this reason Gaussian quadrature 

with 24 Gauss points approximation is used: 
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xi  Gauss points (1 to 24) 
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B.3. Thermal Stress Curves and Critical Temperature plots 
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Figure B.2. Thermal stress and critical temperature curve for mixture 1 – slice 1 and 2 
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Figure B.3. Thermal stress and critical temperature curve for mixture 2 – slice 1 and 2 
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Figure B.4. Thermal stress and critical temperature curve for mixture 3 – slice 1 and 2 
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Figure B.5. Thermal stress and critical temperature curve for mixture 4 – slice 1 and 2 
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Figure B.6. Thermal stress and critical temperature curve for mixture 5 – slice 1 and 2 
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Figure B.7. Thermal stress and critical temperature curve for mixture 6 – slice 1 and 2 
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Figure B.8. Thermal stress and critical temperature curve for mixture 7 – slice 1 and 2 
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Figure B.9. Thermal stress and critical temperature curve for mixture 8 – slice 1 and 2 
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Figure B.10. Thermal stress and critical temperature curve for mixture 9 – slice 1 and 2 
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Figure B.11. Thermal stress and critical temperature curve for mixture 10 – slice 1 and 2 
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Figure B.12. Thermal stress and critical temperature curve for mixture 11 – slice 1 and 2 
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Figure B.13. Thermal stress and critical temperature curve for mixture 12 – slice 1 and 2 
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Figure B.14. Thermal stress and critical temperature curve for mixture 13 – slice 1 and 2 
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Figure B.15. Thermal stress and critical temperature curve for mixture 14 – slice 1 and 2 
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Figure B.16. Thermal stress and critical temperature curve for mixture 15 – slice 1 and 2 
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Figure B.17. Thermal stress and critical temperature curve for mixture 16 – slice 1 and 2 
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Figure B.18. Thermal stress and critical temperature curve for mixture 17 – slice 1 and 2 
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Appendix C. (Chapter 5)  
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C.1. Grain Size Distribution 
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Figure C.1. Grain size distribution for mixture 1 – slice 1 and 2 
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Figure C.2. Grain size distribution for mixture 2 – slice 1 and 2 
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Figure C.3. Grain size distribution for mixture 3 – slice 1 and 2 
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Figure C.4. Grain size distribution for mixture 4 – slice 1 and 2 
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Figure C.5. Grain size distribution for mixture 5 – slice 1 and 2 
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Figure C.6. Grain size distribution for mixture 6 – slice 1 and 2 
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Figure C.7. Grain size distribution for mixture 7 – slice 1 and 2 
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Figure C.8. Grain size distribution for mixture 8 – slice 1 and 2 
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Figure C.9. Grain size distribution for mixture 9 – slice 1 and 2 
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Figure C.10. Grain size distribution for mixture 10 – slice 1 and 2 
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Figure C.11. Grain size distribution for mixture 11 – slice 1 and 2 
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Figure C.12. Grain size distribution for mixture 12 – slice 1 and 2 
 



 176

0

10

20

30

40

50

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10 100

C
V

(%
)

%
P

as
si

n
g

Size (mm)

13-1-3

13-1-4

13-1-5

13-1-6

13-1-7

13-1-8

AVE

CV(%)

0

10

20

30

40

50

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10 100

C
V

(%
)

%
P

as
si

n
g

Size (mm)

13-2-3

13-2-4

13-2-5

13-2-6

13-2-7

13-2-10

AVE

CV(%)

Figure C.13. Grain size distribution for mixture 13 – slice 1 and 2 
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Figure C.14. Grain size distribution for mixture 14 – slice 1 and 2 
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Figure C.15. Grain size distribution for mixture 15 – slice 1 and 2 
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Figure C.16. Grain size distribution for mixture 16 – slice 1 and 2 
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Figure C.17. Grain size distribution for mixture 17 – slice 1 and 2 
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C.2. 2-point Correlation Functions 
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Figure C.18. 2-point correlation functions for mixture 1 – slice 1 and 2 
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Figure C.19. 2-point correlation functions for mixture 2 – slice 1 and 2 
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Figure C.20. 2-point correlation functions for mixture 3 – slice 1 and 2 
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Figure C.21. 2-point correlation functions for mixture 4 – slice 1 and 2 
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Figure C.22. 2-point correlation functions for mixture 5 – slice 1 and 2 
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Figure C.23. 2-point correlation functions for mixture 6 – slice 1 and 2 
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Figure C.24. 2-point correlation functions for mixture 7 – slice 1 and 2 
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Figure C.25. 2-point correlation functions for mixture 8 – slice 1 and 2 
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Figure C.26. 2-point correlation functions for mixture 9 – slice 1 and 2 
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Figure C.27. 2-point correlation functions for mixture 10 – slice 1 and 2 
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Figure C.28. 2-point correlation functions for mixture 11 – slice 1 and 2 
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Figure C.29. 2-point correlation functions for mixture 12 – slice 1 and 2 
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Figure C.30. 2-point correlation functions for mixture 13 – slice 1 and 2 
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Figure C.31. 2-point correlation functions for mixture 14 – slice 1 and 2 
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Figure C.32. 2-point correlation functions for mixture 15 – slice 1 and 2 
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Figure C.33. 2-point correlation functions for mixture 16 – slice 1 and 2 
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Figure C.34. 2-point correlation functions for mixture 17 – slice 1 and 2 
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C.3. 3-point Correlation Functions 
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Figure C.35. 3-point correlation functions for mixture 1 – slice 1 and 2 
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Figure C.36. 3-point correlation functions for mixture 2 – slice 1 and 2 
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Figure C.37. 3-point correlation functions for mixture 3 – slice 1 and 2 
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Figure C.38. 3-point correlation functions for mixture 4 – slice 1 and 2 
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Figure C.39. 3-point correlation functions for mixture 5 – slice 1 and 2 
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Figure C.40. 3-point correlation functions for mixture 6 – slice 1 and 2 
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Figure C.41. 3-point correlation functions for mixture 7 – slice 1 and 2 
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Figure C.42. 3-point correlation functions for mixture 8 – slice 1 and 2 
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Figure C.43. 3-point correlation functions for mixture 9 – slice 1 and 2 
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Figure C.44. 3-point correlation functions for mixture 10 – slice 1 and 2 
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Figure C.45. 3-point correlation functions for mixture 11 – slice 1 and 2 
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Figure C.46. 3-point correlation functions for mixture 12 – slice 1 and 2 
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Figure C.47. 3-point correlation functions for mixture 13 – slice 1 and 2 
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Figure C.48. 3-point correlation functions for mixture 14 – slice 1 and 2 
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Figure C.49. 3-point correlation functions for mixture 15 – slice 1 and 2 
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Figure C.50. 3-point correlation functions for mixture 16 – slice 1 and 2 
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Figure C.51. 3-point correlation functions for mixture 17 – slice 1 and 2 
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