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Introduction

The progress in chemical synthesis and the development of new organic and
inorganic molecular systems is playing an important role in scientific and tech-
nological innovation. Molecular-based materials are in demand for the devel-
opment of new electronic and photonic devices [1, 2, 3] but also for a wealth
of other applications including, to cite a few, drug delivery [4], in vivo optical
microscopy [5], microfabrication [5, 6, 7], photodynamic therapy [8, 9, 10].
In particular, fundamental biological processes involve functional molecules,
as best demonstrated by light harvesting complexes exploited in the photosyn-
thetic process [11, 12]. A thorough understanding of these processes will unveil
some fundamental mechanism of life, offering at the same time important clues
for the optimal engineering of molecular- based devices [13]. The low cost
and the large availability of the organic precursors, and the possibility to build
structures with unlimited complexity and finely tuned properties make molec-
ular functional materials extremely appealing from a fundamental and applica-
tive point of view. Functional behaviour is accompanied in molecular materials
by low weight and mechanical flexibility opening the way to applications that
are precluded to more common inorganic and crystalline materials used in the
electronic industry. Bio-compatibility makes molecular materials useful in life-
science, biological and medical applications [8, 4].

Functional molecular materials are by definition smart materials: they are
able to respond in a qualitative different way to wide range of external pertur-
bation: temperature, light, pressure, magnetic and electric field, etc. [3, 14, 15,
16, 17]. Smart behaviour is related to the intrinsic non-linearity of the material
responses to applied perturbations that, in its extreme manifestation, lead to
switchable materials.

To fully exploit the promise of molecular functional materials, the physics
that governs their complex behaviour must be thoroughly understood, with the
aim, on one side, to optimize the materials for current needs, on the other side
to guide the synthesis of new materials showing brand new behaviour. This
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thesis offers a contribution to the rationalization of the properties of several
families of molecular functional materials. Systems of interest range from or-
ganic and organometallic chromophores and multichromophores, valence tau-
tomeric systems, bistable molecular materials, organic semiconducting crystals.
Phenomena of interest range from linear and non-linear optical spectra, charge
transfer and charge transport processes, energy transfer, multistability. Differ-
ent systems with distinctively different properties have been investigated adopt-
ing a variety of techniques, including spectroscopic measurements, theoretical
models and computational approaches.

Spectroscopic techniques include standard absorption and fluorescence spec-
troscopic measurements mainly in solution. Special skills were developed in
low-temperature and in frozen solution spectroscopic measurements, including
fluorescence anisotropy. From the theoretical perspective large emphasis was
put in the development of essential state model to describe low-energy linear
and non-linear spectra of CT chromophores and multichromophores. Essential
state models adopt a minimal basis to describe electronic degrees of freedom of
CT chromophores just accounting for the charge-resonance that dominate the
low-energy physics of these systems. Thanks to this minimal choice for the elec-
tronic structure, essential state models can describe fairly accurately the cou-
pling of electrons with molecular vibrations and can be extended to account for
the interaction with the solvent. In a bottom-up modeling strategy, essentials
state models developed for chromophores in solution offer the basis to con-
struct more complex models for systems where several chromophores interact
via electrostatic forces, including multichromophoric assemblies and molecular
crystals.

Essential state models are semiempirical and a careful analysis of experimen-
tal data is the basis for their definition. Their actual exploitation requires the
development of ad hoc numerical codes, that can deal with electron-vibration
coupling either adopting the adiabatic approximation or in truly non-adiabatic
approaches. The codes are simple for simple systems, but become more and
more complex and demanding as long as the number of slow degrees of free-
dom (either molecular vibrations or polar solvation coordinates) increases. Es-
sentials states models were also the basis to build models for bistable molecu-
lar crystals, where the cooperative nature of the interactions was captured via
a mean-field treatment of electrostatic intermolecular interactions. Quantum
chemical calculations were exploited is several cases to support essential state
models, and an original implementation of an INDO code was developed to at-
tack in a new perspective two important and timely issues: charge transport in
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organic molecular crystals and energy transfer between organic chromophores.

This extensive and multifaceted work was often done in collaboration with
other groups. Notable in this respect are the collaborations with two Italian
groups expert in the synthesis of organic and organometallic chromophores and
multichromophores, Prof. D. Roberto (“Università degli Studi di Milano”) e Dr.
S. Quici (CNR - Milano); with an Italian group expert in non-linear optical spec-
troscopy (Prof. C. Ferrante, “Università di Padova”). Another national collabo-
ration was active with the group of Bologna University. The group has a well
recognised expertise in optical spectroscopy of organic crystals (Prof. Brillante)
and in theoretical model for the structural and vibrational properties of organic
crystals (Prof. Della Valle and Venuti). Joining these expertise with the exper-
tise of the host research group in modelling electronic and electron-vibration
coupling in molecular materials was instrumental to attack the complex prob-
lem of the in charge transport in organic semiconductors. Particularly important
have been two international collaborations. The first with the group of Prof. J.
Veciana (Barcellona), that has a well recognized expertise in the synthesis and
characterisation of molecular functional materials, has been supported by “EU-
NOE MAGMANET”. I spent 6 weeks in Barcelona and PhD student from there
spent two months in our laboratory. The second international collaboration was
with the group of Prof. S. Pati (Bangalore) that is a recognized expert in the
theoretical description of molecular functional materials. In the framework of
this collaboration, supported by the Executive Program of Scientific and Tech-
nological cooperation between the Italian Republic and the Republic of India
2008-2010, I spent a month in the laboratory of Prof. Pati.

The thesis is organized as follow. The first chapter is mainly devoted to CT
chromophores and multichromophores. Essential state models are presented
and exploited to describe optical spectra of several donor-acceptor (DA) chro-
mophores and bichromophoric assemblies in solution. Essential state models for
DA chromophores were already developed in the host laboratory [18, 19] and
successfully applied to many systems [20, 21, 22, 23]. Here special emphasis is
put on specific DA chromophores which spectral behaviour calls for some exten-
sion of the basic model to account for the presence of several low-energy exci-
tations and/or for additional slow degrees of freedom. Interchromophore inter-
actions are at the hearth of models for bichromophoric systems, and have been
extensively investigated in the framework of the bottom-up modelling strategy.
Extended models demand for extended spectroscopic characterization and the
technique of fluorescence anisotropy, recently implemented in the host labora-
tory, proved extremely successful in this context.
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Chapter two describe a class of organic and metallorganic DA compounds
that, with respect to the typical DA chromophores described in Chapter 1, are
characterized by a low degree of conjugation between the D and A groups and
therefore by weak CT absorption band occurring in the near-infrared spectral
region. This family of chromophores is particularly promising for bistability
[24]. A bottom-up modeling strategy is adopted to model bistable molecular
crystals of DA chromophores. The work starts with a detailed analysis of op-
tical spectra of the DA dye in solution to extract the relevant molecular model
that is then used to build models for interacting chromophores in the crystal.
The calculation of electrostatic intermolecular interactions is based on an orig-
inal implementation of quantum chemical calculations, where a constant elec-
tric field is imposed to force the molecule in one of the resonating structure
and hence evaluate the relevant charge distribution. A mean-field treatment
of electrostatic intermolecular interactions then proves that bistability can be
induced in crystals of DA chromophores via a careful balance of inter and intra-
molecular energies. The model is validated via a quantitative comparison with
temperature-dependent Mössbauer spectra for a specific system. The model,
originally developed from crystal of neutral DA chromophores is then extended
to treat crystal of DA+ molecular ions. This non-trivial extension suggests that
the electrostatic interaction between the DA+ ion and the counterion offers a
powerful tool to drive the system in the bistability region. While mainly de-
voted to bistability, chapter 2 touches upon other problems as well. Among
them we point at the discussion of the role of bridge in D π A chromophores. Fi-
nally preliminary results are discussed about a new family of DA chromophores
showing an intriguing and complex physics that includes bistability in solution,
dimerization equilibria and the formation of mixed-valence dimers.

In chapter three we describe a computational tool to evaluate the electron -
phonon couplings in organic molecular material. The method, which involves
a semiempirical quantomechanic approach, fully accounts for the mixing be-
tween intramolecular and intermolecular (lattice) vibrations. The method is
applied to the case of rubrene, which presents many low frequency vibrations
that potentially couples with low frequency lattice phonons.

In chapter four, a short review of the resonance energy transfer mechanism
is given and an original computational method based on INDO/S calculation
of configuration interaction matrix elements is proposed. The computational
scheme is then tested on a few pairs of organic chromophores.



Chapter 1

CT chromophores and

multichromophores:

essential state models and

spectroscopic behaviour

In this chapter we focus attention on optical spectra of charge transfer (CT)
chromophores and multichromophores. CT chromophores are an interesting
class of π -conjugated molecules decorated with electron donor (D) and ac-
ceptor (A) groups. In these molecules π conjugated electrons guarantee for
low-lying excitations and large transition dipole moments, and therefore large
(hyper)polarizabilities. These interesting properties are further amplified by the
presence of D and A groups that lower the energy of CT states. Indeed the low
energy physics of CT chromophores is governed by CT degrees of freedom, a
feature exploited in the host laboratory to develop essential state models for
optical spectra of CT chromophores [25].

CT chromophores represent a vast family of molecules: the simplest struc-
ture has a D and an A group joint by a π-conjugated bridge. These polar struc-
tures, also known as push-pull chromophores, have been quite extensively in-
vestigated for their large NLO properties [26, 17]. Their low-frequency ab-
sorption transition has a CT character and its large solvatochromism is well
known [27]. More complex and highly symmetrical chromophores include
quadrupolar, DπAπD or AπDπA, and octupolar (DA3 or AD3) chromophores
[28, 29, 30]. In all cases the low energy physics of these dyes is governed by CT
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processes and their optical spectra can be accurately described in terms of essen-
tial state models [25]. Specifically, polar dyes resonate between two structures,
DA ←→ D+A−, and the essential state model just accounts for two electronic
basis states [18]. Quadrupolar dyes can instead be described based on three
electronic states [21], while four basis states are essential to describe octupolar
dyes [22]. The interaction with the solvent and with molecular vibrations are
introduced in essential state models, leading to a fairly accurate description of
solution spectra [31, 32, 33, 21, 34, 35, 36].

The same essential state models lead themselves quite naturally to describe
multichromophoric assemblies [25, 37, 38, 23], where different CT chromophores
interact via electrostatic forces. Essential state models have been developed in
the host laboratories in the last 15 years and have been quite successfully ap-
plied to many chromophores and multichromophores. However, in an effort to
extend the library of molecules described in terms of essential state models, a
few intriguing examples of chromophores have been encountered for which a
detailed description of optical spectra requires some extension of the basic es-
sential state model. In this chapter I will discuss a few examples of polar dyes
where an extension of the two state model is in order, as well as a few examples
of multichromophoric species.

1.1 Essential state description of a DA chromophore

The low energy physic of DA chromophore is governed by the resonance DA←→
D+A−. The minimal model for their electronic structure then accounts for two
basis state: the neutral |DA〉 state and the zwitterionic |D+A−〉 state [18, 19, 39,
33]. The Hamiltonian reads:

Hel =

�

0 −τ
−τ 2z0

�

(1.1)

where 2z0 represents the energy difference between the two structures and τ
is the mixing element. The same Hamiltonian is conveniently rewritten using a
couple of operators:

ρ̂ =

�

0 0

0 1

�

σ̂ =

�

0 1

1 0

�

Hel = 2z0ρ̂−τσ̂ (1.2)
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The solution of the electronic 2× 2 Hamiltonian is exact, and the ground and
the excited state are:

|g〉 =
p

1−ρ |DA〉+pρ |D+A−〉 (1.3)

|e〉 = −pρ |DA〉+
p

1−ρ |D+A−〉 (1.4)

where ρ is the expectation value in the ground state of the ρ̂ operator and cor-
responds to the degree of charge transferred from D to A (also called ionicity),
that can vary from 0 to 1. The ρ value only depends on z0 and τ:

ρ =
1

2



1−
z0

p

z0
2 +τ2



 (1.5)

Molecules in a state characterised by ρ ≪ 0.5 (ρ ∼ 0) are in neutral regime.
Molecules with ρ ≫ 0.5 (ρ ∼ 1) are in the ionic regime. Figure 1.1 shows the
ρ(z0) curves calculated for a few τ values.

-2 -1 0 1 2
z

0
 (a.u.)

0

0.2

0.4

0.6

0.8

1

ρ

τ = 0.0
τ = 0.1
τ = 0.5
τ = 1.0
τ = 2.0
τ = 5.0

Figure 1.1: The z0 dependence of ρ for different τ values. Notice that the mixing
element τ is responsible for the smoothness of the ρ(z0) curve. For τ= 0 the system
can only be found at ρ = 0 or ρ = 1, and states with intermediate ionicities are
only possible for finite τ.

According to the original idea of Mulliken [40], we neglect all matrix ele-
ments of the dipole moment operator except µ0, the dipole moment in the D+A−

state. The dipole moment operator then reads:

µ̂= µ0ρ̂ (1.6)
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All spectroscopically relevant quantities can be easily expressed as a function of
ρ, as follows:

µge = µ0

p

ρ
�

1−ρ
�

(1.7)

ωge =
τ

p

ρ
�

1−ρ
�

(1.8)

The ρ dependence of µge and ωge is shown in fig. 1.2. The permanent ground
and excited state dipole moments are:

µg = µ0ρ µe = µ0(1−ρ) (1.9)

The solvatochromism is governed by the mesomeric dipole moment:

∆µ= µe −µg = µ0
�

1− 2ρ
�

(1.10)

In particular, for a pure electronic model, the absorption solvatochromism is
determined by µg∆µ and emission solvatochromism by µe∆µ.

0 0.2 0.4 0.6 0.8 1
ρ

0

0.1

0.2

µ C
T

2 
   

(µ
0 u

ni
t)

0

4

8

ω
C

T
   

 (
τ 

 u
ni

t)

Figure 1.2: Calculated frequency (upper panel) and square of the transition dipole
moment (lower panel) of the CT transition, as a function of ρ. At ρ ∼ 0 (largely
neutral molecules) or ρ ∼ 1 (largely ionic molecules) the transition frequency is
very sensitive the ρ.

The complete description of optical spectra of a DA chromophore requires
the introduction of molecular vibrations. We account for a single effective co-
ordinate q that linearly modulates the diagonal energy z0 (Holstein coupling).
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The total Hamiltonian then reads [33]:

H = Hel +Hph+He−ph

= 2z0ρ̂−τσ̂+
ωv

2

2

�

q2 + p2
�

− g
p

2ωvqρ̂ (1.11)

where the p is the momentum associated to the q coordinate. ωv is the vi-
brational frequency and g is the electron-phonon (e-ph) coupling constant:
g = 1p

2ωv

�

∂ z0

∂ q

�

qeq
. The strength of the coupling is conveniently measured by

ǫv =
g2

ωv
, i.e. the vibrational relaxation energy.

In the adiabatic approximation the vibrational kinetic energy is neglected
and q becomes a classical coordinate. In this approximation the total Hamilto-
nian: Hadiab = 2

�

z0 −
Æ

ωv

2
gq
�

ρ̂ − τσ̂+ 1
2
ωv

2q2 can be easily solved as a two
state electronic Hamiltonian with a q dependent z0. The adiabatic solution leads
to q dependent |g〉 and |e〉 states and to q dependent energies, that describe
the potential energy surfaces (PES), as shown in the right panel of figure 1.3.
The vibrational problem can be solved on each PES to find relevant vibrational
eigenstates. As it can be seen in fig. 1.3, the two basis state have harmonic
PES with the same curvature, but the PES resulting from the diagonalization
are anharmonic and show different curvature. The solution of the vibrational
problem becomes trivial if the harmonic approximation is enforced, i.e. if the
anharmonic PES for the g and the e state are approximated by parabolic sur-
faces. The exact solution of the adiabatic anharmonic problem is possible, but
numerically cumbersome.

To deal with the problem in a non adiabatic picture it is useful to introduce
raising and lowering operators (ħh= 1) in order to express q̂ and p̂:

q̂ =
1

p

2ωv

�

â† + â
�

(1.12)

p̂ = i
1

p

2ωv

�

â† − â
�

(1.13)

Equation 1.11 can be rewritten:

H = Hel +Hph+He−ph

= 2z0ρ̂−τσ̂+ωv

�

ââ† +
1

2

�

− g
�

â† + â
�

ρ̂ (1.14)

The total Hamiltonian matrix is then written on the basis obtained as the direct
product of the two electronic basis states (|DA〉 and |D+A−〉) times the eigen-
states of the harmonic oscillator described by Hph = ωv

�

ââ† + 1
2

�

. The result-
ing basis set is infinite and is truncated accounting for just the lowest N states
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Figure 1.3: Left: the q-dependent energies of the two electronic basis states. Right:
adiabatic eigenstate PESs obtained from the diagonalization of Hamiltonian in
equation (1.11). The figure is obtained for z = 1 eV , τ= 0.5 eV , ωv = 0.2 eV and
ǫv = 0.4 eV . In the left panel, ǫv marks the vibrational relaxation energy relevant
to the basis states, while λv in the right panel, shows the same quantity (i.e. the
vibrational relaxation energy) for the adiabatic eigenstates.

of the harmonic oscillator. Numerically exact solutions are obtained by diago-
nalising the Hamiltonian matrix on a basis with large enough N as to ensure
convergence of the relevant results.

So far we have described an isolated chromophore: to complete the picture
we have to account for the interaction between the molecule and its environ-
ment. The simplest approach starts studying the molecule in solution. Ignoring
all specific effects, we adopt the a reaction field model. A solvent around a polar
solute generates an electric field FR that is proportional to the dipole moment
of the solute: FR = r〈µ〉. There are two contributions to the reaction field:

FR = FR,el + FR,or = rel〈µ〉+ ror〈µ〉 (1.15)

The first contribution accounts for the polarisation of the electronic cloud of
solvent molecules around the polar solute. It is related to very fast degrees of
freedom (the energy of typical electronic excitations of the solvent, in the UV
region) and can be treated in the anti-adiabatic approximation, leading to a
renormalisation of the electronic model parameters, τ and z0. FR,el is related
only to the refractive index of the solvent, and in view of the minor variability
of the refractive index of common organic solvents, we assume that the renor-
malized τ and z0 parameters are essentially solvent independent.
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The second contribution, FR,or , is present only in polar solvent and is due to
the reorientation of the polar solvent molecules around the polar solute. This
term is characterised by a much slower dynamics compared to the relevant de-
grees of freedom and can be accounted for in the adiabatic approximation. We
define the solvent relaxation energy ǫor =

1
2

rorµ
2
0 and introduce an effective

solvation coordinate f = forµ0, so that the complete Hamiltonian reads:

H =Hel +Hph+He−ph− f ρ̂+
1

4ǫor
f 2 (1.16)

The parameter ǫor is directly related to the solvent polarity. Polar solvents have
large relaxation energies and large value of ǫor , while apolar solvents have
ǫor = 0. ǫor is the only parameters that determines the evolution of the spectral
properties of the chromophore increasing the solvent polarity, and fully accounts
for solvatochromism.

In eq. 1.16 the Hamiltonian is parametrically dependent on the solvation
coordinate f . The relevant energies describe the potential energy surface (PES)
with respect to the f coordinate, with minima centred at the equilibrium value
for f , feq = 2ǫor〈ρ〉. We treat f as a classical coordinate, so that states around
the minimum along each PES are populated with probability pc( f ) according to
the Boltzmann law:

pc

�

f j

�

=
exp

Ec( f j)
kT

∫

pc
�

f ′
�

d f ′
(1.17)

where c refer to the electronic considered state (c = g, e).
Therefore to calculate the properties (including optical spectra) of chro-

mophore in solution, we diagonalise the f dependentH in eq. 1.16 for different
f values and calculate the f dependent property of interest. Ensemble proper-
ties are finally obtained summing up on a grid of f values and weighting rel-
evant contributions according to the Boltzmann distribution. Along these lines
it become obvious that polar solvation is responsible for inhomogeneous broad-
ening of optical spectra. Since ǫor determines the curvature of the f dependent
PES, as in eq. 1.16, polar solvents results in larger broadening, while apolar
solvents (ǫor ≈ 0) corresponds to steep surface with a very deep minimum. Of
course the distribution is different for absorption and fluorescence spectra: for
absorption spectra the solvent feels the field generated by the the ground state
dipole and the distribution has to be calculated based on the ground-state PES;
for fluorescence, the solvent relaxes after excitation, and the distribution has to
be calculated based on the excited-state PES.

We underline that in the calculation of optical spectra one must assign a spe-
cific lineshape to each transition, calculated at each F value. In particular we
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Figure 1.4: Energy as a function of the orientational solvation coordinate, calcu-
lated for model parameter z0=1 (and ǫv = 0), with all energies in unit of τ. On
the left panel the basis states (called diabatic); on the right the eigenstates (adia-
batic states). The dashed lines refer to the excited state energy. It can be noticed
the effect of the increase of the solvation relaxation energy ǫor in determining the
curvature and the position of the minima (the more polar is the state, the more
shifted is the equilibrium position
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assign either a Gaussian line to each vibronic band, calculated for each f with
a fixed width Γ, independent on the solvent polarity. An estimate of Γ can be
obtained from the width of the vibronic lines in non polar solvents. In polar sol-
vents, summing over spectra calculated at different f leads to inhomogeneous
broadening of the bands.

The detailed procedure to calculate linear and non-linear spectra is explained
in appendix sect. B.1.1.

1.2 Essential state models for chromophore and

multichromophore

Essential state models account for a minimal set of electronic states and thanks
to this simplification, they offer a way to treat in good detail the coupling of
electronic and vibrational degrees of freedom and the effects of polar solvation.
Essential state models are semi-empirical models: model parameters must be
extracted from the experiment. Most often the parameters are extracted from
the analysis of linear optical spectra and from their solvent dependence. Linear
and non linear spectra can be calculated with the guessed parameters and the
results compared with the experimental one, in a procedure similar to a fit.

Because solvent effects are explicitly accounted for, in essential state ap-
proaches the model for the solute molecule is strictly solvent independent. The
essential molecular model resulting from the analysis of solution spectra can
then be used to describe the same chromophore in different environments. This
is the basis for the so called bottom-up approach modelling strategy to describe
multichromophoric assemblies [20, 23, 25], molecular films [32], or crystals
[24, 41].

Adopting solvent-independent molecular parameters largely reduces the num-
ber of free parameters with respect to standard treatments based on the Marcus-
Hush or Jortner models [42, 43, 44, 45, 46]. As it will be underlined in several
cases in this chapter, despite of the reduction of free parameters, the calculated
spectra satisfactorily reproduce experimental data, confirming the validity of the
model. Moreover, the global fit of optical spectra in solvents of different polarity
allows for a reliable partitioning of the relaxation energy into a vibrational and
a solvation contribution, a delicate issue in the Marcus-Hush treatment where
spectra measured in different solvents are analysed separately.
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DA chromophores beyond the two
state approach

The two state model described in sect. 1.1 is a simple and effective model,
that has been successfully applied to describe several families of push–pull chro-
mophores. It reproduces linear and non-linear properties of DA chromophore in
solution and in more complex environments. However, the two-state approxi-
mation is quite dramatic and in some experimental systems it must be relaxed.
In this chapter we discuss two examples:

• an organic ligand that is well described as a DA chromophore, but that
upon complexation on Zn2+ show an interesting enhancement of the TPA
intensity that cannot be explained in a two state model (see sect. 1.3)

• an organic chrysenic-like DA compound whose spectra show a competition
between a CT and a localised transition (see sect. 1.4)

Indeed another example of an improved description of a DA molecule be-
yond the two state model will described the next chapter, when the role of
bridge state is discussed with reference to two chromophores of interest for
bistability (see sect. 2.1.7).
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1.3 Terpyridine-based ligand and the related Zn-

complex

Fig. 1.5 shows the chemical structure of an organic terpyridine–based ligand
T and of its Zinc complex [ZnT]. The ligand itself is a push-pull chromophore
where the terpyridine group acts as an electron-acceptor, while the amino group
is the electron-donor. In the complex the Zinc is coordinated to the acceptor
group, leading to a much stronger acceptor character of the complexated ter-
pyridine group. Here we combine an essential state model description and a
bottom up modelization approach. This work has been done in collaboration
with the group of D. Roberto of the University of Milano (Italy) that devel-
oped the synthesis of the two compounds, while the nonlinear characterisation
(two-photon absorption) was performed by the group of Prof. C. Ferrante of
the University of Padova (Italy). Our group is responsible for collecting optical
linear spectra, and for the theoretical model [47].

Figure 1.5: Studied terpyridinic ligand and the related Zinc complex

1.3.1 Ligand: spectroscopy and two state model

Fig. 1.6 (upper panels) reports experimental spectra of the ligand T. Panel (a)
shows linear absorption and fluorescence spectra collected in solvents of dif-
ferent polarity; panel (b) shows TPA spectra collected in CH2Cl2. Table 1.1
summarizes main spectroscopic data. Linear spectra were collected in our lab-
oratory, according to the procedures described in the appendix sect. A.1. The
experimental procedures adopted for fluorescence quantum yield (FQY) and
TPA measurements done in Padova are explained in appendix A.2.
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Table 1.1: Experimental data for T in cyclohexane, toluene and dichloromethane.

solvents λabs/nm λ f luo/nm λTPA/nm
(ε/M−1cm−1) (FQY) (σTPA/GM)

cyclohexane 348 377

toluene 358 413

dichloromethane 362 474 730
(21300±500) (0.27±0.03) (96±12)

One-photon absorption (OPA) and fluorescence spectra were collected in
cyclohexane (CH) , toluene and dichloromethane. Since T exhibits very low
solubility in CH, for this solvent the spectrum reported in fig. 1.6(a) is not
the absorption spectra but the fluorescence excitation spectrum (see caption of
fig. 1.6). As expected for a largely neutral polar chromophores, T shows a
weakly solvatochromic absorption while fluorescence spectra exhibit a stronger
solvatochromism. The TPA band exactly overlaps the linear absorption band
(fig. 1.6(b)), as expected for asymmetric molecules.

The two-state model presented in the previous section applies very well to
T, as demonstrated by calculated spectra shown in panels (c) and (d) of Figure
1.6, The spectra have been obtained with model parameters in table 1.2 (for de-
tails about the calculation of linear and two-photon spectra see appendix B.2).
The results are very good: not only transition energies, but also the evolution
of absorbance and fluorescence band shape with solvent polarity are well re-
produced. The TPA spectrum is also reproduced quantitatively with the same
parameters: in particular we notice that both the molar extinction coefficient
of OPA and the TPA cross section are in good agreement with the experimental
data. We underline that six parameters of the model (η,

p
2t, µ0, ǫv, ωv and the

intrinsic linewidth of the vibronic transition, Γ) are solvent-independent, while
only one (ǫor) changes with solvent polarity.

1.3.2 Optical spectra of [ZnT]: the need for an extension of

the model

The complexation of T on ZnCl2 has interesting consequences in optical spec-
tra, as seen in Figure 1.7 (Table 1.3 summarizes experimental data). Absorption
and fluorescence spectra are red-shifted with respect to the ligand and the mo-
lar extinction coefficient increases by a factor ∼1.2, while the cross section of
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Figure 1.6: Top panels: experimental spectra of T. Panel a: continuous and dashed
lines refer to absorption and fluorescence, respectively. T hardly dissolves in CH,
and in the OPA spectrum a very weak band appears in the low-energy region that
can be assigned to the complexation of T with traces of metallic ions in solution. To
overcome this problem, the fluorescence excitation spectrum is shown (black con-
tinuous line, in arbitrary units). The molar extinction coefficient was measured in
CH2Cl2 and spectra collected in other solvents are normalised to this value. Panel c:
TPA spectrum in Göppert-Mayer (symbols and errors bars) and OPA spectrum (ar-
bitrary units, dotted line) collected in CH2Cl2. Bottom panels: Spectra calculated
for T by the two-state model using the parameters reported in Table 1.2
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Table 1.2: Model parameters for [ZnT] and for T: the molecular parameters rel-
evant to the T ligand (τ, z0, µ0, ωv , εv and Γ) are rigidly transferred from the
two-state model to the three state model (common values, upper part of the ta-
ble). In the central part of the table are shown the parameters entering only the
three-state model for [ZnT] and in the last part the solvent parameters for both
molecules .

molecular parameter T [ZnT]

z0/eV 1.54

τ/eV 0.95

µ0/D 20.5

ǫv/eV 0.20

ωv/eV 0.17

Γ/eV 0.065

x0/eV 2.28

t ′/eV 0.77

µ′0/D 8.6

αµ0/D 36.9

solvent parameter T [ZnT]

ǫor/eV cyclohexane 0.10
toluene 0.39 0.13
dichloromethane 0.62 0.27
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Figure 1.7: Top panels: experimental spectra of [ZnT]. Panel a: continuous and
dashed lines refer to absorption and fluorescence, respectively. The molar extinc-
tion coefficient was measured in CH2Cl2 and spectra collected in other solvents are
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reported in Table 1.2
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Table 1.3: Experimental data for [ZnT] toluene and dichloromethane.

solvent λabs/nm λ f luo/nm λT PA/nm
(ε/M−1cm−1) (FQY %) (σTPA/GM)

toluene 405 463

dichloromethane 427 549 847
(25700±400) (0.48±0.05) (186±24)

two-photon absorption increases by a factor of ∼2 with respect to T [47]. Linear
optical properties of [ZnT] can be rationalised in the two state picture: upon
complexation with the Lewis acid group ZnCl2, the acceptor strength of the ter-
pyridine group increases lowering the energy of D+A−, and therefore decreasing
the z0 value. As a results ρ increases justifying the red shift of the absorbance
and fluorescence bands as well as the the weak increase of the absorption inten-
sity. But when we tried to reproduce the increase seen in the TPA cross section,
the two state model fails completely: in fact we obtain an amplification of the
TPA cross section not larger than 1.2. The reason for the failure of the two-state
model for [ZnT] has to be ascribed to the presence of a higher-energy state, that
contributes to the TPA response, while barely affecting the low-energy state in-
volved in OPA.

Then we model [ZnT], again in an essential-state picture, as a DAAv specie,
where Av is a virtual acceptor that mimics the ZnCl2 group. This leads to three
resonating structures:

D A Av ←→ D+A−Av ←→ D+A A−v

that define three basis states. In agreement with the two-state model, the states
|D A Av〉 and |D+A−Av〉 are separated in energy by 2z0 and the mixing element
is −τ. The energy gap between D+A−Av and D+A A−v is 2(x0 − z0), and the
two states are mixed by −τ′, as sketched in Figure 1.8. The corresponding
Hamiltonian is:

Hel =









0 −τ 0

−τ 2z0 −τ′
0 −τ′ 2x0









(1.18)

|D+A A−v 〉 is a virtual high-energy state (x0 > z0), that, being not directly
coupled with the neutral state |D A Av〉, marginally affects the ground state.
On the other hand, |D+AA−v 〉 significantly contributes to the first excited state,
leading to a sizeable increase of the dipole moment of the first excited state,
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Figure 1.8: The three basis states for [ZnT]

and hence of ∆µ = µe − µg . The OPA intensity is proportional to the squared
transition dipole moment (µ2

ge) between the ground state and the excited state,
and is barely affected by the presence of the virtual state. On the other hand,
the TPA cross section is proportional to

�

∆µ
�2
µ2

ge, so that a sizeable increase
of the TPA response is expected as a result of complexation, as experimentally
observed [47].

Before starting the detailed analysis of optical spectra of the [ZnT] complex,
the role of the virtual state on the intensity of OPA and TPA spectra is discussed
in more detail. Colour maps in Figure 1.9 show the OPA (top panel) and the
TPA intensities (bottom panel) calculated as a function of z0 (half the energy
gap between D A Av and D+A−Av) and of x0 − z0 (half the energy gap between
D+A−Av and D+A A−v , figure 1.8), for the three state model in Eq. 1.19. Both the
mixing elements are set to 1 (τ = τ′ = 1) and the dipole moment of D+A A−v is
set to 2µ0, twice the dipole moment of D+A−Av . For x0−z0≫ τ′ the virtual state
becomes irrelevant, and one regains the two-state model. In particular for small
values of z0, ρ→ 0.5 and according to equation 1.7 (and fig. 1.9) the transition
dipole moment is very large, so that the OPA intensity is high. Increasing z0, the
system becomes more neutral, ρ decreases, and OPA decreases as well. Anyway,
the presence of the virtual excited state never affects the OPA intensity signifi-
cantly. On the contrary, the TPA intensity strongly depends on the energy of the
virtual state, and, as shown in the bottom panel of Figure 1.9, it increases when
the virtual excited states approaches the first excited state. These predictions
suggest that the three-state model can explain the experimental observations.

For a more detailed modelling of the [ZnT] complex, molecular vibrations
and polar solvation are introduced, along similar lines as previously discussed
for the two-state model. Again, only one effective molecular coordinate is cou-
pled to the electronic transition, with frequency ωv and relaxation energy ǫv.
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Figure 1.9: Results of the three-state electronic model with τ = τ′ = 1 eV, µ0 =

20D and α = 2. Colour maps show the OPA intensity as calculated oscillator
strength (top panel) and TPA intensity in GM estimated at the maximum of the
TPA band (bottom panel) as function of z0 and x0− z0 for the first electronic state,
using the three-state model The red contour lines mark the equispaced levels, with
increments 0.1 and 50GM in the top and bottom panel, respectively. This refers to
pure electronic problem (ǫor = 0 and ǫv = 0). Effective width was introduced to
estimate numerically the cross section: Γe f f =0.16 eV .
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We assume for the |D+A A−v 〉 state the same coupling as for the |D+A−Av〉 state.
The electronic and vibrational Hamiltonian then reads:

Hel +He−ph+Hph =









0 −τ 0

−τ 2z0 −ωv

p

2ǫvq −τ′

0 −τ′ 2x0 −ωv

p

2ǫvq









+
1

2
ωv

2
�

q2 + p2
�

(1.19)

The reaction field approach is followed to account for polar solvation. Be-
cause of the coordination with the polar ZnCl2 we account for its permanent
dipole moment introducing a parameter µ′. Moreover to measure the dipole
length of |D+AA−v 〉 we introduce a parameter α (α > 1 on physical basis) so that
the dipole moment operator reads:

µ̂=









µ′ 0 0

0 µ′ +µ0 0

0 0 µ′ +αµ0









(1.20)

We notice that µ′ does not affect OPA and TPA intensities (it does not enter
the transition dipole moments nor the mesomeric dipole moment), but it is
responsible for a larger solvatochromism of absorption bands with respect to T.
With this hypothesis for the dipole moments, the three-state Hamiltonian reads:

H =Hel +He−ph+Hph+
1

µ0
µ̂ f +

1

4ǫor
f 2 (1.21)

As for two state model we treat f as a classical variable. For fixed f the H in
Equation 1.21 defines a coupled electron-vibration problem that is numerically
diagonalised on a non-adiabatic basis. The spectra are calculated as described
in appendix B.

The number of parameters entering the three-state model is large and to re-
duce the number of freely adjustable parameters we exploit the bottom-up mod-
elling strategy and transfer all relevant parameters from the two-state model of
a free ligand T to the description of the ligand unit within the complex. Table
1.2 summarizes all parameters entering T and [ZnT] model. Molecular param-
eters τ, z0, µ0, ωv , ǫv and Γ in the first part of the table, are common to the
two molecules. Solvent relaxation energies are smaller than those reported for
T, a fact that can be rationalised in terms of the smaller dimension of the so-
lute cavity for T than for [ZnT]. Calculated spectra are reported in the bottom
panels of fig. 1.7. The agreement with experimental data is very good: band
shapes, transition energies and intensities (molar extinction coefficients and the
TPA cross section) are well reproduced.
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Quite interestingly the three-state model actually accounts for the inductive
effects predicting a red-shift of the optical transition without the need to empir-
ically re-adjust z0. The third state D+AA−v included in the model, can be defined
as a virtual state in the sense that it marginally affects the ground state and lin-
ear spectral properties. However it does enter with sizeable weight the first ex-
cited state, leading to an increase of the dipole moment of the first excited state,
and hence to an amplification of the TPA response, where σTPA ∝ µ2

ge(µg −µe)
2

(see appendix B). This mechanism is general, and can be extended to different
systems: attaching a virtual acceptor or a virtual donor to a push-pull chro-
mophore is expected to sizeable increase its TPA response.
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1.4 Annine: CT vs localized excitations

In collaboration with S. Quici (CNR-Milano), D. Roberto (University Milano)
and C. Ferrante (Padova) we have investigated a family of chrysene derivative
molecules. The molecular structure of these molecules in fig. 1.10 is charac-
terized by an extendend π framework, that in virtue of its rigidity lead to good
photostability. The properties of molecules in this family have been already
object of some investigation [48, 49].

Figure 1.10: Chemical structures of the molecules discussed in this section

An is an heterocyclic substituited chrysene in which the carbon in position 2
is substituited with a nitrogen atom, obtaining the corresponding 2-azachrisene
and increasing the acceptor strength of the substituted ring. An represent the
reference compound. Adding an electron donor group on the opposite side
of the fused ring structure, we obtain the 8-N,N-dibutylamino-2-azachrysene
(NAn), as in figure 1.10, that represent an interesting DA chromophore. The
third compound, NAnM+, from which the family name ANNINE comes (ANel-
lated benzene rings hemicyaNINE), is obtained by methylation of the pyridinic
nitrogen, resulting in a strong increase of the acceptor strength. We describe in
detail the properties of NAn, the parallel study of An and NAnMe+ is mainly
realized to support our analysis of NAn.

1.4.1 Optical properties of An

We study the compound An (2-azachrisene, show in figure 1.10) in order to
support the physical interpretation of the NAn spectra, that will be described
later. Absorption and fluorescence emission and fluorescence excitation spectra
of An are measured in cyclohexane, toluene, CH2Cl2 and DMSO.

We encounter some difficults related to the poor solubility of An in almost
all solvents, an to its the tendency to form aggregates and/or excimers [50].
Fluorescence excitation spectra are helpful in this respect. Anyway, in diluite
solutions and/or after sonication and filtration a set of reliable spectra was ob-
tained, except for cyclohexane. Results are shown in figure 1.11. The presence
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of a bad baseline for toluene, as well as the unresolved low energy side of the
emission spectra can be due to formation of aggregates and excimers.
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Figure 1.11: Experimental absorption and fluorescence of An in three solvent. For
CH2Cl2 the excitation spectra is shown instead of the absorption.

Anyway, spectra in fig. 1.11 show the typical behaviour expected for organic
conjugated fused ring chromophores, with π→ π∗ excitations with narrow and
well resolved vibronic structure. The negligible effect of the solvent polarity
on optical spectra, showing no broadening and no solvatochromism upon in-
creasing solvent polarity, confirms the localized nature of the excitations and
the emission.

1.4.2 Optical properties of NAn

Linear optical spectra (absorbtion and fluorescence) of NAn were collected in
solvents of different polarities: cyclohexane, toluene, CH2Cl2 and DMSO. Molar
extinction coefficient and FQY were also measured in CH2Cl2 and DMSO. Spec-
tra are shown in fig. 1.12 e 1.13 and spectroscopic quantities are summarized in
tables 1.4 and 1.5. The absorption spectrum is characterized by three systems
of transitions (see fig. 1.12):

• a weak absorption I at ∼ 410 nm, that is well resolved in nonpolar solvent

• a band at about 350-360 nm (II), with a distinct solvatochromic behaviour

• a strong peak at ∼ 300 nm (III)
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Figure 1.12: Experimental absorption spectra of NAn in different solvents.

We are mainly interested in the low energy portion of the spectra, and specif-
ically on feature I and II: fig. 1.13 collects the relevant region of absorption
spectra in 1.12 and the fluorescence spectra, including two more solvent used
for fluorescence anisotropy measurements (see below): propilenic glycole (PrG)
and 2-methyl-tethrahydrofurane (MeTHF). I is difficult to locate in polar sol-
vents, where it partly overlaps with II. Both absorption and fluorescence are
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Figure 1.13: Low energy portion of the experimental absorption spectra and fluo-
rescence spectra of NAn in different solvents.

well resolved in apolar solvent, with a clear vibronic structure. Fluorescence
shows a marked solvatochromism. In nonpolar solvent the 0-0 vibronic peaks
of absorption and emission coincide.
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Table 1.4: Experimental data for absorption and the TPA of NAn, with absorption
maxima and molar extinction coefficient ε, and TPA maximum and cross section
in DMSO

I II

solvent λabs/ nm λabs/ nm λTPA/ nm
(ε/M−1cm−1) (ε/M−1cm−1) (σTPA / GM)

cyclohex. 397 [0-0] 376 [0-1] 353 [0-0] 338 ([0-1]

toluene ∼400 [0-0]∼385 [0-1] 357 [0-0]∼341 [0-1]

MeTHF 400 356

CH2Cl2 ∼ 407 361
(∼ 3000) (22000)

PrG ∼ 410 439

DMSO ∼ 410 362 730
(∼ 3000) (21500) (100)

Table 1.5: Experimental data for fluorescence of NAn: emission maxima and fluo-
rescence quantum yeald (FQY).

solvent λem / nm FQY

cyclohexane 402 [0-0]

424 [0-1]

toluene 418 [0-0]

∼437 [0-1]

MeTHF 439

CH2Cl2 467 0.23

PrG 476

DMSO 481 0.47

We notice that room T spectra in PrG shown a double band fluorescence,
with a weaker peak at lower frequency that disappear in the frozen solvent
(see below). Frozen solution of MeTHF show a similar but less pronounced be-
haviour, with a very weak and resolved emission redshifted respect to the main
one. The room T emission in MeTHF does not show this feature. The investiga-
tion of this phenomenon, that is possibly due to some excited state dynamic and
relaxation processes [51, 52, 53], is beyond the aim of this work and requires
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time dependent techniques not available at present in our laboratory.

Absorption spectra of NAn do not resemble typical spectra of DA chromophores.
In fact the lowest energy transition is definitely too weak for a CT transition,
while feature II, lying higher in energy, has both the intensity and the solva-
tochromic behaviour typical of a CT transition. On the other hand, fluorescence
shows an increasing CT character when going from the apolar solvent (in which
it overlaps with LE absorption) to polar solvents where spectra has the typical
strong solvatochromism of dipolar emission from CT state.

At the same time, we notice that the absorption I and more generally the
absorption and fluorescence spectra profile of NAn, as in fig. 1.13 in non polar
solvents strongly resemble to the absorption and fluorescence bandshapes in An

(see fig. 1.11). It is then tempting to assign feature I in absorption spectra to a
localized excitation i.e. an excitation involving the azo-chrysene π skeleton.

Since the investigated sistem has a low energy physics involving more than
one excited state and possibly the transition dipole moments is oriented along
different directions, emission and fluorescence excitation anisotropy spectra
were recorded in glassy solution of propilenic glycole (PrG) at 200K and 2-
methyl-tethrahydrofurane (MeTHF) at 77K. A detailed description of theoretical
and practical aspects of anisotropy measurements can be found in the appendix
A.4 and B.3.1, respectively.

The anysotropy excitation profile is pretty rich in both solvents and it reaches
the limiting 0.4 value in the low energy side of the spectra, corresponding to
an (almost) complete alignment of excitation and emission dipoles, then the
anisotropy decreases in a “plateau” region at 350–390 nm. The main difference
between the two solvents is in the anisotropy value in the plateau region, where
for the more polar solvent (PrG) r ∼ 0.3, while in MeTHF r ∼ 0.2.

The experimental excitation and emission spectra in frozen PrG and MeTHF
are shown together with anisotropies in fig. 1.14. The spectra exhibit important
differences from room T spectra: in spite of the different polarities, absorption
(excitation) and emission spectra in PrG and MeTHF are peaked at a similar
wavelenght. Moreover, the emission spectra are weakly shifted compared to
room T spectra.

Anysotropy results confirm the presence of more than one excitation, and
actually reveal that the emission in frozen solvent occur always from the lowest
energy state, the one responsible for the absorption at 400-420 nm, because in
both solvents the r value tend to 0.4 at the red edge of the absorption spectra
profile.
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Figure 1.14: Spectral properties of frozen solution of NAnin PrG (deep blue)
and MeTHF (light blue). Top panel shows fluorescence excitation spectra (con-
tinuos line) and fluorescence spectra (dashed lines). Data in the legend refers to
anysotropy spectra, while the excitation and detection wavelenght for emission and
excitation spectra are respectively 430 nm and 399 nm (PrG), 422 nm and 368
nm (MeTHF).
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Figure 1.15: Experimental TPA spectra (stars) and the normalized OPA for NAn

in DMSO.

Experimental TPA spectra

Two photon absorption (TPA) spectra were measured in Padova by the group
of Ferrante for the NAn (and for the NAnM+, see following section) in DMSO
solution. The experimental TPA spectra is shown in fig. 1.15, along with the
OPA spectra for comparison. The experimental results are summarized together
with OPA in table 1.4. Even if the TPA band is not complete due to experimental
limitations in the short wavelenght side, the maximum of TPA and OPA coincide,
as expected for asymetric dyes.

1.4.3 CT and localized transition and the failure of the stan-

dard two-state approach

A complex experimental picture

To describe optical spectra of NAn we must account for two excited states, close
in energy. One is responsible for the CT transition and corresponds to the band
II in absorption spectra, while the other can be identified as a localized excitation
(LE), i.e. essentially a π → π∗ transition, similar to the lowest energy feature
observed in An and corresponding to the absorption I.

In absorption the feature I is always lower in energy than II even if, upon
increasing the solvent polarity, II lowers in energy until in partially overlaps I.
But the large solvatochromism of fluorescence spectra suggests a CT character
of the lowest excited state (the fluorescent state). This apparent contraddiction
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can be resolved assuming that in polar solvents the nature of the first excited
state changes from LE to CT as long as the system relaxes after the excitation.

Semiempirical INDO/S calculations

To validate our hypothesys and to support the definition of the dipole moment
operator in the essential state model we perform semiempirical calculations (Ar-
gusLab package [54]). Calculation refers to the in vacuo molecule optimized at
AM1 semiempirical level of theory, while the excited state calculations were per-
formed with the INDO/S hamiltonian with CI (40 occupied MOs by 40 virtual
MOs as space for the excited configurations).

We define the DA direction as parallel to the x axis; the y direction is per-
pendicular to x in the molecular plane (see fig. 1.16). The transition dipole

x

y

Figure 1.16: Axis definition for NAn and related molecules.

moments calculated for the first excitations of An and NAn are shown in fig.
1.17. In the NAn the three lowest energy transitions computed as polarized
are not along the main dipolar (DA) direction but the transition dipole moment
form a small angle with the y axis. At the same time an intense transition is
found at higher energy (the large transition dipole moment in the figure 1.17),
mainly along the CT direction. This transition is not found among the (low
energy) transitions for An, and is identified as the CT transition. For NAn the
angle formed by the the average of the first transitions and the following CT-like
is about 50-70 degrees.

1.4.4 A three state model for the two transitions in NAn

We define a model for NAn including three electronic basis state: |D π A〉,
|D+π A−〉, and |D π∗A〉. The first two state ideally account for the CT transi-
tion, and correspond to the two states of the essential state model for DA dyes
(see sect. 1.1). The |D π∗A〉 state represents the local excitation. We assume
again an energy 2z0 for the |D+π A−〉, mixed by an element −τ with the neutral
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Figure 1.17: INDO/S calculated transition dipole moment for An (red) and NAn
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the two components of the transition dipole moments: on y axis the x component
(parallel to DA direction) and on the z axis the y component. z components are
negligible.
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state. The |D π∗A〉 state has energy 2y0, and for this state we account for the
coupling (−β) only with the nearby zwitterionic state, while neglect any direct
coupling with |Dπ A〉. The relevant hamiltonian is:

Hel =









0 −τ 0

−τ 2z0 −β
0 −β 2y0









(1.22)

On this basis the ρ̂ operator, measuring the weight of the zwitterionic state, is:

ρ̂ =









0 0 0

0 1 0

0 0 0









(1.23)

The definition of the dipole moment operator is crucial in this model. We as-
sign a large dipole moment, µ0, to the zwitterionic |D+π A−〉, directed along
the x direction. Moreover we define a non-vanishing off-diagonal element,
µ∗ = 〈D π A |µ̂|D π∗A〉 to account for the finite intensity of the LE transition.
This dipole forms an angle ϕ ∼ 50÷ 70◦ with the x DA direction. This choice
is in agreement with the orientations of the transition dipole moment for the
lowest transitions in fused ring aromatic compounds, suggested by the quan-
tum chemical calculation (see sect 1.4.3. The two components of the dipole
moment then reads:

µx =









0 0 µ∗ cos(ϕ)

0 µ0 0

µ∗ cos(ϕ) 0 0









(1.24)

µy =









0 0 µ∗ sin(ϕ)

0 0 0

µ∗ sin(ϕ) 0 0









(1.25)

As with the two state model we define a vibrational coordinate q (and the
relative momentum p), linearly coupled respect to the |D+π A−〉 state. We set
the frequency of this moleculear vibration equal to ωv and assume a relaxation
energy ǫv. Thus the adiabatic hamiltonian is:

Hel+ph =









0 −τ 0

−τ 2z0 −ωv

p

2ǫvq −β
0 −β 2y0









+
1

2
ωvq2 (1.26)

To reproduce the vibrational structure observed in non-polar solvent in the LE
band, we define a second vibrational coordinates q∗ (and momentum p∗) for
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the coupling with |Dπ∗A〉, with frequency and vibrational relaxation energy ωv∗
and ǫv∗. This coordinate does not add much to the physical description of the
system apart from a better reproduction of the structure of the LE band. The
total adiabatic hamiltonian reads:

Hel+2ph =









0 −τ 0

−τ 2z0 −ωv

p

2ǫvq −β
0 −β 2y0 −ωv∗

p

2ǫv∗q∗









+
1

2
ωvq2 +

1

2
ωv∗q

2
∗ (1.27)

We expect µ0≫ µ∗ , moreover we neglect the permanent dipole moment as-
sociated with |Dπ∗A〉, therefore the solvation model reduces to the one relevant
to the standard two state model. We define an effective solvation coordinate
along the CT direction (x component) with a relaxation energy ǫor . The result-
ing total hamiltonian then is:

H =Hel+2ph− f ρ̂+
1

4ǫor
f 2 (1.28)

The equation 1.27 represents a coupled electro-vibrational hamiltonian that will
be actually solved in a non adiabatic approach over the basis obtained by the
direct product of the three electronic states times n states associated at the har-
monic oscillator relevant to q, times n∗ states of the harmonic oscillator relevant
for q∗. The general procedure for the calculation of absorption, fluorescence and
anisotropy spectra is described in appendix B.1.1 and B.3.1.

1.4.5 Results

The calculated absorption and fluorescence spectra at ambient conditions are
shown in figure 1.18, and the corresponding three-state model parameters are
listed in the table 1.6. The agreement between calculated spectra and experi-
mental data is really good, particularly in view of the relative simplicity of the
proposed model, with respect to the complex spectroscopic behaviour observed.
In particular, we successfully reproduce all the spectroscopical peculiarities of
NAn. The absolute intensity of the two transitions, as well as the fluorescence
solvatochromism and the marked loss of vibrational structure upon increasing
solvent polarity are correctly reprodueced.

Spectra in fig. 1.18 have been obtained via non-adiabatic diagonalization,
however, to better undertstand the physics at the base of the anomalous spectral
behaviour on NAn, we make resort to the adiabatic approximation and plot the
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Table 1.6: The three-state model parameters for NAn used to calculate optical
properties in fig. 1.18

molecular parameter NAn

z0 / eV 1.51

t / eV 1.07

y0 / eV 1.46

β / eV 0.04

µ0 / D 19.6

µ∗ / D 0.85

ϕ / ◦ 50

ǫv / eV 0.28

ωv / eV 0.18

ǫv∗ / eV 0.15

ωv∗ / eV 0.14

Γ / eV 0.075

solvent parameter NAn

ǫor / eV cyclohexane 0.0
toluene 0.40
MeTHF 0.50
dichloromethane 0.55
DMSO 0.65
PrG 0.70
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Figure 1.18: Calculated absorption and fluorescence, parameters in table 1.6,
value for ǫor in the legend are listed as in the experimental data of fig. 1.13
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PES relevant to the three electronic states. For graphical reason at this stage
we neglect the q∗ coordinate and its coupling to electrons setting ǫ∗ = 0 and
renormalizing y0 to 1.37 eV to relocate the energy of the localized state in the
proper position.

Figure 1.19: f,q dependent PES for the three basis state. Left: apolar solvent, right:
polar solvent. Parameters are the same in the table 1.6, but with ǫv∗ (ωv∗ is then
irrelevant), and a renormalized y0,e f f = 1.37.

Figure 1.19 shows the PES relevant for the basis (diabatic) states in a slightly
polar (ǫor = 0.01 eV) and in strongly polar (ǫor = 0.70 eV) solvent. In the first
case the states |D π∗A〉 and |D+π A−〉 are very close in energy, while the polar
solvent largely stabilizes the zwitterionic state.

Figure 1.20: Calculated f,q dependent PES for the three adiabatic eigenstate. Left:
apolar solvent, right: polar solvent. Parameters as defined in the caption of fig.
1.19.
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Figure 1.20 shows the corresponding adiabatic PES. In the slightly polar
solvent the lowest energy PES corresponds to a state that strongly resemble
|D π∗A〉, while the second PES has a CT character. The lowest excitation always
corresponds to the LE state both in absorption and in fluorescence. The situa-
tion is very different in a strongly polar solvent, where the first excited state PES
describes either a LE or a CT state in different regions of the q, f plane. Specifi-
cally absorption occurs “on the vertical” from the equilibrium position relevant
to the ground state. In this point the lowest excitation has a dominant LE char-
acter, while the higher excitation corresponds to a CT state. The absorption
spectrum then has a weak marginally solvatochromic absorption band (corre-
sponding to feature I), and an higher energy intense absorption (feature II),
which CT character is demonstrated by its important solvatochromism. How-
ever, after excitation the system relaxes and moves toward the global minimum
of the excited state PES where the state aequires a dominant CT character (see
fig.1.21): in polar solvents fluorescence occurs from the CT state, even if in
absorption the lowest excitation has an LE character. Of course the situation
is different in frozen solvent, where the solvent cannot relax after the solute
excitation. In frozen solvent, quite irrespective of the solvent polarity we expect
that fluorescence always occurs from the LE state. First excited state PES are
reported in fig. 1.21 too, using contours to clarify the position of the minima.

Figure 1.21: Calculated f,q dependent PES and relative contourn of the first excited
state. Left: apolar solvent, right: polar solvent. Parameters as defined in the
caption of fig. 1.19.

We are now in the position to calculate the anisotropy excitation and emis-
sion spectra. The temperature has to be set properly for the anisotropy cal-
culation. We set T = 90K in MeTHF, corresponding to the glassy transition
temperature of the solvent. In propylnenic glycole, we set T = 200K. ([55] and
see appendix A.3.1).
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Figure 1.22: Calculated absorbance and fluorescence of NAn, to be compared with
experimental data in fig 1.14 (same symbols are used in both figures).

Calculated anisotropies in fig. 1.22 compare very well with experimental
spectra in fig. 1.14, and the different anisotropies observed for the two solvents
in the plateau region is nicely reproduced in the calculation. Some problem is
encountered in reproducing the position of the excitation spectra in PrG, but the
complete agreement with the experimental spectra recorded in frozen solvent
is a tricky problem, because one should account for the T -dependence of the
solvent refractive index and dielectric constant, leading to T dependent model
parameters.

The peculiar excited state properties, in term of energies and polar character,
make NAn an interesting example of excited state inversion. that can occur any
time there are a CT and localized excited states close in energy. This is the
first time that the optical properties of a class of chrysene-like compounds is
analyzed and understood in a detailed way. In spite of the highly nontrivial
picture we succeded in understanding the physics governing low energy optical
spectra of this chromophore.

With the same model and the same parameters listed before (table 1.6) we
have calculate TPA spectra, reported with the OPA in figure 1.23. Again the
level of agreement with experimental data is good. Indeed the presence of a
low energy state is correctly accounted for, as confirmed by the low energy side
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Table 1.7: Experimental data for NanMe+ in different solvents. For the
dichloromethane and the toluene the absorption maxima refer to the fluorescence
excitation spectra and for the toluene the emission maximum is estimated by the
maximum due to the monomer contribution (spectra not shown).

solvents λabs/nma λ f luo/nma λTPA/nma

(ε/M−1cm−1)a (FQY)b (σTPA/GM)a

toluene 425 ∼ 513

dichloromethane 502 621

DMSO 440 493 920
(24000) (0.38) (285)

of the TPA band.
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Figure 1.23: Calculated TPA spectra (circle) and the normalized calculated OPA.

1.4.6 Experimental properties of NAnMe+

Absorption and emission spectra of NAnMe+, show in fig. 1.24, have been
recorded in toluene, CH2Cl2 and DMSO, and a clear tendency to aggregate was
found in the first two solvents. In CH2Cl2 the aggregation behaviour has been
investigated in a bit quantitative way, and a sistematic concentration depen-
dence of the absorption maxima (redshift increasing concentration) has been
found. Anyway, in CH2Cl2, the aggregate does not fluoresce (the shape of the
emission spectra does not depend on the concentration neither on the excitation
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Figure 1.24: Experimental absorption (fluorescence excitation for toluene and
CH2Cl2) (right) and fluorescence spectra (left) of NAnMe+ in different solvents.

wavelenght). The fluorescence excitation spectra are then helpful to extract an
absorption-like profile that is shown in fig. 1.24, instead of the absorption. In
toluene both the aggregate and the molecule contribute to emission, and the
first has non-negligible contribution even in diluite solutions. For this solvent,
acceptable excitation spectra (shown in fig. 1.24) have been recorded. Spectro-
scopic data are listed in table 1.7.

Excitation and emission anisotropies measured in PrG at 200K, are reported
in fig. 1.25 and shows an almost constant value of r ∼ 0.4. TPA spectra of DMSO
solutions were also recorded in Padova, and are shown in fig. 1.26. Notice that
there is a significant increase in the TPA cross section compared to NAn.

The methylation of the pyridine-N of NAn leads to an enhancement of the
strength of the acceptor group and absorption and fluorescence spectra are red
shfited with respect to NAn (see fig. 1.24). The |D+π A−〉 state is now lower
in energy than any local excited state and both fluorescence and absorption
spectra are related to the CT transition. The measured anisotropy spectra for
NAnMe+confirms this interpretation.

NAnMe+ is a charged molecule, and the standard dipolar approach for the
solvent effects does not work for molecular DA ions. We therefore do not at-
tempt to rationalize the solvathocromism of NAnMe+. This in fact would re-
quire accounting for both a monopolar and a dipolar component to the reaction
field, leading to a too large proliferation of adjustable parameters.
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Figure 1.25: Experimental excitation (right) and emission (left) anisotropies (bot-
tom) and spectra (top) of NAnMe+ in glassy solution in PrG. The excitation and
emission wavelenght reported are the same for the anisotropy and for the spectra.

Figure 1.26: Experimental TPA spectra (stars) and the normalized OPA for NAn

in DMSO.
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Interacting polar chromophores

Essential state models for CT chromophores apply very well to describe the
physics of systems where several chromophores interact via electrostatic forces.
In the next chapter we describe interacting CT chromophores in molecular crys-
tals, here we discuss instead optical spectra of multichromophoric systems and,
more specifically, of two bichromophoric species.

The idea is to describe interacting chromophores starting from the mod-
elization and the comprehension of the monomeric unit, and then introduce an
appropriate model for the interactions. The properties of the bichromophore
are not trivial: the geometry and the amount of the interaction heavily affect
the property of the bichromophore and in some cases produce important effect.

DA chromophore are extensively investigated for their NLO responses. More
recently, attention moved to multipolar structures where the presence of mul-
tiple D or A groups in symmetrical structures can affect NLO responses [21,
22, 36]. The interest in aggregates and multichromophoric systems arises from
the possibility to synthesize TPA efficient and comparatively simple molecular
units: their organisation in supramolecular structures can be exploited to coop-
eratively enhance the TPA response via specific interactions [25, 56].

The first example discussed is a substituted bipyridine system that will be
interpreted as a dimer of the corresponding stilbazole chromophore. The second
example is offered by a family of substituted spirobifluorenes, that are modelled
as dimers of the relevant fluorene units.

1.5 Dimers of polar chromophores in solution: stil-

bazole and bipyridine

Stilbazole S, in fig.1.27, is a substituted pyridine, and its dimer is formed by con-
necting the two pyridine rings into a bipyridine structure S2 (fig. 1.27). These
two molecules represent an interesting model system to check how interchro-
mophore interactions affect experimental linear and nonlinear properties [57].
This work has been done in collaboration with the group of the group of D.
Roberto (Milano University), which synthesized the molecules, and C. Ferrante
(Padova University) which measured TPA spectra of both molecules and the flu-
orescence quantum yield (FQY). The Padova group is also responsible for some
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Figure 1.27: Studied molecules S and S2

ab initio and TD-DFT calculations. Computational results will be compared with
our essential-state ones.

1.5.1 Stilbazole: the two state model at work

Experimental spectra of S are shown in the upper panel of fig. 1.28, and main
spectroscopic data are summarized in table 1.8. The solvent dependent absorp-
tion and fluorescence spectra of S show the typical behaviour expected for a DA

dye. In particular both absorption and fluorescence bands move to the red with

Table 1.8: Experimental data for S in cyclohexane, toluene, dichloromethane and
DMSO.

solvents λabs/nm λ f luo/nm λTPA/nm
(ε/M−1cm−1) (FQY %)b (σTPA/GM)
osc. strength f

cyclohexane 388 [0-0] 401 [0-0]

372 [0-1] 424 [0-1]

toluene 379 439

dichloromethane 387 472 774
(36100 ± 1400) (0.029 ± 0.004) (190 ± 34)

0.74
DMSO 390 493
b standard: Fluorescein (in H2O at pH > 11)
and Rhodamine B (in methanol)
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Figure 1.28: Experimental (top) and calculated (bottom) linear spectra for
molecule S in different solvents. Parameter shown in table 1.9 together with bipyri-
dine ones.

increasing solvent polarity with a larger effect on fluorescence, as expected for
chromophores with a largely neutral ground state (ρ < 0.1).

We then apply our two state model as discussed in the sect. 1.1 to calculate
linear absorption and fluorescence spectra and TPA spectra. Figures 1.28 (lower
panel) shows that the essential state model reproduces well the evolution with
the solvent polarity of absorption and fluorescence spectra, confirming the va-
lidity of the model and leading to a reliable set of parameters, reported in Table
1.9. The model for S derived from the analysis of OPA and fluorescence spec-
tra applies to the calculation of TPA spectra, in Fig. 1.29, leading to very good
results without the need to introduce any additional parameter.

The shift of the fluorescence spectra with increasing solvent polarity is repro-
duced particularly well. Some difficulties in reproducing the absorption experi-
mental spectra occur in cyclohexane: because of the presence of higher energy
localized transitions (that are beyond the scope of the two state model), the
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Figure 1.29: Experimental (top) and calculated (bottom) TPA spectra for molecule
S in CH2Cl2. Parameter shown in table 1.9 together with bipyridine ones.
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high-energy side of the spectra is different from the experimental one. This
results in a distorted vibronic profile.

1.5.2 Interacting dipolar chromophore: bipyridine

An electronic four state model

We model the bipyridine molecule as a pair of N,N- dibutylstylbazole molecules
connected by the two pyridine unit, neglecting the π-conjugation in the bipyri-
dinic bond. We follow the bottom-up approach and transfer the information
obtained from the analysis of optical spectra of S to the description of S2. The
two electronic basis states for each stilbazole chromophore leads to a minimal
electronic model for the bipyridine unit accounting for four electronic states,
that actually reflect the two independent CT processes in the dimer. Thus the
four basis states describe the state where both monomers are in the neutral
state |D A A D〉, the two degenerate states where either one of the two species is
zwitterionic, |D+A−A D〉 and |D A A−D+〉 , and the state where both species are
zwitterionic: |D+A−A−D+〉. On this basis, we define two operators that directly
measure the degree of CT on each chromophore:

ρ̂1 =













0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1













ρ̂2 =













0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1













(1.29)

thus 〈ρ1〉 and 〈ρ2〉 are the ionicities relevant to the two chromophores. The
electronic Hamiltonian is the sum of the two Hamiltonians relevant to each
chromophore (eq. 1.1) plus a term accounting for the electrostatic interaction
V ρ̂1ρ̂2 :

Hel =













0 −τ −τ 0

−τ 2z0 0 −τ
−τ 0 2z0 −τ
0 −τ −τ 4z0 + V













(1.30)

V measures the electrostatic interaction energy between the two units, when
both of them are in the zwitterionic state (electrostatic interactions involving
neutral molecules are negligible).

The dipole moment operator for the bipyridine is defined with reference
to the structure shown in figure 1.30, and it is the vector sum of the dipole
moments of the two molecular arms. Thus, the electronic dipole has two com-
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Figure 1.30: Scheme for the geometrical arrangement of the dipoles in S2

ponents, along the x and y directions µ̂= µ̂x ǐ + µ̂y ǰ, with

µ̂x = µ0 sin
�

θ

2

�

�

ρ̂1 − ρ̂2
�

µ̂y = µ0 cos
�

θ

2

�

�

ρ̂1 + ρ̂2
�

(1.31)

Geometrical arrangement and strength of the interaction

We first analyse the role played by the geometry (i.e. the θ angle in fig. 1.30)
and by the extent of the interaction (i.e. the magnitude of V ). To start with
let us consider the electronic problem, neglecting vibration and solvation coor-
dinates. The diagonalization of eq. 1.30 leads to four eigenstates. The lowest
energy eigenstate is the ground state g, then one expects a pair of excited states
e1 and e2 corresponding to states where only one molecular arm is excited (one-
exciton states) and, finally, the highest energy state describes the systems where
both molecules are excited (two-exciton state). The two one-exciton states are
obviously degenerate in the non-interacting (V = 0) system. When the two
chromophore interact the two states split. This is the main effect of the param-
eter V , as can be seen in fig. 1.31.

The interaction identified as electrostatic is repulsive (V > 0), so that the in-
phase combination of the two one-excitation states is higher in energy than the
out-of-phase combination. The angle θ affects relative intensities of the OPA and
TPA processes, shown in figure 1.32. In particular: varying the angle θ we can
distribute the intensity on the lower or on the higher energy transition of the
exciton pair. In the “cisoid” conformation (θ ≈ 0) only the in-phase one photon
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Figure 1.31: The effect of the interaction parameter V on the first two excitation
energies. Dashed line: lower energy transition g → e1. Cont. line: higher energy
transition g → e2. Results refer to the electronic Hamiltonian in eq. 1.30 with
z0 = τ= 1 eV

excitation is optically active, i.e. the oscillator strength concentrates on the
high energy state. In the “transoid” conformation (θ ≈ 180) the lowest energy
transition is instead optically active. At intermediate angles both transitions are
active.

The TPA process is a third order phenomenon and exhibits different symme-
try rules. The lower energy state is not TPA-active for θ ≈ 0 or θ ≈ 180, while
the higher energy state has maximum TPA intensities in these limits. The total
OPA intensity is essentially V independent in this model, while increasing of V

leads to a moderate increase of σTPA at large angles. This basic concepts are
important to rationalize experimental data.

Vibrational and solvent degrees of freedom

We introduce two independent coordinates q1 and q2 relevant to the two chro-
mophores, with momentum p1 and p2.The total Hamiltonian reads H =Hel +

Hph+He−ph, where Hel is the electronic Hamiltonian in eq. 1.30, and Hph and
He−ph are the vibrational Hamiltonians and the electron-molecular vibration
coupling Hamiltonians:

Hph =
1

2
ωv

2
�

q̂1
2 + p̂1

2 + q̂2
2 + p̂2

2
�

(1.32)

He−ph = −g
p

2ωv
�

q̂1ρ̂1 + q̂2ρ̂2
�

(1.33)

where ǫv is the vibrational relaxation energy (as defined in sect. 1.1) and g =
p
ωvǫv. In the occupation number approach the effective coupled molecular
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This refers to pure electronic problem (ǫor = 0 and ǫv = 0) with z0 = τ = 1eV ,
µ0 = 20D. Effective width was introduced to estimate the cross section: Γe f f =0.16
eV .
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vibrations then read:

Hph+He−ph =
∑

j=1,2

ω

�

â j â
†
j +

1

2

�

− g
�

â†
j + â j

�

ρ̂ j (1.34)

We consider two independent reaction fields, each one responding to the
dipole moment on each molecular arm: µ̂1 = µ0ρ̂1 and µ̂2 = µ0ρ̂2. Thus two in-
dependent solvation coordinates are defined f1 and f2, and the solvation Hamil-
tonian is:

Hs =− f1ρ̂1 − f2ρ̂2 +
1

4ǫor

�

f1
2 + f2

2
�

(1.35)

The f1 and f2 coordinates are treated as classical coordinates and the total
Hamiltonian H = Hel +Hph +He−ph +Hs is defined on a two-dimensional
grid of f1 and f2 values. On each point of the grid the Hamiltonian H ( f1, f2)

describing the coupled electronic and vibrational problem is diagonalized on
the non-adiabatic basis. Spectra are calculated following the procedures in ap-
pendix B.

It is interesting to notice that the PES associated with the emitting state has
a double minima structure in the ( f1, f2) plane, and then the related Boltzmann
distribution has two peaks, in correspondence of the two indistinguishable min-
ima ( feq1,e, feq2,e) and ( feq2,e, feq1,e), where feqi,e = 2ǫor〈ρi〉e is the equilibrium
value for the effective solvent coordinate in the i-th arm cavity and e is the
emitting state. In other terms, the solvent degrees of freedom induce symme-
try breaking, localizing the excitation in one of the two arms. Absorption goes
towards a delocalized exciton state, but fluorescence comes from a state where
the excitation is localized on a single arm.

1.5.3 Optical spectra for bipyridine along bottom-up mod-

elling

The experimental absorption and fluorescence spectra of the S2 in four solvents
are shown in fig. 1.33 (top panel), and spectral data are collected in table 1.10.
Compared to S, S2 spectra are redshifted, but the solvatochromic behaviour and
bandshapes are very similar. In the calculation of the spectra all parameters rel-
evant to the chromophoric unit are transferred from the model for S developed
above, with the only exception of z0, the energy difference between |D+A−〉 and
|DA〉 that is expected to decrease in the bichromophoric specie because of the
increase of the strength of the acceptor group (effect of second pyridinic group
as substituent attached). Therefore the spectra are calculated tuning z0, V and
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Table 1.9: Model parameters for S and for S2.

molecular parameter S S2

z0/eV 1.35 1.28

τ/eV 1.07

µ0/D 23.5

ǫv/eV 0.38

ωv/eV 0.18

Γ/eV 0.075

V / eV 0.3

θ / deg. 180

solvent parameter S S2

ǫor/eV cyclohexane 0.05
toluene 0.23
dichloromethane 0.48
DMSO 0.69

Table 1.10: Experimental data for S2 in cyclohexane, toluene, dichloromethane
and DMSO.

solvents λabs/nm λ f luo/nm λT PA/nm
(ε/M−1cm−1) (FQY %)b (σ2/GM)
osc. strength f

cyclohexane 396 [0-0] 431 [0-0]

379 [0-1] 408 [0-1]

toluene 395 446

dichloromethane 400 497 800
(67500 ± 7700) (7.9 ± 0.2) (370 ± 50)

1.40
DMSO 407 527
bstandards same as reported in table 1.8
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θ , while keeping all other model parameters fixed to the values obtained from
the essential state analysis of optical spectra of S.

The top panel of figure 1.33 shows the OPA and fluorescence spectra of S2

calculated in four solvents. The spectra are red shifted compared to S. This
has two concurrent origins: (a) the increase of the acceptor strength; (b) the
interaction between chromophore. Calculated OPA and fluorescence spectra in
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Figure 1.33: Experimental (top) and calculated (bottom) spectra for S2 in different
solvents. Parameters from table 1.9, with ǫor = 0.48 eV, as relevant to CH2Cl2.

Figure 1.33 (bottom panel) reproduce very well experimental data. The fluo-
rescence bandshapes, including the loss of vibrational structure going in polar
solvent is nicely reproduced.

Lower panel of figure 1.34 shown the calculated TPA spectrum of S2 in
CH2Cl2 together with the calculated TPA spectrum of the monomer S in the
same solvent. Experimental TPA spectra of S and S2 are reported for compari-
son in the upper panel. Calculated TPA cross section of S2 perfectly agree with
the experimental result, and the increase in σTPA going from the monomer to
the bichromophore is correctly reproduced.
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Figure 1.34: Experimental (top) and calculated (bottom) TPA spectra for S (red)
and S2 (black) in dichloromethane. Spectra are calculated with parameters listed
in the table 1.9. Normalized OPA (experimental and calculated) is also shown for
comparison (dotted lines).



1. CT CHROMOPHORES AND MULTICHROMOPHORES 55

Excitation pair in S2: splitting and relative intensities

For reasonable V values, the splitting between the two exciton states is very
small and calculated spectra show a minor θ -dependence. In figure 1.35 calcu-
lated linear and non linear spectra are shown for different θ values; the param-
eter are the one for S2 in dichloromethane, as listed in table 1.9. For θ going
from 180◦ to 0◦ the OPA band moves to the blue by ∼ 1000 cm−1, and the in-
tensity of both OPA and TPA decreases by a factor ∼0.8 and ∼0.9, respectively
(the increase in the OPA only concern the maximum of the extinction molar
coefficient, while the total oscillator remains constant). Because the splitting is
not really appreciable in any experimental OPA spectra it is difficult to extract
reliable θ values from the comparison with absorption experimental data.

For S OPA and TPA frequency always coincide, but apparently this does not
occur for S2 (see top panel of fig 1.34). The blueshift of the experimental TPA
maximum with respect to the OPA suggests θ ≈ 180◦. Unfortunately, the ob-
served blueshift is very small (comparable with experimental uncertainties),
and cannot be taken as a strong proof of θ = 180◦. However, the transoid
conformation is also supported by the large FQY measured for S2, which is not
compatible with θ ∼ 0◦, where the lowest energy excitation would be optically
forbidden, leading to a non fluorescent specie. On the other hand θ ∼ 180 ◦,
i. e. a transoid configuration, is also supported by chemical intuition, based
on the structures found for bipyridine in solid state [58, 59], as well as by the
theoretical calculation discussed in sect. 1.5.4). We then assume θ = 180 in the
description of S2.

1.5.4 Ab initio and TDDFT calculated absorption and TPA prop-

erties

In collaboration with the group of professor Ferrante (Padova University), our
essential state results have been compared with results from ab initio and TD-
DFT calculations [57]. Calculation were run on the dimethylamino derivative,
instead of the n-buthylamino group. The ground state geometries and excita-
tion energies of S and S2 are investigated through ab-initio quantum-chemical
calculations (HF, 6-311G(d,p) as basis set) both in vacuum and in CH2Cl2, us-
ing PCM model to take in account for solvent effect. Excited state energies and
transition dipole moments were calculated in the CIS approach, while only for
the excitations from ground state (the ones relevant for the absorption) TDDFT
was also used.

The results for S are similar for vacuum and CH2Cl2 calculation, and the
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Figure 1.35: Calculated OPA(top) and TPA (bottom) spectra for molecule S2 at
different θ values (for comparison the results in S is also shown, dashed line).
Parameters are the one for dichloromethane shown in table 1.9

Table 1.11: Calculated OPA and TPA for S and S2 in dichloromethane [57]. f is
here the calculated oscillator strength.

OPA TPA
excitation CIS TDDFT CIS

λabs/nm ( f )a λabs/nm ( f )a λTPA/nm (σ /G.M.)

S g → e 264 (1.28) 364 (0.86) 264 (43)

S2 dd g → e1 271 (2.78) 380 (1.95) 271 (0.4)
g → e2 266 (0.004) 370 (0.0004) 266 (88)

S2 du g → e1 272 (1.00) 376 (0.79) 272 (8.4)
g → e2 266 (1.70) 367 (0.77) 266 (13)
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electronic densities involved in the HOMO-LUMO transition (responsible in S

for the lowest energy transition with a 81% contribution), confirm a CT process
from the donor amino to the acceptor (pyridine) group. Geometry optimization
for S2 must account for the possible rotation around the single C – C bond
connecting the two arms. The global minimum is observed at a dihedral angle
of 180◦ (called dd conformation), and a shallow relative minimum at 48◦ is also
found (called du) at 0.17 eV higher in energy, so that only the former transoid
conformation is appreciably populated at room temperature.

The HOMO/HOMO-1 and LUMO/LUMO+1 pairs are quasi-degenerate, and
the former pair show similar electronic densities as the HOMO of S. HOMO
and HOMO-1 are confined in the two arms of the dimer. On the opposite,
LUMO and LUMO+1 are somewhat delocalized on the whole molecule with a
concentration of electron density on the central bipyridine group, which acts as
an electron-acceptor for both arms.

The first excited state transition of S gives rise in S2 to two almost degener-
ate transitions for both conformations of dimer. These transitions are dominated
by contributions from the HOMO→ LUMO+1 (42%) and from the HOMO-1→
LUMO (30%) (dd). All the results are listed in the table 1.11 TD-DFT and CIS
methods correctly predict that S shows only one low energy electronic state with
a strong charge transfer character, whereas S2 in both dd and du conformations,
possesses two electronic states with similar energies. Both methods agree with
the experiment suggesting a red shift (approximately 1000 cm−1) of the first
excitation in going from S to S2. The calculations confirm our excitonic pre-
diction about the intensity distribution between the first two excited states. In
particular, the ab-initio calculations predict a small energy difference between
the two states (in the range 600–800 cm−1), difficult to detect experimentally.

CIS method overestimates excitation energies for both molecules, whereas
TDDFT leads to better results. The theoretical ratio of the oscillator strengths
between dimer and monomer for both CIS and TDDFT is in agreement with
the experimental results. CIS was also used to calculate the TPA spectrum:
the absolute value of the TPA cross sections predicted by the CIS calculations
is four time smaller than the corresponding experimental value. Anyway, the
estimated ratio of the TPA cross section in S2 with respect to S confirms the
idea that the dominant conformation is the one with θ = 180◦. Finally the
numerical simulation correctly predicts the red shift of the absorption maxima
with increasing solvent polarity.
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1.5.5 Bottom up essential state modelling and ab initio re-

sults in calculating spectral properties and to under-

stand the role of the interaction

The bottom-up approach makes direct use of the parameters determined from
the analysis of optical spectra of the single molecular unit and then requires
just the addition of a few parameters to describe interaction between the two
units. The agreement with experimental spectra is particularly striking in view
of the reduced number of adjustable model parameters required to describe in
a unique and coherent picture linear and non-linear optical spectra of S and
S2 accounting not only for their intensity and frequency, but also for the band-
shape, and solvation effects. The redshift of S2 spectra can have different ori-
gins: it may be due to the delocalization among the two S-moieties that form
the dimer through the bipyridine bridge, a phenomenon accounted for in the
essential state model by a decreased z0, to efficiently describe the increased
acceptor strength of the pyridinic ring. Moreover it can results from the electro-
static interaction between the two chromophores leading to an exciton splitting
and a red-shift of the lowest energy excitation. The electron density calcula-
tion suggests that some amount of delocalization contributes to the red shift.
The explicit inclusion of the delocalization in the essential state model would
lead to a six-state electronic Hamiltonian that could be easily dealt with from
a computational perspective. However the resulting model would require the
introduction of several additional microscopic parameters, whose quantitative
definition is problematic in the lack of additional experimental data.

The absolute values for the TPA cross sections estimated by the essential
state model agree very well with the experimental results. The essential state
model does not predict major variations of the TPA cross section for S2 as a
function of θ between the two S-moieties, in contrast to the CIS method that
has predicts a large reduction of the TPA intensity going from the dd confor-
mation (corresponding to θ =180◦) to the du conformation (θ =48◦). The
two-photon absorption frequencies and cross sections are calculated only with
the CIS method and, the quantitative determination of the TPA cross section is
poor. This is perhaps the worst results, and confirms the fact that conventional
ab-initio approach usually fail in accurately describing high order non-linear re-
sponses. Anyway, calculations still capture the TPA trend from the monomer to
the dimer. In these respect the essential state model gives a more refined tool
for the description of the OPA and TPA properties of dimer, starting form the ex-
perimental knowledge of the OPA and fluorescence of monomer in solvent with
different polarity, and accounting for excitonic interactions among the single
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molecular units.
The essential state model does a fair job in reproducing both qualitatively

and quantitatively the OPA and TPA features for both compounds, and delivers
a tool that allows the prediction of the OPA and TPA properties of multichro-
mophores. The two different theoretical strategies can be seen as complemen-
tary, since numerical simulations can provide useful information on the molec-
ular structure, that are then used in the choice of some parameters (vibrational
or conformational degrees of freedom) used by the essential state model.
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1.6 Dipolar DA fluorenes and related spirobifluo-

renes: bichromophores beyond the electrostatic

interactions

In this section we discuss optical properties of a series of fluorene substituited
on one side with the strong acceptor NO2 and on the other side with a donor
group (structures 1a to 5a in fig. 1.36) and the corresponding spirobifluorene
derivatives (structures 1 to 5 in fig. 1.36).

Figure 1.36: Studied DA Fluorene molecules na (left) and related spirobifluorene
n (right).

Spirobifluorenes have been object of interest since date, in virtue of the pecu-
liar interaction between the two perpendicularly oriented extended π systems
connected by the sp3 C (or Si) atom of the spiro-linkage. [60, 61]. The two
molecular units couple, as a results of the electrostatic and exchange interac-
tions, like the overlap between π orbitals of the two connected unit (spirocon-
jugation).

In all cases an important role is played by symmetry. In particular, in highly
symmetric systems both electrostatic and exchange contributions to the interac-
tion vanish and the only important interaction rises by vibronic Herberg-Teller
coupling [62]. In asymmetric systems inter-unit charge tranfer has been sug-
gested to explain the photophysical properties [63, 64]. Optical properties have
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been commonly studied to investigate the physics of spiroconjugation and to un-
derstand the excited states behaviour [65]. The interaction has been suggested
as a source of amplification of non-linear optical properties [66].

This work has been done in collaboration with Dr. Quici (CNR of Milan).
Quici group is responsible for the synthesis of the five pairs of molecules, in fig.
1.36 [67].

Here we present experimental optical spectra of these systems and their ra-
tionalization in terms of bottom up modeling approach that suggests a possible
interpretation of the spiro-interaction. We will refer to the fluorene molecules
with na and to the spirobifluorene molecules as n (see fig. 1.36). All throught
the section we also refer to the fluorene – spirobifluorene pair labeling the num-
ber follow by a star, for istance 1* will refer to both 1a and 1.

1.6.1 Experimental optical properties

For all the molecules in fig. 1.36 absorption and fluorescence spectra were
collected in different solvents, and two chosen pairs 1* and 4* were investigated
in more detail, collecting fluorescence anisotropy spectra in frozen solvents. All
compounds are stable in solution. Solubility is generally good, especially in
chlorinated solvents, while reduced solubility is observed for 3*, 4* and 5* in
apolar solvent.

Figure 1.37 and 1.38 show the spectroscopic behaviour of the five pairs 1*

to 5* in ciclohexane and in CH2Cl2, respectively. For 1* and 4* the molar ex-
tinction coefficients were measured in toluene. Quantitative spectra for 1* and
4* are reported in fig. 1.39 and summarized in table 1.12. Spectra in other sol-
vents (decaline, chloroform, 2-MeTHF) can be found in the upper panels of fig.
1.43 and 1.44, for compounds 1a and 1 respectively, and in the upper panels of
fig. 1.45 and 1.46, for compounds 4a and 4. The fluorescence quantum yield
has been measured in different solvents and the results are summarized in table
1.13.

All compounds exhibit normal solvatocrhomism with absorption and fluores-
cence bands red shifting upon increasing solvent polarity. The vibronic structure
of the CT absorption is unresolved in all solvents. The fluorescence is generally
intense in non-polar solvents (see fluorescence quantum yields in tab. 1.13), but
it is absent or very weak in polar solvents (in CH2Cl2at room T 1* is the only
detectable fluorescences). The Stoke shift is large even in apolar solvent, and
no overlap is found between the 0–0 transitions in absorption and fluorescence.
The molar extinction coefficient doubles going from the fluorene compound to
the corresponding spirobifluorene.
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Going from the fluorene na to the spirobifluorene n compound both absorp-
tion and fluorescence bands redshift. In particular, two limit cases are observed:
the pair 4* and 5* show a shift of about 1000 cm−1, while in 1* the shift from
1a to 1 is negligible. The pairs 1* and 4*, representing the lower and the upper
limit of the observed shift were chosen for a more detailed spectroscopic study.

Table 1.12: Experimental data for absorption of 1* and 4*in some solvents and
molar extinction coefficient in toluene.

solvents λabs/nm
(ε/M−1cm−1)

1a 1 4a 4

ciclohexane 392 395 414 428

toluene 408 411 427 436
(20400) (39400) (32300) ( 64600)

CH2Cl2 419 422 428 437

Table 1.13: Experimental fluorescence data and fluorescence quantum yield in
some solvent.

solvents λem/nm
(FQY)

1a 1 4a 4

cyclohexane 454 [0-0] 453 [0-0] 474 [0-0] 484 [0-0]

479 [0-1] 478 [0-1] 506 [0-1] 516 [0-1]

(0.03) (0.02) (0.70) (0.62)
toluene 547 536 599 612

(0.65) (0.09) (0.45) (0.27)
CH2Cl2 683 ∼ 667

(<0.01) (0.06)
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Figure 1.37: Absorption spectra (cont. lines) and fluorescence spectra (dashed
lines) of na (black line) and n (red lines) in cyclohexane.
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Figure 1.38: Absorption spectra (cont. lines) and fluorescence spectra (dashed
lines) of na (black line) and n (red lines) in CH2Cl2. Measurement of fluorescence
were only possible in the pair 1*, being very weak for the other compounds.
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Figure 1.39: Quantitative absorption spectra (cont. lines) and normalized fluo-
rescence spectra (dashed lines) of 1a and 4a (black line, upper and lower pan-
els respectively) and 1 and 4 (red lines, upper and lower panels respectively) in
toluene.
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1.6.2 Modeling fluorenes and spirobifluorenes: a bottom-up

approach

The fluorene monomers are regular DA chromophores and the two-state model,
presented in sect. 1.1, is expected to work for these dyes. However, experimen-
tal data show a large Stokes shift also in non polar solvents as well as in frozen
solvents (see below). The model presented in sect 1.1, predict vanishing Stokes
shift in non-polar solvent as well as in frozen solvents. The large Stokes shift
observed for the DA chromophores in fig. 1.36 can be ascribed to the presence
of slow degrees of freedom, related to some low-frequency internal conforma-
tional modes. This is consistent with the observation of unresolved absorption
bands in apolar solvent, in spite of well resolved fluorescence spectra [33].

Two state review: adding a conformational broadening

The internal mode can be modeled in principle as a classical slow coordinate
[33], as done for the solvent degrees of freedom. We assume that this con-
formational mode tunes the effective overlap between the occupied orbital(s)
localized on the donor group and the unoccupied orbital(s) localized mainly
on the acceptor group. In the two state model this corresponds to assume that
the coupling with this low degree of freedom modulates the τ, the hopping ele-
ment from the donor to the acceptor. This is described by a classical coordinate
u, with relaxation energy ǫint . The relevant term in the hamiltonian reads:

Hint = −uσ̂+
1

4ǫint
u2 (1.36)

where σ̂ is the operator defined in eq. 1.2. The total hamiltonian now depends
on two slow coordinates, and it can be written as:

H ( f ,u) = Hel +Hph+He−ph

+Hsol v( f ) +Hint(u)

= Hel +Hph+He−ph

− f ρ̂+
1

4ǫor
f 2 − uσ̂+

1

4ǫint
u2 (1.37)

where Hel , Hph, He−ph have been defined in the sect. 1.1. The hamiltonian
1.37 is diagonalized on the ( f ,u) grid. The spectra calculated in each point of
the grid are then summed up weighting for the relevant Boltzmann probability,
following the procedure described in appendix C.
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A minimal electronic model for spirobifluorenes

In the bottom up modeling approach to spirobifluorenes we neglect any CT pro-
cess between the two fluorene moieties so that the electronic model is defined
on the basis of four states, direct product of the two states relevant to each
fluorene unit:

|N〉= | D A D A 〉
|Z1〉= | D+ A− D A 〉
|Z2〉= | D A D+ A− 〉
|W 〉= | D+ A− D+ A− 〉

Coherently with the two state model, the energy of the degenerate basis states
|Z1〉 and |Z2〉 is 2z0, while |W 〉 has energy 4z0 + V , where V measures the inter-
action between the chromophore in the zwitterionic state.

It is convenient to define the following operators on the chosen basis:

ρ̂1 =













0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1













ρ̂2 =













0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1













(1.38)

δ̂1 =













0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0













δ̂2 =













0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0













(1.39)

The operator δ̂1 and δ̂2 correspond to the two state off-diagonal operator σ̂,
rewritten on the bichromophoric basis. In close analogy with the two state
model the expectation value of ρ̂1 and ρ̂2 represent the degree of charge trans-
ferred in the chromophore 1 and 2. The electronic hamiltonian then read

Hel = 2z0(ρ̂1 + ρ̂2)−τ(δ̂1 + δ̂2) + ρ̂1ρ̂2V (1.40)

In spirobifluorene the relative orientations of the two chromophoric unit is
locked, so that the two chromophores are exactly perpendicular and aligned
according to the x and y axis of a reference frame, as sketched in fig. 1.40.

The dipole moment operator is the vectorial sum of the dipole moment op-
erators relevant to the two fluorene units. According to fig. 1.40 the dipole
moment operator has then two components:

µ̂x = µ0ρ̂1 µ̂y = µ0ρ̂2 (1.41)
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Figure 1.40: Scheme of the spirobifluorene molecular structure and the relevant
description for the four state model.

Spiroconjugation: from six state model to four state model with negative

V

According to the essential state model the V interaction should describe classi-
cal electrostatic interchromophore interactions. If we assume the geometrical
setting of figure 1.40 and we locate the charges (+1) on the center of the donor
and (−1) on the center of the acceptor groups, it is easy to find that V = 0
by simmetry. However, the two chromophores are not strictly linked in cor-
rispondence of their charge centroids, and a geometrical parameter accounting
for this asymmetry can be introduced according to the scheme on the right in
figure 1.41. With this generalization the electrostatic energy results (atomic
unit):

V =
1

r0





1
p

2αD

+
1
p

2αA

−
2

p

α2
A+α

2
D



 (1.42)

where αA and αD are the fraction of the chromophore length on the side of the
acceptor, and on the side of the donor, respectively. Obviously αA+αD = 1, and
the V from eq. 1.42 is always positive. Calculated V (α) values are shown in fig.
1.41.

The prediction V > 0 contradicts the experimental observation of a red shift
of optical spectra when going from the fluorene to the spirobifluorene com-
pounds. In fact, in a spirobifluorene frame the two one-exciton states are both
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Figure 1.41: Left: calculated electrostatic interaction V (αD) (or equivalently
V (αA)) with the expression in eq. 1.42 setting the DA distace r0 = 10 Å. αD and αA

are chosen according to the scheme on the right.

OPA allowed with the same intensity, with no appreciable excitonic splitting for
reasonable V value. Therefore, since V > 0 produces effects similar to those dis-
cussed in 1.5.2 (see fig. 1.31), it will never results in a redshift of the average of
the two one-exciton transitions in the bichromophoric unit. This suggests that
some delocalization and electronic exchange effects contribute in stabilizing the
spiro-derivative. Setting up a complete model accounting for conjugation effect
between the fluorene units is certainly possible, but the resulting model would
require a very large number of model parameters, whose precise definition be-
comes arbitrary. At the same time, the similarity of na and n spectra suggests
that delocalization effects are minor, and an increase of model complexity and
parameters is not actually justified by experimental data. We therefore stick on
the four-state model but with an effective V that implicitely accounts for both
electrostatic and delocalization effects.

To support this concept we shortly introduce a six-state electronic model that
explicitely account for delocalization, and check if a negative V (as to include
delocalization effects) in a four-state model, produces similar results. For the
six- state model we assume that two more electronic basis states appear, related
to the possible hopping of electrons between the donors (associated to an hop-
ping term −tD) or between the acceptors (−tA), belonging to the two different
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arms. The electronic basis state then are:

|N〉= | D A D A 〉
|Z1〉= | D+ A− D A 〉
|Z2〉= | D A D+ A− 〉
|W 〉= | D+ A− D+ A− 〉
|Y1〉= | D+ A D A− 〉
|Y2〉= | D A− D+ A 〉

we can assume that this two “crossed” CT states |Y1〉 and |Y2〉 are located at
an energy 2z0 + U , where U accounts for the different energies of the normal
and crossed CT state. On the basis of chemical intuition we expect U > 0. The
relevant hamiltonian for the six-state model is:

Hel =























0 −τ −τ 0 0 0

−τ 2z0 0 −τ −tA −tD

−τ 0 2z0 −τ −tD −tA

0 −τ −τ 4z0 + V 0 0

0 −tA −tD 0 2z0 + U 0

0 −tD −tA 0 0 2z0 + U























(1.43)

The dipole moment in this six-state model frame is defined in term of the
scheme on the right in fig. 1.41. For simplicity here we set αD = αA =

1
2
, so

that the dipole moment operators result:

µx = µ0























0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1
2

0

0 0 0 0 0 1
2























µy = µ0























0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1
2

0

0 0 0 0 0 1
2























(1.44)

Right panel of figure 1.42 show the dependence of the transition energies
and dipole moments for the two lowest excitations, calculated with the above
Hamiltonian with z0 =, 1.4 and τ = 1.80 and either tD = tA = 0.1τ (continuos
line) and tD = tA = 0.25τ (dashed lines). In both cases the energy of the lowest
transition increases upon increasing U while the energy of the second transition
decreases so that increasing U leads to a decresing energy gap between the two
excitations. This behaviour is similar to that expected for a system described by
a four state model (Hamiltonain in eq. 1.40) with negative V , as shown in the
left panel of fig. 1.42. In particular we see that the behaviour of transition dipole
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Figure 1.42: Transition energies (upper panels) and transition dipole moments
(lower panels) for the two lowest transitions relevant to a spirobichromophore. Left
panels show results of the four-state model in eq. 1.40 as a function of (negative)
V . Right panels show the same quantities for the six-state model in eq. 1.43, for
two different tD,A parametrization as shown in the legend. For both model the
electronic parameter are z0 = 1.4 eV and τ= 0.80 eV.
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moments is also similar in the two models provided that U is large enough as to
correspond to a small negative V .

Therefore we will describe spirobifluorenes adopting the simplified four elec-
tronic state model in eq. 1.40 with a negative V value that accounts in an ef-
fective way for two competing effects: the electrostatic interactions between
the two chromophores (leading to a negligible or positive contribution) and the
spiroconjugation (leading to a negative contribution).

The four-state model: molecular vibrations and slow degrees of freedom

Building on the electronic model in eq. 1.40 we now define the complete model
for spirobifluorenes accounting for the coupling to molecular vibrations, confor-
mational coordinates and polar solvation.

Molecular vibrations are introduced accounting for a single effective coupled
mode on each arm, described by the coordinates q1 and q2 and momenta p1 and
p2 (see sect. 1.5.2). The electron phonon coupling is described by the relaxation
energy ǫv or equivalently by g =

p
ωvǫv, where ωv is the vibrational frequency.

To describe polar solvation we introduce two ortogonal and independent reac-
tion fields fx and f y relevant to the two DA arms. The solvent relaxation energy
is ǫor . To be consistent with the two state model description we introduce a
conformational degree of freedom on each molecular arm, described by the co-
ordinates u1 and u2, with relaxation energy ǫint .

The total hamiltonian then reads:

H = 2z0(ρ̂1 + ρ̂2) + (δ̂1 + δ̂2)τ+ ρ̂1ρ̂2V

−
�

fx + g
p

2ωq1

�

ρ̂1 −
�

f y + g
p

2ωq2

�

ρ̂2

−u1δ̂1 − u2δ̂2

+
1

2
ω2

v

�

q2
1 + q2

2 + p2
1 + p2

2

�

+
1

4ǫor

�

f 2
x + f 2

y

�

+
1

4ǫint

�

u2
1 + u2

2

�

(1.45)

This hamiltonian depends on four slow coordinates H
�

fx , f y ,u1,u2

�

. Then we
define a grid on the fx , f y ,u1 and u2 degrees of freedom and, on each point of
the grid, we are left with a problem described by 4 electronic states coupled to 2
vibrational modes. This problem is solved in a non-adiabatic way diagonalizing
on each point of the grid the Hamiltonian matrix written on the basis obtained
as the direct product of the four electronic states times the n×n states of the two
harmonic oscillators. Once the matrix is diagonalized, spectra are calculated on
each point of the grid as described in appendix B and finally total spectra are
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obtained summing over the contributions from all points in the grid weighted by
the relevant Boltzmann probability. Calculation were run with a large number
of phonon state: n = 12. This is due to the relatively high e-mv coupling, and
is required to get realiable anisotropy spectra (see below). With n = 12, the
relevant hamiltonian matrix to be diagonalized is has a leading dimension of
4 · 122 = 576. The diagonalization has to be performed at each value of the
four dimensional

�

fx , f y ,u1,u2

�

grid for room T absorption and fluorescence
spectra.

1.6.3 Results

The four-state model described above has been applied to 1 and 4. A bottom-
up modeling strategy is adopted and the two-state molecular parameters de-
rived from the analysis of relevant fluorene molecules in table 1.14 and 1.15
are rigidly transferred to describe the same unit in the spirobifluorene bichro-
mophore. Model parameters and calculated spectra refers to four solvents:
decalin, toluene, MeTHF, choloroform. Decalin and MeTHF were studied as
relevant for the anisotropy measurements.

Parameters for the pair 1* are listed in table 1.14. The corresponding calcu-
lated absorption and fluorescence spectra (lower panel), together with the cor-
responding experimental spectra (upper panels), are shown in the fig. 1.43 and
1.44 for compounds 1a and 1 respectively. For the pair 4* the parameters are
listed in table 1.15. The corresponding calculated absorption and fluorescence
spectra (lower panel), together with the corresponding experimental spectra
(upper panels), are shown in the fig. 1.45 and 1.46 for compounds 4a and 4

respectively. Fluorescence in both 4a and 4 is observed only in apolar solvent.
The agreement between experimental and calculated spectra is generally

very good. In particular, accounting for the internal degree of freedom we are
able to reproduce the differences in the resolution of the vibrational structure
in absorption and fluorescence, as well as the large Stokes shift, observed also
in apolar solvent for 1a.

In the spirobifluorene 1 the interaction V is set equal to 0. In fact, experi-
mental spectra of 1a and 1 are practically superimposed, suggesting negligible
interaction between the two fluorene units. At room temperature, when V = 0,
calculated fluorescence and absorption spectra of the fluorene DA monomer
and the corresponding spirobifluorene result identical apart for a factor 2 in the
absorption intensity, ratio that is actually observed in the experimental molar
extinction coefficients (see table 1.12). When V = 0 the calculation of the spec-
tra account for the possibility to have degenerate single-exciton states, and the
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Table 1.14: The model parameters for 1a and for 1: the molecular and the solvent
parameters relevant are transferred from the two-state model to the four state
model (common values, upper part of the table). In the central part of the table
are shown the parameters for the 1 model only and in the last part the solvent
parameters for both molecules. For the anisotropy calculation in glassy MeTHF:
z0 = 1.15 eV and T = 90K.

molecular parameter 1a 1

z0/eV 1.28

τ/eV 0.90

µ0/D 18.5

ǫint/eV 0.08

ǫv/eV 0.40

ωv/eV 0.19

Γ/eV 0.05

V/eV 0.0

solvent parameter 1a 1

ǫor/eV decalin 0.02
toluene 0.25
MeTHF 0.40
chloroform 0.7
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Figure 1.43: Experimental (top) and calculated (bottom) absorption (right) and
fluorescence (left) for fluorene 1a. Parameters in tab. 1.14.
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Figure 1.44: Experimental (top) and calculated (bottom) absorption (right) and
fluorescence (left) for spirofluorene 1.Parameters in tab. 1.14.
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Table 1.15: The model parameters for 4a and for 4: the molecular and the solvent
parameters relevant are transferred from the two-state model to the four state
model (common values, upper part of the table). In the central part of the table
are shown the parameters for the 4 model only and in the last part the solvent
parameters for both molecules. For the anisotropy calculation in glassy MeTHF
z0 = 1.15 and T = 90K.

molecular parameter 4a 4

z0/eV 1.27

τ/eV 0.84

µ0/D 26

ǫint/eV 0.05

ǫv/eV 0.50

ωv/eV 0.17

Γ/eV 0.04

V/eV −0.4

solvent parameter 4a 4

ǫor/eV decalin 0.02
toluene 0.27
MeTHF 0.4
chloroform 0.7
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Figure 1.45: Experimental (top) and calculated (bottom) absorption (right) and
fluorescence (left) for fluorene 4a. Parameters in tab. 1.15.
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Figure 1.46: Experimental (top) and calculated (bottom) absorption (right) and
fluorescence (left) for spirobifluorene 4. Parameters in tab. 1.15
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fluorescence results from the sum of both contributions. For 4 a small negative
V = −0.4 eV is required to reproduce the red-shift of absorption and fluores-
cence bands when going from 4a to 4.

1.6.4 Fluorescence anisotropies, excitation and emission spec-

tra in frozen solvent

To confirm the proposed model obtained from the analysis of absorbance and
fluorescence spectra, fluorescence anisotropies on 1* and 4* were collected.
The emission and the excitation anisotropies were measured in glassy solution
of decaline at 200K and of 2-MeTHF (MeTHF) at 77K. The excitation and emis-
sion spectra together with the relative anisotropies are shown in several figures,
according to the table below. Figures share experimental (upper panel) and
calculated spectra (lower panel).

1a (exc. and em.) in decaline : fig. 1.47
1a (exc. and em.) in MeTHF : fig. 1.48

1 (excitation) in decaline : fig. 1.49
1 (emission) in decaline : fig. 1.50
1 (excitation) in MeTHF : fig. 1.51
1 (emission) in MeTHF : fig. 1.52

4a (exc. and em.) in decaline:fig. 1.53
4a (exc. and em.) in MeTHF :fig. 1.54

4 (excitation) in decaline :fig. 1.55
4 (emission) in decaline :fig. 1.56
4 (excitation) in MeTHF :fig. 1.57
4 (emission) in MeTHF :fig. 1.58

The polar fluorenes 1a and 4a show the expected behaviour for a push-pull
chromophore. Their anisotropy is about 0.4, both in excitation and in emission,
irrespective of the selected excitation and emission wavelength, and of solvents.
A value something less than 0.4 (r ∼ 0.3) is obtained for 4a in decaline.

A more interesting behaviour is observed for the excitation anisotropy of the
related spiro compounds 1 and 4. For both compounds in frozen MeTHF the
anisotropy start from a value close to 0.4 at the red edge of the excitation band,
and then decreases until approximately vanishes at the blue edge of the same
band. In the less polar solvent, decalin, a similar behaviour is observed with r

decreasing from ∼ 0.2 at the red edge down to ∼ 0.1 at the blue edge.
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Fluorescence excitation and emission anisotropy were calculated for 1* and
4* using the same model developed for absorption and fluorescence spectra.
The calculation of the fluorescence anisotropy in frozen solvent in presence of
the two internal conformational coordinates leads to a subtle problem. In fact
the fx and f y distributions are frozen in glassy solutions, but u1 and u2 does
relax after excitation. The relevant sampling of the grid for the spirobifluorenes
is actually six-dimensional

�

fx , f y ,u(g)1 ,u(g)2 ,u(e)1 ,u(e)2

�

, where u(g) and u(e) refer
to the ground and excited state sampled internal coordinates. The computa-
tional cost become then fairly high and to save computational time is important
to adopt operative criteria to minimiza the sampling. The detailed procedure
to calculate anisotropy spectra in the presence of internal coordinates is de-
scribed in the appendix B (see sect. B.3.2 in particular). A very large number of
phonons is in general required to get stable results for anisotropy, that, being a
difference of two spectra is particularly sensitive to small perturbations. The os-
cillations present in the calculated anisotropy spectra (lower panels of fig. from
1.47 to 1.58), can be due to some extent to the non-complete convergency of
the calculated anisotropies.

Since measurements in decalin are performed at 200K, where solvent is con-
sidered a supercooled liquid with reduced molecular mobilites, we set T = 200K
in the calculation.

On the opposite, measurements in MeTHF are performed at 77K. Since the
liquid to glass transition is expected to occur at 90K, the solvent molecules are
actually frozen at this thermodinamic temperature. We then set the temperature
for the calculated properties in glassy MeTHF equal to 90K.

The refractive index of the solvent depends on the temperature. Since the
fast degree of freedom are treated in the antiadiabatic approximation, this af-
fects mainly the z0 parameter [19]. We then adjust the z0 value for T = 90 K
calculations to 1.15 eV (vs. z0 =1.28 eV at high temperature) for 1* to 1.27 eV
(vs. z0 =1.20 eV at high temperature) for 4*. All other model parameters are
the ones listed in the tables 1.14 and 1.15.

Fig. 1.47 - 1.52 and 1.53 - 1.57 report the experimental (upper panel) and
the calculated (bottom panel), anisotropies for compounds 1* and 4* respec-
tively. For all molecules calculated spectra agree very well with experimental
spectra. Low temperature excitation and emission bandshapes and even vibra-
tional structure are in most cases completely reproduced.

The excitation and emission anisotropy for dipolar molecules, as DA fluo-
renes 1a and 4a, is expected to be equal to 0.4, because the CT excitation and
emission transition dipole moment are necessarily coinciding. Indeed, all our
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calculated anisotropy with the two state model are exactly equal to 0.4. How-
ever, in experimental measurements it is common to obtain anisotropies that
are slightly less than 0.4. This occurs for the anisotropy excitation of 4a in de-
caline, where a value around 0.3 is obtained also because decalin is not strictly
glassy in the experimental condition. However, the value is completely constant
inside the bands, confirming the validity of our approach.

We notice that, at variance with results obtained for liquid solutions, calcu-
lated excitation and emission spectra in frozen solvents for 1 (V = 0) are not
identical to the monomer 1a spectra multiplied by a factor 2. This puzzling
result will be explained in the next section, where we also address the phe-
nomenon called red edge effect. This name is used in the literature to describe
the fact that for some chromophore the anisotropy smoothly increases inside
the excitation band moving toward the red edge, where r reaches the limiting
0.4 value [68, 69, 70].
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Figure 1.47: Experimental (top) and calculated (bottom) excitation (right) and
emission (left) spectra (dashed lines) and anisotropies (cont. thick lines) of 1ain
decalin. Parameters for calculated spectra in tab. 1.14.
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Figure 1.48: Experimental (top) and calculated (bottom) excitation (right) and
emission (left) spectra (dashed lines) and anisotropies (cont. thick lines) in 2-
MeTHF of 1a. Model parameters in tab. 1.14.
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Figure 1.49: Experimental (top) and calculated (bottom) excitation anisotropies
(cont. thick lines) and excitation spectra (dashed lines) in decalin of 1. Model
parameters in tab. 1.14.
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Figure 1.50: Experimental (top) and calculated (bottom) emission anisotropies
(cont. thick lines) and emission spectra (dashed lines) in decalin of 1, at different
excitation wavelength. Model parameters in tab. 1.14.
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Figure 1.51: Experimental (top) and calculated (bottom) excitation anisotropies
(cont. thick lines) and excitation spectra (dashed lines) in 2-MeTHF of 1. In the
calculation the T = 90K. Model parameters in tab. 1.14.
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Figure 1.52: Experimental (top) and calculated (bottom) emission anisotropies
(cont. thick lines) and emission spectra (dashed lines) in 2-MeTHF of 1. In the
calculation T = 90K. Model parameters in tab. 1.14.
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Figure 1.53: Experimental (top) and calculated (bottom) excitation (right) and
emission (left) spectra (dashed lines) and anisotropies (cont. thick lines) in decalin
of 4a. Model parameters in tab. 1.15.
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Figure 1.54: Experimental (top) and calculated (bottom) excitation (right) and
emission (left) spectra (dashed lines) and anisotropies (cont. thick lines) in 2-
MeTHF of 4a. Model parameters in tab. 1.15.
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Figure 1.55: Experimental (top) and calculated (bottom) excitation anisotropies
(cont. thick lines) and excitation spectra (dashed lines) in decalin of 4. Model
parameters in tab. 1.15.
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Figure 1.56: Experimental (top) and calculated (bottom) emission anisotropies
(cont. thick lines) and emission spectra (dashed lines) in decalin of 4, at different
excitation wavelength. Model parameters in tab. 1.15.
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Figure 1.57: Experimental (top) and calculated (bottom) excitation anisotropies
(cont. thick lines) and excitation spectra (dashed lines) in MeTHF of 4. In the
calculation T = 90K. Model parameters in tab. 1.15.
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Figure 1.58: Experimental (top) and calculated (bottom) emission anisotropies
(cont. thick lines) and emission spectra (dashed lines) in MeTHF of 4. In the
calculation T = 90K. Model parameters in tab. 1.15.
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1.6.5 Understanding the red edge effect

In the frame of our model we can describe the “red edge” effect, i. e. the sis-
tematic increase of r towards the limiting 0.4 value when moving towards the
red-edge of the absorption band. To understand the behaviour we first discuss
a pure electronic model (ǫor = 0.0 and ǫint = 0.0, and no vibrations). The ex-
citon splitting produces a decreasing trend for the excitation anisotropy when
moving away from the red-edge of the absorption band. Indeed if there is a
non-degenerate exciton pair (V 6= 0), an excitation in the red edge limit of
the absorption band will always produce the re-emission from the same state:
absorbance and fluorescence dipoles are aligned and r =0.4. Moving the ex-
citation toward the blue excites higher energy states that trasfer their energy
to lower energy fluorescent states. The absorbing and emitting specie do not
coincide and r can be lower than 0.4. Since the spirobifluorene has a per-
pendicular orientation, for a pure electronic model we predict two limit values
for the anisotropy, 0.4 in red edge and −0.2 in the blue edge (ǫor = 0.0 and
ǫint = 0.0). The smoothness of such decrease (i.e. how marked is the step
between +0.4 and −0.2) depends on the relative extent of V compared to the
intrinsic width of the transition Γ. However, when vibrations are introduced,
the excitation anisotropy becomes more complex, because of the appearance of
vibronic structure, and a smoother trend is observed, with r approaching the
average value r ∼ 0.1. The average is complete when orientational degrees of
freedom are introduced (ǫint 6= 0) and at this point, regardless of the strength
of the interaction V , a flat anisotropy is observed (r = 0.1). The value 0.1 is ex-
pected for the average of two orthogonal excitations, as in spirobifluorene (r =

0.1 when the angle between excitation and emission dipole moment is 45◦, see
eq. A.8 in appendix C).

We now introduce the solvent. In frozen solutions the solvent degree of
freedom are not free to relax and the solvent configuration is fixed to that rel-
evant to the ground state electronic distribution of the solute. The low-energy
portion of the absoption spectrum is associated with a tail in the reaction field
distribution fx ,y and to the lowest energy excitations relevant to this tail in the
distribution. There are no lower energy state to which is possible to transfer the
energy, so that emission occurs most probably from the same states that have
been excited leading to r ∼ 0.4. When exciting at higher energy we excite both
states relevant to the “red-tail” portion of the distribution, as well as states that
are relevant to other portions of the distributions. Therefore, at fixed reaction
field there is in general the possibility to transfer energy from higher to lower
excited states, and, depending on the relative orientation of relevant transition
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dipole moment, value of r < 0.4 are expected.
We observe that spectra in frozen solvents for non-interacting (V = 0) chro-

mophores are not the sum of the spectra of the two monomers, just in view
of this red-edge effect. In fact, the degeneracy of the two one-exciton states is
removed by the reaction field when fx 6= f y . For each point in the ( fx , f y) grid
when fx 6= f y energy transfer is possible towards the lower excitation, leading
to r < 0.4, apart from the very red-edge tail of the absorption band where r =

0.4, as discussed above.
Non-frozen conformational coordinates do not produce the red-edge effect,

because after the excitation the slow degrees of freedom relax and fluorescence
occurs from the relaxed state, lowering r. In fact the anisotropy calculated for
V = 0 and ǫor = 0 is a flat line at r = 0.1. Small ǫor , as relevant to experimental
data (decaline) for pair 1* (V = 0), lead for 1 to excitation anisotropy values
increasing smoothly from r ∼ 0.1 to r ∼ 0.2 when approaching the red-tail
region.

With a model that describe two type of slow degree of freedom, we succeed
in interpretating the observed red edge behaviour, and rationalizing the fully
non-trivial mechanisms involved. The two coordinates respond to a very differ-
ent physics in the anisotropy experiment, because the solvent effective coordi-
nates are frozen and then the photoselection effects (see appendix B.3.1) that
occurs in the excitation and de-excitaion processes in frozen solvent produces
“anisotropic” results.
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1.7 Conclusion

In this chapter an extensive study is presented of optical spectra of several DA

chromophores and bichromophores in solution. Essential state models for DA

chromophores were already developed in the host laboratory [18, 19, 39, 31,
33] and successfully applied to many systems [21, 22, 34, 35, 36, 20, 23, 32].
Here special emphasis is put on specific DA chromophores whose spectral be-
haviour calls for some extension of the basic model, to account for the pres-
ence of several low-energy excitations and/or for additional slow degrees of
freedom. The detailed analysis of linear and non-linear optical spectra of rel-
evant chromophores allows for the definition of reliable essential state models
that properly account for electron-vibration coupling and for polar solvation
and hence quite accurately reproduce the complex spectral behaviour of these
dyes, including their important solvatochromism. Explicitly accounting for polar
solvation, essential state models lead to define solvent-independent molecular
models that represent the basic ingredient to describe interacting chromophore
in multichromophoric systems. This bottom-up modelling strategy has been
successfully applied here to several bichromophoric systems. Extended models
for complex chromophores and/or for multichromophoric systems require an
extensive validation against experimental data. The technique of fluorescence
anisotropy, recently implemented in the host laboratory, proved extremely suc-
cessful in this context. The theoretical modelization of fluorescence anisotropy
spectra results in a very challenging task, that however provides very stringent
tests for theoretical models.



Chapter 2

Mixed valence systems and

bistability

The family of DA chromophores represents a wide group of chemical systems
with interesting properties. Different donor and acceptor groups can be linked
by different bridges leading to a large tunability of the molecular properties. In
particular the donor and/or acceptor unit itself can be chosen to have specific
properties, resulting in multifunctional DA systems.

Bistability is an emerging property of materials based on DA molecules.
Bistable materials can be found in two stable states with different properties.
The possibility to drive the system toward one of the two stable states by ap-
plying specific perturbations opens the way to molecular switches and/or mem-
ories. In the search for bistable molecular materials, DA molecules with a low
energy gap between the neutral and the zwitterionic forms are particularly in-
teresting.

Therefore, interesting donor groups for bistable materials have low ioniza-
tion energy. Metallorganic unit(s) with many possible oxidation states are good
candidate as (multi)donor group. Mixed valence systems are a well known fam-
ily of compounds where a metal ion can be found in different electronic states,
included formal intermediate oxidation states [71, 72, 73, 74]. Organic radi-
cals represent interesting candidates as D o A groups because they can easily
accept or release electrons to be reduced/oxidized. In these systems the pres-
ence of unpaired electrons is another element of interest in view of magnetic
applications.

In this chapter we present work done in collaboration with the group of
professor Veciana (ICMAB, Barcelona) that has a well recognized expertise in
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the synthesis and characterization of multifunctional molecular materials. The
perchlorotriphenylmethyl (PTM) radical has been selected as an interesting ac-
ceptor group in view of its high stability and persistence [75, 76, 77]. The PTM
ability to be reduced to the anion PTM−, makes this system really promising
to work as an acceptor in DA molecules. Moreover, PTM is a paramagnetic
group and has stable αH derivative (PTMH) and is therefore an excellent candi-
date as building block for functional molecular materials. We will describe the
properties of mixed valence compounds combining the PTM acceptor with fer-
rocene based donor units: ferrocene–PTM (FcPTM) and nonamethylferrocene–
PTM (FcMe9PTM) (see fig. 2.1). While the former exhibits intriguing bistable
properties in the solid states, the second gives us the opportunity to understand
the role played by bridge states in our essential state description. Bistability
has been observed in crystal of ionic DA+ species [78] and we present relevant
models. Finally, preliminary results on a PTM derivative with tetrathiafulvalene
(TTF) as donor, will be shortly addressed.

2.1 FcPTM and FcMe9PTM: from solution spectra

to bistability in molecular crystals

In this section we describe the properties of two compounds: ferrocene-perchlo-
rothriphenylmethyl (FcPTM) and its nonamethylated derivative (FcMe9PTM) in
fig. 2.1, synthesized and characterized by the group of Prof. Veciana [79, 80].
These two molecules were designed as interesting valence tautomeric com-
pounds with large non-linear optical responses, electrochemical switchability
and good optical and thermal stability [81, 82]. Moreover, the presence of an
unpaired electron makes these molecules interesting from a magnetic point of
view, making them very promising for multifunctional applications.

Both species show a CT absorption in the NIR spectral region (see fig. 2.2)
with a well pronounced solvatochromism, pointing to a largely neutral nature
of both molecules in solutions. However, crystals of FcPTM show a quite in-
triguing behavior, as evidenced by Mössbauer spectra [80]. In fact at room
temperature both the neutral and zwitterionic forms of FcPTM (shown in fig.
2.3) are found with similar concentration. By lowering T , the percentage of
zwitterionic molecules decreases until at very low T (∼ 4K) only the neutral
specie is found.

We rationalize this intriguing behavior in terms of bistability induced by
electrostatic intermolecular interactions in crystals of DA chromophores [38].
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Figure 2.1: Ferrocene–perchlorotriphenylmethyl (FcPTM) and the nonamethylated
derivative (FcMe9PTM)

The work starts from the analysis of optical spectra of the two chromophores in
solution to obtain reliable two-state models to be used, in a bottom-up strategy,
to define a model for interacting chromophores in the crystal. Then we discuss
bistability in FcPTM crystal based on a mean-field treatment of electrostatic
interactions. To qualitatively compare with experimental data we need reliable
estimates of electrostatic interactions: to such an aim we make resort to an
original implementation of quantum chemical calculations [24].

While the description of optical properties of FcPTM in solution and the sub-
sequent study of Mössbauer spectra of FcPTM crystals is very successful, optical
spectra of FcMe9PTM suggest the need to extend the essential state model to ac-
count for bridge states. This analysis leads not only to a better description of so-
lution spectra of FcMe9PTM (and FcPTM), but offers the opportunity to discuss
and generalize the role of bridge states in DA chromophores [83], rationalizing
some well-known discrepancies in the standard treatment of valence-tautomeric
compounds. Finally the bistability model is extended to model interacting DA

chromophores described in terms of three-state models, as to demonstrate the
robustness of the proposed bistability mechanism.

2.1.1 Solution spectra and two state model

Figures 2.2 show absorbance spectra in the Vis-NIR of FcPTM and FcMe9PTM in
solvents of different polarity. The same spectra in the NIR window are shown in
fig. 2.4 (upper panels). The absorption band located at ∼ 10000 cm−1 (∼ 1000
nm) for FcPTM and at ∼ 7000 cm−1 (∼ 1700 nm) for FcMe9PTM corresponds
to the CT absorption and shows, for both compounds, a weak solvatochromism,
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Figure 2.2: Optical spectra of FcPTM (top) and FcMe9PTM (bottom) in different
solvents.

as typically observed for largely neutral molecules.

The low-energy physics of FcPTM is governed by the charge resonance shown
in figure 2.3. In close analogy with closed shell DA chromophores, we describe
the FcPTM and FcMe9PTM radicals in terms of a minimal model that accounts
for two essential electronic states, |DA〉 and |D+A−〉, corresponding to the two
resonating structures DA•↔ D+•A−. The electronic Hamiltonian, as well as the
coupling with molecular vibrations and solvent effects are the same as in section
1.1, and the complete Hamiltonian is: ĥ= 2z0ρ̂−τσ̂+ ωv

2

2

�

q2 + p2
�

− g
p

2ωvq,
(see eq. 1.11, where ĥ ≡ H ). Here however we adopt an adiabatic treatment
of molecular vibrations. First, we diagonalize the two state electronic Hamilto-
nian for fixed q and f to calculate the potential energy surfaces (PES) for the
ground and the excited state. The different equilibrium position for the vibra-
tional coordinate, q, in the ground and excited state accounts for the change in



2. MIXED VALENCE AND BISTABILITY 97

Figure 2.3: FcPTM neutral and zwitterionic resonance

the molecular geometry that accompanies the CT process, and is responsible for
the Franck-Condon structure in absorption spectra. The adiabatic PES are an-
harmonic, but for a not too strong anharmonicity, the absorption spectrum can
be calculated in the local harmonic approximation [84, 85] setting the vibra-
tional frequency of the ground and excited state to the same value ωv . Details
about the calculation of optical spectra can be found in the appendix (see sect.
B.1.2).

Spectra calculated for FcPTM and FcMe9PTM based on the two state model
of eq. 1.11 are reported in lower panels of figure 2.4. The spectra have been
obtained for the molecular parameters at the top of table 2.1, while adjusting
ǫor for each solvent as reported in the bottom part of table 2.1. Both com-
pounds present a largely neutral ground state, as confirmed by the positive
solvatochromism typical of DA chromophores with a neutral ground state: we
estimate ρ ∼ 0.07 for FcPTM and ρ ∼ 0.10-0.13 for FcMe9PTM. The evolution
with the solvent polarity of the main CT band of both compounds is well repro-
duced and is obtained by varying ǫor , while keeping fixed all molecular param-
eters. As already pointed out in the previous chapter, ǫor vanishes in nonpolar
solvents and increases with the solvent polarity. The smaller ǫor values esti-
mated for the methylated compound are in line with the larger cavity required
to accommodate the bulkier methylated solute [18, 19]. The lower ionization
energy of FcMe9PTM with respect to FcPTM is well explained by an inductive
effect of the methyl groups on Fc, resulting in a stronger donor character of
the FcMe9 group. The spectra do not show a resolved vibronic structure, hin-
dering a precise estimate of the vibrational frequencies ωv and of the intrinsic
linewidths Γ. The vibrational relaxation energy ǫv, similar in the two com-
pounds, are small if compared to the values relevant to closed-shell organic DA

chromophore [18, 19, 86, 33, 84]. This can be rationalized since in closed-shell
organic DA molecules the CT results in a change of the bond order alternation,
that has no counterpart in open-shell systems like FcPTM and FcMe9PTM.
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culated spectra are obtained with molecular parameters in table 2.1 and the ǫor
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spectra.
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Table 2.1: Molecular parameters and solvent relaxation energies for FcPTM and
FcMe9PTM described in the two-state model.

molecular parameter FcPTM FcMe9PTM

z / eV 0.61 0.36

τ / eV 0.35 0.30

µ0 / D 7.5 8.5

ǫv / eV 0.10 0.12

ωv / eV 0.18 0.18

Γ / eV 0.17 0.17

solvent parameter FcPTM FcMe9PTM

ǫor / eV cyclohexane 0.0 0.0
CCl4 0.20 0.25

dichloromethane 0.45 0.38
ArNo2 0.65
DMSO 0.80

The parameter µ0, measuring the dipole moment of the zwitterionic D+A−

specie, fixes the absolute intensity scale of absorption spectra, while it is irrel-
evant for band shapes and frequencies. The µ0 values in table 2.1 are set to
reproduce the experimental extinction coefficients. They correspond to dipole
lengths of 1.56 and 1.77 Å for FcPTM and FcMe9PTM, respectively. These val-
ues are unreasonably small if compared with geometrical D–A distances (the
distance from the Fe atom and the central C atom of PTM is 9.5 and 9.7 Å for
FcPTM and FcMe9PTM respectively, from crystallographic data [80]. It is very
well known that the spectroscopic estimate of µ0, based on the two-state model,
usually lead to shorter dipole lengths to the one expected on geometrical basis
[46, 87, 88, 89, 90, 91, 84]. We will face this issue in section 2.1.7.
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2.1.2 Bistability in FcPTM crystal: the electronic model

To investigate the intriguing bistable behavior shown by FcPTM crystals we
adopt the same bottom up modeling procedure, applied in chapter 1 to describe
optical spectra of multichromophoric species. In this approach the Hamiltonian
describing a crystals of molecules interacting via electrostatic forces is [92, 93]:

H =
∑

i

ĥi +
1

2

∑

i, j

V̂i j (2.1)

where the sums run on molecular sites, ĥi is the Hamiltonian of the i-th molecule,
and V̂i j is the operator that describes the interaction between molecules at i and
j sites. The above Hamiltonian neglects any overlap between orbitals located
in different chromophores and hence applies to systems where intermolecular
distances are larger that the sum of Van der Waals radii.

The heart of the bottom-up approach lies in recognizing that the molecular
Hamiltonian ĥi is the same that describes the molecule in solution and can
therefore be extracted from the analysis of solution spectra [32, 20, 25, 16]. In
the specific case of FcPTM crystals, the hi is the molecular Hamiltonian defined
in the previous section, for the analysis of solution spectra.

If the molecular units are modeled by the two-state electronic Hamiltonian
(see eq. 1.2), the charge distribution on each molecule is fully described by the
operator ρ̂, and the electrostatic intermolecular interaction term in in equation
(2.1) can be written as

V̂i j = Vi j ρ̂iρ̂ j (2.2)

where Vi j is the interaction energy between the i-th and j-th molecules both in
the zwitterionic |D+A−〉 state [92, 93, 25].

For simplicity we start our analysis accounting just for the electronic Hamil-
tonian: ĥi = 2z0ρ−τσ̂. The role of molecular vibrations will be discussed later.
To start with, we first consider the τ = 0 limit. For τ = 0, there is no mixing
between the basis state, an each molecule can be either in the |DA〉 (ρ = 0 ) or
in the |D+A−〉 state (ρ = 1). The energy required to switch the N molecules in
the crystal from the |DA〉 to the |D+A−〉 is simply 2N(z+M ), whereM is (half)
Madelung energy of a crystal of zwitterions:

M =
1

2N

∑

i

Vi j (2.3)

When (z0 +M ) > 0 the ground state of the crystal corresponds to a collection
of neutral molecules, but for (z0+M )< 0 it describes a collection of fully ionic
molecules.
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Figure 2.5: Crystal structure for FcPTM, from [80]. Two molecule of solvent
(CH2Cl2) per cell are cocrystallized.

Moving away from the τ= 0 limit opens the way to states with intermediate
ionicity, but inevitably leads to a more complex problem. The Hamiltonian (2.1)
with electrostatic interactions expressed in equation (2.2) can be diagonalized
exactly on clusters of N molecules, [92, 93] but, since the basis dimension in-
creases as 2N , it is impossible to obtain exact results on large enough three
dimensional clusters as required to properly model long-range electrostatic in-
teractions. We therefore adopt the mean field (mf) approximation, a good and
powerful approximation to describe the ground-state properties of clusters of
interacting DA molecules [92, 93].

The ionicity of each molecule is written as the sum of a mean value plus
a value accounting for the fluctuations: ρi = 〈ρ〉+ δi, where we impose that
the average ionicity 〈ρ〉 is the same on all molecules in the crystal. In the mf
approximation, all non-linear terms in the fluctuation are neglected, and the
interaction can be rewritten:

1

2

∑

i j

Vi jρ̂iρ̂ j ≈
1

2

∑

i j

Vi j

�

−〈ρ〉2 + 〈ρ〉
�

ρ̂i + ρ̂ j

��

(2.4)

and with the definition of eq. 2.3 we get:

1

2

∑

i j

Vi jρ̂iρ̂ j =−N〈ρ〉2M + 2〈ρ〉M
∑

j

ρ̂ j (2.5)

The total Hamiltonian in eq. 2.1 with (ĥi ≡ H , H from eq. 1.1), therefore
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reads:

Hmf =
∑

i

�

2
�

z +Mρ
�

ρ̂i − τσ̂i
�

− NMρ2 (2.6)

where the first term defines an effective molecular Hamiltonian ĥi,eff = 2(z0 +

Mρ)ρ̂i − τσ̂ that describes a molecule in the crystal. This effective molecular
Hamiltonian is actually the same two state Hamiltonian in equation 1.1 with
a renormalized ionization energy: zeff = z0 +Mρ. In other terms, the energy
required to promote the electron transfer on a DA molecule is 2z0 for isolated
molecules (more precisely for molecules in a nonpolar environment) but in the
crystal this energy becomes 2zeff, and it depends on the charge distribution of
surrounding molecules, ρ.

We are now in the position to investigate the role of the intermolecular elec-
trostatic interactions in crystals of FcPTM. We fix z0 = 0.61 eV and τ = 0.35

eV, as relevant for FcPTM. Fig. 1.1, presented in sect. 1.1 can be updated to
describe the effect of M on the ρ(z) curve dependence. The solution of the
problem is self-consistent: from the universal ρ(zeff) in eq. 1.5, for each M
value we extract z0 = zeff −Mρ. The ρ(z) curves at three different values of
M for attractive interactions are shown in fig. 2.6. For not too-large |M| a

-1 0 1
z

0 
 (eV)

0

0.5

1

 ρ

M = 0
M = - 0.6 eV
M = - 1.2 eV

Figure 2.6: ρ(z) curves calculated for τ = 0.35 eV and different M . Green,
orange and black curves refer to M = 0, -0.6, and -1.2 eV, respectively. ForM =

-1.2 the region of the ρ(z) curve with positive slope (marked by the dotted line)
corresponds to unstable solutions

smooth crossover is observed from a largely neutral regime (ρ ∼ 0) to a largely
ionic regime (ρ ∼ 1): in other terms, for small |M| a region is found where
the hybridization energy, τ, is large enough to stabilize states with ρ ∼ 0.5. On
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Figure 2.7: M -dependence of ρ for a crystal of DA molecules described by the
mf Hamiltonian (2.6). The black continuous line refers to z = 0.61 eV and τ =
1 eV . Dashed and dotted lines refer to z = 0.61 eV and τ = 0.35 eV (as relevant
for FcPTM). Blue dotted lines are obtained setting the initial guess for the self-
consistent solution of the mf Hamiltonian as ρ ≈ 0, while red dashed lines are
obtained with the starting choice ρ ≈ 1. The dotted thin lines are drawn as guide
to the eyes.

the opposite, when |M| ≫ τ the hybridization energy is never dominant, and
states with ρ ∼ 0.5 are not accessible: the charge crossover becomes discon-
tinuous [37, 38, 16, 56, 94]. This is illustrated by the M = -1.2 eV curve in
fig. 2.6 where the portion of the ρ(z0) curve with positive slope corresponds
to unstable states. For large and attractive M value states with intermediate
ionicities (0.2 ® ρ ® 0.8) are forbidden. More interesting for our discussion is
however the appearance of a bistability region where, for each z0 value, two
different stable states with ρ ∼ 0 and ρ ∼ 1 are found. This bistability, induced
by electrostatic intermolecular interactions, is the key to explain experimental
observations on FcPTM crystals, and we will enter the detail afterward.

The same behavior can be understood with reference to the ρ(M ) curves,
calculated for a crystal of molecules with z0 = 0.61 eV (as relevant for FcPTM)
and two different values of τ, as reported in figure 2.7. Only attractive interac-
tions (M < 0) are considered. In these case the self-consistent problem is solved
imposing an initial guess for ρ to define the mf Hamiltonian in eq. 2.6 that is
then diagonalized to obtain an updated ρ value. The procedure is repeated
until convergence. For τ = 1 eV (black continuous line) an unique solution is
find irrespective of the starting guess for ρ: ρ increases smoothly from 0.25 in
the limit of non-interacting molecules (M = 0), to ρ ∼ 1: attractive interac-
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tions push the system towards ionic states. Notice that the system moves from
neutral to ionic regime at aboutM = 2z0, that is zeff ≈ 0.

More interesting is the case of smaller τ= 0.35 eV , as relevant for FcPTM. In
fact, in this case, two stable solutions are found in the proximity of the interface,
depending on the initial guess for ρ (see caption of fig. 2.7). The region, −1.8<

M < −1.1, where the two results do not coincide defines the bistability region
where a neutral and an ionic solution coexist for the same model parameters.

2.1.3 Bistability in FcPTM crystals: the complete model

We now introduce the coupling between electronic and vibrational degrees of
freedom. In the two state model (discussed in the sect. 1.1, and shortly re-
viewed in sect. 2.1.1), we describe molecular vibration and e-mv coupling
accounting for a molecular vibrational coordinate. In the crystal the N coor-
dinates relevant to each chromophore are combined to get N coordinates in
the wavevector space. The relevant coordinate for our problem, where all the
molecules behave in the same way, is the in-phase vibration of all the molecules
of the crystal, Q. To simplify notation the new vibrational coordinate is defined
in energy units as follows:

Q =

r

2ǫv

N
ωv

∑

i

qi (2.7)

With this definition, the adiabatic mf Hamiltonian becomes

Hmf(Q) =
∑

i

�

2
�

z0 +Mρ−
q

2

�

ρ̂i − τσ̂i

�

− NMρ2 + N
Q2

4ǫv
(2.8)

The mf Hamiltonian again coincides with the two-state Hamiltonian in equa-
tion (1.1) but with zeff = z+Mρ −Q/2. By substituting Q with its equilibrium
value Qeq = 2ǫvρ (as derived by Hellmann-Feynman theorem) we get a simple
expression for the effective ionization energy, zeff = z + (M − ǫv)ρ, accounting
for both electrostatic intermolecular interactions and molecular vibrations. The
coupling between electronic and vibrational degrees of freedom plays the same
role as attractive electrostatic intermolecular interactions [95], and the ρ(M )
curves in figure 2.7 still apply in the presence of vibrational coupling, but with
M replaced byM − ǫv. For FcPTM ǫv = 0.1 eV and the vibrational contribution
toM represents just a minor correction.

More interesting is the calculation of the Q-dependent ground state energy,
obtained by the diagonalization of the Q-dependent mf Hamiltonian in equation
(2.8). Panels a-d of figure 2.8 show the ground state potential energy surfaces
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Figure 2.8: Ground state PESs obtained from the diagonalization of mf Hamilto-
nian in equation (2.8), calculated for FcPTM molecular parameters in table 2.1,
andM = −0.8, −1.1, −1.2 and 2.0 eV , in panels a, b, c and d respectively.

(PES) calculated for a system with z = 0.61 eV, τ = 0.35 eV, ǫv = 0.1 eV, as
relevant for FcPTM, and different M values. For relatively weak interactions
(M − ǫv = −0.9 eV, corresponding to a large and negative zeff), the ρ(z) curve
(not shown in figure 2.6) would lead to a single solution corresponding to a
neutral ground state with ρ(z)≈ 0.1. The corresponding PES (panel a of figure
2.8) is almost harmonic with a minimum located at qeq = 0.01 eV . Similarly, for
strong interactions (M − ǫv = −2.0 eV , corresponding to a large and negative
zeff) a single solution is found, corresponding to an ionic state with ρ(z) ≈ 1.
The relevant PES (panel d of figure 2.8) is centered at qeq = 0.2 eV . For M −
ǫv within the bistability region, two stable states, with different ρ, are found.
For M − ǫv = −1.2 eV, a neutral (ρ = 0.09) and an ionic state (ρ = 0.9) are
both stable. The corresponding PES in panel b of fig. 2.8 are almost harmonic
with minima located at qeq = 0.018 and 0.18 eV. Of course just one of the two
states, the lowest energy one, is thermodynamically stable, while the other state
is metastable. For M − ǫv = −1.3 eV (cf. panel c, figure 2.8), again in the
bistability region, the situation is reversed with the stable state corresponding
to an ionic state (ρ = 0.93), while the metastable state corresponds to a neutral
state (ρ = 0.1).
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2.1.4 Bistability in FcPTM crystals: estimating the Madelung

energy

Results presented in the previous section demonstrate that a discontinuous neu-
tral to ionic crossover can be induced in crystals of DA chromophores by electro-
static intermolecular interactions. To support our hypothesis of electrostatically
induced bistability in FcPTM crystals we need a reliable estimate of M , de-
fined in equation (2.3) as half the Madelung energy of a lattice of zwitterionic
|D+A−〉 molecules. The crystal structure of FcPTM is known [80]. In the crud-
est approximation [92, 93, 25],M can then be estimated modeling the charge
distribution on the zwitterionic FcPTM molecules in terms of a positive and a
negative charge located at the center of the D and A groups, respectively. In this
approximation, locating the charges at the positions of the Fe atom and of the
central C-atom of the PTM, we estimateM =−0.72 eV, an encouraging result.

An improved estimate of M can be obtained modeling the charge distribu-
tion on each molecule as a collection of point atomic charges as obtained by
quantum chemical calculations [96]. The calculation is not trivial, however, be-
cause we need electrostatic interactions among FcPTM molecules in the |D+A−〉
form, and not in the almost neutral ground state that results from gas-phase
calculations. To overcome this subtle problem we perform semiempirical cal-
culations on a molecule subject to an external static electric field F , directed
along the x-axis (that connects the central C-atom of the PTM to the Fe-atom of
the Fc), in order to force the molecule in a zwitterionic form. The calculations
are performed for different values of F , fixing the geometry to the experimen-
tal crystallographic geometry [80]. Restricted (open) Hartree-Fock calculations
were performed with the semiempirical PM6 Hamiltonian [97], that provides
parametrization for transition metals like Fe (MOPAC2007 package, [98]). Fig-
ure 2.9 summarizes the results in terms of dipole moment, molecular polariz-
ability, and total charges on D or A unit.

The x-component of the molecular dipole moment, µx(F) is defined as µx =

e
∑

p qp xp, where p runs on atoms, e is the electronic charge, xp is the x-
coordinate and qp is the Coulson net atomic charge of the p-th atom, defined as
[97]:

qp = ZP −
∑

λ∈p

Pλλ (2.9)

The S-shaped µx(F) curve in figure 2.9 confirms the two state assumption: two
different regimes are clearly identified, a low and a high field regime separated
by a narrow region at F ≈ 0.4 V/Å where charges rearrange dramatically. Cor-
responding to this abrupt change in the electronic distribution the dielectric
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Figure 2.9: Results of PM6 calculations for a FcPTM molecule with geometry fixed
at the crystallographic structure under an external static electric field, F , oriented
along the D – A axis. F -dependence of the molecular dipole moment µx (top panel),
molecular polarizability α (central panel), and total net charges (bottom panel) on
the Fc (continuous line) and PTM (dashed line) units. Regions within dotted and
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respectively, corresponding to regions of flat α.
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polarizability (in the central panel of figure 2.9), α ∝ ∂ µx

∂ F
, shows a large peak.

This allows to separate two regions of almost constant polarizability, whose
boundaries in the figure are marked by dotted and dash-dotted vertical lines.
These two regions correspond to two different regimes for FcPTM: an almost
neutral regime where the ground state is largely dominated by the |DA〉 state
and an ionic regime, dominated by the |D+A−〉 state.

To further support this interpretation, the bottom panel of figure 2.9 shows
the total charges on the Fc unit (continuous line) and PTM unit (dotted line).
The sum of the charges on the two units is approximately zero, confirming the
picture of a charge transfer from D to A groups with an electrically neutral π-
bridge. Moreover, in the small |F | regime the net charge on each unit is is
approximately zero, while the region of the second plateau corresponds to a
system where one electron is transferred from Fc to PTM. A reasonable estimate
of the charge distribution in the zwitterionic state of the FcPTM molecule is
therefore given by the Coulson net point atomic charges, obtained with PM6
calculations on the FcPTM molecule in an electric field 0.65 < F < 0.9 V/Å,
corresponding to region delimited by dash-dotted lines in figure 2.9.

The change in the dipole moment µx going from the neutral to the ionic
regime gives an independent estimate of µ0, amounting to 50-60 D. This value
corresponds to dipole length of about 10-12 Å, close to the crystallographic
distance.

We can now estimate M relevant for the FcPTM crystal on the basis of the
molecular charge distribution obtained for Fc-PTM in the ionic regime, as in
fig. 2.9. The M calculation for this charge distribution has been performed
summing up all interactions among ∼19000 molecular sites (17× 17× 33 unit
cells). According to the experimental crystal structure there are two molecules
equivalent for symmetry. The two molecules per cell will be labeled with l = 1,2,
and each cell can be described by an index I ≡ {i jk}. Each atom belonging to
the l molecule is described by an index σ. The expression for M is then the
sum of the interaction between charges on atoms µ of a chosen molecule with
the charges on atoms µ′ on all other molecules in the crystal:

M =
1

2

∑

µ

∑

µ′ 6=µ

qµqµ′

rµµ′

=
1

2

∑

µ

qµ

na ,nb ,nc
∑

I≡{i jk}

2
∑

l

∑

µ

ql,σ

|rµ − (iA+ jB+ kC + rlσ)|
(2.10)

the second line contain a more specific expression, being µ′ explicitly identified
in term of cell {i jk}, molecule l, and atom σ. A, B, C are the crystallographic
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axis and rσl is the position of the atom in the unit cell.

For F values corresponding to the ionic regime (region within dash-dotted
lines in figure 2.9) we estimateM ranging between −1.0 eV (for F = 0.65 V/Å)
to −1.5 eV(for F = 0.9 V/Å). This result safely locates FcPTM crystals in the
bistability region of figure 2.7.

Additional information can be obtained using the expression 2.10 to calcu-
late the electrostatic energies relevant to the charge distributions obtained for
different F . Results are shown in fig. 2.10 for two molecular geometries ex-
tracted from the crystal structure. In the neutral regime (region within dotted
lines) the electrostatic energy is < 0.05 eV, confirming that electrostatic inter-
actions between fully neutral molecules are negligible. On the other hand, the
electrostatic energy becomes large and negative in the zwitterionic region. The
effects of molecular conformations are minor.
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Figure 2.10: Calculation of the electrostatic energy according to eq. 2.10 at dif-
ferent field F value (black lines, scale on the left) and dipole moments (gray lines,
scale on the right), for configuration c1 (cont. lines) and c2 (dashed lines). As in
fig. 2.9 region between dotted and dash-dotted vertical lines marks the neutral and
ionic regimes, respectively.

2.1.5 Bistability in FcPTM crystal: Mössbauer spectra

We now apply the model for bistability in FcPTM crystals to explain the T de-
pendent Mössbauer spectra of FcPTM crystals. In the 4.2 K spectrum only the
doublet assigned to the neutral Fc appears, indicating that the neutral DA• form
of FcPTM largely dominates at low temperature. With increasing temperature,
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an additional doublet appears in Mössbauer spectra, characteristic of the fer-
rocinium ion (Fc+), signaling the presence of the D+•A− form of FcPTM. The
intensity of the Fc+ doublet increases with temperature at the expense of the
Fc signal, suggesting an increasing population of the D+•A− form. At 293 K the
relative intensity of the two signals is similar [80].

This behavior can be rationalized accounting for the thermal population on
an ionic metastable state. Indeed Mössbauer spectra in figure 2.11 can be quan-
titatively reproduced in term of the Boltzmann population of an ionic metastable
state separated from a neutral stable state by a temperature independent energy
gap ∆E = 14 meV ≈ 160 K. This energy gap is obtained with the mf Hamilto-
nian in equation (2.8), adopting FcPTM molecular parameters obtained from
solution spectra andM =−1.1 eV, consistent with estimates based on PM6 cal-
culations (see panel b of figure 2.8). Experimental Mössbauer spectra in figure
2.11 are fitted as a Boltzmann-weighted sum of two couples of Lorentzian bands
(for Fc and Fc+ doublets) with adjustable positions and widths [99].

It is worthy to remind the most important approximations involved. We
assume crystal structure fixed and identical to the structure experimental de-
termined at 223 K. Some conformational disorder for the Fc rings and the π
bridge is observed, and two molecular conformations are reported [80]. How-
ever, theM calculation performed on the two structures lead to similar results,
within the uncertainty M ∼ −1 ÷ −1.5 (see fig. 2.10). In principle one ex-
pects a temperature dependentM and hence a temperature dependent energy
gap between the two stable states. However, in the lack crystallographic data
recorded at different T we impose temperature independentM . In view of the
many approximations involved in the model, the overall quality of the fit (red
lines in figure 2.11) is very good.

The Ferrocinium ion itself, shows actually a twofold degeneracy in the elec-
tronic ground state [100, 101]. However, the reduced symmetry of the Fc unit in
the FcPTM molecule most probably remove the degeneracy [102, 103]. There-
fore we simulate some results considering a degeneracy factor 1 ≤ del < 2. The
effect of degeneracy on calculatedM spectra is however minor.
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Figure 2.11: Temperature dependence of Mössbauer spectra of FcPTM. Dots are
experimental data from ref. [80]. Red lines are fittings of experimental data based
on the proposed model for bistability.
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2.1.6 FcMe9PTM in solution: the need for a three state model

A detailed analysis of FcMe9PTM optical absorption spectra, reported in the
right upper panel of figure 2.13, reveals the presence of a shoulder around
15000 cm−1, that is assigned to a secondary CT absorption implying a π-bridge
to A transition [79], in agreement with chemical intuition. This is further cor-
roborated by the weak solvatochromism of this band. Similar features are ob-
served for FcPTM around 15000-17000 cm−1 [79] (see left upper panel of figure
2.13), but in this case, the overlap with the localized absorption of the Fc unit
makes the analysis delicate.

A three state model

To account for the secondary CT bands involving the π-bridge, at least the three
resonating structures DπA↔ Dπ+A−↔ D+πA−, must be accounted for, where
the first and the last structures (corresponding to the the DA and the D+A−

structures of the previous section) largely dominate over the second one, that
represents an higher energy state. The CT occurs through the bridge, and on the
basis of the states, |D π A〉 , |D π+A−〉 and |D+π A−〉, the electronic Hamiltonian
reads [83]:

ĥ(3)el = 2z̃ ρ̂D + 2 x̃ ρ̂π − τ̃ σ̂(3) (2.11)

where the operators

ρ̂D =









0 0 0

0 0 0

0 0 1









and ρ̂π =









0 0 0

0 1 0

0 0 0









(2.12)

measures the charge transferred from the D and from the π-bridge to A respec-
tively, and

σ̂(3) =









0 1 0

1 0 1

0 1 0









(2.13)

accounts for the mixing between the |D π A〉 and the |D+π A−〉 states, mediated
by the bridge state; 2 x̃ and 2z̃ measure the energy of the states |D π+A−〉 and
|D+π A−〉 respectively, having set to zero the energy of the |D π A〉 state (the
tilde identifies the three-state model parameters with respect to the two-state
model parameters in the previous section). As discussed above, the CT state
involving the bridge is higher in energy that the main CT state, i.e. x̃> z̃.

A detailed parametrization of the three-state model is difficult, particularly
because of the large overlap of the second absorption band with higher energy
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absorptions in both compounds. In the absence of additional data (like, e.g.
the absorption from the first excited state) in order to avoid the proliferation
of free parameters, the Hamiltonian matrix elements that describe the electron
hopping from the bridge to the acceptor 〈DπA|h(3)|Dπ+A−〉=−τ̃π and from the
donor to the bridge 〈D+πA|h(3)|Dπ+A−〉 =−τ̃D, are set equal: τ̃D = τ̃π = τ̃.

In close analogy with the two state model, the only relevant element of the
dipole moment operator are the diagonal element for the CT states:

µ̂(3) =









0 0 0

0 αµ0 0

0 0 µ0









(2.14)

where µ̃0 is the dipole moment of the |D+A−〉 state. The dipole moment of the
|Dπ+A−〉 state, αµ0 is defined as a fraction of the first, and, again, to avoid too
many parameters, is set to half µ0, so α = 1

2
. This choice locates the centroid of

positive charge of the bridge state just halfway between the D and A centers.

As in the two-state model, the coupling to an effective molecular vibration
is introduced assigning harmonic PESs with same frequency but different equi-
librium geometries to the basis states, as shown in the left panels of figure 2.12.
The description is made with a single vibrational coordinate q, corresponding
to a single effective mode, that couples to the two electronic basis states. The
Hamiltonian including the molecular vibration then reads:

ĥ(3)el+ph = 2z̃ ρ̂D + 2 x̃ ρ̂π − τ̃ σ̂(3) −ωv

p

2ǫ̃v
�

ρ̂D + aπρ̂π
�

q+
1

2
ω2

vq2 (2.15)

where the aπ factor accounts for the possible different coupling of the |Dπ+A−〉
compared to the |D+πA−〉 state. Different geometries can occurs for each of
the three basis states, leading to two independent vibrational relaxation ener-
gies for Dπ+A− and D+πA− states. However, getting reliable information on the
vibrational coupling of the third state is difficult, and we impose the same ge-
ometry on the two charge-separated states (see figure 2.12, left panel), so that
the same relaxation energy, ǫ̃v, applies to both states (i.e. aπ = 1). Different
choices are of course possible but do not alter main results.

Polar solvation is treated again in the framework of the reaction field model,
with the reaction field proportional to the molecular dipole moment. Since the
dipole moment of the third state is set to a fixed fraction of µ̃0, polar solvation
is described by the single parameter ǫ̃or . The total Hamiltonian, accounting for
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both vibrational coupling and polar solvation, finally reads:

ĥ(3)(q, f ) =
�

2z̃ −
p

2ǫ̃vωv q− f
�

ρ̂D

+

�

2 x̃ −
p

2ǫ̃vωv q−
1

2
f
�

ρ̂π

−τ̃ σ̂(3) +
1

2
ω̃v q2 +

1

4ǫ̃or
f 2 (2.16)

where again the tilde marks symbols relevant to the three-state model. For
each f , the diagonalization of the q-dependent Hamiltonian leads to three q-
dependent eigenstates, that describe the PES relevant to the ground state, g,
and to the first and second excited states, e1 and e2, respectively. The geome-

try of equilibrium for each adiabatic state is: qeq,i =

p
2ǫ̃v

ωv

�

〈ρD〉i + 〈ρπ〉i
�

with
i = g, e1, e2 The right panel of figure 2.12 shows the PES obtained for a spe-
cific set of parameters. The vibrational eigenstates are constructed on each PES
in the harmonic approximation [84, 85] and optical spectra are finally calcu-
lated. The calculation is repeated for different f , and the spectra are obtained
as Boltzmann averages with the same approach described for other compounds.

The proposed procedure to calculate spectra exploits the adiabatic approx-
imation, as mentioned in sect. 1.1 for the two state model. The vibrational
relaxation energy λvi is shown in the left panel of figure 2.12, and can be calcu-
lated at each f coordinate value. More details about spectra calculation can be
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Figure 2.13: Optical spectra of FcPTM (left panel) and Me9FcPTM (right panel)
in different solvents. Top panels: experimental spectra. Bottom panels: spectra
calculated in the three state model with parameters of table 2.2, and setting the
intrinsic bandwidth Γ = 0.07 eV.

found in the appendix sect. B.1.2.

Results

Bottom panels of figure 2.13 show spectra calculated for the parameters in ta-
ble 2.2. The vibrational frequencies and the intrinsic line width are set to the
same values as in the two-state model. To facilitate the comparison, experimen-
tal spectra are reported in the upper panels of the same figure. As expected,
the three-state model results in two absorption bands, which reproduce the ex-
perimental observation of two solvatochromic CT absorption bands. A detailed
comparison of calculated and experimental spectra is hindered, particularly for
FcPTM, by the overlap of the secondary CT band with nearby localized absorp-
tion bands. It is certainly possible to improve the quality of calculated spectra
by increasing the number of parameters, like adopting two different τ for the
two matrix elements (allowing for different τD and τπ values.) However the
basic role of bridge states is captured already in the simplest model.

From table 2.2, it turns out that x̃> z̃ for both compounds, as required on
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Table 2.2: Molecular parameters for FcPTM and FcMe9PTM described in the three-
state model.

molecular parameter FcPTM FcMe9PTM

z̃ / eV 0.78 0.50
x̃ / eV 0.87 0.69
τ̃ / eV 0.47 0.47
µ̃0 / D 15.0 15.5
ǫ̃v / eV 0.06 0.07
ω̃v / eV 0.18 0.18

solvent parameter FcPTM FcMe9PTM

ǫ̃or/ eV cyclohexane 0.0 0.0
CCl4 0.10 0.08

dichloromethane 0.20 0.20
ArNo2 0.42
DMSO 0.65

physical basis. Moreover τ̃, which measures the direct charge hopping from ei-
ther the D or the A site to the bridge, is larger than the bridge-mediated hopping,
τ, in the two-state model (see table 2.1). The effective strength of the vibra-
tional coupling is roughly halved in the three-state model, suggesting that the
effective ǫv estimated in the two-state model is roughly the sum of the contribu-
tions from the two excited states. The values of the solvent relaxation energy in
the three-state model are larger than the corresponding two-state model results
(see table 2.1). This increase compensates for the reduction of the mesomeric
dipole moment in the three-state model. The sizable weight of the Dπ+A− in the
first excited state in fact leads to a decrease of the relevant dipole moment with
respect to the two-state model, so that larger solvent relaxation energies are
required in the three-state model with respect to the two-state model to repro-
duce the same solvatochromism. While microscopic models relate the solvation
relaxation energy to the solvent dielectric constant, refractive index and to the
size and shape of the cavity occupied by the solute [27, 19, 33], this analysis
demonstrates that ǫor is best treated as an adjustable parameter, whose spe-
cific value also depends on the model adopted to describe the solute electronic
structure.

Finally the effective dipole lengths extracted in the three-state model, µ̃0 in
table 2.2, are about twice the corresponding estimate in the two-state model
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basis states energy dipole
|N〉 D b1 b2 b3 A 0 0
|3+〉 D b1 b2 b+3 A− 2 x̃ 1/4 µ̃0

|2+〉 D b1 b+2 b3 A− 2 x̃ 1/2 µ̃0

|1+〉 D b+1 b2 b3 A− 2 x̃ 3/4 µ̃0

|Z〉 D+ b1 b2 b3 A− 2z̃ µ̃0

Figure 2.14: Schematic representation of the basis state for a 5 state molecule (3
bridge states) with corresponding energies and dipole moments.

(table 2.1) and correspond to a DA distance of 3.1 and 3.3 Å for FcPTM and
FcMe9PTM, respectively. These values are still small compared with the ge-
ometrical DA distance (9.5 and 9.7 Å for FcPTM and FcMe9PTM), but they
considerably improve over the corresponding estimates obtained in the two
state approach, leading to a ratio between the geometrical and spectroscopic
estimate of the DA distance in line with similar results for other DA molecules
[46, 86, 33, 84, 87, 88, 89, 90, 91]. This result suggests to investigate in mode
detail the role of the bridge state in effective models for DA chromophores.

2.1.7 The role of low energy bridge states

An electronic model to account for active bridge states

The increase of the estimated µ0 by a factor ∼ 2 when going from a two-state to
a three-state model for either FcPTM and FcMe9PTM suggests a way to solve a
long-standing paradox in model for DA chromophores. It is well known in fact
that dipole lengths estimated from the analysis of DA spectra always severely
underestimate the DA distance [87, 88, 89, 90, 91]. To generalize the result
we consider here a purely electronic model for a n-site molecule, where the
electron is transferred from D to A via n− 1 hops involving only adjacent n− 2

bridge states [83]. The resulting n states are schematically shown in figure 2.14
for n = 5. The same energy 2 x̃ is assigned to all bridge states, while the D+A−

(|Z〉) state has energy 2z̃ < 2 x̃ . The same hopping integral τ̃ describes the CT
between all adjacent sites along the chain. The relevant Hamiltonian is a trivial
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extension of the three-state electronic Hamiltonian in equation (2.11):

ĥn =





























0 −τ̃ 0 0 · · · 0 0

−τ̃ 2 x̃ −τ̃ 0 · · · 0 0

0 −τ̃ 2 x̃ −τ̃ · · · 0 0

0 0 −τ̃ 2 x̃
. . .

...
...

...
...

...
. . .

. . . −τ̃ 0

0 0 0 · · · −τ̃ 2 x̃ −τ̃
0 0 0 · · · 0 −τ̃ 2z̃





























(2.17)

Consistent with the three-state model described in the previous section, the
dipole moment of the |Z〉 state is set to µ̃0, while the dipole moments of bridge
states are fractions of µ̃0, as relevant to a system with equally spaced sites (see
figure 2.14), leading, for the general case in equation (2.17), to the following
values:

µ̂n =

































0 0 0 0 · · · 0 0

0 µ̃0

(n−1)
0 0 · · · 0 0

0 0 2µ̃0

(n−1)
0

. . . 0 0

0 0 0 3µ̃0

(n−1)

. . .
...

...
...

...
...

. . .
. . . 0 0

0 0 0 · · · 0 (n−2)µ̃0

(n−1)
0

0 0 0 · · · 0 0 µ̃0

































(2.18)

We limit our attention to a systems with an almost neutral ground state, in
which bridge sites are weaker donors than D, so that 0 < z̃ < x̃ . For x̃ − z̃ ≫
τ̃ bridge states become very high in energy and a perturbative treatment on
τ̃/(2 x̃−2z̃) reduces the n-state model to an effective two-state model with z0 =z̃,
µ0=µ̃0 and

τ=
τ̃n−1

(2 x̃ − 2z̃)n−2 (2.19)

where, as before, the tilde applies to symbols relevant to the n-state model,
while bare symbols refer to the two-state model. n-site (or n-state) molecules
have n−1 optical excitations whose energies and transition dipole moments are
shown in figure 2.15 as a function of x̃−z̃ for systems with n= 3, 4, and 5 sites.

In all cases, model parameters have been chosen as to converge, in the large
x̃ limit, to the two-state model with z0 = τ = 1, and µ0 = 1 (in this section, we
work fixing τ as the energy unit and µ0 as the unit dipole moment). With this
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Figure 2.15: Transition energies (top panels) and squared transition dipole mo-
ments (bottom panels) calculated for n = 3, 4 and 5 state models (panels from

left to right) with z̃= 1, µ̃0= 1, variable x̃ and τ̃=
�

τ(2 x̃)n−2
� 1

n−1 . Red lines refer
to the lowest energy (main CT) transition. Dotted lines show the ( x̃-independent)
results relevant to the limiting two-state model (see text).

choice, we expect convergence, in the large x̃ limit, to a two-state model with
ρ ≈ 0.15 (see equation 1.5). The corresponding limiting values of the transition
frequency and squared transition dipole moments (ωC T ≈ 2.8 and µC T ≈ 0.13)
are shown as dotted lines in figure 2.15.

The lowest energy transition, corresponding to the main CT band (marked
by red lines in figure 2.15) is well separated from higher energy transitions in-
volving bridge states and has by far the largest intensity: the main CT transition
dominates the low energy portion of the spectrum. The corresponding energies
and transition dipole moments (red lines in figure 2.15) properly converge to-
ward the two-state limit (dotted lines) for x̃− z̃→∞ (or equivalently x̃→∞).
The convergence becomes slower with increasing n.

To investigate the effect of bridge states in the definition of an effective two-
state model and in particular on the estimate of the relevant dipole length, we
focus attention on the lowest energy, main CT absorption, disregarding higher
energy transitions involving the bridge. Indeed, this is consistent with the treat-
ment of experimental data, where we concentrate on the lowest energy tran-
sitions modeled in term of a two state model. In other terms, we analyze the
data relevant to the main CT transition, obtained from the diagonalization of
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Figure 2.16: Dipole length extracted from the two-state analysis of the main CT
band of the n-state models described in figure 2.15. Left panel shows results ob-
tained by extracting the two-state model parameters (x , τ and µ0) from the fre-
quency, the squared transition dipole moment and the mesomeric dipole moment;
right panel shows similar results obtained using the ground state dipole moment
instead of the mesomeric dipole moment.

the n-state model, to extract an effective two-state model in an analogous way
as usually done by analyzing experimental absorption spectra. In particular,
the parameters of the effective two-state model, τ, z (or equivalently ρ), and
µ0, can be estimated from three spectral properties. Equations (1.8), (1.7) and
(1.10) are therefore used to extract ρ, τ, and µ0 out of the transition frequency,
transition and mesomeric dipole moment (difference between ground and ex-
cited state dipoles, a quantity directly related to solvatochromism) calculated in
the n-state model. If d = ∆µ

µge
it results:

ρ± =
d2 + 4± |d|

p

d2 − 4

2d2 + 8
µ0 =

µge
p

ρ(1−ρ)

τ = ωge

µge

µ0
(2.20)

The right panel of figure 2.16 shows the ( x̃ − z̃) dependence of the effective
µ0 estimated along these lines for the n=3, 4, and 5 state models in figure 2.15.
In all cases the effective µ0 converges toward the exact limit, µ0 = 1, for x̃ →∞,
but it is always underestimated for any finite x̃ , i.e. when bridge states are
closer in energy to the D+ · · ·A− (|Z〉) state. It is worth noting that µ0 deviates
more from the limiting value with increasing the number of bridge state.

Different estimates of the effective two-state model parameters can be ob-
tained if a different choice is made about the reference spectral properties, i.e.
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the quantities that represent the set of experimentally accessible information.
In fact, using equations (1.7), (1.8) and (1.9), the parameters of the effective
two-state model can be extracted by reproducing the transition frequency, tran-
sition dipole moment and ground state dipole moment (instead of mesomeric
dipole moment). In this case, the following equation for ρ stands:

ρ =
1

�

µge

µg

�2

+ 1
(2.21)

The effective µ0 obtained according to this alternative procedure (right panel of
figure 2.16) shows a qualitatively similar behavior to the previous one and even
larger deviations from the limiting value than before.

This discussion clearly demonstrates that the unphysically small D–A dis-
tances, extracted from the two-state model analysis of optical spectra of DA

molecules [87, 88, 89, 90, 91], results from the presence of low-lying bridge
states, playing an active role in the D to A CT. The larger discrepancy be-
tween the geometrical and spectroscopic values of µ0 obtained for FcPTM and
Me9FcPTM with respect to common organic DA chromophores, is then natu-
rally explained by the presence of (at least) a secondary low-lying CT transition
in the absorption spectra. Moreover this picture explains why this discrepancy
is not observed in the µ0 values obtained from the optical spectra of CT com-
plexes and crystals. In CT complex and crystals, the intermolecular CT occurs
trough space because of the direct overlap of frontier orbitals. Optical spectra
of these systems can be described by the same two state model of DA molecules.
However in these systems, where the D to A CT is not mediated by any virtual
state, the dipole lengths obtained from the intensity of the CT bands are well
comparable with geometrical distances. [104, 105, 106, 107]

2.1.8 Three-state models for bistability

In section 2.1.6 we introduced a three-state model for the description of the
low energy physics of FcPTM and FcMe9PTM. Following the bottom up mod-
eling approach and in strict analogy with the model for a crystal of two-state
molecules presented in section 2.1.2, we now present a model for a crystal of
chromophores described in term of a three state model [41]. When molec-
ular units are modeled by the three-state electronic Hamiltonian (eq. 2.11),
the charge distribution on each molecule is described by the two operators ρ̂D

and ρ̂π, defined in equation (2.12). The electrostatic intermolecular interaction
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term in in equation (2.1) is:

V̂i j = Vi j ρ̂D iρ̂D j + V ′i j ρ̂π iρ̂π j + V ′′i j

�

ρ̂D iρ̂π j + ρ̂π iρ̂D j

�

(2.22)

where the coefficients measure the electrostatic interaction energy between i-th
and j-th molecules with different charge distributions. Specifically, Vi j measures
the interaction between the i-th and j-th molecules both in the D+πA− state and
coincides with the Vi j parameter introduced in equation (2.2) for the two-state
model; V ′i j is instead the interaction between the i-th and j-th molecules both
in the Dπ+A− state, while V ′′i j is a mixed term that describes the interaction
between the i-th molecule in the D+πA− state and the j-th molecule in the
Dπ+A− state or vice versa. We only account for electronic degrees of freedom,
since, as discussed in section 2.1.2, molecular vibrations in FcPTM play only
a marginal role, and can be implicitly considered by a renormalization of the
interaction parameters.

In the mean field (mf) approximation the crystal Hamiltonian reduces to

H(3)mf =
∑

i

�

2(z̃ +MρD +M ′′ρπ)ρ̂D i + 2( x̃ +M ′ρπ +M ′′ρD)ρ̂π i

− τ̃σ̂(3)
�

− N
�

M (ρD)
2 +M ′(ρπ)

2 + 2M ′′ρDρπ
�

(2.23)

whereM is half the Madelung energy, defined in equation (2.3), and

M ′ =
1

2N

∑

i, j

V ′i j (2.24)

is the interaction energy of a molecule in the Dπ+A− state with the surrounding
molecules in the same state, and similarly

M ′′ =
1

2N

∑

i, j

V ′′i j (2.25)

is the interaction energy of a molecule in the Dπ+A−state with surrounding
molecules in the D+πA− state (or vice versa). As it is always the case, the mf
Hamiltonian leads to a self consistent problem whose solution can be found
iterating on the two parameters, ρD and ρπ, corresponding to the ground state
expectation values of the ρ̂D and ρ̂π operators, respectively.

The estimate of the generalized Madelung energies M ′ and M ′′, entering
the three-state mf Hamiltonian in equation (2.23) (or equivalently of the V ′i j

and V ′′i j terms entering the interaction Hamiltonian in equation (2.22)), is a
delicate issue. In fact, it requires information about the charge distribution
in the Dπ+A− state. As discussed in section 2.1.4 we can force the FcPTM
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molecule into a D+πA− state by applying a static electric field, but there is no
numerical way to force the FcPTM molecule in the Dπ+A− state. We therefore
use the crudest approximation, and estimate the interactions accounting for unit
charges located at the centroids of the D, A and π-bridge. Locating the centroids
of the D group on the Fe atom and that of the A sites on the central C atom of
PTM, one estimates M = − 0.72 eV. Locating the π-bridge centroid midway
between the D and A centroids, we get M ′ = −0.41 eV and M ′′ = −0.41 eV.
These values of the generalized Madelung energies are very rough and probably
represent a lower limit to the actual values. Therefore we use these values just
to set the relative magnitude of the three energies asM ′ = M ′′ = 0.6M . With
these ratios fixed, we solve by iteration the self consistent mf Hamiltonian in
equation (2.23) for the (electronic) molecular parameters obtained from the
three-state analysis of the two CT bands of FcPTM, reported in table 2.2.

As described in detail in [41] a wide bistability region is found where a
largely neutral and a largely ionic state are both accessible to the system. The
width of the bistability window depends on theM ′/M andM ′′/M ratios, and
increases when the two ratios decrease. In any case, apart from quantitative
aspects, bistability is a robust phenomenon, and survives reasonable choices
of the generalized Madelung energies. As observed for the two-state model,
bistability is suppressed by increasing the hybridization energy (see continuous
curve in fig. 4 in [41]) .
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2.2 FcPyl+-based materials: extending the bistabil-

ity model to ionic crystals

A temperature–dependence valence tautomerism, very similar to those observed
for FcPTM, was recently observed by Kondo et al. in a ferrocenyl-oxodihydrod-
ibenzochromenylium salt, FcPyl+ X−, with X−=TFSI−, PF−6 , BF−4 [78], where
TFSI is the organic anion trifluoromethanesulphoneimide.

FcPyl+ is a Fc-based DA molecular cation characterized by the charge reso-
nance FcPyl+↔ Fc+Pyl (see fig. 2.17). Notice that FcPyl+ has an even number

Figure 2.17: Molecule characterized in [78], and re-examined here.

of electrons, thus the structure on the left of fig. 2.17, DA+, corresponds to a
closed shell configuration, while the CT structure D+A has a biradical character
(D•+A•).

Quite interestingly, the solid state valence tautomerism of FcPyl+, detected
by Mössbauer spectroscopy, depends on the counterion. In particular, while
with two counterions (TFSI− and PF−6 ) a growing intensity of the Fc+ doublet is
observed with increasing temperature (with a similar behavior as observed for
FcPTM), Mössbauer spectra of the third compound (counterion BF−4 ) present
only the Fc doublet at all the temperature. The counterion-dependent behav-
ior suggests that also in this case electrostatic interactions play an important
role. However, the model presented above for crystal of neutral DA molecules
does not immediately apply to crystals of molecular ions. In fact, the molecular
two-state model applies quite irrespective of the net molecular charge, but the
treatment of intermolecular interactions in a crystal of molecular ions requires
a specific model.

As for the molecular model, we adopt a (purely electronic) two state model,
with 1-FcPyl+ in fig. 2.17 playing the role of DA and 1-Fc+Pyl playing the role of
D+A−. Optical spectra of FcPyl in solution, reported in [78], show a CT absorp-
tion band at ∼ 10000 cm−1, with molar extinction coefficient ε = 2.3 - 2.5 103
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M−1 cm−1 at the maximum. On this basis we fix the two state model parameters
as in table 2.3, neglecting both the coupling with the vibrations and with solva-
tion coordinates. The parameters are similar to those obtained for FcPTM, and

Table 2.3: Approximated values of the two state model parameters extracted on
the basis of the optical spectra [78]. Γ = 0.17 eV.

z0 / eV 0.57

τ / eV 0.30

µ0 / D 13

represent a reasonable preliminary estimate. Additional experimental data are
needed to obtain more reliable estimates. However, the precise value of these
parameters is not critical for our discussion.

2.2.1 The model for a molecular ion crystal

To address electrostatic interactions we simplify the notation defining the molec-
ular cationic FcPyl unit as M+, while X− represents the counterion (either TFSI−,
PF−6 or BF−4 ). The two crystals with PF−6 and BF−4 counterions are isostructural,
and all three have four equivalent MX unit per cell, Z = 4. Unit cells are labeled
as I , J . . . ; the unit formulas MX within a cell are numbered as l, m . . . , and the
atomic sites are labeled in this as µ ∈ M+, χ ∈ X−. The electrostatic interaction
energy is:

E =
∑

I

∑

l

(

∑

µχ

qµqχ
RµχI I ,mm

+

+
1

2

∑

J
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(2.26)

where qµ and qχ are the charges on the µ and χ atomic sites of the M+ and X−

units and Rµµ
′

I J ,lm is the distance between the µ atom of l molecule (ion) in the I

cell and the µ′ atom of the m molecule in the J cell.

To proceed we relate the charge distribution of M+ to the ρ operator that
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describes the charge distribution in the two state model. We set:

qµ = q0
µ +δµρ̂ (2.27)

so that the charge on each atomic site is the charge residing on the site when
the molecule is in the DA state (q0

µ) plus a fraction ρ of δµ, that measures the
variation of charge on the site when ρ goes from 0 to 1. By the way, the charge
distribution on the anion X− is not affected by ρ (qχ is constant). With this
definition we rewrite the eq. 2.26, as follows:

E =
∑

I
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E I I
0 (q

0
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(2.28)

Apart from the irrelevant constant terms on the first and on the second line,
there are term proportional to ρ̂ and terms proportional to ρ̂2. We notice that
terms proportional to ρ̂ have contributions from FcPyl–FcPyl interactions as well
as from the FcPyl–anion interactions. These term proportional to ρ̂ in eq. 2.28
do not have a counterpart in the treatment of crystals of neutral DA molecules
and play a similar role as a crystal electrical field:

F =
1

2

�

∑

µχ

δµqχ
Rµχii

+
1

2

∑

j 6=i
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+
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µµ′

δµq0
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0
µ

Rµµ
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i j
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(2.29)

where we used a simplify notation in which i, j counts the unit formulas in the
crystal. On the opposite, the term proportional to ρ̂2 in eq. 2.28, plays the same
role as the M term in the treatment of crystal of DA molecules in sect. 2.1.2.
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So we define:

M =
1

2

∑

j 6=i

∑

µµ′

δµδµ′

Rµµ
′

i j

(2.30)

A mf treatment of the ρ̂2 interaction finally leads to the following mf Hamilto-
nian:

Hmf =
∑

i

�

ĥi + E0 + 2Fiρ̂i + 2Miρρ̂i+
�

− NMρ2

=
∑

i

�

2zeffρ̂i
�

− NMρ2 + NE0 (2.31)

where zeff = z0 +F +Mρ, can be redefined as the effective energy separation
in the two state model and E0 refer to constant term.

2.2.2 Results

FcPyl+ X− crystals were characterized from the structural point of view with
XRD single crystal analysis, as reported in the Kondo work [78]. The crystal
structures are available at two different temperatures for FcPyl+ PF−6 and FcPyl+

BF−4 : 113K (LT) and 273K (HT). For X= TFSI only the HT structure is given. For
the LT and HT structures of FcPyl+ PF−6 and FcPyl+ BF−4 two conformations have
been mapped (c1 and c2). They are related to two orientation for the anion X.
Indeed, conformational disorder can affect BF4 and PF6 units and in particular
the rotation around the central atom is possible, resulting in two different sets
of atomic coordinates for each anion. Figures 2.18 to 2.20 show the overall
arrangement in the crystal structure.

CalculatingM and F for FcPyl

To estimate F and M in eq. 2.29 and 2.30 we need to estimate the atomic
charges on the molecular anion relevant to both the DA+ and the D+A structures
of FcPyl as well as the distribution of charges in counterions. For counterions
we run a standard PM6 [97] calculation and, neglecting the (minimal) polar-
izability of counterions, we assume that the resulting atomic charges qχ do not
change with the environment. To estimate atomic charges on FcPyl we follow a
similar strategy as adopted for FcPTM. In particular we perform quantum chem-
ical calculation on FcPyl under an applied electric field F as to drive the system
from the DA+ to the D+A state.

Fig. 2.21 shows the properties of FcPyl as a function of an electric field
oriented along the DA direction (from the Fe atom to the C atom in the carbonyl,
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Figure 2.18: Monoclinic crystal structure in the unit cell of FcPyl+ TFSI−, from
[78].

Figure 2.19: Orthorhombic crystal structure in the unit cell of FcPyl+ PF−6 (HT),
from [78]. Both c1 and c2 are shown.

linked to the external oxygen). The different curves are obtained adopting the
FcPyl structure from the five crystal structures available. The results are very
similar to those relevant to FcPTM. The region around F = 0 V/Å and F = 1

V/Å has almost flat polarizability, and we assume the charge distribution at
F = 0 as {q0}, while the charge distribution at F = 1 V/Å describes Fc+Pyl
state ({q(ρ = 1)}) . The calculation has been run on MOPAC2007 package, with
PM6 model Hamiltonian, imposing the keyword BIRADICAL, that actual mixes
four microstates to include an eventual biradicalic character (this keyword is
actually redundant and corresponds to the combination of the keywords MECI
OPEN(2,2) SINGLET in the MOPAC2007 package). It implies a C.I. calculation
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Figure 2.20: Orthorhombic structure in the unit cell of FcPyl+ BF−4 (HT), from
[78]. Both c1 and c2 are shown.

with the four configurations that arise considering the space of the HOMO and
the LUMO.

As shown in the middle panel of fig. 2.21 the overall charge on the acceptor
unit is close to 1 in the F ∼ 0 region and close to 0 in the region assumed for
the CT state (F ∼ 1 V/Å), and vice versa on the donor Fc unit. The µ0 value
that can be extracted here is about 40 D, corresponding to a dipole length of
about 8 Å. This is really close to the crystallographic distances from the donor
center (Fe atom) and the considered acceptor center (C of carbonyl group),
being 7.6 - 7.7 Å in the reported structures. Moreover, the sigmoid curves for the
five structures are similar, with minor differences (curves corresponding to the
X= BF4 structure are smoother than the other curves). The information about
atomic charges obtained from quantum chemical calculations is finally entered
in eq. 2.29 and 2.30 to calculate F and M value: results are summarized in
table 2.4 for the five crystal structures.

Table 2.4: Calculated value for electrostatic energies
anion X = T / K F / eV M /eV

TFSI− 273 −0.05 −1.04

BF−4 (LT) 113 0.04 (c1) −0.01 (c2) −0.91
BF−4 (HT) 273 −0.12 (c1) −0.26 (c2) −1.10

PF−6 (LT) 113 −0.05 (c1) −0.04 (c2) −0.95
PF−6 (HT) 273 −0.02 (c1) −0.07 (c2) −0.93
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Figure 2.21: Results of PM6 calculations for a FcPyl molecule with the crystal-
lographic structures (see legend) under an external static electric field, F . F -
dependence of the molecular dipole moment µx (top panel), molecular polarizabil-
ity α (bottom panel), and total net charges (central panel) on the Fc (continuous
line) and Pyl (dashed line) units. Dotted and dash-dotted vertical lines mark the
DA+ structure (F = 0) and the CT charge distribution, corresponding to flat regions
of α.
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The solution of the mf Hamiltonian in eq. 2.31 leads to results in figure 2.22,
that shows the ρ(z0) curves obtained for theM and F values in table 2.4; τ is
set equal to 0.30 eV (see table 2.3). In all the cases a bistability region occurs.
For X=TFSI and X =PF6 the bistability occurs at z0 in the range 0.5 ÷ 0.6 eV, a
value compatible with the parameters estimated in table 2.3.

A more exhaustive analysis including the fit of Mössbauer spectra is deferred
to a subsequent work. We notice, however, that temperature dependent struc-
tural data allows to calculate temperature dependentF andM values, suggest-
ing a small increase of electrostatic interactions upon increasing temperature.
This result can easily justify the experimental observation of Fc+Pyl / FcPyl+

concentration ratios larger than 1 ah high T , as extracted from Mössbuaer spec-
tra [80].

The analysis of results relevant to FcPyl BF4 salt is more delicate. Remem-
bering that for FcPyl+ we estimate 0.5 ÷ 0.6 eV, data in fig. 2.22 suggest that
at low T only the FcPyl+ species is present in the crystal, so that, in agreement
with experimental data, only in the neutral Fc signal is seen in Mössbauer spec-
tra. However the same data, would predict in the high T phase a complete
transformation of FcPyl+ to the Fc+Pyl, in contrast with experimental results.
While the delicate energy balance at the crossover and the fairly large uncer-
tainties on molecular parameters and/or on electrostatic energies can explain
this discrepancy, we also notice that the geometry of FcPyl+ unit is different in
the three salt, leading to slightly different molecular properties. In particular
data in fig. 2.22 show the F -dependence of molecular properties as a function
of the applied electric field. The results are different depending on the molec-
ular geometry and in particular the results obtained for the geometry relevant
to the FcPylBF4 salts are much smoother than for the two other salts. This sug-
gests a larger conjugation between Fc and Pyl fragments, i. e. a larger τ in
the two state model for the FcPyl unit in the BF4 salt. This observation is also
in line with results from TDDFT calculations in ref. [78], that obtain a larger
HOMO-LUMO gap for the FcPyl molecule in the geometry for the FcPylBF4 salt
than for other geometries. A larger HOMO-LUMO gap definitively implies a
larger conjugation (or possibly a large z0 value) and not a smaller conjugation
as incorrectly suggested in ref. [78].

While we are not able to completely explain experimental observation for
FcPylBF4 crystals, results in fig. 2.22 exclude bistable behavior for this salt,
at variance with FcPylTFSI and PF6 salts. The M energies are similar for the
three salts. In fact only electrostatic interaction energies between the FcPyl
units enter the M expression (see eq. 2.30), and in view of the similar crystal
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structures of the three salts, similar M values are calculated. The difference
between the three salts is related to different F values. Interaction between
FcPyl units and counterions explicitly enter theF expression (eq. 2.29), leading
to a large variability of F with the counterion. This suggests that crystals of
molecular ions, like DA+ or DA−, are particularly interesting for bistability. In
these systems in fact a careful choice of the counterion offers a powerful tool
to tune intermolecular electrostatic interactions as to guide the system towards
bistability regions.
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2.3 TTFPTM• and related systems: bistability and

aggregation phenomena

Another interesting DA• molecule has been synthesized by the group of Profes-
sor Veciana attaching the well known TTF (tetrathiafulvalene) donor moiety to
the PTM radical. TTF donor is widely used in the field of the organic functional
materials, and in organic electronic in particular, for its ability to be oxidize
to TTF+ and TTF2+ and for the peculiar properties of TTF based CT crystals
crystals [108, 109].

TTFPTM combines many properties at the same time. As FcPTM it is a rad-
icalic DA molecule. TTF and PTM have low energy for the oxidation and the
reduction, respectively, and stable derivative of the two species exist, like TTF+,
and TTF2+ or PTMH and PTM−. This open the way to many possible derivatives
of TTFPTM, with different chemical, optical and magnetic properties. Exam-
ples are TTFPTMH, TTF+PTM (biradical), TTF+PTMH, and so on. TTF+ is also
known to have the tendency to aggregate and dimerize [110, 111, 109], the
interest for TTFPTM is then increased by the possibility to generate supramolec-
ular structures [112], very important in view of the magnetic character of PTM.

The work is a results of a collaboration with the Prof. Veciana’s group. Most
of the experimental work has been done at ICMAB in Barcelona, partly during
a short stage that I spent there (April - May 2009), and during a visit of a PhD
student of Prof. Veciana group (Judit Guash) in our laboratory.

In this section two topics related to TTFPTM and derivatives will be con-
sidered. The first part is about the peculiar properties observed for TTFPTM
radical in solution [113]. The second part concerns the study of the dimeriza-
tion of TTFPTM (and its heterodimer with TTF+PTM) and of the αH derivative
TTF+PTMH (and the heterodimer with TTFPTMH) [114].

2.3.1 TTFPTM: bistability in solution

Optical spectroscopy

The radicalic species TTFPTM• (TTFPTM) resonate between neutral and charge
separated (zwitterionic) structures, as shown in fig. 2.23. As for other DA

systems we expect a CT transition in the low energy region of optical spectra.

Optical spectra have been recorded in Barcelona, at ICMAB. Special care
has been taken to avoid aggregation for the TTFPTM, that in some solvent
(CH2Cl2, for instance) produce noticeable change in the optical spectra. No
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Figure 2.23: Resonance for TTFPTM

clear evidence of a CT band is observed, apart a weak and broad structure at
9000-11000 cm−1 that is seen in some solvents, as evidenced in fig. 2.24.
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Figure 2.24: Low energy NIR absorption spectra of TTFPTM in some solvents.

Complete optical spectra in fig. 2.25 strongly depend on the solvent:

• in apolar solvents (like toluene, hexane, cyclohexane) the strongest ab-
sorption is the sharp peak at ∼ 390 nm, assigned to the PTM radical
[76, 81]. A weak and broad band appears at 900-1200 nm that we tenta-
tively assign as a CT band (see detail in fig. 2.24).

• in strongly polar solvents (acetone and DMF) the 390nm- peak of PTM rad-
ical is suppressed (it disappears in DMF) while a peak a 510 nm appears,
assigned to PTM− [115, 81]. At the same time, in these solvents the CT
absorption at ∼1000 nm is not seen.



136 TTFPTM and related systems

• spectra collected in intermediate polarity solvent, as dichloromethane,
tetrahydrofurane (THF), chlorobenzene (PhCl) show intermediate behav-
ior.

The solvatochromic trend is clearly readable in the series CH2Cl2, PhCN, ace-
tone, dimethylformamide (DMF), as reported in fig. 2.26, left panel. The CT
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Figure 2.25: Vis-NIR absorption spectra of TTFPTM in low polarity solvent (top
panel) and in polar solvent (bottom panel).

band is observed only in non-polar solvent, as a broad feature. In more polar
solvent the CT transition is not seen and it is possibly hidden under the tail of
higher energy transition. By the way, the overall spectra show changes at dif-
ferent wavelength going from one solvent to other, as a probable results of the
solvation on the conformational degrees of freedom of TTFPTM.

The observed behavior can be interpreted in terms of a valence tautomerism,
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where the molecule switches from the TTFPTM• to the TTF•+PTM− in polar
solvents. The behavior is reversible (i.e. the spectral changes are not the results
of a chemical reaction or decomposition), and has been verified in mixtures
of solvents of different polarities (acetone and CH2Cl2 in varying proportions)
observing intermediate spectral behavior. Increasing solvent polarity promotes
the charge transfer and then the observation of the PTM− anion spectral features
in place of the radical ones, leading to bistable behavior already in solution. This
results, that makes this molecule really promising for future studies, confirms
the tendency of PTM derivatives to molecular bistability.

EPR results

EPR spectra were recorded in Barcelona on TTFPTM solutions in four solvent:
CH2Cl2, PhCN, acetone, DMF. EPR spectra are shown on the right panel of fig.
2.26, together with absorption spectra in the Vis-NIR on the left.

EPR spectra of TTFPTM shows a two lines system (g=2.00253 for PTM•,
coupling with the closest vinylene H, a1= 1.61 G). However, room temperature
spectra are often unresolved and a single broad signal (one EPR line) is ob-
served. EPR spectra show a decrease of the PTM radical signal (one EPR line),
increasing solvent polarity. On the other hand, no new signals appears in the
region of the TTF radical, and the EPR intensity is strongly suppressed in polar
solvents. This is a puzzling result, in fact if increasing the solvent polarity the
system goes from the TTFPTM• to the TTF•+PTM− structure, as discussed above,
we would expect an increase of the EPR signal related to the TTF+ specie.

Figure 2.26: Optical Vis-NIR spectra (left) and EPR spectra (right) in four solvents
of medium and large polarities.
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Possible explanations rely on the diamagnetic coupling due to the formation
of the dimer (TTF•+PTM−)2. However there are no spectroscopic signature of
the dimer in optical spectra. Dynamic effects related to the rate of the equilib-
rium DA•⇋ D+•A−and/or to the high delocalization of the unpaired electrons
in the TTF•+PTM− species can also contribute in broadening the EPR band.
To better investigate this effect, some T dependent EPR measurements are in
progress.

Understanding molecular intrinsic bistability

Experimental results on TTFPTM suggests an intriguing bistability at the molec-
ular level. Even if further measurements are in order, we discuss the results in
terms of an electronic two-state model, as presented in sect. 1.1 and applied in
this chapter for this class of molecules (sect. 2.1.1).

In particular the experimental behavior of TTFPTM is expected in systems
described by two state model in sect. 1.1, provided that the hybridization en-
ergy τ is small [41]. In these systems, the degree of mixing is very small (i.e.
ρ → 0 or ρ → 1). If the external perturbation (like the reaction field of the
polar solvent) is large compared to the energy separation (2z0) then the system
switches to the zwitterionic form in polar solvent. In these conditions we expect
a low transition energy ωge (compared to push-pull dyes) as well as very weak
CT band, and almost no solvatochromism (see eq. 1.7, 1.8 and 1.10 and their
ρ dependencies), in agreement with the experimental data.

To support our picture, we perform calculation on the TTFPTM molecule
subject to an electric field pointing along DA direction, as done for FcPTM (see
sect. 2.1.4). Calculations were run with the MOPAC2007 package, adopting
the PM6 Hamiltonian at the ROHF level of theory [98, 97]. However, for this
molecule, the crystallographic experimental structure is not available. We then
perform a preliminary geometry optimization with unrestricted DFT method
(UDFT/B3LYP1, basis set: 6-31G∗) [116]. Semiempirical F dependent calcula-
tions were then run on the molecule either in this fixed structure (reported in
fig. 2.27), or allowing for geometry relaxation at each F value. Center of D

group was assigned to carbon C41 and center of the A group was assigned to
atom C9 (see fig. 2.27).

Results shown in figure 2.28 are similar for fixed geometry or allowing for
the geometry relaxation with the field, suggesting the minor effect of the e-
mv coupling. The neutral to zwitterionic crossover is located at very low fields

1Unrestricted Density Functional Method. Functional: Becke-3-
Parameter/HF+Slater+Becke88+VWN+LYP
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Figure 2.27: Molecular structure optimized from UDFT calculation.

(compare with results on FcPTM in fig. 2.9 and FcPyl in fig 2.21), confirming
our idea of a very small energy differences between DA• and D+•A− states (i.e. a
small z0 value). Moreover, the dipole moment dependence on the field F show
a sharp jump in correspondence of the crossover. This sharp crossover supports
our view of a small resonance integral τ. In correspondence of some field val-
ues, inside the ionic region, the system is driven back to a neutral electronic
state, strongly suggesting an intrinsic molecular bistability: small perturbations
can drive the system toward one form or the other.

2.3.2 Dimers of TTFPTM and derivatives

The cationic form of TTF (TTF+) has a well known propensity to form dimers
[110, 111]. The interest for dimer properties, and for supramolecular aggre-
gates, is a key point in the study of multifunctional molecular materials. TTF-
PTM derivatives considered in this section are shown in fig. 2.29, and the fol-
lowing dimers can be investigated:

• TTF+PTMH homodimer

• TTF+PTMH – TTFPTMH heterodimer

• TTF+PTM homodimer
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• TTF+PTM – TTFPTM heterodimer (and TTF+PTM – TTF+PTM− homod-
imer)

Temperature dependent EPR spectra of CH2Cl2 solutions of the different species
were collected in Barcelona, whereas temperature-dependent optical Vis-NIR-
IR spectra in solution were collected in our laboratory. Measurements in Parma
were done using the cryostat described in the appendix A.3.1 combined with
both the UV-Vis absorption instrument for the 300-800 nm region and with the
FT-IR spectrophotometer for the NIR (and IR) region. More technical details
about procedures and instruments can be found in the appendix sect A.1.2.

Figure 2.29: Structures of the TTFPTM derivatives involved in the dimer forma-
tions: αH derivatives (top) and radical derivatives (bottom).

The characteristic EPR signals at g = 2.00767 is typical for the TTF•+ radical,
while the PTM• radical signal is observed at g = 2.00253. From the optical point
of view, characteristic bands are observed in the range of 600-800 nm for the
(TTF+)2 dimers, and about 2000-3000 nm for the mixed valence (TTF)+2 specie.

The information extracted from optical and EPR spectra confirm the dimer
formation. The quantitative study of the dimer formation with the temperature
allows, in favorable cases, the definition of the thermodynamic quantities (∆H

e ∆S) that rule the equilibrium. Work is still in progress, and in some cases only
qualitative results will be shown.
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TTF+PTMH homodimer

The tendency to self-dimerize of the TTF+PTMH species can be detected thanks
to optical (NIR absorption spectroscopy) and magnetic (EPR) techniques. We
consider the dimerization equilibrium:

M+M=M2 (2.32)

and define the nominal concentration c = [M] + 2[M2] and the monomer frac-
tion α= [M]

[M]+2[M2]
. The T -dependence of α

α(T ) =
−1+

p

1+ 8K(T )

4cK(T )
(2.33)

is governed by the T -dependence of the equilibrium constant:

K(T ) = exp
�

−
∆G

RT

�

= exp
�

∆S

R
−
∆H

RT

�

(2.34)

For what concern EPR results, the dimer (diamagnetic specie) is expected to
be silent. On the opposite the monomer TTF+PTMH is a paramagnetic specie
with the unpaired electron on the TTF unit. Hence we expect to observe an
EPR integrated signal (double integration of the actual EPR spectra, i.e. the
correspondent area) proportional to the concentration of the monomer [M]:

SEPR ∝ [M] = α c (2.35)

The temperature dependence of the EPR intensity of eq. 2.35 can be then cal-
culated in term of the equations 2.33 and 2.34:

SEPR(T ) = A α(T ) c (2.36)

where A is a multiplicative factor. T dependent measurements of EPR area can
be then fitted with the equation 2.36 to extract thermodynamic information.

EPR spectra were collected in the temperature range 180 ÷ 300K on solu-
tions of TTF+PTMH SbF−6 at concentration of ∼ 10−3 M, and the T -dependence
of the integrated areas are plotted together with the fitted curves in fig. 2.30, for
two nominal concentration c = 5.4 ·10−3 and c = 8.5 ·10−3. Actually, the EPR in-
tensity decreases with the expected behavior and the equilibrium model works
pretty well. The values for the thermodynamic parameters extracted from fit of
the temperature dependent results are:

∆S (cal mol−1 K−1) −15.4
∆H (cal mol−1) −4420

K(298K) ∼ 0.5
K(180K) ∼ 104
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Figure 2.30: Temperature dependent EPR monomer fraction from experimental
area (symbols) and calculated from fit with eq. 2.36 (curves) at two concentration
level c = 5.4 · 10−3 M (red) and 8.5 · 10−3 M (green).

For the optical measurements a similar analysis of the temperature depen-
dence of the signals can be done. Since the area of a band (deconvoluted when
necessary) is proportional to the concentration of the absorbing specie, we have:

Sabs,M (T ) = MM[M](T ) = MM c α(T ) (2.37)

Sabs,D(T ) = MD[M](T ) = MD
1

2
c (1−α(T )) (2.38)

The α(T ) relation in eq. 2.33 allow us to extract T dependent thermodynamic
information from the area of absorption bands. The low temperature measure-
ments recorded in the Vis-NIR region are shown in fig. 2.31. These results
confirm the interpretation of EPR data. The 800 nm (12500 cm−1) band, as-
signed to the homodimer [110] increases its intensity with decreasing temper-
ature and increasing nominal concentration. It is interesting to observe that in
the low concentration solution the band at 670 nm (∼ 15000 cm−1), assigned to
the monomer specie [110] decreases in intensity (the same band is too intense
to be observed in the high concentration sample).
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Figure 2.31: Temperature dependent Vis-NIR absorption spectra of TTF+PTMH
(and the related dimer) recorded at c = 2.8 · 10−3 M (upper panel) and c = 4.0 ·
10−3 M (lower panel). In dotted lines the fitted band at some temperature, with
Gaussian function. Baseline of experimental data was corrected.

TTF+PTMH and TTFPTMH heterodimer

The formation of the TTF+PTMH – TTFPTMH mixed valence heterodimer is
detected by the appearance of a CT band in the NIR region. The equilibrium is:

A+ B= AB (2.39)

and the concentrations:

[A] = cA− [AB] [B] = cB − [AB] (2.40)

where cA,B is the nominal concentration of A, B. The concentration of the mixed
valence specie AB is then:

[AB](T ) =
(cA+ cB)K(T ) + 1−

p

(cA− cB)
2[K(T )]2 + c(cA+ cB)K(T ) + 1

4K(T )
(2.41)
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Then, assuming the same T dependence for the equilibrium constant K as in eq.
2.34 we can express the dependence of the intensity (area) of the CT band as:

Sabs,AB(T ) = MAB [AB](T ) (2.42)

where MAB is a multiplicative factor.
Optical spectra, shown in fig. 2.32 in the CT region were recorded at two

different ratios for the TTFPTMH and the TTF+PTMH: 1:5 and 1:10. In both
cases the nominal concentration of TTF+PTMH is 7.3 ·10−5. The spectral region
in fig. 2.32 is particularly critical because of the presence of absorptions due to
the solvent (overtones of vibrational modes). The data in fig. 2.32 have been
treated to remove solvent peaks. A broad band at about 3000 nm (∼5500 cm−1)
appears very clearly. Its fit with a Gaussian function is also shown in fig 2.32
(dashed lines). This fit is necessary to obtain a reliable integrated areas. Then
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Figure 2.32: Temperature dependent NIR absorption spectra recorded at two differ-
ent ratio of concentration for TTF+PTMH and TTFPTMH, respectively, 1:10 (upper
panels) and 1:5 (lower panels). In both cases concentration of TTF+PTM is equal
to 7 · 10−5. In dotted lines are show the fitted band with a Gaussian function with
three adjustable parameter. Baseline was corrected.
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the two series of temperature dependent area have been fitted with the function
in eq. 2.42 to obtain the following estimation of thermodynamic parameters:

∆S (cal mol−1 K−1) −24
∆H (cal mol−1) −7·103

K(298K) ∼ 0.8
K(180K) ∼ 103

However, these estimates are effected by large uncertainties, because the ab-
sorption bands are very weak. Further measurements are in order for more
reliable results.

TTF+PTM homodimer and TTF+PTM – TTFPTM dimer

TTF+PTM is a biradical and the analysis of its EPR spectra is difficult. In fact
one expects a doublet related to the PTM radical, that becomes a triplet upon
dimer formation. Moreover, one expects a 7-line multiplet due to the TTF rad-
ical. The two signals partly overlap, and the shape of the signal changes with
the formation of the dimer. In particular the TTF+ signal should disappear in
the homodimer. EPR spectra essentially confirm this picture, as shown in the
T dependent spectra of fig 2.33. While the quantitative analysis of EPR data

 3345  3350  3355  3360  3365

E
P

R
 s

ig
na

l (
a.

 u
.)

magnetic field (G)

300K
220K
180K

Figure 2.33: EPR spectra of TTF+PTM (and the related dimer) in CH2Cl2 at c =

9.3 · 10−4 M, at three different temperatures.

is still in progress, optical spectra in fig. 2.34 are reasonably clear and suggest
dimer formation. The CT band of the dimer is observed at 800 nm as shown in
fig. 2.34.
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Figure 2.34: Temperature dependent NIR absorption spectra recorded at two dif-
ferent concentration of TTF+PTM, c =1.1 ·10−3 M (upper panels) and c =2.3 ·10−3

M (lower panels). Baseline was corrected.
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For the mixed-valence TTF+PTM –TTFPTM the picture is even more com-
plex because of the mesomeric properties of TTFPTM itself, that is subject to
the valence tautomerism driven by the solvent polarity discussed in sect. 2.3.1.
Then the analysis of the T dependent data is cumbersome. If TTFPTM is quan-
titatively present in the zwitterionic form (TTF+PTM−) the resulting dimer can
form an homodimer, since the two TTF+ moieties are both in the cationic form.
In optical spectra a weak and broad absorption band assigned to the dimer is
observed, suggesting the formation of aggregates rather than a dimerization
(data not shown). On the other hand, the hypothesis of dimerization is well
compatible with EPR results at room T .

Interestingly, mixed valence dimer (as detected in NIR spectroscopy) occurs
in solution only when TTFPTM• and TTF+PTM• are obtained in situ, via chem-
ical oxidation with NOSbF6 (from the anion TTFPTM−). For this sample NIR
absorption as a function of T are shown in figure 2.35. A mixed-valence dimer
absorption band appear at ∼ 5000 cm−1, when decreasing the T . Sample pre-
pared in this way has measured with EPR, confirming the mixed valence dimer
(5-lines signal for the TTF radical).

Therefore, the possibility to form both homodimer and mixed-valence dimer
depends on T , on the concentration, on the nature of the solvent and on the
method used for the chemical oxidation, leading to a very complex phenomenol-
ogy.
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Figure 2.35: Temperature dependent NIR absorption spectra of TTF+PTM and TTF-
PTM generated in situ, concentrations are∼ 5.0·10−4 each. Baseline was corrected.
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2.4 Conclusion

In this chapter we have investigated several DA molecules characterized by a
fairly small conjugation between the D and the A moieties, i. e. characterized
by a small τ. This results in low-energy CT absorption bands, usually in the
NIR region, with low intensity and minor solvatochromism. These molecules
are particularly promising for bistability [24, 41]. Most of the work discussed
here was devoted to FcPTM (and related) molecules. These radical DA species
show intriguing temperature dependent Mössbauer spectra that can be quanti-
tatively explained in terms of bistability induced in crystals of DA molecules by
intramolecular electrostatic interactions [24]. Optical spectra of FcPTM and re-
lated molecules have been discussed based on effective three-state model. This
simple expansion of the two-state model to account for the role of the bridge
state allowed us to rationalize a long standing problem in the description of
optical spectra of DA molecules. In fact we were able to demonstrate that the
dipole moment associated with the D+A− specie as extracted from the analysis
of optical spectra is always underestimated with respect to its geometrical value
and we were able to assign this discrepancy to the active role of bridge state
[83]. We demonstrate that the bistability model is robust and applies also to
model of crystals of DA molecules when the molecule are described in term of a
three-state model [41].

A recent work appeared in the literature [78] on FcPyl+X− crystals (X− =
TFSI−, BF−4 , PF−6 ) allowed us to extend the model for bistability in crystals of
DA molecules to DA+X− salts. The presence of counterions modifies the model
for electrostatic interactions, leading in the mf to a new term not present in
crystals of DA molecules. This makes DA+X− (or DA−X+) crystals interesting
and promising systems to build bistable molecular materials.

Finally, we discussed a series of DA molecules based on the TTF donor and
the PTM acceptor. Several species can be obtained depending on the chemical
nature of PTM radical that can be easily protonated, and/or reduced. Moreover
the TTF moiety undergoes to interesting dimerization processes leading to a
rich behavior. While a complete discussion of the rich physics of these systems
is deferred to subsequent work, here we underline just the interesting behavior
of the TTFPTM molecules that changes from a neutral structure in non polar
solvent to a zwitterionic structure in polar solvents, suggesting bistable behavior
in solution.





Chapter 3

Electron-phonon coupling in

molecular organic

semiconductors

Molecular organic semiconductors are nowadays object of relevant interest due
to their application in a new generation of (opto)-electronic devices, that are
cheap and offer the advantage of flexibility and large-area integration. Indeed,
charge transport properties of molecular semiconductor, with intrinsic mobili-
ties of the order of 10-100 cm2/Vs [117], already allow their exploitation in
commercial devices, like organic light-emitting diodes, solar cells, or field-effect
transistors [118, 119, 120, 121].

Classical theory of charge transport in inorganic semiconductors (Si, repre-
senting a typical example) is based on a simple tight binding Hamiltonian:

H =
∑

r

εr a+r ar +
∑

r 6=s

t rsa
+
r as (3.1)

Here, a+r and ar are the creation and annihilation operators, respectively, for
an electron on molecular site r, εr is the site energy. t rs is the transfer integral
(intersite electronic coupling), which leads to the bands involved in the charge
transport.

In Si or Ge-based semiconductors, one deals with atomic sites, bounded by
chemical bonds, while in organic semiconductors one has molecular sites kept
together by weak Van der Waals forces. As a consequence, in organics t rs is
small, and the bands are narrow, of the order of a few tenths of eV. The charge
mean-free path is then comparable to intermolecular distances, and ordinary
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band theory is inadequate to explain the mobility. On the other hand, a site-to-
site hopping cannot account for the observed room temperature mobilities and
the corresponding evolution with T : a detailed understanding of the leading
mechanism of the charge-transport in organic semiconductors is still an impor-
tant research challenge [122].

Molecular crystals have a high number of vibrational degrees of freedom
(phonons), and their coupling with the charge carrier (electron or hole) plays a
very important role in the charge transport mechanism [123, 124, 125]. Con-
sidering the two energetic terms in the Hamiltonian 3.1, two different types of
coupling of the carrier with the phonons can be considered, the Holstein cou-
pling and Peierls coupling. The former operates on site, and is expressed by
the change in the electronic energy εr . In molecular crystals εr can be assimi-
lated with the HOMO (LUMO) orbital energy for the holes (electron)). Instead,
the Peierls coupling is related to the modulation by the phonons of the transfer
integral t rs.

In this chapter a new approach to characterize the Holstein and Peierls cou-
pling constant is developed, and applied to a well known organic semiconduc-
tors, rubrene. The application of the same methodology on pentacene is in
progress. This work has been done in collaboration with the group ”Physi-
cal Chemistry of the Solid State”, Prof. Brillante, Della Valle and Venuti of
Bologna University. They have mainly developed the procedure to characterize
the phonon structure (frequencies and eigenvectors) of molecular crystals (see
sect. 3.1.1), a necessary prerequisite for the deployment of our method.

3.1 The calculation of carrier-phonon coupling con-

stants in organic semiconductors

One of the most common approximations adopted in dealing with the com-
plex phonon structure of molecular crystals is to separate intra-molecular vi-
brations from inter-molecular, or lattice, phonons. The latter correspond to
translations and rotations of the rigid molecules. Within this approximation,
called RMA (rigid molecule approximation), and in the framework of a molec-
ular orbital (MO) description of the electronic structure, it is natural to asso-
ciate the Peierls coupling, i.e., the modulation of inter-molecular hopping in-
tegrals, to lattice phonons. In the same spirit, intra-molecular vibrations are
expected to modulate only on-site energies, giving rise to local, or Holstein,
carrier-phonon coupling. The RMA approximation and corresponding separa-



3. ELECTRON– PHONON COUPLING 153

tion of Holstein and Peierls coupling constitutes the approach most commonly
adopted for molecular semiconductors. However, the approach fails when deal-
ing with large molecules, where low-frequency intra-molecular phonons can
mix with the molecular rotational and translational motions. We have devel-
oped a method that goes beyond the RMA approximation, and treat the Holstein
and Peierls coupling on the same footing.

3.1.1 Phonon structure

The methodology adopted to characterize the phonon structure of molecular
crystals has been developed by the Bologna group [126]. The RMA is used
as a starting point, where intra- and inter-molecular vibrations are calculated
separately Intra-molecular phonons are calculated by standard DFT methods
(B3LYP functional, 631G(d) basis set) for the isolated (gas phase) molecule,
whereas the lattice phonons are calculated by adopting an empirical, atom-atom
intermolecular potential, Φinter of the type:

Φinter =
1

2

∑

αβ



Aαβ exp(−Bαβ rαβ )−
Cαβ
r6
αβ

+
qαqβ
rαβ



 (3.2)

where the sum is extended to all distances rαβ between pairs α,β of atoms in
different molecules. The Aαβ , Bαβ , Cαβ empirical parameters are taken from liter-
ature [127]. Charges qα,qβ in the Coulomb term are the electrostatic potential
(ESP) atomic charges [128], fitted to the electrostatic potential obtained in the
above DFT calculations of the isolated molecule. Given an initial lattice struc-
ture, one computes Φinter and its second derivatives with respect to the displace-
ments of the molecular coordinates. The second derivatives form the dynamical
matrix, which is numerically diagonalized to obtain the phonon frequencies ωki

and the corresponding eigenvectors.
The structure as a function of p and T is then determined by the QHLD

(Quasi Harmonic Lattice Dynamics) method [129]. This method is based on the
vibrational contribution to the Gibbs energy G(p, T ) of the crystal at pressure p

and temperature T :

G(p, T ) = Φinter + pV +
∑

kl

ħhωkl

2

+kB T
∑

kl

ln
�

1− exp
�

−
ħhωkl

kB T

��

(3.3)

where Φinter is the inter-molecular potential in eq. 3.2, pV is the pressure-
volume term,

∑

kl ħhωkl/2 is the zero-point energy, and the last term is the en-
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tropic contribution. The sums are extended to all phonon modes of wavevector
~k and frequency ωkl . The frequencies calculated as second derivative of the
potential in eq. 3.2 are introduced in eq. 3.3, and G(p, t) is minimized self-
consistently with respect to lattice parameters, molecular positions and orienta-
tions.

At this point, the RMA approximation is relaxed and the coupling between
inter-molecular and intra-molecular coordinates is introduced perturbatively
through Φinter, a function of inter-atomic distances. Since the distances depend
on the Cartesian coordinates of the atoms, the derivatives of Φinter can be di-
rectly computed in terms of the Cartesian coordinates, and then converted to
molecular coordinates. The displacements corresponding to rigid translations
and rotations of the molecules can be derived by simple geometric arguments,
whereas the displacements associated to the intra-molecular degrees of freedom
are the Cartesian eigenvectors of the normal modes of the isolated molecule, as
calculated by DFT. The atomic displacements, together with the inter-molecular
potential model, determine the coupling between intra-molecular and lattice
modes.

3.1.2 Electronic structure

The Holstein and Peierls couplings are connected to the modulation of the on-
site energy and the transfer integral, respectively. Having relaxed the RMA, we
calculate both types of coupling for all the phonons in the crystal. Within the
tight binding approximation the on-site energy and transfer integral, are given
by :

εr = 〈ϕr |h|ϕr〉 (3.4)

t rs = 〈ϕr |h|ϕs〉 (3.5)

where h is the one-particle electronic Hamiltonian, and ϕr,s is the relevant
frontier orbital (HOMO for hole transport, LUMO for electron transport) of
the molecule at site r, s. Calculating the modulation of these quantities by all
phonons is exceedingly onerous, so we have chosen the a semi-empirical ap-
proach based on the INDO Hamiltonian with the Zerner spectroscopic parametriza-
tion (INDO/S) [130]. In appendix C we summarize shortly the MO-HF method
and INDO/S approximations and parametrizations.
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Calculating electronic integrals

While the energy of the frontier orbital εr is obtained from the INDO/S calcu-
lation, the calculation of the transfer integral t rs requires some comment. Of
course, t rs refers to a pairs of molecules (a dimer): depending on the crystal
structure the number of different (symmetry non-equivalent) interacting pair of
molecules can vary.

One common approach to evaluate the transfer integral is the so-called “en-
ergy splitting in the dimer” (ESD) model. The ESD model consider the energy
splitting of the two HOMO (or LUMO) orbitals in the dimer with respect to the
isolated molecule. The energy separation between the HOMO-1 and HOMO
(LUMO and LUMO+1) of the dimer is twice the transfer integrals between the
two molecules for the considered orbital:

∆ǫ = 2 |t rs| (3.6)

However, the approach is only valid where the two molecules in the dimer
are equivalent by symmetry, and, for subsequent applications to the calculation
of Peierls coupling constant, it is also required that the two molecules remain
equivalent also during a vibration. The latter condition is clearly inapplicable
to non-totally symmetric modes [124]. Moreover, this approach cannot deter-
mine the sign of t rs, which instead can be important when comparing the t rs of
different dimers within the crystal.

We therefore propose an alternative method that directly considers the inter-
acting matrix element between the frontier orbitals of the two molecules within
the dimer. First, we perform the calculation for the two isolated molecules:

frϕ0
r = εrϕ

0
r fsϕ0

s = εsϕ
0
s (3.7)

where fr,s is the Fock operator for the r, s molecule of the dimer and ϕ0
r,s are the

corresponding HOMO or LUMO with energy εr,s. Next we repeat the calculation
for the dimer:

frsϕrs = εrsϕrs (3.8)

The transfer integral is then given by:

t rs = 〈ϕ0
r |f

rs|ϕ0
s 〉 (3.9)

Hence, from a computational point of view, for a given geometry and for a
chosen dimer, it is necessary to run three calculations: one for each of the two
isolated molecule r and s, and then one for the dimer rs. In the INDO/S method
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the MO wavefunctions ϕr,s of eq. 3.9 are expressed as a linear combination of
molecular orbitals χσ,µ:

ϕ0
r =
∑

σ

crσχσ ϕ0
s =

∑

µ

csµχµ (3.10)

and eq. 3.9 can be rewritten as:

t rs =
∑

σ

∑

µ

crσcsµ〈χσ|frs|χµ〉 (3.11)

where the 〈χσ|frs|χµ〉 is the Fock matrix element on the dimer AO basis. The
above equation is easily implemented in programs written on purpose and in-
terfaced with the main INDO/S program (see appendix sect. C.3).

To determine the relative sign of t involving different dimers in the crystal it
is important to force the phase (sign) of the coefficient sets (crσ, csµ) obtained
from the single molecule calculation to be coherent in the calculation of differ-
ent t rs, because independent diagonalizations can randomly produce different
signs of the eigenvectors. The simplest way to overcome this problem is to
check the sign of a sizeable coefficient of an s orbital, that is independent of
molecular rotations and translations. The phase correction is then determined
in order that two s orbital coefficient of the HOMO (LUMO) belonging to equiv-
alent atoms in the two molecule have the same sign. However, this procedure
may not work when HOMO (LUMO) orbitals has a dominant π character, or
when a dimer is formed by non-equivalent molecules, and other computational
strategies have to be developed to ensure the phase agreement.

3.1.3 Carrier-phonon coupling

The strength of carrier-phonon coupling can be expressed in a variety of ways,
and computed by different methods [122]. Here we shall follow the nomen-
clature and procedure adopted by our laboratory since in studies on electron-
phonon coupling in organic charge-transfer crystals [131, 107]

We define the linear Holstein and Peierls coupling constants as follows:

gH(r;km) =

�

∂ εr

∂ qkm

�

=

È

ħh

2ωkm

�

∂ εr

∂Qkm

�

(3.12)

gP(rs;kl) =

�

∂ t rs

∂ qkl

�

=

È

ħh

2ωkl

�

∂ t rs

∂Qkl

�

(3.13)

where εr is the HOMO (or LUMO) energy of the molecule at site r, and t rs is
the transfer integral between the HOMOs (or the LUMOs) of two molecules at
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site r and s. Moreover, qkm,l and Qkm,l are the dimensionless and dimensional
(spectroscopic) normal coordinates of mode m, l of wavevector k and frequency
ωkm,l . With this definition, gH and gP are both expressed in energy units, at
variance with other current definitions [122].

In the following we consider only optical (k = 0) phonons, with the rea-
sonable assumption that the coupling constants do not vary considerably with
k. Consistently with this approximation, we disregard the coupling to acoustic
phonons, although the coupling at the zone edges may be of the same order
of magnitude as that of the optical phonons [132]. Therefore we will drop the
index k, as well as the index r, because it’s implicit.

The strength of the Holstein and Peierls couplings is expressed by the small
polaron binding energy, ǫsp, and by the lattice distortion energy, ǫd , respectively,
defined as [131, 107]:

ǫsp =
∑

l

ǫsp(l) =
∑

l

g2
H(l)

ωl
(3.14)

ǫd =
∑

sl

ǫd(s; l) =
∑

sl

g2
P(s; l)

ωl
(3.15)

where the sums run over all optical modes of the crystal (both intra- and inter-
molecular modes) and over all the non-equivalent transfer integrals. If one
assumes that the normal modes of the neutral and ionized molecule are equal,
a reasonable assumption when considering all the modes together, the small
polaron binding energy is also defined as λ, the reorganization (or relaxation)
energy.

Computational details

The actual calculation of the derivative as expressed in eq. 3.13 needs some
technical notes. A few words concern the units in which the derivatives are ex-
pressed. The introduction a multiplicative factor

Æ

ħh
2ω

as in eq. 3.13 is useful to
get the derivative expressed in energy units (like t and ε). Since normal modes
are usually express in Å

p
u, where u is the atomic mass unit (Dalton, Da), the

factor
Æ

ħh
2ω

is introduced to render the normal coordinates dimensionless. If we

multiply by 1p
2

1
2π

1p
ν̃p / cm−1

q

hNA Å
2
u

10−21c
we obtain 4.1058 ·

p

Å
2
u 1p

ν̃p / cm−1
where c

is the light velocity and NA the Avogadro number. ν̃p is the phonon wavenumber
for the considered mode (in cm−1). Thus using the 4.1058 multiplicative factor
we obtain coupling constants in meV.

To actually calculate the numerical derivative for each normal mode, 9 steps
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of calculation along the normal mode deformation are done. The covered range
is 0.4 Å

p
u, with an elementary step (h) of 0.05 Å

p
u. The derivative is then cal-

culated with the nine point stencil method, that approximates the first derivative
as an algebraic expression of the difference:

∆y±i = y(x0 + ih)− y(x0 − ih) (3.16)

where y can be ε or ts, and i = 1..4, to finally obtain:

y ′(x0) =
−3∆y±4 + 32∆y±3 − 168∆y±2 + 672∆y±1

840h
(3.17)

3.2 The rubrene crystal

The above procedure is applied to a complex organic semiconductor, rubrene
(5,6,11,12-tetraphenyltetracene). The choice of rubrene is dictated by its im-
portance in the field: Rubrene in fact shows one of the highest carrier mobilities
among organic semiconductors and interesting optoelectronic properties as well
[133]. On the other hand, the rubrene crystal also represents an interesting test
system for our computational method. In particular the relaxation of the RMA
is compulsory in rubrene, as the isolated rubrene molecule possesses several
very low-frequency vibrations [134], that mix with lattice phonons when the
molecules are embedded in the crystal [135].

In addition, computations at the DFT level for the isolated rubrene molecule
predict that about one third of the Holstein coupling strength is associated with
low-frequency vibrations [134]. Finally, analogous calculations on the naph-
thalene crystal have produced the rather unexpected result of a strong Peierls
coupling by high-frequency (∼ 1600 cm−1) intra-molecular vibrations [136].
Therefore we have decided to investigate the consequences of the relaxation
of the RMA on the Peierls coupling, and the relative importance of Peierls and
Holstein carrier-phonon coupling, by calculating both couplings for all the opti-
cal phonons of the rubrene crystal. The comparison with other theoretical ap-
proaches applied to rubrene and with the experimental results will be described
in section 3.2.3.

3.2.1 The crystal structure of rubrene

The most commonly encountered rubrene phase is orthorhombic, space group
Cmca (D18

2h) with four molecules per unit cell [137, 135]. The conventional cell
is non-primitive (C face centered), with two molecules exchanged by a roto-
translation and two more molecules obtained by a non-primitive translation.
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The primitive unit cell contains two molecules, which have C2h symmetry and
lie on sites with symmetry 2/m. The uncommon high symmetry of the rubrene
crystal simplifies the computational problem.

Figure 3.1: Crystal structure of orthorhombic rubrene. The two independent
molecules (A, B) within the primitive cell and the eight nearest-neighbor transfer
integrals are evidenced.

Due to the symmetry the number of different (nearest neighbor) dimers
that can be generated with two molecules per cell is 8, defined through the
displacement vector (in cell units) for each of the two molecule in the unit
cell A and B, as reported in table 3.1. Fig. 3.1 shows the crystal structure of
orthorhombic rubrene. A and B label the two independent molecules within the
primitive unit cell, and t1 to t8 indicate the nearest-neighbor transfer integrals.

3.2.2 Rubrene transfer integrals and coupling constants

As it can be noticed the transfer integrals t1 to t4 are all equal by symmetry. The
same applies to t5 and t6 integrals, and to t7 and t8. The INDO/S values for the
HOMO and LUMO t are listed in the table 3.2. Because t5, t6 are much larger
than all other t the electronic structure of orthorhombic rubrene is anisotropic,
with the hopping probability strongly directed along the b crystal axis.
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Table 3.1: Dimers obtained for the crystal structure of Rubrene [137], according
to the equivalent position in the crystal occupied by the A and B molecule and the
displacement along the b, c axis.

D1. A(1 0 0) B(0 0 0) −~R(b+ c)

D2. A(0 1 0) B(0 0 0) ~R(b− c)

D3. A(1 0 1) B(0 0 0) −~R(b− c)

D4. A(0 1 1) B(0 0 0) ~R(b+ c)

D5. A(0 0 0) A(-1 1 0) ~R(b)

D6. B(0 0 0) B(-1 1 0) ~R(b)

D7. A(0 0 0) A(0 0 1) ~R(c)

D8. B(0 0 0) B(0 0 1) ~R(c)

Table 3.2: INDO/S hopping integral value for the eight dimer D1 to D8 defined in
table 3.1.

transfer integral HOMO (eV) LUMO (eV)

t1, t2, t3, t4 −0.006 0.004
t5, t6 0.125 −0.70
t7, t8 0 0

Holstein coupling

We first analyze the Holstein coupling. For the isolated molecule, only totally
symmetric (ag) modes can have gH different from zero. The top panel of fig. 3.2
reports the small polaron binding energies, ǫsp(m), for each mode in the isolated
molecule, as calculated for the rubrene HOMOs by the INDO/S method. When
the molecule is embedded in the crystal, the ag modes of the two molecules
in the primitive unit cell couple in-phase and out-of-phase, yielding phonons of
Ag and B3g crystalline symmetry, respectively [135]. In addition, we have the
lattice phonons, which mix with the low-frequency molecular phonons (table
3.3).

The calculated small polaron binding energies are reported in the bottom
panel of fig. 3.2, in blue line. The comparison between top and bottom panels
by the figure immediately shows that the Holstein coupling strength of the low-
est frequency ag molecular mode, at 21 cm−1, is essentially washed out when
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Figure 3.2: Small polaron binding energy for the isolated molecule (top) and small
polaron binding energy and lattice distortion energy for a rubrene molecule embed-
ded in the crystal, relative to holes (HOMO orbitals).

the molecule is embedded in the crystal. Due to the mixing with the lattice
modes, the coupling strength of the mode is indeed distributed over several
phonons. In addition, the packing inside the crystal makes the molecule more
rigid (higher frequencies of the modes), again contributing to a reduction of
the coupling strength. The calculated total small polaron binding energy of the
rubrene molecule in the crystal is 99 meV, slightly smaller than for the isolated
molecule (about 110 meV).

The numerical values of the coupling constants are reported in the fifth
and six column of Table 3.3, for HOMO and LUMO respectively, for the low-
frequency modes. In the same table 3.3 the intermolecular contribution is also
reported for each mode: obviously this information is important only for low
frequency modes, that can exhibit a significant mixing with lattice phonons.
Since other high energy modes have ≈ 100% of intramolecular contribution,
these are considered as purely intra-molecular modes, and are reported in table
3.4.

The figures 3.5 and 3.7 in the upper panels show the overall Holstein cou-
pling for low frequency modes, and for intramolecular modes, while fig. 3.6
and in 3.8 the upper panels show the small polaron binding energy.

Clearly, the coupling of the high–frequency modes dominates, and in partic-
ular the strongest coupling is associated to the phonons at 1532, 1296, and 963
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cm−1 phonons. Fig. 3.3 shows the eigenvectors of the these three most strongly
coupled Holstein modes for the HOMO. All three modes imply CC stretching
vibrations of the tetracene skeleton, as it might have been expected since the
HOMO is mostly localized on the tetracene rings. Only the 963 cm−1 mode has
some contribution of the ring breathing of the phenyl groups, but the modula-
tion of the HOMO energy in any case results from the vibrations of the tetracene
unit.

Figure 3.3: The strongly coupled Holstein phonons
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Table 3.3: Holstein HOMO and LUMO coupling constants of low-frequency
phonons in the orthorhombic rubrene crystal. Frequencies (ν) in cm−1, coupling
constants in meV. For the B3g modes the sign of the coupling constant for the sec-
ond molecule is opposite. The ab-initio intramolecular frequencies are scaled for a
factor 0.9413

ν calc. % intra ν exp. gH (HOMO) gH (LUMO)

Ag 37.4 46.8 35.5 −0.9 0.6
66.6 78.5 75.3 −1.6 −1.4

106.3 81.1 104.8 0 0.1
125.1 94.5 118.6 1.4 2.0
142.6 99.2 139.6 3.5 − 1.4
217.7 100.0 220.2 −5.7 − 3.0
253.5 99.9 – 0.1 −1.3
261.8 100.0 – 0.9 −2.2
334.9 100.0 – −1.5 −10.5

B3g 43.1 61.2 35.5 1.3 0.3
86.7 48.4 75.3 −0.6 0.9
90.6 95.7 87.4 0.1 −0.7

123.9 96.1 104.0 1.7 −2.3
138.2 98.7 139.2 3.3 0.2
216.8 100.0 – −5.8 −2.9
254.8 99.9 – 0.8 −2.6
262.7 100.0 – 0.7 −0.4
335.5 100.0 – −1.6 10.5
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Table 3.4: Ag and B3g Holstein coupling constants of pure intra-molecular modes
in the orthorhombic rubrene crystal. Frequencies (ν) in cm−1, coupling constants
in meV. Only modes with gH ≥ 5.0 meV are reported. Ag and B3g modes have the
same frequency and coupling constants, so only a single value is shown.

ν calc. gH (HOMO) gH (LUMO)

514.6 0.1 5.9
600.3 8.4 2.8
606.8 −11.0 −0.8
633.6 −7.2 −9.4
751.4 −0.7 −6.1
874.3 7.2 10.3
951.3 6.6 −1.8
963.5 25.1 −10.4
979.1 7.0 2.2

1158.7 −15.4 15.3
1185.7 5.1 12.9
1270.3 −17.9 18.8
1296.4 50.9 −48.6
1301.2 19.3 −18.2
1310.8 −18.1 15.6
1422.5 −2.4 23.1
1429.5 5.3 3.2
1474.6 22.9 −15.7
1486.5 −19.0 3.1
1532.1 −46.5 35.2
1593.9 5.7 8.2
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Peierls coupling

We now turn our attention to Peierls coupling. A simple symmetry analysis in-
dicates that phonons belonging to the B1g , B2g , Au, and B3u crystal symmetry
species cannot modulate the transfer integrals. The B1u and B2u phonons mod-
ulate the t1−4 integrals, but the coupling is negligibly small (less than 1 meV),
since the integrals themselves are small. The Ag and B3g phonons can couple
both to the t1−4 and to the t5,6 transfer integrals, but only the latter are appre-
ciably different from zero. The sign of gP(5; l) and gP(6; l) is the same for the
Ag phonons, and opposite for the B3g ones.

The values of the Peierls coupling constants relevant to t5 are reported for
low frequency modes in Table 3.5, and for high frequency fully intra-molecular
modes in Table 3.6. The lattice distortion energy of individual phonons is com-
pared with the corresponding small polaron binding energy in the bottom panel
of fig. 3.2. Lattice distortion energies for low frequency and high frequency
modes are reported as well in Fig. 3.6 and 3.8, while the Peierls coupling con-
stants for the same modes are reported in Fig. 3.5 and 3.7.

From the tables and the figures it is immediately evident that only the low-
frequency phonons exhibiting some component of inter-molecular displacement
are able to appreciably modulate the transfer integrals. The most strongly
coupled phonons are the second lowest frequency of each symmetry species,
namely, the Ag mode at 66.6 cm−1 and the B3g mode at 86.7 cm−1. Among
purely intra-molecular vibrations, only the modes at 633, 648 and 751 cm−1 show
a weak coupling to the transfer integrals, but given their high frequency they
yield negligible contributions to ǫd . The total lattice relaxation energy is calcu-
lated to be about 20 meV.

Despite the mixing between intra- and inter-molecular modes, particularly
strong in rubrene due to the presence of the heavy phenyl groups, a rather sharp
separation persists between Holstein and Peierls-coupled phonons. The former
are indeed high-frequency, fully intra-molecular modes, and the latter are low-
frequency modes, with clear inter-molecular character (as it can be noticed in
Fig. 3.2, bottom), or looking at the different scales in the upper and bottom
panels for low and high frequency modes. Very few phonons exhibit both types
of coupling.

The eigenvectors of the four most strongly coupled Peierls modes are re-
ported in Fig. 3.4. The Ag and B3g modes at 67 and 87 cm−1 are rather
similar, both implying the relative displacements of the tetracene skeletons of
the molecules aligned along the b axis. On the other hand, the Ag modes at 37
cm−1 and at 106, and the pair of Ag and B3g phonons around 120 cm−1 (the
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Table 3.5: Peierls HOMO and LUMO coupling constants (for the dimer 5) of low-
frequency phonons in the orthorhombic rubrene crystal. Frequencies (ν) in cm−1,
coupling constants in meV. For the B3g modes the sign of the coupling constant for
the second molecule is opposite. The ab-initio intramolecular frequencies are scaled
by a factor 0.9413.

ν calc. % intra ν exp. gP(5, l) (HOMO) gP(5; l) (LUMO)

Ag 37.4 46.8 35.5 3.4 -2.2
66.6 78.5 75.3 -6.6 4.5

106.3 81.1 104.8 -4.4 3.0
125.1 94.5 118.6 -4.8 2.8
142.6 99.2 139.6 0.0 -0.3
217.7 100.0 220.2 1.1 -0.3
253.5 99.9 – 0.2 -0.6
261.8 100.0 – 0.0 0.2
334.9 100.0 – 1.0 -0.4

B3g 43.1 61.2 35.5 -2.6 1.7
86.7 48.4 75.3 -9.3 6.1
90.6 95.7 87.4 0.4 -0.4

123.9 96.1 104.0 -1.1 0.7
138.2 98.7 139.2 -1.3 0.5
216.8 100.0 – 1.0 -0.2
254.8 99.9 – 0.5 -0.5
262.7 100.0 – -0.0 0.5
335.5 100.0 – 0.9 -0.4

latter not reported in the Figure) mostly involve the lateral phenyl group. A
more detailed analysis of the eigenvectors shows that the lowest frequency ag

mode of the isolated molecule, calculated at 20 cm−1 (top of fig. 3.2), in the
crystal redistributes mainly over four phonons, Ag at 37.4 and 66.6 cm−1, and
B3g at 43.1 and 86.7 cm−1.



3. ELECTRON– PHONON COUPLING 167

Table 3.6: Ag and B3g Peierls coupling constants of pure intra-molecular modes in
the orthorhombic rubrene crystal. Frequencies (ν) in cm−1, coupling constants in
meV. Only modes with gP ≥ 1.0 meV are reported. Ag and B3g modes have the
same frequency and coupling constants, so only a single value is shown.

ν calc. gP(5; l) (HOMO) gP(5; l) (LUMO)

633.6 1.3 −0.8
648.4 1.6 −0.2
751.4 1.4 −1.4

1422.5 −0.8 1.9

Figure 3.4: Four examples of strongly coupled Peierls phonons.
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3.2.3 Discussion

Since rubrene (like the great majority of organics) is a hole semiconductor, we
will limit ourselves to discuss results relevant to the HOMO (valence band). The
Holstein coupling strength of the isolated rubrene molecule has been calculated
by DFT methods [134, 138], with some interesting result of a strong coupling
by very low frequency (below 100 cm−1) vibrations. We have already seen that
the Holstein coupling of the low-frequency mode of the isolated molecules are
washed out when the molecule is embedded in the crystal. A part from this,
our values of the individual ǫsp(m) are somewhat higher than those obtained by
DFT, but the relative values show the same trend.

An important contribution in the field has been given by Troisi [124]. He
has been able to predict rubrene absolute mobility and its temperature depen-
dence (between 200 and 350 K) by looking at the thermal fluctuations of the
transfer integrals. The idea of Troisi [124] is based on the analysis of the time-
dependent fluctuations of the transfer integrals, obtained by classical molecular
dynamics and INDO/S. Since this approach is somehow complementary to ours,
it is instructive to compare the results. The top of fig. 3.9 reports the Fourier
transform of the autocorrelation function of the time-dependent transfer inte-
grals along the rubrene b axis, (adapted from [124]). The peaks correspond
to the frequencies of phonons that most strongly modulate the transfer inte-
grals, corresponding to phonons with the strongest Peierls coupling constants.
The middle panel of the Figure shows the absolute values of the Peierls cou-
pling constants in Table 3.5, multiplied by the relevant phonon density of states
(PDOS), calculated as:

PDOS(ω) =
∑

l

∫

1
dωl (k)

dk

(3.18)

The PDOS of rubrene shows a relatively small dispersion of the optical phonons,
that somehow justify our assumption of disregarding the wavevector depen-
dence of the coupling constants (see sect. 3.1.3). The Troisi function is less
peaked than ours, with a broad band centered at about around 50 cm−1, whereas
in our case the most important peaks occur at higher frequencies. On the other
hand, our calculations appears to be completely compatible with the experimen-
tal Raman spectra, reported in the bottom panel of fig. 3.9.

In many approaches the idea is that the mobility does not depends on the
details of the carrier-phonon coupling. According to this in the Troisi’s model
the mobility is computed on the basis of only one effective phonon per type
(Holstein and Peierls), with coupling strength taken as twice ǫsp and ǫd . The
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Figure 3.9: Top panel: Frequency analysis of the nuclear motions that mod-
ulate more strongly the transfer integral along the b axis (adapted from Ref.
[124]). Middle panel: Peierls coupling constant multiplied by the phonon den-
sity of states (PDOS). Bottom panel: Raman spectrum reporting the Ag and B3g

phonons (adapted from Fig. 1 of Ref. [135].)

effective phonons frequency is roughly set equal to the frequency of the most
strongly coupled mode [124].

Our calculated total Holstein and Peierls coupling strengths (99 and 20 meV,
respectively) have the same ratio as the reorganization energies used in ref.
[124]. For the frequency of the effective phonons, we use the weighted average
of the coupled frequencies:

ωeff =

∑

jω jǫ j
∑

j ǫ j
(3.19)

where ω j are the frequencies of either the Holstein or Peierls coupled modes,
with small polaron binding energy or lattice distortion energy ǫ j . We obtain
an effective frequency of the same magnitude of the one obtained by Troisi.
Two different approaches give comparable parameters, in terms of which the
rubrene mobility around room temperature is satisfactorily reproduced.
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3.3 Conclusions and further developments

In this chapter we have illustrated the method developed to calculate the e-ph
constants of organic semiconductor, with application to rubrene.

We have obtained a detailed description of phonons and of their local and
non-local coupling with the holes in the valence and conduction bands. Of
course, we cannot trust the absolute value of the coupling constants, but the
relative magnitude of Holstein and Peierls coupling strengths is correctly consid-
ered. Indeed, having adopted a unified method of calculation, and that properly
accounts for the change in the phonon description when the rubrene molecule
is embedded into the crystal, we can confidently state that the overall coupling
strength of the Peierls coupling (ǫd) is about one fifth of the strength of the
Holstein coupling (ǫsp).

One key ingredient of our method is to allow interaction and mixing of
the inter- and intra-molecular phonons. This has been done within the QHLD
method, that provides the complete phonon structure, in a semiempirical frame
based on ab initio molecular vibrations. The mixing of inter- and intramolecular
vibrations is fundamental in accounting for the phonon related properties of the
crystal [132]. The possibility to mix such contributions is expected to be impor-
tant in a flexible molecule like rubrene. Due to the presence of heavy lateral
phenyl group, isolated (gas phase) rubrene has several low-frequencies vibra-
tions, some of which show strong Holstein coupling to the charge carrier [134,
138]. However, we have put in evidence that embedding the rubrene molecule
in the crystal strongly attenuate the Holstein coupling of low-frequency phonons
and the overall Holstein coupling strength is slightly decreased in the crystal.
Calculation of both Holstein and Peierls coupling constants for all phonons in
the rubrene crystal shows that despite the mixing between inter- and intra-
molecular phonons, a rather clear separation remains between low-frequency
phonons, which mostly modulate the transfer integral, and high frequency phonons
modulating the on-site energies (fig. 3.8)

It is worthy to remind the approximations we adopt in our calculations: for
instance, we calculate the coupling constants only for the optical phonons at the
zone center ( k= 0 assumption). This is normally done in the field of the trans-
port properties calculation, and it is a reasonable approximation (as discussed in
3.2.3). Relaxing this approximation will offer an interesting procedure to even-
tually consider other source of the couplings, but is computationally very costly.
In addition, we disregard the anharmonicity, which in the case of low-frequency
phonons might have important effects on the physical properties above 100 -
150 K. However, it is known that macroscopic properties such as mobility do not
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depend strongly on the details of the carrier-phonon coupling. Indeed, models
aimed at reproducing the temperature dependence of the mobility of organic
semiconductors use single effective phonons as model parameters.

The approach adopted is semi-empirical, as well as the calculation per-
formed with INDO/S (Zerner parametrization), that lead to reasonable results
in term of the estimated coupling constant and relaxation energies, that are
compatible with the state of the art. The model proposed is general and can
be easily extended and applied to many other molecular crystal of medium and
large molecular size, because of the rather low computational cost. In these re-
spect, within a collaboration with the same group in Bologna, an application of
the same approach on pentacene molecular crystal to extract coupling constants
is in progress. Pentacene shows large mobilities, comparable with inorganic
semiconductor, even at high temperature. The relation between structure and
electronic and charge transport properties it is even more intriguing by virtue
of the presence of two polymorph (H and C phases) of the pentacene crystal
[139].

The extension of this study to other organic semiconductors will be helpful in
validating the presented computational protocol. The application of the model
to different systems will provide parameters for the local and non-local carrier-
phonon coupling, in order to check if the differences in term of mobility in
different systems are correctly rationalized and accounted for.





Chapter 4

Resonant energy transfer and

chromophore excitation

interactions

Energy transfer is a widespread process in nature: it plays a key role in life
science processes like photosynthesis, or bioluminescence [11, 140]. At the
same time, with the idea to mimic the nature operations, energy transfer is
very important in designing new materials for the energy storage and transport
[141, 142, 143, 144], as well as organic solar cells [145] and organic light-
emitting devices [146].

Basically, the process describe the transfer of energy from an excited donor
molecule D to an acceptor molecule A:

D∗ +A0→ D0 +A∗ (4.1)

where starred symbols refer to molecules in an excited state, while the zeroed
symbols refer to the ground state. In a more general sense, D and A can be
supramolecular entities, such as proteins, or semiconductor nanocrystal, like
quantum dots or nanorod.

Depending on the D–A distance, three mechanisms govern energy transfer.
At large distance the acceptor molecule can absorb a photon emitted by the
excited donor. This non-coherent process requires a finite overlap between the
fluorescence spectrum of the donor and the absorption spectrum of the accep-
tor and an intermolecular distance larger than the wavelength of the exchanged
photon. At very short distances, when the overlap between the frontier orbitals
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of the D and of the A molecules become sizeable (dDA ® 3-4 Å), the energy
transfer can be mediated by the exchange of electrons, in the so-called Dexter
mechanism [147, 148]. Here we discuss the resonant energy transfer (RET) as
relevant to intermediate distances, where RET is driven by electrostatic inter-
molecular interactions and can be described as the exchange of a virtual photon.

A general quantum description of RET, valid in perturbative limit, can be
done through the Fermi Golden Rule for the transfer rate:

kET =
2π

ħh
|〈ΨD∗A0 |V̂|ΨD0A∗〉|2δ

�

ωD0D∗ −ωA0A∗
�

(4.2)

where ħh = h
2π

, ΨD∗A0 and ΨD0A∗ are the basis state wavefunctions relevant to
the donor – acceptor system with either D or A excited, respectively. V̂ is the
operator for the interactions responsible for the transfer process. The Dirac
delta imposes energy conservation enforcing equal energies for the D∗ → D0

and A0 → A∗ processes. Equation 4.2 clearly points to two important ingredi-
ents for the ET: the presence of some kind of interaction (the matrix element
VD∗D0,A0A∗ , later on simply V) between the two molecular unit involved in RET;
and the conservation of energy. From the spectroscopic point of view, energy
conservation is guaranteed by the presence of a spectral overlap between the
emission spectrum of the D and the absorption spectrum of A. Hence the last
factor of eq. 4.2 can be generalized, accounting for finite bandwidths:

δ
�

ωD0D∗ −ωA0A∗
�

−→
∫ ∞

0

Sem
D (ω)S

abs
A (ω) dω (4.3)

where Sem
D (ω) and Sabs

A (ω) refer to emission spectra of the donor and the ab-
sorption spectra of the acceptor.

In this chapter we discuss some theoretical aspect of resonant energy trans-
fer. In particular we will introduce an original approach to estimate V, based on
semiempirical computational methods. We show preliminary results on selected
molecular systems. This work is due to a collaboration with Prof. Pati group of
JNCASR (Bangalore, India), in the frame of an Indo-Italian project, financed
by the Foreign Affair Ministry. A consistent part of the work has been done in
Bangalore during a short research period (April 2010).
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4.1 Common theoretical treatment for resonance

energy transfer

4.1.1 The transition densities approach

Assuming a perturbative approach, the exciton states involved in the ET process
can be expressed as a product of the wave functions of the isolated acceptor A
and donor D unit:

|ΨD∗A0〉 ≈ |ψD∗〉|ψA0〉 ≡ |ψD∗ψA0〉
|ΨD0A∗〉 ≈ |ψD0〉|ψA∗〉 ≡ |ψD0ψA∗〉 (4.4)

If we consider Coulombic interactions the explicit expansion for V reads:

V = 〈ΨD∗A0 |V|ΨD0A∗〉 ≈ 〈ψD∗ψA0 |V|ψD0ψA∗〉

= 〈ψD∗ψA0 |
∑

d,a

1

|rd − ra|
|ψD0ψA∗〉 (4.5)

where rD and rA are the electronic coordinates of donor and acceptor, respec-
tively; the sum runs over d and a electrons belonging to D and A, respectively.
In line with the perturbative treatment, these equations do not account for D A
electron exchange and nor for relaxation of the wavefunction due to the D A

interactions. At this stage it is useful to introduce the transition densities, for
the donor and the acceptor units:

̺D(rd) =ψD0(rd)ψD∗(rd) (4.6)

̺A(ra) =ψA0(ra)ψA∗(ra) (4.7)

Then eq. 4.5 can be rewritten integrating the Coulomb interaction between
transition densities of D and A:

V =

∫∫

̺D(rd)
1

|rd − ra|
̺A(ra)drd dra (4.8)

Time dependent density functional theory (TDDFT) method, as well as ab-initio
approaches, can produce accurate transition densities, and hence are exten-
sively used to calculate RET interaction energies [142].

4.1.2 The dipolar approximation and experimentally accessi-

ble information

When intermolecular distances are much larger than the molecular dimensions
the charge distribution on the D and A molecules can be described in the dipo-



180 Common theoretical treatment for resonance energy transfer

lar approximation. In this approximation one regains eq. 4.8 but with the elec-
tronic transition densities ̺D and ̺A substituted by transition dipoles moments,
µD and µA. The interaction between point dipoles reads:

V ≈ Vdd =
µDµA

R3 −
3
�

µD ·R
��

µA ·R
�

R5 (4.9)

where the dot implies a scalar product between vectors. R = rd − ra represents
the vector oriented along the D–A centers direction, and obviously R = |R|.
We rewrite this expression in a more readable form, with the definition of a
geometrical parameter κ :

κ= µ̌D · µ̌D − 3
�

µ̌D · Ř
��

µ̌A · Ř
�

(4.10)

Vdd = κ
µDµA

R3 (4.11)

where the unit vectors for dipoles are defined in these way µ̌D =
µD
|µD|

, and the
same relations stands for A. The orientational factor κ depends on two angles
defined in fig. 4.1:

κ= cosθDA − 3 cosθD cosθA (4.12)

Figure 4.1: Definition of angles for the calculation of the orientational factor κ.

The main advantage of the dipolar approximation is that all quantities en-
tering eq. 4.9 are experimentally accessible, as originally recognized by Förster
[149, 150, 151, 152]. Indeed, the transition dipole moment of the donor µD is
related to the fluorescence process and can be estimated from D fluorescence
quantum yield and excited-state lifetime in the absence of transfer (i.e. in the
absence of the acceptor). µA can be measured instead from the integral of the
A absorption spectrum (oscillator strengths). The orientational factor κ can
be easily calculated. For example, if energy transfer is measured in solution,
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donor and acceptor molecules are randomly oriented and the transition dipole
moments of the donor and of the acceptor can explore all possible orientations
during the lifetime of a possible ET process: the orientational factor is averaged
over all possible orientations, and 〈k2〉= 2/3. Different is the case of a solute in
a rigid matrix, where the orientation of transition dipole moments is random,
but they are constrained in a fixed position during the emission process, so that
〈k〉2 = 0.476.

The rate of RET kRET in eq. 4.2 is usually rewritten as

kRET =
2π

ħh
|Vdd |2J =

1

τD

� r0

R

�6

(4.13)

where J represent the spectral overlap of the formula 4.3, τ0
D represents the

characteristic time of the decay of the donor excited state and r0 is the Förster
radius, at which energy transfer and spontaneous decay of the excited donor
are equally probable. The energy-transfer efficiency is given by:

φRET =
kRET

1
τ0
D
+ kRET

=
1

1+
�

R
r0

�6
(4.14)

All these expressions involve quantities that can easily accessed experimen-
tally and the Förster approach (i.e. the RET description based on dipolar ap-
proximation) has been extensively adopted. The R−6 dependence is a typical
feature of this approximation, and has been in used to determine distance be-
tween interacting D and A, using RET as a “spectroscopic ruler”.

However the dipolar approximation works only if the distance between dipoles
is larger than the molecular size. In multichromophoric assemblies, for instance,
interchromophores distances can be very small, and the dipolar approximation
becomes inadequate to describe interactions responsible for energy transfer. Re-
laxing the dipolar approximation allows to calculate in a more rigorous way the
interaction between molecules, but, even more interestingly, it may open new
channels for energy transfer, which are strictly forbidden when the dipolar ap-
proximation is adopted. Of particular interest is the case of electronic dark state
(i.e. optically inactive), that can interact by non dipolar mechanism, and it will
be discussed later.
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4.2 Semiempirical MO-CIS approaches to energy

transfer

We adopt an INDO/S MO description, extensively discussed in appendix C, to
directly calculate the interaction V involved in the RET, through the estimate
of the configuration interaction (CI) matrix elements without making any ref-
erence to transition densities. Results obtained in this original approach will be
compared with results obtained with the transition density method.

Actually, the method presented in this section, applies more generally to
HF–CI calculations, irrespectively of the model Hamiltonian assumed for the
description, either INDO/S or ab-initio Hamiltonians, and can be adapted to
different basis. It can also be extended to double CI (CISD) scheme. However
we will explicitly refer to INDO/S – CIS.

The idea is that the non-interacting “dimer”, the supermolecule formed by
D and A, can be considered as the basis for the evaluation of the interaction V.
Then a perturbative frame is implicitly adopted, but the form of the interaction
operator is fully defined by the Hamiltonian of the chosen method. No other
approximations will be done.

In the computational procedure a delicate step is to identify the transitions
that are relevant to the energy transfer process, i. e. the D excitation and the
A de-excitation. In this respect a knowledge of the experimental spectroscopic
properties of the D and A molecules, is helpful in order to select the low en-
ergy excitation of the proper energy and intensity, among the calculated ones.
Here we only address the evaluation of the V element. The experimentalist
must choose with care the D and the A molecules in order to ensure the proper
spectral overlap between relevant transitions.

4.2.1 Frozen orbitals MO-CIS evaluation of V with INDO/S

Hamiltonian

The first calculation refer to the D A pair ideally “prepared” placing the two
molecules at a very large distance, R > 100 Å, as to neglect any intermolecular
interaction. This calculation defines the non-interacting reference states that
will be adopted as the basis for the perturbative treatment of the interaction.
We will refer to this calculation as the infinite distance calculation, and we label
all quantities obtained in this limit with the∞ index or apex.

If a method to compute the excitations, like a configuration interaction (CI),
is applied to the supermolecule DA at infinite distance, the calculated electronic
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transitions will only involve MO localized on either theD or A unit. Therefore, it
is easy to select the two states responsible for the for the RET process, nominally
the D excited state (when A is in the ground state) and the A excited state
(when D is in the ground state configuration); respectively written as |D∗A0〉
and |D0A∗〉. In the CI approach these are expressed as as linear combination of
single excited configurations (compare with equation C.7):

|D∗A0〉∞ =
∑

i,r

C∞D i,rΨi→r (4.15)

|D0A∗〉∞ =
∑

i,r

C∞A i,rΨi→r (4.16)

where C∞Di,r (C∞Ai,r) are the CI coefficients relevant to the |D∗A0〉 (|D0A∗〉) state
described at infinite distance, and Ψi→r is the configuration obtained promoting
an electron from the i-th occupied MO towards the r-th virtual MO. Here and in
the following we will adopt the frozen orbital approach, and whenever MO are
introduced they refer to infinite distance.

The interaction V is then calculated (according to its perturbative defini-
tion), on the basis of these frozen MOs referring to infinite distance, but actually
using the finite distance Hamiltonian Hd . According to this scheme, the relevant
matrix element for RET interaction then reads:

V =∞ 〈D∗A0|Ĥd |D0A∗〉∞ =
∑

ir, js

C∞D i,r C∞A j,s〈Ψi→r |F̂ d |Ψ j→s〉=
∑

ir, js

C∞i,r C∞j,sH
d
ir, js

(4.17)
where F̂ d is the Fock matrix operator for the pair of molecules at distance d.

The approach is expected to apply when d is small enough for the two
molecules to feel each other, and large enough to neglect any intermolecular
charge-transfer. According to eq. 4.17 the calculation of the RET matrix ele-
ments is possible provided that we have expressions for the coefficient of the
CI expansion of basis (infinite distance) states (C∞i,r and related in eq. 4.15 and
4.16) and the elements of the CI matrix, Hd calculated at finite distance on the
basis of the frozen orbitals.

The calculation of Hd
ir, js

To find explicit expression for the CI matrix elements on the frozen orbital basis
we work in second quantization and label occupied and virtual orbitals of the
D molecules with the i and the r indexes, respectively. Symbols j and s refer to
occupied and virtual orbitals of the Amolecule. The matrix elements relevant to
RET, Hd

ir, js in eq. 4.17, have i 6= j and r 6= s. The general molecular Hamiltonian,
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on the basis of the MO, can be written as:

H =
∑

k,l,σ

hkl a
†
k,σal,σ +

1

2

∑

klmn,σ,µ

(kn|lm)a†
k,σa†

l,µam,µan,µ (4.18)

where Greek letters refer to AO, hkl are the matrix elements of the one-electron
Hamiltonian and (kn|lm) are the bielectronic repulsion terms. Moreover:

Φi→r =
1
p

2
[a†

1,αa†
1,β . . . a†

i,α . . . a†
r,β

−a†
1,αa†

1,β . . . a†
i,β . . . a†

r,α]|0〉 (4.19)

Φ j→s =
1
p

2
[a†

1,αa†
1,β . . . a†

j,α . . . a†
s,β

−a†
1,αa†

1,β . . . a†
j,β . . . a†

s,α]|0〉 (4.20)

For the CIS matrix elements of interest for RET (i 6= j and r 6= s) only bielectronic
terms are relevant and the resulting expression, derived from equation 4.17,
actually coincides with the standard expression built with Slater’s rule (p. 236
in [153]), and then:

Hd
ir, js = 2(ri| js)− (rs| ji) (4.21)

The equivalence of eq. 4.21 with the standard expression was not granted from
the beginning. Indeed the standard expression for the CIS Hamiltonian is writ-
ten on the basis of determinants that are built with MOs that diagonalize the
Fock matrix. The MO that appear in eq 4.17 do not diagonalize the Fock matrix
at distance d, while they diagonalize the Fock matrix at infinite distance. The
formal equivalence is related to the fact that the only matrix elements of Hd in
the RET refer to the non diagonal elements that mix the configurations coming
from the D excitations with the one from A. The same equivalence does not ap-
ply to diagonal elements of the CI matrix. The four-center integrals that enter
the equation 4.21 are the same that enter a regular CIS calculation, and then
can be calculated in the INDO/S approach, according to the approximations
and the expressions reported in the appendix sect. C.3.2, and imposing frozen
orbitals.

Therefore, to calculate V within this INDO/S MO–CIS formulation, the cal-
culation has to be run for the pair D and A first at very large distance, to cal-
culate relevant MO, select relevant excitations, and obtain single excited con-
figuration coefficients C∞D i,r ; A j,s of eq. 4.15 and the frozen MOs. Thereafter, a
calculation is run at finite d distance, without diagonalizing any Fock or CIS ma-
trix, but simply evaluating Hd

ir, js according to eq. 4.21. This information enters
eq. 4.17 to get the required RET matrix element. Thus, no diagonalizations at
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finite distance are required: only bielectronic integrals (ri| js) and (rs| ji) have
to be calculated at finite d for the calculation of selected matrix elements of the
CI matrix, in number of 2NC , in NC is the number of configurations that are
basis for the CI. The calculation of four center integrals, even if approximated
in the INDO/S Hamiltonian, is actually computationally demanding when the
complete CIS is needed, as required for the calculation of excitation at infinite
distance. Actually the infinite distance calculation can be optimized by perform-
ing the calculation on the two molecules separately and diagonalizing the Fock
and CIS matrix for the D and A separately, obtaining the relevant MO and exci-
tations. Then the AO basis for the supermolecule can be constructed by simply
queuing A AOs after D AOs. The MOs and the CIS matrix for the supermolecule
can be easily rewritten on the composite basis, filling with zeroes. Then the
calculation of Hd

ir, js can be performed normally. In these calculation at finite
distance d, only the specific CI matrix elements entering the expression for V
(eq. 4.17) have to be calculated, representing just a minimal fraction of the full
CI matrix. For the calculation of V(d) we have modified an available INDO/S
code [130], (see appendix C.3).

4.2.2 From transition densities to point atomic charge densi-

ties in the INDO/S

For the sake of comparison we elaborate on the transition density approach
described in sect. 4.1.1 and discuss how it applies to INDO/S Hamiltonian. In
particular, as in other semiempirical approaches, in INDO/S the basis wavefunc-
tions are not fully defined (i.e. they do not have an explicit space coordinate
dependence), so that the transition densities as defined in eq. 4.6 and 4.7 can-
not be calculated. Transition densities in fact collapses in INDO-like approaches
into a distribution of transition charges located at atomic sites. Then we define
point transition charges, located at the atomic position. For a single configura-
tion we will refer to the i → r excited configuration for D and j → s for A unit
in the way that the configuration transition densities are:

qi→r
d =

∑

δ∈d

ciδcrδ (4.22)

q j→s
a =
∑

α∈a

c jαcsα (4.23)

where the first equation stand for the D molecule and δ refers to all the AO
centered on the atom d, while the second equation stands for the molecule A (α
is the AO for a atom). The coefficients in equation 4.22 are the MO coefficients.
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Once the transition is defined as a linear combination of single CI (see appendix
eq. C.8, and also 4.15), the point transition charge density results:

q̃d D∗A0 =
∑

(i,r)

CD i,rq
i→r

d (4.24)

q̃aD0A∗ =
∑

( j,s)

CA j,sq
j→s

a (4.25)

where again the first line refer to the transition charge at the atom d for an
excitation localized on the donor and the second line refer to the localized ac-
ceptor excitation. The above expressions for the charge densities refer to the
non-interacting D−A pair. The calculation, that involve extensive CIS, can be
conveniently performed separately on D and on A.

In this approximation the RET interaction energy in 4.8 reads:

V =
∑

d

∑

a

q̃d D∗A0 q̃aD0A∗
1

|rd − ra|
(4.26)

4.3 Extended dipole methods in essential state mod-

els

We finally mention an approach to the calculation of V based on essential state
model [154]. As discussed on chap. 1 and chap. 2 essential state models
proved very successful to describe electrostatic interactions between different
CT chromophores, and, in this respect, they are expected to provide a reliable
description of RET occurring between CT chromophores. In the examples stud-
ied, the donor molecule is a dipolar DA chromophore, that can be described
based on a two-state model (sect. 1.1), while the acceptor A can be a dipo-
lar, a quadrupolar and an octupolar molecule, described in terms of two, three,
or four state models, respectively. For each model the basis states are defined
considering the neutral state plus a zwitterionic state for each arm. In essential
state models the charge distribution on CT chromophores is approximated to
point charges at the center of the D and A groups. The calculation of relevant V
interaction is described in [154] and will not be addressed here.

4.4 Results

To test the proposed approach to the calculation of V we consider two DA pairs.
In both cases the D species is a commercial laser dye, LD390 (L in the follow-
ing). In the first pair we consider a dipolar acceptor, cumarine C480 (C), while
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in the second pair the acceptor is the quadrupolar chromophore trans,trans-
bis(dimethylamino)styril-tetrafluorobenzene. (Q).

For eachD – A pair an INDO/S calculation is performed, in order to calculate
Vwith the direct matrix element evaluation (eq. 4.17), or via the charge density
approach (eq. 4.26). Results are compared with the dipolar approximation
Vdd (eq. 4.9). Results are obtained running a properly adapted version of
INDO/S program on molecular structures, optimized at DFT B3LYP level using
Gaussian package (Prof. Pati Group) [154]. Geometry optimization refer to the
ground state for the acceptor molecule, while the D geometry is optimized with
reference to the emitting state. Interactions are always reported in absolute
value.

Figure 4.2: Molecular structure of studied molecules.

We now concentrate on the first pair of dipolar molecules: LD390 (L) that
works as the donor, and the coumarine C480 (C) that work as an acceptor. The
molecular structure are reported in fig. 4.2. For both molecules the lowest
energy transition is optically allowed with large oscillator strength and CT char-
acter. Relevant transition energies and oscillator strength are reported in table
4.1.

The absolute values of the calculated V are reported in fig. 4.3 and 4.4 for
two different geometry of the donor-acceptor pair. In particular A1 and A2 in
fig. 4.3 refer to a “face to face” geometry with R measuring the interplanar
distance. In B1 and B2 in fig. 4.4 the molecule are instead aligned and R mea-
sures the distance between the centers of the charge distributions. A geometry
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Table 4.1: Properties of the computed transition at INDO/S level (full CIS) for L

as Donor, and C and Q as Acceptor.

energy (cm−1) trans. dip. moment (D) osc. strength

L: |D∗A0〉∞ 26850 6.8 0.59

C: |D0A∗〉∞ 25720 7.1 0.60

Q(1): |D0A∗〉∞ 24010 13.4 2.04
Q(2): |D0A∗〉∞ 29930 0.0 0.00

leads to larger RET interactions, about doubled compared to the B geometry.
Results obtained in the dipolar approximation (continuous line) in fig. 4.3 and
4.4 represent the limiting results at large R of the two other approaches. Devi-
ations from the dipolar limit are in general sizeable. The direct calculation of
the interaction via the calculation of relevant matrix element of the CI matrix
yields in general to a large V value than the method based on transition charges.

We now turn attention to the interaction between the polar dye L and the
quadrupolar dye Q. According to the essential state analysis for a quadrupolar
dye we expect an optically allowed lowest excitation and a second excited state
optically forbidden [21]. Both states have a strong CT character. The two lowest
excitation calculated for Q confirm this general picture, as shown in the table
4.1.

Five different geometries are considered for the L – Q pair. For the two face
to face geometries A and C of fig. 4.5, R measures the interplanar distance. For
the T-shaped geometry B of fig. 4.5 R is the distance between the Q plane and
the center of charge distribution of L. Finally for the two aligned geometries of
fig. 4.6, R measures the distance between the centers of charge distributions.

Here we calculate V from the excited L towards either the first or a second
excited state of Q, Q(1) and Q(2), respectively. In particular we notice that in
the dipolar approximation the optically forbidden (dark) Q(2) state would be
totally inactive in RET and the relevant V should vanish. The most striking
result is that in most cases the V interaction involving the dark state is of the
same order of magnitude as the interaction involving the allowed state Q(1),
demonstrating the failure of the dipolar approximation. Interestingly, in geom-
etry B the RET interaction is larger for the L – Q(2) interaction than for the L

– Q(1), which almost vanishes. This is related to the different symmetry of the
two excited state of Q, with respect to the orthogonal orientation of the dipolar
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Figure 4.3: Results of the INDO/S calculation on the pair L – C at different dis-
tance, with the three methods: direct evaluation of matrix elements (symbols),
dipolar approximation, atomic point transition charges (dotted thick line). As rep-
resented in the upper scheme in the geometry on the right the L molecule is rotated
of 180◦ around the z axis.
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Figure 4.4: Results of the INDO/S calculation on the pair L – Cat different distance
in the “aligned” geometry, with the three methods: direct evaluation of matrix el-
ements (symbols), dipolar approximation, atomic point transition charges (dotted
thick line). As sketched at the top geometry on the left refer to the two molecules
when approaching the A group of theDmolecule and the D group of the Amolecule,
while vice versa on the left.
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Figure 4.5: Results of the INDO/S calculation on the pair L – Q at different dis-
tance, with the three methods: direct evaluation of matrix elements (symbols),
dipolar approximation (line), atomic point transition charges (dotted thick line).
The calculation has been performed in three different geometry, as sketched in the
top scheme (view on the xz plane). Different color correspond to the choice of
two different excited state in for the Q molecule, expressed as Q(1) (pink lines and
symbols) and Q(2) (green lines and symbols).
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Figure 4.6: Results of the INDO/S calculation on the pair L – Q at different distance
in the “aligned” geometry, with the three methods: direct evaluation of matrix
elements (symbols), dipolar approximation (line), atomic point transition charges
(dotted thick line). The calculation has been performed in two different geometry,
as sketched in the top scheme. Different color correspond to the choice of two
different excited state in for the Q molecule, expressed as Q(1) (pink lines and
symbols) and Q(2) (green lines and symbols).
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molecule L [154]. At the same time, in C geometry, the L – Q(2) contribution is
larger than the L – Q(1) at short distances.

A proper investigation of the R dependence of V is an important issue to
understand the physical mechanism of the interaction. The dipolar approxima-
tion always gives the classical V(R)∼ R−3 dependence, but the R-dependence is
different and more complex in other geometries.

4.5 Conclusion and further developments

We presented a novel computational scheme to evaluated RET interaction en-
ergy. The method is general and applies irrespective of the choice of the model
Hamiltonian and of the basis set, as well the number and level of CI will affect
the global quality of the results. In particular the approach can be extended to
doubly excited configurations, and applies quite naturally to TD-DFT scheme as
well (work is in progress along these line in collaboration with Prof. Pati).

For both the L–C and L–Q pairs the results unambiguously point to the fail-
ure of the dipolar approximation at distances ∼ 20 Å and below. Particularly
striking in this respect are the results obtained for RET involving the dark state
of Q: this transfer, forbidden in the dipolar approximation, is instead allowed
with V values that, depending on the supramolecular arrangement of the D and
A pair, can be even larger than those calculated for the allowed Q transition.
Results obtained using the transition density approach (that within INDO/S re-
duces to transition charges approach) and via the direct calculation of the CI
matrix elements are in good qualitative agreement in all cases but always lead
to large V for the direct calculation with respect to transition density calcula-
tions.

While the dipolar approximation fails at short distances, both the transition
densities and the direct CI calculation lead to similar results, with the CI ap-
proach leading to larger estimates of V than the transition density approach.
This discrepancy can have two origins. First, in the empirical INDO/S approach
effective models for electron-electron interaction are adopted to account for the
screening of electronic charges from core electrons as well as from other ef-
fects, so that the interaction Hamiltonian does not coincide with the simple 1

r
expression entering eq. 4.5 (as in the standard INDO/S [130] we adopt a modi-
fication of the Mataga-Nishimoto parametrization, in eq. C.16 in the appendix).
The other possible reason for discrepancy is the “exchange term” (the first con-
tribution in right side of eq. 4.21) that enters the V expression calculated in the
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CI approach, but that is totally silent in the transition density approach. Further
studies are in order to evaluate the relative importance of these two effects.



Conclusion and perspectives

This thesis discusses a wide range topics related to the spectroscopic character-
ization and to the theoretical modeling of molecular functional materials. The
work implied (a) spectroscopic measurements mainly in solution; (b) the devel-
opment, implementation and exploitation of essential state models for spectral
properties of chromophores and multichromophores assemblies in solution and
for molecular crystals; (c) the implementation of original numerical algorithms
in semiempirical quantum chemical calculations (mainly INDO codes).

Most of the work was devoted to DA chromophores whose low energy physics
is governed the charge resonance between DA and D+A− states. Essential state
models are presented to describe the rich phenomenology associated to these
chromophores and to related materials. In particular we obtain a very detailed
description of low-energy spectral properties including linear and non-linear
spectra, solvatochromism, excitonic effects in spectra of multichromophoric as-
semblies. Central issues in this work are electron-vibration coupling, treated
either in the adiabatic approximation or in truly non-adiabatic approaches, the
description of polar solvation and of internal conformational degrees of free-
dom, and the role of electrostatic interchromophore interactions. Fluorescence
anisotropy spectroscopy, a technique recently implemented in the host labora-
tory, proved extremely useful to extend the range of available experimental data
yielding further support to theoretical models.

Essential state models are also central to the description of valence tau-
tomerism in DA chromophores with reduced DA delocalization and of bistabil-
ity driven by electrostatic intermolecular interactions in molecular crystals of
DA chromophores. In this context, a mean field treatment of electrostatic in-
termolecular interactions leads to a sound understanding of the complex phe-
nomenon of bistability, that requires a precise balance between inter and in-
tramolecular energies. In crystals of ionic DA+ dyes the electrostatic interaction
between the molecular ion and the counterion can be adjusted by changing the
counterion, offering a powerful tool to drive the system in the bistability regime.
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The comparison with experimental system is done in a bottom-up modeling
strategy: the molecular model is obtained from the analysis of optical spectra
of the DA chromophore in solution, while an ad hoc implementation of quan-
tum chemical calculations is developed to estimate electrostatic intermolecular
interactions. Along these lines the T dependence of Mössbauer spectra of a DA

crystal is quantitatively reproduced in terms of Tdependent population of the
metastable state in the bistability region.

Electron-vibration coupling, central to properly understand optical spectra
of CT chromophores in solution also plays an important role to understand
charge-transport in organic semiconductors. Here we developed an original
implementation of the INDO/S code and apply it to estimate the strength of
Holstein and Peierls coupling in crystals of rubrene, a widely investigated or-
ganic semiconductor.

Electrostatic interchromophore interactions have been investigated to model
excitonic effects in optical spectra of multichromophoric system, as well as to
understand bistability in crystals of DA chromophores. The same interactions
are responsible for the phenomenon of resonant energy transfer (RET). RET
is a wide spread phenomenon in nature with important technological applica-
tions in fields ranging from organic light emitting diods to organic solar cells
to biosensing, etc. . The widespread Förster model for RET dates back to the
40’s [149]: it works pretty well for many systems, but its limitations in many
systems of interest for applications (including large chromophores and/or mul-
tichromophoric assemblies) are known. The main limitation is related to the
dipolar approximation enforced in the Förster description of RET. Here we pro-
pose an original approach to the calculation of electrostatic interchromophore
interactions responsible for RET that fully relaxes the dipolar approximation.
The approach is based on the calculation of CI matrix elements in an HF-SCF
approach on the basis of frozen MO calculated for the chromophores at infi-
nite distance. This extremely promising approach, implemented in the INDO/S
code, was applied to a few systems.

Some of the topic discussed in this work are now fairly mature. Essential
state models for chromophores and multichromophores, as an example, repre-
sents now a well tested and reliable tool. Models for bistability are similarly
mature, but much work is needed to develop new materials showing bistable
behavior. Our models offer a guide for this ambitious goal. In spite of extensive
work done in the last decades on charge-transport in organic semiconductors,
a reliable a coherent model is still missing, and our work on electron-vibration
coupling just represents a step towards a better understanding of the delicate
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interplay of molecular vibrations and lattice modes with mobile electron. The
importance of RET is hardly emphasized. Our original approach for the calcula-
tion of interaction energies relevant to the RET processes is extremely promis-
ing and does not require any specific approximation on electrostatic interaction
beyond those introduced in the definition of the adopted quantum chemical
model. The approach implemented here within the INDO/S model should be
applicable to large chromophores. It applies as such to other HF-SCF scheme at
the CIS level, but it can be extended to double CI as well. Particularly simple
(and promising) is the extension of the model to TD-DFT codes, and work in
this direction is presently in progress.





Appendix A

Experimental techniques

A.1 Absorption and Fluorescence

Absorption spectra were collected using a Lambda650 Perkin-Elmer instrument.
A Jobin-Yvon FluoroMax3 fluorometer was used for emission measurements.
Unless otherwise specified spectra are obtained with concentration ∼ 10−5 M
for absorption and ∼ 10−6 for fluorescence. We verify the Lambert-Beer law in
absorption spectra, by comparing spectra at different concentration. When mea-
suring the molar extinction coefficient, absorption measurements are collected
at 4-6 levels of concentration, in the range 10−6 ÷ 10−4 M. A linear regression
is then performed with the concentration and the absorption at the band max-
imum. The slope of the least square line is the molar extinction coefficient.
Unless otherwise specified, experimental error in the extinction coefficient are
within the 10%.

A.1.1 Measurement of fluorescence quantum yields (FQY)

By definition, the fluorescence quantum yield, φ, measures the portion of ex-
cited molecules that deactivate by emitting a photon, corresponding to the ratio
of the number of emitted photons to the number of absorbed photon per time
unit [155]. Fluorescence quantum yield is related to the radiative (kr) and
nonradiative (knr) rate constants of deactivation by the relationship:

φ =
kr

kr + knr
(A.1)

The measurement of absolute quantum yield requires special equipments,
such as integrating spheres. For measurements in solution, the relative quantum
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yield is usually determined. The fluorescence efficiency of a sample is related to
the fluorescence of a standard reference compound by the equation:

φx =
As

Ax

Ix

Is

n2
x

n2
s

φs (A.2)

where x , s refer to the sample and the standard, respectively. A is the absorbance
of the solution at the excitation wavelength and accounts for absorbed photons,
I is the integrated area of the fluorescence spectrum (in wavelengths) that ac-
counts for emitted photons, and n is the refractive index of the solvent. To avoid
internal filter effects, optically diluted solutions must be used, with A< 0.1.

The integrated area of fluorescence spectra is calculated considering the cor-
rected spectra. Gratings, detectors and other spectrometer components have
characteristic responses that vary as a function of the wavelength. In a fluorom-
eter, two correction curves have to be accounted for:

1. the correction for the emission channel (grating and detector) allows to
get a reliable bandshape of the fluorescence spectrum, and as a conse-
quence, a reliable integrated area.

2. the source in a fluorometer is usually a halogen lamp, that emits in the vis-
ible range. and which intensity emitted depends on the wavelength. For
fluorescence quantum yield measurements, if the sample and the stan-
dard are excited at different wavelengths, fluorescence spectra has to be
divided by the intensity of the lamp at the excitation wavelength. More-
over, the response of the detector that monitors the intensity of the lamp is
a function of the wavelength, and its signal response has to be corrected.

If not otherwise specified emission spectra are collected exciting the sample
at the maximum of the absorption band. Moreover, the standard fluorophore
used for fluorescence quantum yield measurements is Fluorescein in NaOH
0.1M (φs = 0.9), excited at 470nm. Its fluorescence quantum yield was tested
using different standards, such as Rhodamine101 in EtOH (φs = 1) and Quinine
Bisulfate in H2SO4 0.05M (φs = 0.56). Since emission intensity is sensitive to
temperature, fluorescence spectra were collected on thermostated solutions, at
23◦C, when not differently specified.

The error in the determination of fluorescence quantum yield, adopting the
procedure described above, does not exceed 10% - 15%.
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A.1.2 T dependent optical Vis-NIR-MIR measurements

T dependent spectra in solution are collected using the cryostat described in
sect. A.3.1 in this appendix, combined with a spectrophotometer FT-IR Bruker
IF66 for the Vis-NIR-IR region or with the instrument Lambda650 Perkin-Elmer
for the Vis region.

For these measurements solutions were cooled and not frozen. Once the
temperature in the temperature controller was stable, the measures has been
recorded after 15-20 minutes in order to left the sample to reach the thermal
equilibrium.

In the FT-IR Bruker IF66 spectrophotometer different experimental setup
can be adopted depending on the spectral range of interest. In particular we
combined

• the source: Globar (MIR, 400-8000 cm−1) or halogen (NIR-Vis),

• the detector: DTGS (MIR: 4000-13000 cm−1), Ge (NIR: 5000-14000 cm−1)
and Si (Vis: 10000-22000 cm−1) and

• the beamsplitter: KBr (MIR) and CaF2 based (NIR-Vis).

Measurements were collected in transmission, recording the series of T depen-
dent spectra for the reference (the solvent), and then collecting the T dependent
measurements for the sample (solution), working in the same experimental con-
ditions.

A.2 Two photon absorption (TPA) and two-photon

excited fluorescence (TPEF)

Two-photon absorption is a third-order nonlinear process in which two photons
are absorbed simultaneously by the sample (coherent process). The two-photon
absorption data reported in this thesis (chap. 1) were measured using the two-
photon excited fluorescence (TPEF) technique. TPEF measures the fluorescence
signal induced by the simultaneous absorption of two photons. The two-photon
absorption cross section, σ2(ω), is derived by comparison to a reference com-
pound based on the fluorescence quantum yield (φ) of the sample. Assuming
that φ is the same when the sample is excited by one or two photons, the fluo-
rescence signal F induced by two-photon absorption is:

F ∝ cP2Kσ2φ (A.3)
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where c is the concentration of the active species, P is the incident power, K is
the detection efficiency. The detection efficiency is expressed as follows:

K =
f

n2 (A.4)

where f is the correction factor, taking into account the wavelength dispersion
of the response function, and n is the refractive index of the medium [156].
The ratio of the function F/P2 measured on the sample and on the reference
(F/P2)R is proportional to the two-photon absorption cross section σ2:

F

P2

�

F

P2

�−1

R
=

cKσ2φ

cRKR(σ2φ)R
(A.5)

From Equations A.4 and A.5, the TPEF cross section of the molecule of interest,
multiplied by φ, is given by the following expression:

σ2φ = (σ2φ)R
fR

f

cR

c

n2

n2
r

F

P2

�

F

P2

�−1

(A.6)

The direct outputs of the measurements are the signals F
P2 of the sample and

of the reference compound. The dependence of such signals on P must be con-
stant, i.e. the fluorescence signals must have a quadratic dependence on the
incident power. The quadratic dependence of the fluorescence signal on P is
always tested for each wavelength, to rule out the occurrence of photodegrada-
tion or saturation phenomena [156].

The excitation source is a Ti:sapphire femtosecond laser system, delivering
pulses of ca 150fs duration and 76MHz repetition rate. This laser supplies pho-
tons in the 700-980nm spectral range. The experimental setup at University
of Padova, Italy, (Prof. C. Ferrante) collects the fluorescence signal at 90◦ with
respect to excitation.

In the CGS system, the TPA cross section has the following units: cm4· s
· photon−1. Practical units commonly adopted are the Göppert-Mayer (GM)
defined as: 1GM=10−50· cm 4· s · photon−1 [156].

If not specified the experimental uncertainties in the TPA cross section re-
ported in chap.1 are around the 15%.

A.3 Cryogenic measurements on solutions

Low-temperature measurements give hints about important phenomena related
to solvation of CT-dyes. As previously discussed, molecules of polar solvents ar-
range according to the electric field created by the polar solute, originating the
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so-called reaction field. Inhomogeneous broadening is related to the disorder of
the system caused by a thermal distribution of the orientational component of
the reaction field around its equilibrium value. Being governed by thermal dis-
tribution, inhomogeneous broadening is affected by temperature. Moreover, if
the temperature is sufficiently low to immobilize the solvent molecules (glass or
solid transition, depending on the solvent and the cooling speed), the relaxation
of the solvent around the excited solute molecule is hindered.

Low-temperature measurements in glassy solvents set the basis for emission
and excitation anisotropy, discussed in the next section.

A.3.1 Cryostat and experimental setup

Experimental measurements at low temperature were performed using the liquid-
nitrogen cooled cryostat OptistatDN (Oxford Instruments), equipped with the
temperature controller ITC601 (speed of cooling ∼ 20◦C/minute). Figure A.1
shows a schematic diagram of the OptistatDN cryostat. Liquid nitrogen is stored
in a reservoir, that surrounds the central sample access tube, but is thermally
isolated from it. Liquid nitrogen is supplied to the heat exchanger in the sample
space through a capillary tube. The flow of liquid nitrogen is aided by gravity,
but the flow rate is controlled by the exhaust valve at the top of the sample
space. A platinum resistor and heater are fitted to the sample space heat ex-
changer and a temperature controller is used to supply the required amount of
heat to balance the cooling power and set the required temperature. The sam-
ple is positioned inside the window block, which is just below the sample space
heat exchanger, and three quartz windows give optical access to the sample.
The sample chamber is pumped with a rotatory pump, to evacuate air and espe-
cially water vapor, and the sample space is filled with dry helium, that, thanks
to its good thermal conductivity, ensures good heat exchange to the sample.
The reservoir and sample space are thermally isolated from the room tempera-
ture surroundings by the outer vacuum chamber (OVC). This space is pumped
to a high vacuum before the cryostat is cooled down, and the vacuum is main-
tained by a small sorption pump fitted to the reservoir. This continuously pumps
the residual gases from the OVC to maintain good thermal isolation. A heater
has been fitted to the sorb, and is used to drive the absorbed gases out of the
activated charcoal when the system is at room temperature [157].

The sample is contained in special quartz cuvettes for cryogenic applications.
They are constituted by a single piece, because glue usually has a different
coefficient of thermal expansion with respect to quartz. Alternatively, the faces
of the cells are sealed with special glues for cryogenics.
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Figure A.1: Schematic diagram of the OptistatDN cryostat.
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A.3.2 Glassy solution measurements

All measurements are performed on diluted solutions, with absorbance < 0.1

(∼ 10−6M), to avoid inner filter effects. Particular attention is paid to the
choice of solvents for measurements at low temperature. Solvents that show
a glass transition (instead of the more common crystallization transition) are
preferred, to avoid light scattering in crystalline environment. Many solvents
are reported in the literature to have a glass transition, but the glass transi-
tion strongly depends on the cooling speed. Using the cryostat described previ-
ously, we were able to obtain glasses from 2-methyltetrahydrofuran (2-MeTHF
or MeTHF), propylene glycol (PrG) and decalin.

Properties of solvents, such as the refractive index and the dielectric con-
stant, strongly depend on temperature. In particular, for organic solvents, the
refractive index increases when temperature decreases [158]. The dielectric
constant increases as well when temperature decreases, so that solvents become
more polar when decreasing the temperature.

Propylene glycol (PrG) is a polar solvent. Glassy PrG solution can be ob-
tained directly from purchased solvent without any further purification. Best
experimental condition to achieve the glassy state are obtained cooling PrG so-
lution to 190K ÷ 200K [55]. The experimental measurements performed on
glassy solution of PrG presented in chap. 1 (see sect. 1.4.2) have been collected
at 200K.

Decalin is an apolar solvent. Measurements in decalin (see sect. 1.6.3) has
been performed at 200K. The melting point for decalin is 233K (for the mixture
of cis and trans decalin), and at T ≈ 200K the solvent can be considered a
supercooled liquid with reduced molecular mobilities.

2Me-THF at room temperature is a solvent of intermediate polarity, with di-
electric constant ε = 6.97. The Tg temperature for MeTHF is 91K. The glass is
prepared from solution that has been stored under molecular sieves for 12-24
hours before the experiment. The whole series of anisotropy measurements re-
ported in MeTHF (see sect. 1.6.3 and 1.4.2) has been performed at 77K, i.e.
when the solvent is a transparent glass. Range of temperature like 77K ÷ 150K
are not explored since 2Me-THF crystallizes at 137K and approaching the tem-
perature of crystallization is dangerous because the glass to crystal transitions
often results in the sample cell breaking.
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A.4 Fluorescence anisotropy

Fluorescence anisotropy is a spectroscopic technique based on the principle that
upon excitation with polarized light, many samples also emit polarized light.
The origin of this phenomenon is related to the presence of transition dipole mo-
ments for absorption and emission, which lie along specific molecular axes. In
solution, fluorophores are randomly oriented. When exposed to polarized light,
molecules with the absorption transition dipole moment oriented along the di-
rection of polarization of the incident light are preferentially excited. Hence,
the excited state population is not randomly oriented. Anisotropy measures the
change in orientation of the transition dipole moment relevant to emission with
respect to absorption (excitation).

Depolarization of emission originates from a number of different phenom-
ena. One of the most common reason of depolarization is rotational diffusion.
Since anisotropy measures the angular displacement between the absorption
and emission transition dipole moments, if the rate of diffusion is faster then
the rate of the emission, fluorescence is completely depolarized. The rate of
diffusive motion depends both on the viscosity of the solvent, and on the shape
and the dimension of the fluorophore. Small molecules are characterized by a
fast diffusion rate. On the contrary, diffusion is hindered in viscous solvents, or
in glassy matrices. This is one of the reasons why we were interested in low
temperature measurements (presented in the previous section).

Fluorescence anisotropy finds interesting applications in biochemistry. The
timescale of rotational diffusion of biomolecules is comparable to the decay time
of many fluorophores. Hence, all factors that alter the rotational correlation
time, also affect anisotropy. Fluorescence anisotropy is used for example to
quantify protein denaturation, or to study the internal dynamics of proteins.
[55]

Our interest in fluorescence anisotropy is instead related to the possibility to
obtain information about angle formed between the transition dipole moments
of absorptions and emission processes. This information, particularly interesting
for multibranched systems, requires measurements in frozen (glassy) solutions.

A.4.1 Fundamental aspects and experimental setup for anisotropy

measurements

The experimental setup for fluorescence anisotropy measurements is schemat-
ically illustrated in Figure A.2. The sample is excited with polarized light, and
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Figure A.2: Sketch of experimental setup for anisotropy measurements.

emission is detected through another polarizer. Anisotropy is defined as:

r =
I‖ − I⊥

I‖ + 2I⊥
(A.7)

where I‖ is the intensity of emission measured when the polarizer before the de-
tector (analyzer) is parallel to the excitation polarizer, while I⊥ is the intensity
of the emission when the analyzer is perpendicular to the excitation polarizer.
Anisotropy is a dimensionless quantity, because the difference between the in-
tensity of light emitted parallel and perpendicularly to the excitation (I‖ − I⊥),
is normalized by the total intensity of emitted light (I‖ + 2I⊥) [55].

The fundamental anisotropy of a sample of molecules in frozen random ori-
entation in absence of broadening effect is:

r0 =
2

5

�

3cos2β − 1

2

�

(A.8)

where β is the angle between transition dipole moments relevant to emission
and absorption processes. The term r0 is used to refer to anisotropy observed in
the absence of other depolarizing process such as rotational diffusion. Equation
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Table A.1: Relationship between the angular displacement of transition moments
β and the fundamental anisotropy r0 for a sample of randomly oriented fluo-
rophores.

β (deg) r0

0 0.4

45 0.1

54.7 0

90 -0.2

Figure A.3: Relation between angle β and anisotropy value r0.

A.8 is derived in Ref. [55]. The relation expressed by eq. A.8 is plotted in
fig. A.3. Table A.1 lists the values of the fundamental anisotropy for different
values of β . The maximum value for anisotropy is 0.4, when the absorption and
emission transition dipole moments are aligned. Anisotropy is 0 at the magic
angle (54.7◦), and the lowest value, r0 =−0.2, is obtained when the two dipole
moments are perpendicular. Anisotropy is 0 also when some depolarization
effect occurs.

Measurements of the fundamental anisotropy r0 require special conditions.
In order to avoid rotational diffusion, the samples are examined in solvents
forming transparent glasses (see sect. A.3.2). Since the matrix is rigid, pho-
toselection plays a main role, as it will be discussed in the B.3.1. Moreover,
solutions must be optically diluted (absorbance < 0.1) to avoid depolarization
processes due to internal absorption and subsequent emission of photons, or
due to energy transfer.

Two methods are commonly used to measure anisotropy: the L-format method,
in which a single emission channel is used, and the T-format where both the
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parallel and perpendicular components are simultaneously detected, through
separate channels [55]. Only the first one is described, corresponding to the
setup available in the FluoroMax Instrument. In particular after excitation with
polarized light, emission is collected after a monochromator (see Figure A.2).
The monochromator has a different transmission coefficient for vertically and
horizontally polarized light, and, as a consequence, the rotation of the polarizer
causes a change in the detected intensity even if emission is unpolarized. The
G-factor takes into account the sensitivity of the detection system for vertically
and horizontally polarized light:

G =
IHV

IHH
(A.9)

where IHV is the emission intensity when the excitation wavelength is polar-
ized horizontally (H), while the analyzer is polarized vertically (V ) and IHH is
the emission intensity when both the polarizer and the analyzer are horizontal.
Consequently, anisotropy is defined as follows:

R=
IV V − GIV H

IV V + 2GIV H
(A.10)

The excitation anisotropy spectrum is a plot of anisotropy detected at a fixed
wavelength, as a function of the excitation wavelength. According to the Kasha’s
rule, the lowest singlet state is responsible for emission, independently of ex-
citation. Since the detected wavelength is fixed, the emission dipole moment
remains the same. On the other hand, the transition dipole moment relevant to
absorption changes for different excited states, so that the anisotropy is different
for different absorption bands.

The emission anisotropy spectrum is measured exciting the sample at a
fixed wavelength and detecting the emission anisotropy at frequencies cover-
ing the whole emission band. The main difference with respect to the excitation
anisotropy spectrum, is that in this case only two excited states are involved:
the lowest singlet excited state, responsible for emission, and the state that
absorbs the excitation wavelength (obviously, they can be the same state). Con-
sequently, in the lack of spectral features, the emission anisotropy spectrum is a
flat line across the whole emission band.
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Computational details for the

calculation of optical spectra

All calculation of spectra, with the computational methodologies presented in
this appendix, has been performed with codes written on purposes in Fortran
90-95, with GNU/GCC or Lahey Fortran Compiler.

B.1 Calculation of absorption and fluorescence spec-

tra

B.1.1 Spectra calculation in the non-adiabatic approach

Depending on the system at hand, as described in the main text, we introduce a
variable number of components of the reaction field: one component is enough
for linear molecules, two are needed for planar chromophores, or for bichro-
mophoric species. For each component fi of the reaction field we define a grid
of values and on each point of the grid we solve the coupled electron-vibration
problem via a numerically exact diagonalization algorithm. Specifically, for each
fi , the total Hamiltonian is written on the basis obtained as the direct product
of the electronic basis states times the product of the eigenstates of the of the
relevant number of harmonic oscillators, depending of the number of vibra-
tional coordinates introduced in the considered model. The vibrational basis
is truncated to a number of states large enough as not to affect relevant re-
sults (the number of vibrational states required for convergence, depends on
the molecular properties of interest, and increases for strong electron-phonon
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coupling; typical values are 10 states for each oscillator). The resulting Hamilto-
nian matrix is diagonalized numerically to get vibronic eigenstates. A Gaussian
bandshape with half-width σ = Γp

2ln2
(wavenumber or energy units) is assigned

to each vibronic transition, where Γ is the half-width at half-maximum for a
corresponding Lorentzian band. Then the molar extinction coefficient (ε) and
fluorescence spectrum (I) are calculated as a function of the wavenumber, ν̃
(expressed in cm−1), as follows:

ε(ν̃) =
10πNAν̃

3ln10ħhcε0

1
p

2πσ

∑

n

µ2
gn exp

�

−
1

2

�

ν̃gn − ν̃
σ

�2�

(B.1)

I(ν̃)∝ ν̃3 1
p

2πσ

∑

n

µ2
en exp

�

−
1

2

�

ν̃en − ν̃
σ

�2
�

(B.2)

In Equation B.1, NA is the Avogadro number, c is the speed of light, ε0 is the
vacuum permittivity, ν̃gn and µgn are the transition wavenumber and dipole mo-
ment respectively, for the g → n transition from the ground (g) to the generic
excited state (n), and summation runs over all (vibronic) excited states. In
Equation B.2, referring to fluorescence, ν̃ f n and µ f n are the transition wavenum-
ber and dipole moment, respectively, for the e → n transition from the fluores-
cent state (e) to the generic lower-energy state (n), and summation runs over
all states having lower energy with respect to the fluorescent state, e. Selection
of the emissive states is a tricky process and must be optimized for each system.

The calculation of linear spectra is repeated in all point of the f -grid values
and the total spectra are obtained summing up the contributions at different fi

weighted by the relevant Boltzmann population.

B.1.2 Spectra calculation in the adiabatic approximation

While simpler in principle the adiabatic approximation calculation of optical
spectra is computationally more complex than the direct non-adiabatic approach.
We underline that slightly different model parameters are in general obtained
when adiabatic or non-adiabatic approaches are adopted for the calculation of
optical spectra.

As in non-adiabatic calculation the adiabatic approach implies a calculation
on a grid of f values. On each point of the grid value the following relevant
spectroscopic quantities have to be evaluated in order to calculate the f de-
pendent absorption spectrum: the vibrational relaxation energy λvi , the Huang-
Rhys factors Si , the Franck Condon factors and the frequencies of the vibronic
transitions ω0n. Here we shortly present how these quantities are calculated, as
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relevant for the sections where adiabatic calculation are adopted (sect. 2.1). In
particular for the two-state model, the electronic excited state index i = 1 (as
relevant for sect. 2.1.1) , while for the three-state model, the electronic excited
state index i = 1,2 (as relevant for sect. 2.1.6).

To ensure some physical requisite, like the coincidence of the 0-0 transition
in the absorption process and in the emission, the λv,i is defined as:

λv,i =
1

2

��

Eei(qeq,g)− Eg(qeq,g)
�

−
�

Eei(qeq,ei)− Eg(qeq,ei)
��

(B.3)

corresponding to the average of the difference between the vertical and the
0-0 energies in absorption and in emission. In eq. B.3 i = 1,2 (two excited
states) qeq and E are the equilibrium value for the vibrational coordinate and the
adiabatic energy respectively, for the considered state (as labeled in the index).
Eq. B.3 applies under the assumption of the same frequency for the ground
and excited states and a single relaxation energy stands for a given transition
process g → e1 or g → e2 . The resulting frequency ω00 for the 0–0 transition
results as

ω00 =ω
abs
g,ei −λv,ei = Eei(qeq,g)− Eg(qeq,g)−λv,ei (B.4)

(with ħh= 1), while the energy for the 0− n vibronic transition is:

ω0n =ω00 + nωv (B.5)

The Huang-Rhys factors S2 are defined as:

S2
i = λv,i/(ωv) (B.6)

where i = 1,2. The corresponding Franck-Condon factors then are:

�

�〈0|n〉
�

�

2

i =
1

n!
Si
−ne−Si (B.7)

The absorption spectra are calculated in the local harmonic approximation
[84, 85]. For the sake of simplicity we set the vibrational frequency of the
ground and excited state to the same value ωv . A more rigorous choice does
not provide appreciable differences in the calculated electronic spectra.

The absorption spectra are then calculate as follow:

ε(ν̃) =
10πNA

3ln10ħhcε0
ν̃
∑

i

�

�µgei

�

�

2
∑

n

|〈0|n〉|i2 exp





−
�

ν̃ − ν̃0ni

�2

2σ2





 (B.8)

where σ is the intrinsic linewidth of the Gaussian shape assigned to each vi-
bronic line σ = Γp

2 ln2
. ν̃ is the frequency (wavenumber) expressed in cm−1.
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The constants entering the prefactors are the same defined for eq. B.1. The
summations in eq. B.8 refer to electronic states i and to excited state vibra-
tional state n, respectively. The spectra in eq. B.8 are calculated at each f

value and multiplied by the f dependent Boltzmann probability, that weights
the average with all the other spectra determining the overall spectra.

The presented approach concerns absorption spectra, as needed for model
in chap. 2. However, analogous quantities can be defined for the fluorescence
spectra, and the same procedure apply to calculate the adiabatic fluorescence
spectra.

The adiabatic approximation, with the separation of electronic and vibra-
tional degree of freedom, can produce more readable and easily rationalizable
results: the specification of the emitting state is trivial in this approach, at vari-
ance with the non-adiabatic case. On the other hand, when there are more than
two electronic states and several vibrational modes, the adiabatic approach be-
comes rather complex.

B.2 Calculation of the two-photon absorption spec-

tra

The calculation of two photon absorption spectra goes along similar lines as the
calculation of linear absorption spectra. Once vibronic eigenstate are obtained
on each point of the fi grid the two-photon absorption cross section (in GM) is
calculated according to the following expression [156]:

σ2(ω) = 1058 ħhω
2

4ε2
0c2

Im〈γi jkl(−ω;ω,ω,−ω)〉I JK L (B.9)

where c is the speed of light, and 〈γ〉 the orientationally averaged second hyper-
polarizability (I JK L indexes run on the laboratory axis; i jkl run on the axis of
the molecular reference system). Tensor elements γi jkl(−ω;ω,ω,−ω) are given
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by the following sum-over-states expressions [159]:

γi jkl(−ω;ω,ω,−ω) =
1

ħh3

∑

lmn

¨

〈g|µi |l〉〈l|µ̄ j |m〉〈m|µ̄k|n〉〈n|µl |g〉
(Ωl g −ω)(Ωmg − 2ω)(Ωng −ω)

+

〈g|µ j |l〉〈l|µ̄i |m〉〈m|µ̄k|n〉〈n|µl |g〉
(Ω∗l g −ω)(Ωmg − 2ω)(Ωng −ω)

+

〈g|µi |l〉〈l|µ̄ j |m〉〈m|µ̄l |n〉〈n|µk|g〉
(Ωl g −ω)(Ωmg − 2ω)(Ωng −ω)

+

〈g|µ j |l〉〈l|µ̄i |m〉〈m|µ̄l |n〉〈n|µk|g〉
(Ω∗l g −ω)(Ωmg − 2ω)(Ωng −ω)

)

(B.10)

where only two-photon resonant terms have been retained; g is the ground state
and summations run over all vibronic excited states; Ωl g = ωl g − iΓl g (we set
Γl g = Γ, the width of the Gaussian bandshape defined above, for all transitions)
and µ̄= µ− 〈g|µ̂|g〉.

For linear molecules (dipolar chromophores and linear quadrupolar chro-
mophores), the only tensor element different from zero is the γx x x x term, where
x is the molecular axis. The orientationally-averaged second hyperpolarizabil-
ity is thus given by 〈γ〉X X X X = 1/5γx x x x . More generally, for a bidimensional
system:

〈γ〉 ≡ 〈γ〉X X X X =
1

5

x ,y
∑

i

γiiii +
1

15

x ,y
∑

i 6= j

�

γii j j + γi j ji + γi ji j

�

(B.11)

As for OPA, the calculation of TPA spectra is repeated on the fi grid and the
overall spectrum is obtained summing up the TPA spectra weighted by the Boltz-
mann population.

B.3 Calculation of emission and excitation anisotropy

B.3.1 Calculation of anisotropy spectra

Excitation and emission anisotropy spectra of (multi)polar chromophores can be
calculated using essential-state models. The calculation of anisotropy spectra is
not trivial, and in particular two tricky problems have to be considered:

1. Experimental spectra are collected in a glassy matrix at low temperature.
This experimental condition has major consequences on inhomogeneous
broadening and on the Stokes shift. The excitation wavelength preferen-
tially excites a subset of molecules out of the inhomogeneous distribution
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(those absorbing at the specific wavelength). The same molecules are
responsible for emission. Since the matrix is rigid, the relaxation along
the solvation coordinate is hindered, and only vibrational relaxation takes
place before fluorescence. Therefore the emitting state is specific of the
photo-selected molecules. This phenomenon is called energy photoselec-
tion.

2. When exciting with a polarized light beam, molecules with the absorption
transition dipole moment oriented along the direction of polarization are
preferentially excited. This phenomenon is called polarization photoselec-
tion. Moreover, since anisotropy is measured in solutions of randomly ori-
ented molecules, an appropriate averaging over all possible orientations
has to be performed.

The first problem related to energy photoselection is solved considering the
probability of each molecule to absorb the incident monochromatic photons, ac-
cording to the ground-state energy distribution. In particular, the same ground
state Boltzmann distribution is assumed for both the ground state and for the
excited state responsible for emission, because the solvent molecule are frozen
in the configuration they have around the solute molecule in the ground state:
solvent relaxation is hindered in the glassy matrix. The relevant Boltzmann
distribution for strictly glassy solvent (like MeTHF) is that related to the glass-
transition temperature; while for supercooled solvents (like decalin and propy-
lenic glycol) it corresponds to the measurement temperature.

The second problem is related to the orientational photoselection. The fol-
lowing expressions allow to estimate the fluorescence intensity, when the polar-
izers are parallel (I‖) or perpendicular (I⊥), for a sample of randomly oriented
molecules in frozen solutions [160]:

I‖ =
|~µem|2 · |~µabs|2 + 2(~µem · ~µabs)

2

15
(B.12)

I⊥ =
2|~µem|2 · |~µabs|2 − (~µem · ~µabs)

2

15
(B.13)

These two terms have to be weighted separately for the relevant Boltzmann dis-
tribution, to take into account the effects related to inhomogeneous broaden-
ing. This is a key point: I‖ and I⊥ are the experimental results of two separated
measurements, while anisotropy comes from a processing of these data [161].
Hence, the Boltzmann distribution has to be associated to these two terms, and
not to the final anisotropy. The previous expressions of Equations B.12 and B.13,
weighted for the Boltzmann distribution of the ground state, allow to calculate
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anisotropy using Equation A.7. Of course when applied a strictly 1D systems or
more precisely to systems when the dipole moment has a single component the
expressions above lead to r = 0.4.

B.3.2 Anisotropy calculation with orientational degree of free-

dom

A more delicate issue is the anisotropy calculation in the presence of two sources
of broadening, where one of them does not freeze, like for instance an internal
conformational degrees of freedom (u). In these condition two Boltzmann dis-
tributions can be defined. One is relevant for the excitation process, where all
the slow coordinates are centered around the ground state (g) minimum and
corresponds to a probability pg( f ,u), where f ≡ { fi} refer to all the relevant sol-
vation coordinates and u ≡ {ui} refer to conformational coordinates, (or more
generally to other slow non frozen coordinates). A second distribution is rele-
vant to emission processes, that take place from the fluorescent state e. In these
processes the solvent coordinates are still frozen, while the orientational coordi-
nates are relaxed in the excited state configuration. This probability is the one
relevant to the calculation of fluorescence in frozen solution and not pe( f ,u),
which instead measures the probability distribution around the excited solute
when all degrees of freedom are relaxed.

Calculation goes along these steps:

1. the Hamiltonian is diagonalized on the ( f ,u) grid and, based on the ground
state energy, the pg( f ,u) distribution is fixed. On the same grid the energy
of the emissive state leads to the definition of the distribution pe( f ,u).

2. to account for the fact that the solvent is frozen at the equilibrium around
the gs, we integrate (sum) the distribution pg( f , g) over the u grid to
obtain the integrated probability p̃g( f )

3. The probability distribution for the excited state in the frozen solvent is
finally obtained as pg( f ,u)pe( f ,u)p̃g( f ). The first product pg pe accounts
for the fact that at each f , a point in the u ground state configuration
can arrive at any u-point in the excited state configuration (the product
of probabilities correspond to independent events). For each f this joint
probability is multiplied by the probability of the f configuration in the gs
p̃( f ), independent of u.

The calculation is cumbersome and it is important to reduce computational ef-
fort by a careful choice of sampling criteria. The calculations of pg( f ,u) and
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Figure B.1: Schematic diagram of the computational procedure for the calculation
of spectra with both frozen coordinate(s) f and non-frozen coordinate(s) u. µexc

and µem refer to excitation and emission dipole moments, that as well as probabil-
ities resulted from the diagonalization of the H( f ,u) Hamiltonian (see text).

pe( f ,u) are done on the same grid for f centered around the ground state equi-
librium, and on two grids of u centered around the equilibrium position for u

relevant to ground and excited state, respectively, as sketched in fig. B.1.



Appendix C

The MO-CIS approach for

excited state description and

the INDO/S semiempirical

method

C.1 HF-MO frame

In the general HF approach the electronic problem is expressed in term of the
Fock operator:

f̂ (1) = ĥ(1) +
∑

a

2Ĵa(1)− K̂a(1) (C.1)

where ĥ is the one-electron operator and Ĵ and the K̂ are the Coulomb and
exchange operator, and sum runs over occupied spatial wavefunctions. The
molecular orbital (MO) φi eigenstate of eq. C.1, are expressed as the sum of N

basis functions χµ:

φi =

N
∑

µ=1

cµiχµ (C.2)

Adopting HF-MO-LCAO approach, the basis functions χµ are atomic orbitals. On
this basis the Fock matrix reads:

Fµν = H core
µν +

occ
∑

a

∑

λσ

cλacσa
�

2
�

µν |σλ
�

−
�

µλ|σν
��

] (C.3)
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The matrix elements of the core Hamiltonian, H core
µν , are the sum of the kinetic

plus nuclear attraction integrals:

H core
µν = Tµν + V nucl

µν

=

∫

dr1χ
∗
µ(1)

�

−
1

2
∇2

1

�

χν(1)

+

∫

dr1χ
∗
µ(1)−





∑

A

ZA

|r1 −RA|



χν(1) (C.4)

The two electron terms can be written in this form:

�

µν |σλ
�

=

∫

dr1dr2χ
∗
µ(1)χν(1)

�

1

r12

�

χ∗λ(2)χσ(2) (C.5)

The evaluation of these integrals is computationally demanding. While the the
core Hamiltonian term Hcore is constant, i .e. it does not depend on the coef-
ficients and it can be evaluated at once, the full Fock matrix F depends on the
coefficients {cµi} themselves and has to be solved in self consistent way:

F(C)C= SCε (C.6)

If the basis is orthonormal: S = 1. The resulting set of eigenvectors, i.e. the
coefficients cµi, fully define the MO, according to eq. C.2, while the eigenvalues
εi represent the orbital energies.

C.2 CIS: the simplest approach for excited states

One of the first developed methods to describe exited states is the single excited
configuration interaction (CIS). We consider a closed shell molecule represented
by a restricted determinant |Ψ0〉, defined filling up the first N spin orbital out of
the set of 2K spin orbitals. A large number of N -electron determinants can be
obtained promoting electron from the set of N occupied orbitals to the 2K − N

virtual spin orbitals. If we restrict the treatment to the single excitation we can
express the CI single (CIS) wave function for a generic excited state Φ1 as a
linear combination of single excited determinants:

|Φ1〉=
∑

ar

C r
a |Ψ

r
a〉 (C.7)

where |Ψr
a〉 represent a single excited determinant, corresponding to the formal

excitation of an electron from the occupied a spin orbital to the r virtual orbitals.
There are

�N
1

��2K−N
1

�

= N(2K − N) single excited determinants. The problem is
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formulated over the single excited determinants (i.e. over the configurations)
basis and can be written in matrix form. By Slater rules, the CIS matrix element
between two single excited determinants is:

〈1Ψr
a|H − E0|1Ψs

b〉=
�

εr − εa
�

δrsδab − (rs|ba) + 2(ra|bs) (C.8)

where the ground state energy is subtracted because we are treating excited
state and we consider only singlet states. The first term of the equation, is only
present in diagonal element of the CIS matrix. Diagonalizing the CIS matrix we
obtain the coefficients of the CIS expansion C r

a in eq. C.7.

C.3 Semiempirical method: INDO/S

The semiempirical method INDO/S is presented in its basic version: d orbital
are not included, and the description stands for singlet excitation and for closed
shell molecule.

Since the original INDO/S (ZINDO) code is not in the public domain, we
have updated and modified a Fortran version of the code from the CINDO QCPE
program described in J. A. Pople and D. L. Beveridge, [162] The parameter-
ization has been taken from the original papers by the Zerner group [130], and
checked against those found in the ArgusLab program files [54].

C.3.1 Zerner INDO/S approximations and expressions

INDO/S method is a spectroscopical parameterization of the INDO/1 (Interme-
diate Neglect of Differential Overlap, [163]) method. The detailed parameter-
ization of INDO/S, also known as “ZINDO”, is explained in the detail of the
Zerner work [130] and review [164]. Here we just summarize the main fea-
tures.

For a closed shell configuration and assuming an orthonormal basis set (S =
1) the solution of the eigenvalue problem

Fci = εici (C.9)

gives the energy and the AO composition for the i-th MO.
In the INDO/S approach the diagonal terms of the Fock matrix are written

as follow:

Fµµ = Uµµ +
A
∑

σ

Pσσ

�

(µµ|σσ)−
1

2
(µσ|µσ)

�

+
∑

B 6=A

(PBB − ZB)γAB (C.10)

µ ∈ A
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where the core integral are derived as:

Uµµ ≡ (µ| −
1

2
∇2 −

ZA

RA
+ V |µ) (C.11)

=







Iµ − (ZA−)F0(ss) + 1
6
mG1(sp) s AO

Iµ − (ZA−)F0(ss) + 1
6
lG1(sp) + 2

25
(m− 1)F2(pp) p AO

(C.12)

with µ centered on the atom A, V representing a pseudo-potential accommo-
dating the neglected inner shells. Iµ is the ionization potential for the process
sl pm → sl−1 + pm + (s) or sl pm→ sl + pm−1 + (p), and G1(sp) and F2(pp) are the
Slater-Condon factors [165].

The off-diagonal term of the Fock Matrix are:

Fµν =







3
2

Pµν(µν |µν)− 1
2

Pµν(µµ|νν) µ,ν ∈ A

S̄µν
βA+βB

2
− PµνγAB

2
µ ∈ A,ν ∈ B

(C.13)

where the first line refer to AO on the same atom and the second to AO on
different atoms A, B. The density matrix of eq. C.10 and C.13 are defined as:

Pµν = 2
MO
∑

i

cµicν i (C.14)

while the atomic density matrix element of eq. C.10 are:

PAA =
∑

µ∈A

Pµµ (C.15)

In the INDO/S model the Coulombian two-electron, two-center integral that
enter the Fock matrix element (eq.C.13 and eq. C.10) are parametrized follow-
ing a modification of the Mataga-Nishimoto recipe:

γAB =
fγ

2 fγ
γAA+γBB

+ RAB

(C.16)

where RAB is the distance between the two centers (Bohr radius unit) and the
parameter fγ is set equal to 1.2. The one-center, two-electron integral γAA en-
tering the above equation are parametrized following the Pariser’s equation:

γAA = F0(AA) = IA− AA (C.17)

where F0(AA) = F0(ss) = F0 (see also eq. C.18). One center Coulombian
(µν |µν) and exchange (µµ|νν) integrals of eq. C.10 and in the first line of eq.
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C.13 for an s or p block element are five and can be estimated by Slater-Condon
factors [165]:

(ss|ss) = F0 (C.18)

(ss|pp) = F0 (C.19)

(sp|sp) =
1

3
G1(sp) (C.20)

(px px |px px) = F0(pp) +
4

25
F2(pp) (C.21)

(px px |py py) = F0(pp)−
2

25
F2(pp) (C.22)

(px py |px py) =
3

25
F2(pp) (C.23)

Finally, in the two center Fock elements of eq. C.13 Fµν = S̄µν(βA+βB)/2−
PµνγAB

2

the βA refer to the Huckel bonding parameter for the atom A, while the modified
overlap S̄ are defined as:

S̄msns = Smsns (C.24)

S̄msnp = Smsnp (C.25)

S̄mpnp = fσGσSmpσnpσ + fπGπSmpπnpπ (C.26)

where the Gσ and Gπ are the appropriate geometric factor necessary to rotate
the overlap form the local diatomic system to the molecular system and fσ =

0.585 and fπ = 1.266, are justified by experimental and ab-initio results.

C.3.2 INDO/S and CIS method

Rule to build the CIS matrix inside the INDO/S frame for singlet – singlet transi-
tion, can be found in [130, 166]. Shortly, the diagonal and off-diagonal element
of the CIS matrix in the INDO/S method read:

〈1Ψi→r |H |1Ψi→r〉 = ∆Eir = εr − εi − (r r|ii) + 2(ri|ir) (C.27)

〈1Ψi→r |H |1Ψ j→s〉 = 2(ri| js)− (rs|i j) (C.28)

The general integral over MOs is (Greek letters refer to AO, α ∈ A,β ∈ Bγ ∈
C ,δ ∈ D, small roman to MOs):

(i j|kl) =

∫

φ∗i (1)φ j(1)φ
∗
k(2)φl(2)

1

r12
dr1dr2

=
∑

αβγδ

ciαc jβ ckγclδ(αβ |γδ) (C.29)
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is here approximated retaining only the element rising from two center:

(i j|kl) =
∑

α 6=β
γ 6=δ

ciαc jβ ckγclδ(αβ |γδ)δABδC DδAC

+
∑

αγ

ciαc jαckγclγδ
AC
�

(αα|γγ)− F0(αγ)
�

+(i j|kl)CN DO (C.30)

where the first term applies when all α, β , γ, δ are all the same center A, the
following refer to the case when α and γ are on the same center. The actual
parametrized expressions of the one-center atomic orbital integrals (αβ |γδ) are
reported in the figure C.1, (from the appendix of the paper [130]) in term of
the Slater-Condon factors. The last line in equation C.30 refer to when α and γ
are on the two center and it is the nonzero term in the CNDO approach:

(i j|kl)CN DO =
∑

αγ

ciαc jαckγclγ(αα|γγ) (C.31)

where (αα|γγ) = γαγ (i.e. the two-center Coulombian integral), vanishing if
one orbital is p and the other is s. Other integral involving three or four centers
are neglected in the INDO approximation (one-electron product χµ(1)χν(1) are
retained only in one center integrals, i. e. µ ∈ A,ν ∈ A) [163].

C.3.3 INDO/S transition and permanent dipole moment

In our implementation of the INDO/S code the transition dipole moment were
calculating following [167, 164, 168]. Slater rules [153] are adopted to evalu-
ate a matrix element between two determinants, as here for the dipole moment
µ̂=−er̂.

The transition dipole moment is:

µGE = 〈ΦG

�

�µ̂
�

�ΦE〉=
∑

ar

∑

C r
a 〈φa

�

�µ̂
�

�φr〉

=
∑

ar

∑

aµ

∑

rν

caµcrν

�

−δABδµνRA−δAB(µ|r̂|ν)
�

(C.32)

the first term (δABδµν) is the point-charge contribution (diagonal) and refer to
the case where µ= ν (same AO in the same atom), where the RA is the position
of the A nucleus. The second term is the sp-polarization (off-diagonal) term and
refer to the different AO, centered on the same atom (µ 6= ν , µ,ν ∈ A).

The expectation value for the last integral (µ|r̂|ν) is calculated with the
recipes found in [167], where r̂ =

∑3
i=1 x̂ i . Here we only show the results
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Figure C.1: Orbital integrals (αβ |γδ) when of eq. C.30, from [130].

for the integral between an s and a p orbitals on the same atom. In this case the
only non vanishing term for the integral (µ| x̂ i |ν) has µ = ns and ν = npi (with

i = 1,2,3), equal to a0
(2n+1)22n+1(ξsξp)

n+ 1
2

p
3(ξs+ξp)

2n+2 , where a0 is the Bohr radius, and the
ξs,p is the Slater exponent of the of the s, p orbitals.

We calculate the permanent dipole moment of the excited state E as:

µEE = 〈ΦE

�

�µ̂
�

�ΦE〉

=
∑

ar

�

�C r
a

�

�

2 {
∑

ν ,µ

h
�

Pµν
�

G
+ caµcaν − crµcrν

i

(µ|µ̂|ν) (C.33)

where in the above equation
�

Pµν
�

G
= 2

∑N
j cν jcµ, j is the density matrix for the

ground state closed shell configuration and the integral (µ|µ̂|ν) is calculated
according to the above expressions for µ̂.
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