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General Introduction

The discovery of novel materials with new properties and functionalities has

triggered along the centuries the transformation and innovation of the soci-

ety. The information society we belong to has his roots in the development of

the materials for electronics, a field largely dominated by silicon, but where

magnetic materials for information storage and optical materials for commu-

nications also play an important role. At the same time, the development

of chemical synthesis produced an enormous increase of available materials:

plastic materials indeed profoundly changed our lifestyle. Traditionally, the

research in the fields of materials for electronics (and more recently photon-

ics and spintronics) and on chemical synthesis occurred along parallel tracks.

Combining the functionalities of materials for advanced applications with the

performances of plastic materials will provide brand new materials opening

new technological scenarios. Molecular materials for advanced applications

are therefore a very active field of research, stimulated by the possibility to

replace traditional functional materials with low-cost molecular-based ma-

terials. [1, 2, 3, 4, 5, 6, 7] Moreover, the complexity of molecular systems

opens the way to a wide variety of new and multiple functionalities. The fine

tuning of the material properties, made possible by chemical synthesis, has

no counterpart in the traditional and mature field of silicon-based materials

for electronics.

To fully exploit the promise of molecular functional materials, the physics
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that governs their complex behavior must be thoroughly understood, with

the aim, on one side, to optimize the materials for current needs, on the

other side to guide the synthesis of new materials showing brand new be-

haviors. This thesis represents an effort towards the definition of general

models for molecular functional materials. Microscopic quantum mechan-

ical models are developed and applied to investigate the essential physics

governing the complex behavior of molecular functional materials. Switch-

able molecular materials, i.e. systems whose properties can be tuned by

applying external stimuli, are the main target. The possibility to switch

between two or more stable states is an essential requirement for the realiza-

tion of intelligent devices, and functional molecular materials are in demand

for the realization of ultra-small and ultra-fast switches, whose properties

can be controlled by a variety of external stimuli, as temperature, pressure,

electric and/or magnetic fields, or, by shading light. [8, 6, 2, 9, 10, 11, 12]

The fields of application of switchable molecular materials, include, just to

cite a few examples, information storage, photonics, sensoristics, molecular

electronics and spintronics. Entering the specific of this thesis, the research

activity is mainly focused on the cooperative effects originated from charge

transfer (CT), phonons (molecular and lattice vibrations) and electrostatic

interactions in mixed stack CT crystals (chapter 1), crystals of valence tau-

tomeric molecules (chapter 2) and spin crossover (SC) complexes (chapter

3).

Bistability, or more generally multistability, is a rare phenomenon that

results from a delicate balance of competing interactions. Understanding

multistability in molecular materials requires a comprehensive picture of the

physics both at the molecular and at the supramolecular scale. Multista-

bility represents the extreme manifestation of nonlinear behavior induced in

molecular materials by cooperative interactions. The molecular prerequisite

for bi/multistability is the accessibility of two or more different molecular
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states. At the molecular level this multistability often results in interesting

equilibrium phenomena that can be affected and driven by external stim-

uli. This is the case of SC complexes and valence tautomeric molecules.

In the first case, two stable states are accessible to a metal ion in a lig-

and field. [13, 14] The two states, corresponding to a low and a high spin

electronic configuration, are characterized by different geometries with a siz-

able variation of the metal-ligand distance. In solution or in solids with

weak intermolecular interactions SC complexes equilibrate between the two

forms, with different optical and magnetic properties, and the equilibrium

is affected by temperature, pressure, light and magnetic fields. In valence

tautomeric molecules, instead, the low energy physics is governed by charge

resonance between two mesomeric forms, characterized by different charge

and spin distribution. Among valence tautomers, DA-based molecules have

recently attracted much interest for applications in nonlinear optics [7] and

molecular electronics. [15] In these molecules an electron donor (D) and

an electron acceptor (A) groups are connected by a π-conjugated bridge.

The presence of metallic centers and/or unpaired spins make some of these

molecules interesting for magnetic applications and promising candidates for

applications in spintronics and quantum computing.

In the lack of cooperative interactions, the exchange between the two

(or more) stable molecular states is fast and molecular multistability is not

immediately interesting for applications. [11, 16, 11, 17, 18, 19]. Coopera-

tive intermolecular interactions can stabilize higher energy states and, what

is more important, can provide kinetic barriers, leading to true bistability

(or multistability) in the solid state or, more generally, in meso and macro-

scopic systems. In truly multistable systems, the interconversion between

the stable forms is a slow process, implying the simultaneous change of state

of a large number of molecules. Bistability always accompanies first order

phase transitions and manifests itself in hysteresis loops and/or with the ap-
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pearance of coexisting phases. Most interestingly, bistability opens the way

to the photoswitching of (meta)stable phases. Photoinduced phase transi-

tions are a clear manifestation of cooperativity in nonequilibrium cascading

processes following light absorption. [8]

Multistability in molecular materials can be driven by intermolecular in-

teractions of different kinds. In SC materials, elastic interactions, related

to the variation of the molecular size accompanying the spin transition, are

the primary cause of cooperativity and are responsible for the appearance

of temperature and/or pressure induced first order transitions as well as of

photoinduced transitions. A wide variety of SC complexes has been syn-

thesized and characterized showing different properties an behavior. Sys-

tems are known showing abrupt transitions, wide hysteresis loops as well as

multi-step transitions. In all cases the entanglement between spin degrees of

freedom, molecular and lattice vibrations results in a complex cooperative

behavior. Valence tautomeric molecules are also good candidates for bista-

bility, driven in this case by the coupling between intramolecular CT and

intermolecular electrostatic interactions. Bistability in clusters of valence

tautomeric molecules has been theoretically predicted a few years ago in the

guest laboratory. [20] In this thesis, the coexistence of two valence tautomers

in crystals of ferrocene-perchlorotriphenylmethyl radical (Fc-PTM), an in-

teresting ferrocene-based chromophore, is quantitatively explained in terms

of bistability induced by electrostatic intermolecular interactions, offering

the first experimental confirmation of the proposed phenomenon.

Multistability in mixed-stack CT crystals has a different, but not unre-

lated source. In mixed-stack CT crystals planar D and A molecules pack to-

gether forming one dimensional stacks with an alternating pattern (. . . DADA

. . . ). Here the D and A units are distinct molecules whose frontier orbitals

overlap to give a system where electrons are delocalized in one spatial di-

mension. The interplay between the intermolecular CT, electrostatic interac-
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tions, lattice phonons and molecular vibrations drives the the so called neu-

tral to ionic phase transitions (NIT), a collective electron transfer from D to

A molecules, that is always accompanied by lattice dimerization. NIT can be

induced by decreasing temperature and/or applying pressure and, together

with SC system, represents one of the most studied photoinduced transitions.

[8] Mixed stack CT crystals present a rich phase diagram and phenomenol-

ogy that include charge ordering, band and Mott-insulating phases, lattice

(Peierls and spin-Peierls) instabilities. These systems offer an almost unique

opportunity to study, in a reasonably simple system, the coupling between

phonons and strongly correlated electrons in 1D and the related charge and

spin instabilities. It is worth mentioning that NIT represents one of the few

example of ferroelectric transitions in purely organic materials, [2] and the

mixed stack CT salts tetratiafulvalene-chloranil (TTF-CA) has been recently

recognized as the first organic multiferroic. [21].

This thesis is organized as follows. Chapter 1 is devoted to NIT in mixed

stack CT crystals and presents the two contributions offered by this work in

the field. In particular section 1.4 reports on the simulation of vibrational

(infrared and Raman) spectra of a system undergoing NIT. The spectra are

calculated as Fourier transforms of the time autocorrelation functions of the

stack polarization and polarizability, quantities that in turn are obtained ex-

ploiting the modern theory of polarization in dielectrics. This approach fully

accounts for the strong anharmonicity arising in the system from electron-

phonon coupling and explains several anomalies observed in the vibrational

spectra of mixed stack CT crystals, including new and interesting data ob-

tained in the guest laboratory. Section 1.5 describes a work done in collab-

oration with Z. G. Soos (Princeton University) and M. H. Lemée-Cailleaux

(ILL Grenoble) on the lattice dynamics in mixed stacks. We discuss the

development at NIT of a Kohn-like anomaly in the optical phonon branch

due to the softening of the Peierls or dimerization mode. This Kohn-like
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anomaly and its surprisingly strong dispersion explains the diffuse X-ray

signal experimentally observed in the pretransitional regime for two specific

systems.

Chapter 2 is devoted to the bistability induced by electrostatic inter-

actions in crystals of valence tautomeric molecules and specifically in Fc-

PTM crystals. This work, in collaboration with the group of J. Veciana

(ICMAB-CSIC Barcelona) starts with a detailed analysis of optical spectra

of Fc-PTM in solution based on essential state models. In a bottom up

modeling strategy, we use this information to build a model for Fc-PTM

crystals where electrostatic interactions are implemented with the support

of quantum chemical calculations. On this basis the temperature dependent

valence tautomerism, revealed in Fc-PTM crystals by Mössbauer spectra,

is quantitatively explained in terms of bistability induced by electrostatic

intermolecular interactions. In the process, the development of two and

three state models for Fc-PTM and a related compound shed light on some

long-standing problems in the spectroscopic characterization of DA chro-

mophores.

Finally, chapter 3 presents the work done on SC complexes, developed in

collaboration with K. Boukheddaden and F. Varret, during a three months

stay (April-June 2009) at the University of Versailles (UVSQ). The main tar-

get of this work is the development of a microscopic model for SC molecules,

accounting for the coupling between the electronic (spin) state and an effec-

tive molecular vibration. Exact and adiabatic solutions of the vibronic prob-

lem are thoroughly discussed for a physically meaningful set of parameters.

The molecular model is then applied to describe intermolecular interactions

in SC crystals. Different phenomenological interaction terms, treated within

the mean field approximation, are finally considered.



Chapter 1

Neutral-Ionic phase

transition in mixed stack

charge transfer crystals

1.1 Introduction: NIT in mixed stack CT crystals

Charge transfer (CT) crystals (or salts) are an important class of organic

molecular materials constituted by almost planar π-conjugated electron donor

(D) and electron acceptor (A) molecules. [22] Some representative examples

of D and A molecules are given in figure 1.1. These planar π-conjugated

molecules pack face to face forming one dimensional (1D) stacks. Inter-

molecular distances along the stack imply sizeable overlap between frontiers

orbitals on adjacent molecules, and electrons easily hop within the stack.

The interactions between molecules belonging to different stacks, are char-

acterized by larger distances and interstack overlap is negligible. Electrons

are therefore truly delocalized in 1D and different stacks interact mainly via

electrostatic interactions and, in some cases, via site-selective interactions
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molecules used in CT crystals.
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(hydrogen bonding, etc.). As for conjugated polymers, CT crystals represent

an experimental realization of an almost-1D system, whose physics, governed

by the interplay between electronic correlations and electron-phonon (e-ph)

coupling, results in rich and interesting phase diagrams. Different stacking

of D and A molecules are possible and CT crystals are conveniently classified

as segregated stack CT crystals, where each stack is made up by the same

molecule (either . . . DDDD. . . or . . . AAAA. . . ) and mixed-stack CT crystals

in which D and A molecules alternate on the same stack (. . . DADA. . . ). [22]

In the present work we will concentrate on mixed stack systems.

In mixed stack systems the overlap between frontier orbitals of adjacent

molecules causes a CT from D to A, resulting in a fractional molecular ion-

icity, ρ, so that the stack can be represented as . . . D+ρA−ρD+ρA−ρ. . . . The

large majority of CT crystals are neutral (N, ρ . 0.5) but a few examples

of ionic (I, ρ & 0.5) systems are known. [23] As originally recognized by

Mc Connell [24] the N or I nature of CT crystals depends on the balance

between the ionization energy of a DA pair, ID − EA (ID is the ionization

potential of the D and EA the electron affinity of the A), and the electro-

static energy of the ionic lattice, i.e. the Madelung energy M . N crystals

are expected for ID − EA >M , I salts for ID − EA <M . More interesting

are systems where ID − EA ≈M , where the N-I boundary can be crossed

by varying external conditions, realizing the neutral-ionic phase transition

(NIT), i.e. a collective electron transfer from D to A sites, as sketched in fig-

ure 1.2. NIT is a quantum phase transition that results from the increase of

the Madelung energy due to lattice contractions with increasing pressure or

decreasing temperature. A brilliant proof of the quantum nature of the NIT

was given by Horiuchi et al. that, by mean of external pressure and chemical

substitution, were able to shift the transition toward zero temperature. [25].

The first observations of pressure and temperature induced NITs were re-

ported for tetratiafulvalene-chloranil (TTF-CA, see figure 1.1) by Torrance
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Figure 1.2: A schematic representation of the N regular phase (high tem-

perature/low pressure) and of the I dimerized phase (low temperature/high

pressure). The amplitude of dimerization is magnified for clarity.

et al. in 1981 [26, 27]. The left panel of figure 1.3 shows the temperature

dependence of the ionicity in TTF-CA, the prototypical and best character-

ized NIT system. The stack ionicity is estimated spectroscopically from the

frequency of the infrared active carbonyl antisymmetric stretching of the CA

molecule, which is very sensitive to the molecular charge. At room temper-

ature TTF-CA is largely N (ρ∼ 0.2). The ionicity ρ slightly increase upon

cooling down to 81 K where a discontinuous jump from ρ∼ 0.3 to ρ∼ 0.5

occurs. Further cooling increases ρ up to∼0.6.

As sketched in figure 1.2 the charge reorganization at NIT is always

accompanied by a dimerization of the stack. Dimerization is related to a

generalized Peierls instability, due to the coupling of the lattice to both

charge (Peierls instability of 1D metals) and spin (spin-Peierls instability

of S = 1/2 Heisenberg chains) degrees of freedom. Stack dimerization is

concomitant with the electronic transition in discontinuous NITs, as occurs

in TTF-CA, and defines the critical point of continuous transitions, as rele-

vant for dimethyl-TTF-CA (DMTTF-CA, see figure 1.1). Strictly speaking

DMTTF-CA, whose ρ(T ) characteristics is reported in the right panel of

figure 1.3, does not undergo a true NIT because the ionicity is always lower
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Figure 1.3: Temperature dependence of the ionicity ρ in TTF-CA and

DMTTF-CA. Black circles are the value of ρ estimated from the frequency

of the carbonyl stretching, dotted lines are guide for the eyes.

that the conventional value ρ = 0.5. In fact the transition of DMTTF-CA

is more similar to a Peierls transition, occurring at T = 65 K, accompanied

by a steep continuous variation of the ionicity [28]. In any case stack dimer-

ization lowers the symmetry, removing the inversion center residing on each

molecule, so that the I dimerized stack is ferroelectric. However, such 1D

ferroelectricity does not necessarily results in a ferroelectric material, that

requires a 3D ordering of polarized chains. In fact, while the I phase of

TTF-CA is ferroelectric, the corresponding phase of DMTTF-CA shows an

antiferroelectric (or weakly ferrielectric) mutual arrangement of the stacks.

The NIT in mixed stack CT crystals represents one of the most impressive

examples of cooperative phenomena in organic solid state physics. Although

the scenario of NIT is complex and characterized by a rich phenomenology,

a coherent picture of the physics governing the transition is emerging. This

chapter of the thesis reports the last steps in this direction. In the following

section an overview of the models and methods adopted to describe NIT

is given, while a comprehensive experimental and theoretical background

about the transition is provided in section 1.3. The specific contributions of
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this thesis are described in section 1.4, with the calculation of vibrational

spectra of a NIT system, and in section 1.5, that discusses the effects of

electron-phonon coupling on the lattice dynamics and its consequences on

the diffuse X-ray signal. Conclusions and future perspectives are drawn in

section 1.6.
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1.2 Models, methods and approximations

1.2.1 The modified Hubbard model

The standard microscopic model for the electronic structure of mixed stack

CT crystals is a half filled 1D modified Hubbard model with 3D Coulomb

interactions. [29, 30, 31, 32, 33] Alternating on-site energies ±∆ account for

the energy difference between the highest occupied molecular orbital for the

D (odd sites) and the lowest unoccupied orbital for the A (even sites). The

electronic Hamiltonian reads

Hel = ∆
∑

i

(−1)i n̂i +
U

2

∑

i

n̂i(n̂i − 1)

−
∑

i,σ

ti

(
a†i,σai+1,σ +H.c.

)
+

∑

i,j

Vij ρ̂iρ̂j (1.1)

where n̂i counts the electrons on site i, U is the electron-electron on-site

repulsion term, the operator a†i,σ (ai,σ) creates (annihilates) an electron with

spin σ in the i-th site and ti is the hopping integral between adjacent sites.

The last term accounts for electrostatic interactions: the operator ρ̂i, defined

as ρ̂i = 2− n̂i on odd (D) sites and ρ̂i = n̂i on even (A) sites, measures the

molecular charge and Vij is the electrostatic interaction energy between fully

ionic (ρ = 1) molecules on sites i and j. It is worth noting that the index i

runs on the N sites of the stack, while j runs over all the sites of the crystal.

The average charge transferred from D to A is measured by the ionicity

operator

ρ̂ =
1
N

∑

i

ρ̂i (1.2)

The energetic cost of doubly ionized D2+A2− pairs is very large so that

the corresponding states give a negligible contribution to the low energy

properties of the system. Doubly ionized states can be excluded by imposing

a finite Γ = ∆ − U/2 and taking the limit U,∆ → ∞. Within this well
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established approximation, [34] doubly ionized states have infinite energy

and the Hamiltonian becomes:

Hel = Γ
∑

i

(−1)i n̂i +
∑

i,σ

ti

(
a†i,σai+1,σ + H.c.

)
+

∑

i,j

Vij ρ̂iρ̂j (1.3)

where 2Γ represent the energy required to ionize a DA pair and implicitly

accounts for the energy difference between D and A orbitals and for on-site

electronic repulsion.

In the absence of Coulomb interactions (Vij = 0) the Hamiltonian (1.3)

describes a continuous NIT upon decreasing Γ. Although ρ varies smoothly

from 0 to 1 with decreasing Γ, a true quantum phase transition takes place

at Γc = −0.666. The N and I phases can in fact be identified due to their

different excitation spectrum. The N phase (Γ > Γc, ρ < 0.686) is a dia-

magnetic band insulator presenting finite charge and spin gaps, while in the

I phase (Γ < Γc, ρ > 0.686) the spin gap vanishes. The I phase describes

a paramagnetic Mott insulator phase and in the Γ → −∞ limit the system

reduces to a Heisenberg S = 1/2 antiferromagnet. [35, 21] At the critical

point the system presents a metallic state, in which both charge and spin

gap vanishes. [36] Coulomb interactions qualitatively affect the nature of

the transition, leading to discontinuous N-I crossover. [33, 37]

1.2.2 From 3D to 1D: mean field treatment of electrostatic

interactions

Three dimensional electrostatic interactions are very important, since NIT is

driven by the increase of the Madelung energy. However treating correlated

electrons in 3D is a hard task. On the other hand mixed stack CT crystals

present delocalized electrons in 1D and both theoretical and experimental

evidences strongly support the view that the basic physics of NIT is gov-

erned by the interaction between correlated electrons and phonons in 1D.

Hamiltonian (1.3) describes electron delocalized along the stack, interacting



1.2 Models, methods and approximations 17

via electrostatic interactions with electrons on different sites on the same

and on different stacks. To maintain the problem tractable, interstack elec-

trostatic interactions must be treated in the mean field (mf) approximation,

factorizing the problem into single stacks. [33, 37] The resulting Hamilonian

has the same form of (1.3), but with both i and j indexes running on a single

chain and with a renormalized Γ parameter, that self-consistently depends on

the ground state ρ. [37] Correlated electrons in 1D can be treated exactly

with real space diagonalization techniques (see section 1.2.4) by explicitly

accounting for intrastack electrostatic interactions. Exact diagonalizations

on single stack have already been discussed [33, 38] and show that the mf

approximation works well for intrastack electrostatic interactions. Here in-

trastack electrostatic interactions are conveniently splitted in two parts. [37]

A first term
∑

i,odd ρ̂i ρ̂i+1, corresponding to the intra dimer interactions, is

treated exactly. This term simply enters the Hamiltonian with a renormal-

ization of the ionization energy, i.e. Γ → Γ − V/2, where V is the nearest

neighbors electrostatic interaction. The remaining electrostatic interactions

are included in the mf treatment leading to the Hamiltonian [38, 37]

H = (Γ− V/2− εcρ)
∑

i

(−1)i n̂i −
∑

i,σ

ti

(
a†i,σai+1,σ + H.c.

)

+
N

2
εcρ

2 − Nεcρ (1.4)

where εc = V (M− 1) and MV =
∑

j Vij measures the Madelung energy.

While V fixes the scale of electrostatic interactions,MV measures the overall

strength of 3D interactions. Within this mf treatment, electrostatic inter-

actions enters the Hamiltonian as a self consistent renormalization of the

ionization energy Γ.

1.2.3 Electron-phonon coupling

Lattice phonons and molecular vibrations play a fundamental role in the

NIT and must be included in the picture. Hereafter we will focus on a sin-
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gle stack, in the hypothesis that the physics of NIT is well described in 1D.

Lattice phonons are needed to rationalize the stack dimerization that always

accompanies NIT. To describe lattice phonons, we introduce a set of carte-

sian vibrational coordinates xi, measuring the displacement along the stack

direction of the i-th site from its equilibrium position in the regular chain.

The coupling to the electronic system arises from the modulation of the hop-

ping integrals due to the variation of the distance between adjacent sites.

Following Su, Schrieffer and Heeger [4, 39] a linear coupling is considered

ti = t0 + γ(xi − xi+1) (1.5)

where γ is the coupling constant. In the following t0 will be used as energy

unit. Out of the N longitudinal vibrational degrees of freedom, the optical

mode at Brillouin zone center plays a special role, as it corresponds to the

Peierls mode:

xP =
1√
N

∑

i

(−1)ixi (1.6)

The Peierls coordinate xP measures the relative shift of D and A sublattices

and drives the stack dimerization. The Peierls or dimerization mode is the

more strongly coupled lattice mode and, as a Brillouin-zone center mode, is

optically active. In many cases the relevant physics of NIT can be described

by explicitly accounting for just xP out of the N longitudinal modes. In the

adiabatic approximation the Hamiltonian accounting for Peierls coupling

reads

H = (Γ− V/2− εcρ)
∑

i

(−1)i n̂i −
∑

i,σ

[
1 + (−1)iδ

] (
a†i,σai+1,σ + H.c.

)

+
N

2
εcρ

2 − Nεcρ+
N

2εd
δ2 (1.7)

where δ = (2γ/
√
N)xP is the dimensionless dimerization amplitude, εd =

γ2/K is the lattice relaxation energy, a measure the strength of e-ph cou-

pling, and K is the harmonic force constant of the lattice. [40] Peierls
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coupling provides also a way to distinguish between N and I phases: the

N phase is conditionally stable with respect to dimerization, the I phase is

unconditionally unstable. [32]

Totally symmetric molecular vibrations (mv) couple to the electronic

system trough a modulation of on-site energies, originated in the relaxation

of molecular geometry upon ionization. [33] The mode driving the charge

instability is also in this case a Brillouin-zone center mode, corresponding to

the in-phase vibration of the molecules of one of the two (D or A) sublattices.

A linear dependence on the mv coordinate of the DA ionization energy (Hol-

stein coupling) is assumed. The electronic adiabatic Hamiltonian, including

Peierls and Holstein coupling reads

H = (Γ + q − V/2− εcρ)
∑

i

(−1)in̂i −
∑

i,σ

[
1 + (−1)iδ

] (
a†i,σai+1,σ + H.c.

)

+
N

2
εcρ

2 − Nεcρ+
N

2εd
δ2 +

N

2εsp
q2 (1.8)

where q is the mv dimensionless coordinate with characteristic relaxation

energy εsp.

1.2.4 Diagrammatic valence bond method

The modified Hubbard Hamiltonian presented in the previous sections is

studied via real space diagonalizations on clusters of N sites, varying N

in order to extrapolate the behavior in the thermodynamic limit. Born-

Von Karman periodic boundary conditions (PBC) are imposed to minimize

end effects. The real space technique that we use is called diagrammatic

valence bond (DVB), a specific implementation of the valence bond method

developed by Soos and Ramasesha. [41, 42] In a generic real space approach

the Hamiltonian is represented on a basis set constituted by all possible

configurations of N electrons on N sites, leading to a basis dimension of

roughly increasing as 4N . The exponential growth of the dimension of the
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basis makes impossible to treat systems with large N . The DVB basis is

obtained from the full real space basis, combining the functions to obtain

the eigenstates of the (squared) total spin operator Ŝ2 and of its z-axis

projection Ŝz. Following Pauling, singlet wavefunctions are expressed as

the product of wavefunctions of singlet-coupled electrons lying on the same

or in different sites and have a clear and intuitive graphical representation,

the DVB diagrams. [41, 42] The choice of the DVB basis is particularly

convenient for our purposes because the Hubbard Hamiltonian conserves the

total spin and the ground state of the systems is always a singlet. A drastic

reduction of the dimension of the basis set is therefore obtained working in

the S2 = Sz = 0 subspace.

A further reduction of the basis set is obtained working in the high

correlation limit (see section 1.2.1). In fact in this limit the diagrams with

doubly ionized DA pairs present infinite energy and can be eliminated from

the basis set. Moreover the rotational symmetry of finite size rings has been

exploited to obtain a further factorization of the problem.

The DVB diagrams form a complete but not orthogonal basis set. To

overcome this problem, the eigenfunctions of the Hamiltonian H are ex-

pressed as linear combinations of the DVB diagrams

ψn =
∑

k

ckn |k〉 (1.9)

and a matrix h is introduced, whose elements hkj are defined as follows:

H|k〉 =
∑

i

hkj |j〉 (1.10)

The matrix h provide a unsymmetrical but sparse representation of the origi-

nal Hamiltonian H. h has the same eigenvalues of H and its left eigenvectors

correspond to the coefficients ckn in equation (1.9). [41, 42] We therefore

work with the matrix h to exploit the advantages due to its sparse nature.

Diagonalization of sparse and non symmetric matrix is efficiently performed
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using the Rettrup algorithm, to obtain the ground state and eventually few

excited states. [43]

Expectation values of a generic operator Â are calculated as follows

〈Â〉n =
〈ψn|Â|ψn〉
〈ψn|ψn〉 =

∑
k,j c

∗
jnckn 〈j|Â|k〉∑

k,j c
∗
jnckn 〈j|k〉 =

∑
k,j c

∗
jnckn Ajk∑

k,j c
∗
jnckn Sjk

(1.11)

where Sjk = 〈j|k〉 are the elements of the symmetrical overlap matrix. The

overlap matrix is necessary since we are dealing with a non orthogonal basis

and enters also in the calculation of Ajk in equation (1.11). In the common

case of an operator diagonal on the DVB basis one obtains

Ajk = 〈j|Â|k〉 = 〈j|
∑

l

Al|l〉 =
∑

l

Al Sjl (1.12)

1.2.5 Polarization and Polarizability in rings

As it will be discussed in section 1.4, the simulation of IR and Raman spectra

requires the calculation of the electric polarization P and polarizability α.

The definition of P and α is not trivial, because the dipole moment operator

is not compatible with PBC, and only in recent times a theoretical framework

for the calculation of these quantities has been developed. [44, 45, 38] In the

modern theory of polarization in insulators P is formulated as a Berry phase

[44]:

P =
1
π

Im

[
ln〈ψ| exp

(
i
2πM̂
N

)
|ψ〉

]
=

1
π

Im[ ln(Z) ] (1.13)

where ψ is the ground state wavefunction and M̂ is the open-chain dipole

moment operator

M̂ =
∑

j

j(−1)j+1 ρ̂j (1.14)

expressed in units with e = 1 and a = 1, where e is the electronic charge

and a is the intermolecular distance. P in equation (1.13) is expressed in ea
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units per DA pair. In this formulation, P is not related to the amplitude of

the wavefunction (charge density), but rather to its phase (current). P is

not a true observable, its absolute value has no physical meaning and only

its variation are relevant. Notice that the definition of M̂ in equation (1.14)

strictly applies to a regular chain. It possible to account for different spacings

in dimerized stack by slightly modifying equation (1.14), but this will lead

to more complex expressions without significantly altering the results. [38]

The polarizability is defined as the first derivative of P with respect to

a static electric field F

α =
(
∂P (F )
∂F

)

F=0

(1.15)

Much as with P , in systems with PBC the polarizability cannot be evaluated

using the standard approaches because, without an explicit expression for

the dipole moment operator, the Hamiltonian in the presence of an electric

field is not defined. The problem has been overcome trough the definition of

the wavefunction in the presence of an electric field ψF as the wavefunction

that minimizes the functional [45, 38]

E(F, ψF ) = 〈ψF |H0|ψF 〉 −NFP (ψF ) (1.16)

where H0 is the ordinary Hamiltonian at F =0 and P (ψF ) the polarization

in the presence of an electric field, defined trough the wavefunction ψF , ac-

cording to equation (1.13). It has been demonstrated that the wavefunction

that minimize the functional (1.16) correspond to the ground state of the

effective Hamiltonian in the presence of an electric field: [38]

H(F,ψF ) = H0 − F ∆M(ψF ) (1.17)

where ∆M is the ψF -dependent induced dipole moment operator defined as

∆M(ψF ) =
N

2π
Im

[
exp(2πiM̂/N)

Z(ψF )

]
(1.18)
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where

Z(ψF ) = 〈ψF | exp

(
i
2πM̂
N

)
|ψF 〉 (1.19)

Although the problem is formally solved, the effective Hamiltonian (1.17)

depends on ψF and a self-consistent iterative approach is needed. The wave-

function in the absence of the field, ψ0, is used to build the effective Hamil-

tonian (1.17) and its diagonalization gives the ψF , and hence P (ψF ), correct

to the first order in F . For the calculation of the polarizability, i.e. the first

F derivative of P , no more iterations are needed; higher order derivatives of

P would require more iterations. [38]

1.2.6 Uncorrelated models for NIT

CT crystal are a prototypical example of a strongly correlated electronic

system as evidenced by the presence of the (intrinsically correlated) Mott

insulator I phase. Calculations on correlated models are computationally

demanding and stacks with more than 20 sites can hardly be treated (see

section 1.2.4). Uncorrelated models represent therefore the only viable al-

ternative if results on long chains are needed. Uncorrelated models have re-

cently been applied to NIT for the calculation of the infrared intensity of the

Peierls mode [46] and for the evaluation of the energetic cost of metastable

I domains (LR-CT). [37] Here long chains are required for the calculation

of lattice phonons dispersion laws with a high resolution in the reciprocal

space, as required to rationalize the diffuse X-ray data (see section 1.5).

Specifically we will make resort to a spinless fermion (SF) model. SF

Hamiltonian for a stack with dimerization amplitude δ is formally obtained

from equation (1.7) by omitting the spin degrees of freedom and neglecting

electrostatic interactions (V = εc = 0). Holstein coupling is not considered

here because we are only interested in the dimerization instability. The

model describes N/2 SF, or spinless electron, on N sites with alternating
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energy ±Γ. The uncorrelated NIT is governed by the parameter Γ: fermions

occupy D sites for Γ À 0 (N phase) and A sites for Γ ¿ 0 (I phase). The

uncorrelated N and I phases are however equivalent, and can be obtained

by simply exchanging D and A sites. Quite obviously, the SF model cannot

describe a true I phase (Mott insulator), but provides a reliable description

of the Peierls instability upon approaching NIT. In fact uncorrelated models

have already been successfully applied to NIT, demonstrating that, at least

in the proximity of the lattice instability, a proper modeling of e-ph coupling

is more important than a detailed description of electronic correlations. [46]

Non-interacting Hamiltonians can be diagonalized analytically. The wave-

function of the system is the product of single particle orbitals whose energies

are

εk = ±
√

Γ2 + 4 cos2 k + 4δ2 sin2 k (1.20)

where k labels the wavevectors in the first Brillouin zone. The ground state

of the system is obtained by filling the valence band with N/2 SF. The

ground state energy per site is

E = − 1
N

∑

k

√
Γ2 + 4 cos2 k + 4δ2 sin2 k (1.21)

Since we are dealing with N/2 particles, the stack ionicity operator is slightly

modified respect to equation (1.2), resulting

ρ̂ =
1
2

+
1
N

∑

i

(−1)in̂i (1.22)

and its expectation value can be calculated from the Γ derivative of GS

energy

ρ =
1
2

+
∂E

∂Γ
=

1
2
− 1
N

∑

k

Γ√
Γ2 + 4 cos2 k + 4δ2 sin2 k

(1.23)

In the infinite chain limit the sums can be expressed in terms of complete

elliptic integrals, [47] so that in the N →∞ limit:

ρ =
1
2
− Γ

π
√
γ2 + 4

cel(qc, p = 1, a = 1, b = 1) (1.24)
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with q2c = Γ2+4δ2

Γ2+4
and

cel(qc, p, a, b) =
∫ π/2

0

a cos2 k + b sin2 k

(cos2 k + p sin2 k)
√

cos2 k + q2c sin2 k
dk (1.25)
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1.3 State of art

1.3.1 The phase diagram: potential energy surfaces

and multistability

The modified Hubbard Hamiltonian with Peierls and Holstein coupling in

equation (1.8), despite its simplicity, catches the main features of the phase

diagram of mixed stack CT salts. In this section the (zero temperature)

phase diagram of Hamiltonian (1.8) is qualitatively discussed, pointing at-

tention on the potential energy surfaces (PES), associated with the different

phases. Results and figures of this section are adapted from reference [37].

Hamiltonian (1.8) is the sum of an effective electronic part (the first two

terms) plus constant terms (mf constants and elastic energy of the coupled

modes). The effective electronic Hamiltonian is defined in terms of just two

parameters Γeff = Γ−V/2+q−εcρ and δ. Diagonalizing this Hamiltonian on

a mesh of Γeff and δ values, we calculate the ground state energy E(Γeff , δ)

and ionicity ρ(Γeff , δ). For fixed model parameters (Γ, V , M, εd and εsp) we

can extract for each Γeff the corresponding q value (q = Γeff−Γ+V/2+εcρ).

With this procedure we calculate the total energy (per DA pair) E(δ, q), as

a function of the two vibrational coordinate. This function is the ground

state adiabatic potential energy surface (PES), whose minima locate the

equilibrium geometries of the system. [37]

Reliable estimates of the parameters entering Hamiltonian (1.8) are avail-

able for TTF-CA. [48] The values of model parameters are expressed in units

of the CT integral t. For TTF-CA was estimated t ∼ 0.21 eV . [33] Current

estimates for the strength of electron-phonon (e-ph) and electron-molecular

vibration (e-mv) coupling are εd ∼ 0.2 − 0.3 and εsp ∼ 1.8. [33, 48] The

Madelung constant is in the range M ∼ 1 − 1.5. [49] More delicate are

estimates of V , the nearest neighbor electrostatic interaction. Quantum

chemical calculations, obtained neglecting dielectric screening, set an upper
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limit for V ∼ 10t. [49] Direct estimates of Γ also seem to be large. [49] For

the sake of simplicity, here we fix all model parameters, with the exception

of V . In fact NIT will be induced by increasing V , to mimic the increase of

electrostatic interactions due to volume contraction.

We consider first the case of a discontinuous NIT, similar to that ob-

served in TTF-CA. Figure 1.4 reports the equilibrium dimerization δ0 and

ionicity ρ0 (ionicity calculated for the equilibrium geometry of the system),

calculated as a function of V for parameters in the figure caption. The tran-

sition is clearly discontinuous: ρ0 smoothly increases from ∼ 0.25 to ∼ 0.4

with increasing V and then abruptly jumps toward I values (ρ0 > 0.6). The

stack remains regular (δ0 = 0) on the N side and dimerizes in the I regime

(δ0 ∼ 0.12). In the proximity of the transition a bistability region appears,

marked in figure 1.4 by dotted lines, where two non-equivalent minima are

found. Bistability is a typical feature of discontinuous transitions.

Figure 1.5 shows ground state PESs E(δ, q) (left column) and relative

contour plots (right column) calculated for the system described in figure

1.4 at three different V values (marked by arrows in figure 1.4). The PES

in the top panels, calculated for V = 2.26, is representative of a N regular

system, whose equilibrium is found at δ0 = 0. The PES in the bottom

panels (V = 2.42) is instead characteristic of an I dimerized stack, which,

unconditionally unstable to dimerization, presents two equivalent minima at

finite ±δ0, corresponding to I dimerized phases with opposite polarization.

Central panels, calculated for V = 2.34, i.e. a value within the bistability

region, show a PES with three minima, as can be better appreciated from the

contour plot. The minimum at δ0 = 0, is relative to a N regular system, while

the two equivalent minima at finite ±δ0 describe two equivalent I phases. It

is worth noting the large anharmonicity of all PES shown in figure 1.5, due

to the coupling of harmonic phonons with delocalized electrons.

The nature of the transition can be modified by a slight adjustment of
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Figure 1.4: Equilibrium dimerization δ0 and ionicity ρ0 for a discontinuous

NIT, calculated with Γ = 0.5, εd = 0.28, εsp = 1.8 and M = 1.4 for N = 16

sites (results for N = 14 are analogous and not shown). For clarity the two

phases are shown with different symbols. Dotted lines marks the limits of

the bistability region. Arrows in the upper panel marks the V values for

which PES are drawn in figure 1.5.
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Figure 1.5: PESs (left column) and respective contour plots (right column)

relevant to the system in figure 1.4, calculated for V = 2.26 (upper panels),

V = 2.34 (central panels) and V = 2.42 (lower panels).
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Figure 1.6: Equilibrium dimerization δ0 and ionicity ρ0 for a continuous

dimerization (Peierls) transition, calculated with same parameters in figure

1.4 and M = 1.1 for N = 16 sites (results for N = 14 are analogous and not

shown). Arrows in the upper panel marks the V values for which PES are

drawn in figure 1.7.

model parameters. [37] Equilibrium dimerization and ionicity for a contin-

uous (second order) transition are reported in figure 1.6 and are obtained

for the same parameters of figure 1.4, but a smaller M = 1.1. In this case

dimerization occurs on the N side at ρ0 ∼ 0.4, where a steep but continuous

increase of the ionicity occurs, as observed in DMTTF-CA. At variance with

DMTTF-CA, where ionicity remains always lower than ∼ 0.45, we calculate

ρ0 ∼ 0.7 in the I limit. This disagreement is not too much surprising because

of the simplicity of the model. In fact we induce NIT by simply tuning V ,

but also the CT integral t is expected to increase upon lattice contraction,

favoring states with intermediate ionicity. A quantitative simulation of all

the features of NIT clearly goes beyond the scope of the present analysis.

Figure 1.7 shows the ground state PESs and relative contour plots (left
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and right columns respectively) calculated for the system of figure 1.6 at

three different V values (marked by arrows in figure 1.6). The PES in the

top panel (V = 2.6) is representative of a N regular system, with a single

minimum at δ0 = 0, while the PES in the bottom panel (V = 3.1) describes

an I dimerized stack with δ0 ∼ 0.12. At variance with the discontinuous

transition discussed above, in this case the PES smoothly evolves from a

single minimum in the N phase to a double minimum in the I phase. The

PES in the central panels, calculated for V = 2.94, represents a system just

at a continuous N-I interface.

In mixed stack CT crystals the coupling to both lattice phonons and

molecular vibrations is amplified by the proximity of both valence and lat-

tice instability, as proved by the softening of the relevant frequencies and by

the largely anharmonic PES in figure 1.5 and 1.7. Both Peierls and Holstein

vibrations enter the Hamiltonian (1.8) as purely harmonic, therefore the an-

harmonicity is due to the coupling to the electronic system. The nature

of the transition is governed by the competition between a discontinuous

crossover, coupled to on-site vibrations and a continuous dimerization tran-

sition, driven by the softening of the Peierls phonon. When moving from

the N to the I phase, the coupling to delocalized electrons causes a decrease

of the curvature of the PES along the δ direction so that a softening of the

Peierls mode develops in any case. However, in systems with a large enough

εsp or M, a discontinuous NIT occurs before the complete softening of the

Peierls mode, with the condensation of the Holstein phonon. This is the

case of figure 1.4, where a discontinuous NIT takes place, accompanied by

lattice dimerization. On the opposite, when εsp or M are small, a complete

softening of the Peierls mode drives the dimerization transition, as for the

system in figure 1.6. In this case, the frequency of the Peierls mode decreases

approaching the transition and vanishes at the dimerization, where the PES

is locally flat (see central panels of figure 1.7).
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Figure 1.7: PESs (left column) and respective contour plots (right column)

relevant to the system in figure 1.6, calculated for V = 2.6 (upper panels),

V = 2.94 (central panels) and V = 3.1 (lower panels).
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We conclude this section remarking two aspects: first, multistability is

only expected at discontinuous transition, when PES with multiple non-

equivalent minima indicate the presence of multiple (meta)stable phases.

The coexistence of N and I phases is then expected only in the close proximity

of a discontinuous NIT when the energy difference of respective minima is

comparable with thermal energy. [37] An example of coexistence at ambient

temperature is given by the pressure induced NIT of TTF-CA [50, 51]. The

second remarkable fact is that softening and anharmonicity are common

features of both continuous and discontinuous transitions and are originated

by electron-phonon coupling. Experimental evidences of anharmonicity were

clearly recognized in vibrational spectra of TTF-CA, DMTTF-CA and other

CT salts [52, 53, 54, 55, 28].

1.3.2 The phenomenology of NIT

The phenomenology of NIT is fairly rich and we shorty summarize here some

of the most interesting experimental results. The static dielectric constant

presents a quasi divergent behavior at NIT with peak values higher than

500. Such anomalous dielectric response, extensively studied by Horiuchi et

al. on TTF-CA and DMTTF-CA derivatives, is a characteristic feature of

the ferroelectric transition of systems undergoing NIT [53, 54].

Anomalous features were observed in mid-infrared (IR) absorption spec-

tra polarized parallel to the stack axis, in systems approaching NIT from the

N side. [52] As shown in figure 1.8, where mid-IR (dashed line) and Raman

(continuous line) spectra of TTF-CA at different temperatures are reported,

couples of broad and intense absorptions (marked with asterisks) appear

around the Raman bands associated with the totally symmetric molecu-

lar vibrations (mv). Specifically, for each Raman band the two absorption

peaks are observed almost symmetrically located at lower and higher fre-

quency. The two sidebands approach each other when the system moves
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toward NIT and collapse in a single band, superimposed to the Raman band

in the I dimerized phase. The coincidence of mid-IR and Raman spectra

was the first evidence of dimerization in TTF-CA, [52] later confirmed by

neutron scattering. [56] Similar features were observed in many CT salts

[52, 53, 54, 55, 28] and remained unassigned for a long time.

An intense signal has been recently observed in our laboratory in the

lattice phonon region of the Raman spectrum of DMTTF-CA in the close

proximity of the NIT. [57] Raman spectra of DMTTF-CA measured with

incident and scattered light polarized perpendicular to stack axis at different

temperatures are shown in figure 1.9. The lattice phonon region of the

Raman spectrum (below 150 cm−1) of DMTTF-CA is characterized, both

in the N and in the I phase, by the presence of a single narrow band, located

around 80 cm−1, stemming out from a flat background. However, a few

degree Kelvin before the transition temperature (65 K) a broad and intense

signal grows below 100 cm−1. The scattered intensity reaches its maximum

around 60 K and completely disappears below 40 K. A similar behavior,

although less pronounced, has been observed in TTF-CA. [57]

An intense diffuse X-ray signal has been observed in DMTTF-CA and

TTF-CA when approaching the transition from the N side [58, 59]. The

scenario is similar for both compounds: the DXR signal is observed in the

(b∗, c∗) planes of the reciprocal space around Bragg reflections with integer

values of the Miller index h. As an example, figure 1.10 (from ref. [59])

shows the intensity of the diffuse X-ray signal around the (3 1 1) reflection

of TTF-CA at 84 K [59]. The presence of diffuse planes is a clear indication

that pretransitional fluctuations are mainly restricted to stack direction and

confirm the 1D nature of the transition. DXR profile, measured scanning

the reciprocal space along a∗ far enough from the Bragg reflection, present

an almost Lorentzian shape and become more intense and sharper upon

approaching the transition. The experimental picture is completed by the
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Figure 1.8: IR (dashed line) and Raman (continuous line) spectra of TTF-

CA at different temperatures from ref. [55]. Mid-IR sidebands are marked

with asterisks. Similar features were observed in DMTTF-CA (figure 1.20,

page. 60) and other CT salts [53, 54].
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Figure 1.9: Raman spectra of DMTTF-CA at different temperatures. Data

collected with incident (λexc = 647 nm) and scattered light polarized per-

pendicular to stack axis. [57]
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Figure 1.10: Diffuse X-ray planes around the (3 1 1) Bragg reflection of

TTF-CA at 84 K. Image from reference [59].

one order of magnitude increase of the d.c. electrical conductivity, just a few

degrees above the TTF-CA temperature induced NIT. [60]

Different interpretations of this complex scenario were proposed. Tokura,

Horiuchi, Collet et al. attributed most of these experimental data to the

presence of metastable I dimerized domains, the so called lattice relaxed CT

exciton strings (LR-CT) and to the dynamic of their boundaries, the N-I

domain walls (NIDW) [53, 54]. LR-CT and NIDW were originally intro-

duced by Nagaosa [31, 61] as typical excitations of 1D systems with a mixed

stack motif. Although these concepts are surely fascinating, the proposed

interpretation must be reconsidered. First, the discussion is based only on

qualitative arguments and no detailed modelization of experimental data

was offered. Moreover, while LR-CT and NIDW were invoked to explain

the phenomenology of both continuous and discontinuous transitions, these

excitations, as earlier recognized by Nagaosa, are expected only in the close

proximity of a discontinuous transition [31, 61] and in most cases the energy

of the domains is too large for appreciable thermal population [37].

Soos, Painelli, Girlando et al. explained some of the unconventional
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features of NIT as due to the dramatic effects of e-ph coupling in a 1D sys-

tem presenting both a structural and a valence instability. Specifically, the

anomalous dielectric peaks were explained as a manifestation of e-ph cou-

pling and were quantitatively reproduced using the Peierls-Hubbard model

and the Berry phase formulation of polarization in dielectrics [46, 38]. In

that works the authors evidenced the role of the soft Peierls phonon that

acquires huge infrared (IR) intensity at the transition, inducing large charge

fluctuations that are responsible for the dielectric anomaly. The presence of

the Peierls phonon is of fundamental importance also for the interpretation

of mid-IR spectra. Girlando et al., from an analysis of the temperature de-

pendence of IR and Raman spectra of TTF-CA and DMTTF-CA, showed

that unassigned sidebands in mid-IR spectra can be interpreted as sum and

difference combinations of the Raman active mvs and a lattice mode that

softens approaching the transition. [55, 28] The appearance of intense com-

bination bands is a clear indication of a strong anharmonicity as confirmed

by the theoretical results presented in the previous section. [37] The direct

observation of the Peierls mode proved difficult because of experimental lim-

itations and of the complex lattice phonons structure of molecular crystals

[62]. In a recent paper Girlando et al. reported far-IR reflectivity mea-

surement on TTF-CA, that allowed the direct observation of lattice modes

involved in the Peierls mechanism. [63] From the analysis of experimen-

tal spectra an average or effective Peierls mode was defined. This effective

mode softens upon approaching NIT in quantitative agreement with mid-IR

spectra. Moreover, frequency and IR intensity of the effective Peierls mode

agrees with theoretical results obtained with the Peierls-Hubbard model and

justify the single mode picture.[63]

We can anticipate that the vibrational spectra presented in section 1.4,

obtained fully relaxing the harmonic approximation, give the definitive con-

firmation of the interpretation of mid-IR bands as combinations. Moreover,
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we will show also the Raman signal, observed in the lattice phonon region in

DMTTF-CA, is another manifestation of the strong anharmonicity of this

system. Finally, the diffuse X-ray signal observed in TTF-CA and DMTTF-

CA can be explained as another manifestation of the soft Peierls mode and

of the related Kohn-like anomaly, as it will be discussed in section 1.5.
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1.4 Modeling vibrational spectra at NIT

1.4.1 Time correlation functions and spectroscopy

The fluctuation dissipation theorem states that the dissipative processes

originated from the weak coupling between two physical systems can be

described in terms of the equilibrium fluctuations of the uncoupled sys-

tems. Equilibrium fluctuations are formally expressed by time autocorre-

lation functions (TCF) of the appropriate physical quantities. TCF are

therefore extremely useful in the context of spectroscopy, since they offer

a general method to calculate the response of a material system to exter-

nal stimuli. [64] Qualitatively, a TCF describes how long a given property

of a system persists, until it is averaged out by microscopic fluctuations.

Formally, the TCF of a quantity A is defined by the ensemble average

C(t) = 〈A(0)A(t)〉 (1.26)

In ergodic systems, assuming A defined with zero average, TFC approaches

zero for long times.

In the case of absorption of radiation, as for IR spectroscopy, the imagi-

nary (dissipative) part of the dielectric constant of the material is obtained

from the Fourier transform of the TCF of the dielectric polarization ~P : [64]

ε′′(ω) =
1− e

− ~ω
kBT

4ε0V ~

∫ ∞

−∞
eiωt 〈ε̂ · ~P (0) ε̂ · ~P (t)〉 dt (1.27)

where ~ is the reduced Planck constant, kB is the Boltzmann constant, ε0

is the vacuum permittivity, V is the volume and ε̂ sets the direction of the

incident light. Similarly, the TCF of the polarizability tensor α is related to

the intensity of the Raman scattering: [64]

IR(ω) =
∫ ∞

−∞
eiωt 〈(ε̂I ·α(0) · ε̂S)(ε̂I ·α(t) · ε̂S)〉 dt (1.28)
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where ε̂I and ε̂S are the versors of the incident and scattered light respec-

tively. Expressions 1.27 and 1.28 results from a quantomechanic treatment

of the interaction between light and matter in the weak coupling regime.

While equations (1.27) and (1.28) are exact, approximations are intro-

duced in the calculation of TCF. A common approach considers the vibra-

tional dynamics of the system governed by the Newton equations of motion.

TCF calculated with molecular dynamics (MD) simulations, with empirical

force fields, provided much insight in the optical properties of liquids and

solutions (see, for example, refs. 39-48 of ref. [65]).

In recent times, MD simulations have been combined with quantum me-

chanics first principle electronic structure calculations. The most popular

among these methods is the Car-Parrinello MD, [66] in which electrons are

treated within the density functional formalism while nuclei are treated clas-

sically. The forces experimented by the nuclei are obtained as derivatives

of the ground state electronic energy with respect to the vibrational coordi-

nates, assuming the validity of the adiabatic approximation. The applica-

tion of first principle MD to the calculation of vibrational spectra of crystals

[67, 68, 69] has been made possible by the major advances in the modern

theory of polarization in dielectrics, that overcame the problem in the defi-

nition of polarization and polarizability in systems with periodic boundary

conditions (see section 1.2.5).

A similar semiclassic approach to time correlation functions is provided

here, with the vibrational motion governed by classical equations of motion

in the quantomechanic potential obtained from the model Hamiltonian in

equation (1.8). The two effective vibrational coordinates q and δ, defined

in section 1.2.3, are considered. The vibrational dynamics of our system is

governed by the potential energy surface (PES) E(q, δ) presented in section

1.3.1. The electronic contribution (fluctuating charges) to the stack polar-

ization and polarizability are calculated according to equations (1.13) and
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(1.15). The contribution from the frozen molecular charges is negligible, at

least in the proximity of NIT, and is not considered. [46, 38]

According to equation (1.27), the TCF of the stack polarization, P , gives

the IR absorption spectra polarized along the stack axis. The stack polariz-

ability α, following equation (1.28), is related to the Raman signal obtained

with both incident and scattered light parallel to stack axis. Most of the

available Raman data are however obtained with polarization of incident

and scattered light perpendicular to the stack axis (parallel to the molecular

plane) and in the (pre-)resonant regime with molecular electronic excitations.

These spectra can be modeled in terms of molecular polarizability that is

not described by our model. To simulate perpendicularly polarized Raman

spectra in the region of mv we approximate the molecular polarizability by

a linear expansion on q:

αmol = α0 +
(
∂αmol

∂q

)

q=0

q (1.29)

It is worth noting that Raman spectra are calculated in the low frequency

limit for the incident light (non resonant Raman scattering). In fact our

calculation is based only on the ground state properties. For simplicity

in the following we will refer to parallel (incident and scattered light) and

to perpendicular (incident and scattered light) Raman spectra, where the

polarization is defined with respect to the direction of the stack axis.

1.4.2 Details of the calculation

The simulation of vibrational spectra consists of three basic steps: (a) the

integration of the Newton equations of motion, (b) the calculation of TCF

and (c) the Fourier transform of TCF to obtain the spectra.
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Newton equations of motion for the vibrational dynamics are

q̈(t) = −εspΩ
2
H

2
Fq(q, δ)

δ̈(t) = −εdΩ
2
P

2
Fδ(q, δ) (1.30)

where Fq(q, δ) and Fδ(q, δ) are the q and δ components of the force (partial

derivatives of E(q, δ)) in the point (q(t), δ(t)), ΩP and ΩH are the unper-

turbed harmonic frequencies of the Peierls and of the Holstein mode respec-

tively. These frequencies are set to ΩP = 90 cm−1 and ΩH = 1540 cm−1 to

reproduce experimental data. The relaxation energies εd and εsp were defined

is section 1.2.3. For a given set of initial values r0 = (q(0), δ(0), q̇(0), δ̇(0))

equations (1.30) are integrated to obtain the laws of motion (q(t; r0), δ(t; r0)).

The numerical integration of equations (1.30) is performed using the leapfrog

algorithm. [70] Simulations are performed for a total time tmax = 10 ps with

a time step of 25 fs. Forces Fq(q, δ) and Fδ(q, δ) are calculated as partial

derivatives of the PES E(q, δ) using numerical 5-point stencil formula. The

numerical steps for the calculation of derivatives are hq = 0.05 and hδ = 0.01.

The calculation of forces with numerical derivatives requires the evaluation

of the electronic ground state energy in many (q, δ) points. While in Car-

Parrinello MD the electronic adiabatic Hamiltonian is diagonalized on the

flight, [66] i.e. for each molecular geometry, in our case a different approach

is preferable. Since we deal with a system with only two vibrational degrees

of freedom, we can calculate E(q, δ) once and for all on a dense mesh of

q and δ values. Other electronic quantities of interest, as polarization and

polarizability, are calculated in the same mesh points. Optimal values for

the steps of the mesh are 0.05 and 0.01 for the q and the δ coordinate re-

spectively. Bilinear interpolation algorithm is used to obtain the values of

the electronic quantities outside the mesh points. Dynamics calculated with

the leapfrog algorithm have been compared with dynamics calculated with

more sophisticated numerical methods for solving initial value problems for
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ordinary differential equations (Runge-Kutta methods, ode* Matlab func-

tions). The leapfrog algorithm provides an accurate solution of equations

of motion (1.30), and our implementation in fortran 95 code is about one

order of magnitude faster than the Matlab code.

The TCF of the generic quantity A is calculated performing an ensemble

average over the initial conditions: [71]

〈A(0)A(t)〉 =
1
Z

∫
P(r0)A(0; r0)A(t; r0) dr0 (1.31)

where A(t; r0) is the value of A at the time t obtained from a dynamic

with initial conditions r0, P(r0) is the Boltzmann probability distribution

of initial conditions, Z is the canonical partition function and the integral is

performed over the whole phase space. In principle, TCF can be calculated

with an alternative procedure. In fact, assuming the validity of the ergodic

hypothesis, the ensemble average over initial conditions can be substituted

by an average over time intervals of a single long trajectory. [71] However,

this long trajectory must results from a isothermal dynamics, as obtained by

coupling the system to a thermostat, i.e. introducing an additional degree of

freedom that reacts to the time evolution of the system to keep constant the

total kinetic energy. [72, 73] This approach is well established and widely

adopted in molecular dynamics simulations, where systems with many de-

grees of freedom are treated, but cannot be used in our system, where only

two degrees of freedom are considered.

The time evolution of electronic quantities, as polarization and polariz-

ability, is calculated propagating adiabatically the electronic wavefunction

ψ on the classical trajectories:

A(t; r0) = A[ψ(q(t; r0), δ(t; r0))] (1.32)

Polarization and polarizability are recorded each ten time steps. Ensemble

average over initial condition, expressed by integral in equation (1.31), is
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approximated by a discrete sum. The phase space is evenly sampled with

steps dq = 0.025, dδ = 0.003, dq̇ = 5.3 1012 s−1, dδ̇ = 2.3 1011 s−1. Such a

fine sampling over initial values is required for the calculation of the TCF of

the stack polarizability, since the α(q, δ) surface is characterized by a sharp

peak (see figure 1.16 at page. 53). TCF of the stack polarization or of the

molecular polarizability can be calculated also with coarser sampling. Fixed

as unit the probability of the dynamic starting at the PES minimum with

zero velocity, thermal averages are calculated only accounting for dynamics

with initial values, r0, such that P(r0) > 0.01. No appreciable effects on

the calculated spectra are observed by lowering this threshold. TCF are

not calculated with the bare polarization and polarizability, but with their

deviation from the corresponding average values. This ensures proper con-

vergence of TCF to zero in the t → ∞ limit and eliminates spurious low

frequency tails in the Fourier transforms.

The TCF are multiplied by a Gaussian damping factor e−k t2 , with k =

5 10−23 s−2, in order to smooth numerical noise in the calculated spectra.

Fourier transforms are calculated using the fast Fourier transform algorithm

(fft Matlab function).

1.4.3 The anharmonicity of the model system

The system considered here is a mixed stack undergoing a second order

transition, described by the model Hamiltonian in equation (1.8) and char-

acterized by the same model parameters as the system in figure 1.6, apart

from a readjustment of the vibrational relaxation energies εsp and εd. To

allow for a direct comparison with experimental spectra, we focus on a sin-

gle mv and specifically on the mode responsible for the band observed at

about 1450 cm−1 in the room temperature Raman spectra of TTF-CA (see

figure 1.8) and DMTTF-CA (see figure 1.20). The vibrational relaxation

energy εsp ≈ 1.8, estimated in section 1.3, measures the overall strength of
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coupled modes. Since here we are concentrating on a specific mode, its value

is reduces to εsp = 0.7. The contribution from other modes to the charge

instability can be accounted for by increasing the strength of electrostatic

interactions. [33] The lattice relaxation energy is set to εd = 0.4, in order to

better reproduce experimental spectra. Results are presented for a 16 sites

chain, results for N = 14 and N = 18 are similar. As in section 1.3.1, all

model parameters are fixed apart V , that is tuned to induce NIT, in order

to mimic the increase of electrostatic interactions upon lattice contraction.

Figure 1.11 shows equilibrium dimerization (top panel) and stack ionicity

(central panel), calculated as a function of V , for the new set of parameters.

Calculated spectra will be compared with experimental data collected

for the DMTTF-CA T -induced NIT. Temperature is a delicate parameter in

our simulation and strongly affects the calculated spectra. In fact tempera-

ture determines the amplitude of thermal fluctuations and therefore sets the

explored portion of the PES E(q, δ), and hence of the P (q, δ) and α(q, δ)

surfaces. The V (T ) dependence is therefore chosen as to best reproduce ex-

perimental spectra and the resulting relation in shown in the bottom panel

of figure 1.11. A smooth and monotonous dependence is found.

The basic ingredients in the simulation of vibrational spectra are the

PES, E(q, δ), that governs the time evolution, and the dependence of po-

larization and polarizability on the two vibrational coordinates, i.e. P (q, δ)

and α(q, δ) surfaces. The intimate entanglement between electrons and vi-

brations makes the physics of NIT is very interesting. In fact, in addition to

the strong anharmonicity of the PES, already discussed in section 1.3.1, ma-

jor effects are due to the electrical anharmonicity, defined as the deviation

of P (q, δ) and α(q, δ) functions from a linear behavior. Figure 1.12 shows

the PES calculated for V = 1 with the relevant color map in the right panel.

The PES is clearly anharmonic and presents a single minimum (marked by

white cross in right panel) that describes a N regular (δ0 = 0) stack. While
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Figure 1.11: Equilibrium dimerization δ0 (top panel) and ionicity ρ0 (central

panel) for a continuous dimerization (Peierls) transition, calculated with

same parameters of figure 1.6, with the exception of εsp = 0.7 and εd = 0.4

for N = 16 sites. Lower panel: empiric relation between temperature and

nearest neighbor electrostatic interaction V .
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Figure 1.12: PES calculated for parameters of figure 1.11 and V = 1 (left

panel) and relative color map (right panel). White cross marks the PES

minimum. Continuous and dotted curves are PES isolines at E1/2 and Elim

according to equation (1.33) with T = 150 K (see text).

at T = 0 only the equilibrium position is relevant, at finite temperature wide

portions of the PES are explored because of thermal fluctuations. Explored

regions of the PES are delimited by the white curves in the right panel of

figure 1.12. Specifically, the continuous (inner) line and the dotted (outer)

line are the PES isolines at

E1/2 = E0 + 1.5 kBT

Elim = E0 − kBT log 0.01 ≈ E0 + 4.6 kBT (1.33)

where E0 is the PES value in the minimum and (for V = 1.0, as for figure

1.12) T = 150 K. The dotted curve limits the region explored by thermal

fluctuations, the continuous curve marks the boundary of the region explored

by the dynamics characterized by an energy lower than 1.5 kBT . These

dynamics weight for about one half (±5% depending on the specific PES

and T ) of the total probability.

The color maps of the PES, calculated for V = 1.3, 1.5, 1.9 and 2.2

are shown in figure 1.13. With increasing V the harmonic frequency of
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the Peierls mode softens and vanishes at V = 1.3 where the PES is locally

flat (left upper panel, figure 1.13). For larger V , two minima develop, corre-

sponding to equivalent I dimerized phases with opposite dimerization. While

at T = 0 the presence of a double minimum signals the dimerization, at finite

T the key quantity is the ratio ∆E/kBT , where ∆E measures the energy

barrier between the two dimerized phases. In fact for V = 1.5 (right upper

panel, figure 1.13) the PES presents two minima, but the energy barrier is

much smaller than thermal energy (∆E = 5 K, T = 100 K) and the stack is

macroscopically regular. For V = 1.9 (left lower panel,figure 1.13) the energy

barrier becomes comparable to thermal energy (∆E = 58 K, T = 60 K) and

the system sets in the two minima. Finally, for V = 2.2 (right lower panel,

figure 1.13) the energy barrier is higher than thermal energy (∆E = 120 K,

T = 55 K for V = 2.2) and the system is almost completely localized within

the two minima.

The electronic stack polarization, calculated for V = 1.0, is shown in

figure 1.14. P is expressed in ea per DA pair units, where e is the electronic

charge and a the intermolecular distance. Polarization is an odd functions

of δ and vanishes for symmetry in the regular stack (δ = 0). For q & −0.5

the δ-dependence of the polarization is smooth and, P stays relatively small

in magnitude (|P | < 0.3). On the contrary for q . −0.5, P changes its

sign abruptly at δ = 0 and assumes large values at finite δ (|P | > 0.6).

This behavior is not surprising, since the DA ionization energy Γ is linearly

modulated by q, and for q ≈ −0.5 the electronic system undergoes NIT.

The steep behavior of P is therefore a manifestation of the dimerization

instability of the NIT: tiny variations of the dimerization amplitude around

δ = 0 produce large reorganization of electronic charges resulting in highly

polarized phases. The steep behavior of P is related to the huge IR intensity

of the Peierls mode at NIT: in fact, within the harmonic approximation,

the IR intensity is related to the squared δ derivative of the polarization
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Figure 1.13: PES color maps calculated for parameters of figure 1.11 and

V = 1.3, 1.5, 1.9 and 2.2, from left to right and top to bottom. White crosses

mark PES minima. White curves are PES isolines at E1/2 (continuous) and

Elim (dotted) according to equations (1.33), calculated for T = 120, 100, 60

and 55 K with increasing V .
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Figure 1.14: P (q, δ) function (left panel, ea per DA pair units) calculated

for parameters in figure 1.11 and respective color map (right panel). White

cross and curves report same quantities as in figure 1.12.

(
∂P
∂δ

)2

0
. As it can be seen from the right panel of figure 1.14, for V = 1 and

T = 150 K the system explores only the smooth region of P .

The P (q, δ) functions, calculated for V = 1.3, 1.5, 1.9 and 2.2, shown

in figure 1.15, are similar to those observed in the V = 1 case (cf. figure

1.14), but the explored regions of the P (q, δ) surface vary considerably upon

approaching NIT. With increasing V , the equilibrium point(s) of the PES

approach the steep region of P that is explored by the system with impor-

tant consequences on IR spectra. After the transition, however, the system

localizes within the two wells and the steep region of P is visited with lower

probability (see right lower panel of figure 1.15).

Figure 1.16 shows the adiabatic dependence of the electronic stack po-

larizability (e2a2/t per DA pair units) on the two vibrational coordinates,

calculated for V = 1. The polarizability is an even function of δ and presents

a peak at δ = 0 and q ≈ −0.5. The α peak is another consequence of the

NIT, as previously discussed for the steep behavior of the polarization sur-

face, and is strictly related to the dielectric anomaly. For V = 1, the peak of
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Figure 1.15: P (q, δ) color maps calculated for parameters in figure 1.11 and

V = 1.3, 1.5, 1.9 and 2.2, from left to right and top to bottom. White crosses

and curves reports PES minima and PES isolines as in figure 1.13.
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Figure 1.16: α(q, δ) function (left panel, e2a2/t units per DA pair) calculated

for parameters in figure 1.11 and respective color map on a logarithmic scale

(right panel). White cross and curves report same quantities as in figure

1.12.

the polarizability is located, far from the equilibrium point of the PES (white

cross in right panel), so that it is practically unexplored at T = 150 K.

The α(q, δ) functions, calculated for V = 1.3, 1.5, 1.9 and 2.2, are pre-

sented in figure 1.17. As for P , with increasing V , the α surface does not

changes much, but, because of the changes of the PES and of T , the system

explores the α peak. The very sharp peak in the α(q, δ) is responsible for

important effects in Raman spectra polarized parallel to the stack axis when

approaching NIT.

1.4.4 Results and comparison with experiments

We begin the discussion with the results relevant to a N regular stack (V =

1 and T = 150 K). Figure 1.18 shows the calculated TCF and spectra.

The TCF of the stack polarization (left top panel) is characterized by an

oscillation with a period of about 0.65 PS, but presents a higher frequency

oscillation of much smaller amplitude, shown in the figure inset (enlargement



54 Neutral-Ionic phase transition in mixed stack CT crystals

q

δ

−1 0 1

−0.4

0

0.4

q

δ

−1 0 1

−0.4

0

0.4

q

δ

−1 0 1

−0.4

0

0.4

q

δ

−1 0 1

−0.4

0

0.4

Figure 1.17: α(q, δ) color maps (logarithmic scale) calculated for parameters

in figure 1.11 and V = 1.3, 1.5, 1.9 and 2.2, from left to right and top to

bottom. White crosses and curves reports PES minima and PES isocurves

as in figure 1.13.
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of the dashed box in the main figure). The same information contained in the

P TCF (time domain) is found in its Fourier transform (frequency domain),

corresponding to IR spectra, presented in the right top panel. The main

oscillation is responsible for the intense absorption band in the low frequency

region, that corresponds to the Peierls mode at ωP = 55 cm−1. The higher

frequency oscillation, indeed, results in the two small bands located around

1400 cm−1 and enlarged in the figure inset. We anticipate that these bands

correspond to sum and difference combinations of the Peierls mode with the

totally symmetric mv (Holstein mode, with frequency ωmv), i.e. ωmv ± ωP .

TCF of the molecular polarizability, shown in the left middle panel, is

dominated by a oscillation with a period of about 0.023 PS. This oscillation

corresponds to the intense peak of the Holstein mode at ωmv = 1420 cm−1

in the perpendicular Raman spectrum, reported in the right middle panel.

The TCF of the stack polarizability and its Fourier transform, corre-

sponding to the parallel Raman spectrum, are reported in left and right

bottom panels, respectively. The scenario is more complex than in the

previous case since the stack polarizability, explicitly dependent on δ, is

sensitive to lattice oscillations. In fact, the TCF of the stack polarizabil-

ity is characterized by a low frequency profile that modulates the high fre-

quency oscillation of the Holstein mode. The mv region of the parallel Ra-

man spectrum presents a main peak, corresponding to the Holstein mode at

ωmv = 1420 cm−1, and two smaller combination bands at ωmv±2ωP . In the

region of lattice phonons, a band at 2ωP has a comparable intensity with the

mv band (the Peierls mode is Raman forbidden by symmetry in the regular

stack). A weak 4ωP band is also detected (see figure inset).

Now we turn attention to selected spectral regions, in order to follow

the evolution of the spectra upon approaching NIT and perform direct com-

parisons with experimental data. We start from the region of mvs. IR and

Raman spectra in this region are of primary importance, since they signal
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Figure 1.18: Left panels show (from top to bottom) TCF of the stack Polar-

ization, molecular polarizability and stack polarizability. Right panels show

the corresponding Fourier transforms, proportional to (from top to bottom)

IR, perpendicular and parallel Raman spectra. Results are calculated for

parameters in figure 1.11 and V = 1. Insets report enlargements of selected

regions of the main panels (see text).
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the stack dimerization. In fact, in the N regular phase each molecule stays

on an inversion center and mvs modulate (molecular and stack) polarizabil-

ity but not the polarization, so that they appear only in the Raman spectra.

Dimerization removes the inversion symmetry and mv appear both in Raman

and in IR spectra polarized parallel to stack axis. Moreover, mvs have in the

dimerized phase a huge IR intensity because they borrow intensity from the

electronic system (mvs move electronic charges). [52] The appearance of mvs

in IR spectra polarized parallel to stack axis, or equivalently, the coincidence

of mv’s bands in Raman and IR spectra, is the spectroscopic signature of the

the transition. Experimental Raman spectra in this region are available only

for polarization perpendicular to the stack and in pre-resonant regime with

molecular excitations. [55, 28] Attempts to measure non-resonant parallel

Raman spectra in the mv region in our laboratory were unsuccessfully.

Figure 1.19 shows the calculated IR and perpendicular Raman spectra

in the spectral region of mvs. Both IR and Raman spectra are rescaled for

graphical reasons. The perpendicular Raman spectra (black line) is charac-

terized by the softening of approximately 100 cm−1 of the totally symmetric

mv band upon approaching NIT. In the N phase (see V = 0.5, T = 250 K),

the IR spectrum (red line) is characterized by the presence of the combi-

nation bands ωmv ± ωP . Combination bands naturally result from the cou-

pling to the electronic system that is responsible for the PES anharmonicity.

Upon approaching the transition (see V = 1.0, T = 150 K and V = 1.3,

T = 120 K) combination bands broaden and, because of the softening of the

Peierls mode, their spacing from the Raman band reduces. We observe that

the hot band (ωmv −ωP ) is generally broader ad more intense than the cold

band (ωmv + ωP ). For V = 1.3 the PES (reported in the left upper panel of

figure 1.13) is locally flat, and the harmonic frequency of the Peierls mode

vanishes. However, the frequency obtained from our finite temperature sim-

ulation (T = 120 K) as half the difference of the position of the two bands,
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is about 45 cm−1. The IR spectra calculated for V = 1.5 at T = 100 K

presents both the combination bands and a weaker central peak located mid-

way, corresponding to the mv absorption. The simultaneous presence of the

signals characteristic of the N regular phase and of the I dimerized phase

can be easily understood. The PES for V = 1.5 (reported in the right upper

panel of figure 1.13) presents two minima, separated by an energy barrier of

only 5 K. When performing the thermal average over initial values to calcu-

late the P TCF according to equation (1.31), there are dynamics that have

enough energy to cross the barrier (that are in the V = 1.5 at T = 100 K

case are the large majority), as well as dynamics that remain trapped in the

wells. The former dynamics are responsible for the signal of the N regular

stack (combinations), the latter for the I dimerized signal (mv absorption).

Upon increasing the energy barrier and lowering T , the system is progres-

sively trapped into the wells and for V = 1.9 (∆E = 58 K) and T = 60 K

we calculate the IR spectrum of a pure I dimerized phase.

The comparison with experimental spectra of DMTTF-CA, reported in

figure 1.20, in the region of the Raman active mode located around 1440

cm−1 at 250 K is very good. The model describes well the softening of the

Raman active mv as well as the evolution of the related IR combination

bands upon approaching NIT. The major difference between calculated and

experimental spectra concerns the broader combination bands of IR exper-

imental spectra. This difference has two main origins: first of all, we just

consider a single lattice phonon. In fact, the lattice phonon structure of a

real molecular crystal is more complex and the picture of a single Peierls

mode is obviously an idealization. As an example, in TTF-CA at least 6

phonon bands taking part to the Peierls mechanism of the transition have

been detected in far-IR spectra [63]. Moreover, we only consider the op-

tically active (Brillouin zone center) vibration, while also lattice modes at

q 6= 0 (c.f. figure 1.27) enter the combinations.
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Figure 1.21: Left panel: Evolution of the IR absorption spectra, expressed as

the imaginary part of the dielectric constant, with approaching NIT. Right

panel: calculated spectral weight of the 0-100 cm−1 interval. The dotted

line is a guideline for the eye.

We now turn our attention to the region of lattice phonons. Left panel of

figure 1.21 shows the IR spectra, largely dominated by the absorption band

of the Peierls mode. The Peierls mode softens upon approaching NIT from

about 60 cm−1 (V = 0.5, T = 250 K) to 40 cm−1 (V = 1.9, T = 60 K). This

softening is consistent with the half difference between combination bands in

figure 1.19. The intensity of the Peierls mode grows upon approaching NIT

as can be better appreciated in term of the 0-100 cm−1 spectral weight (inte-

grated optical conductivity spectra), shown in the right panel of figure 1.21.

The spectral weight grows by approximately a factor 4 upon approaching

the transition (marked by a dashed line) and decreases in the I phase. The

softening and the large IR intensity of the Peierls mode at NIT have already

been theoretically predicted, in a treatment based on the harmonic approx-

imation. [46, 38] These results were recently experimentally confirmed for

TTF-CA [63]. Although the model is optimized to describe the continuous

transition of DMTTF-CA, it is interesting to note that both the absolute

values and the relative increase of the intensity of the Peierls mode are con-
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sistent with the measurements on TTF-CA, where the 0-100 cm−1 spectral

weight grows from 600 Ω−1cm−2 at 300 K to 2000 Ω−1cm−2 at the transition

temperature of 81 K (approximated values, from figure 7 of ref. [63]). The

growing intensity of the Peierls mode can be easily understood from the evo-

lution of the explored regions of the P (q, δ) surface reported in figure 1.15.

Moving toward the transition, the system approaches the region of steep P

variation where oscillations along the δ coordinate induce large electronic

charge fluctuations along the stack. The anharmonic simulation provided

here confirms the results of the harmonic calculation [46, 38], that catches

the main physics of the phenomenon, simply relating the IR intensity to the

squared δ derivative of the polarization at the equilibrium
(

∂P
∂δ

)2

0
.

Figure 1.21 shows clearly that the Peierls phonon does not soften com-

pletely, as expected for a second order displacitive transition. To clarify this

point we consider in detail the system with V = 1.3. The relevant PES (see

left top panel of figure 1.13) has a single minimum at δ = 0 with a van-

ishing curvature along δ, or, in other terms, the harmonic frequency of the

Peierls mode is exactly zero. Figure 1.22 shows the IR spectra calculated

with variable temperature from 120 to 5 K. The figure clearly shows that,

by lowering T , the frequency of the Peierls mode shifts toward zero. This

softening, obtained for spectra calculated for the same PES, is due the reduc-

tion of the amplitude of thermal fluctuations upon decreasing temperature.

In fact, for vanishing T , the system explores smaller and smaller regions of

the PES in the proximity of its minimum, where the surface is flat. Upon

increasing T , the amplitude of thermal fluctuations widens and the system

experiments finite restoring forces. This analysis demonstrates that in a dis-

placitive transition a complete phonon softening can be observed only if the

transition occurs at zero temperature. However, it is worth remembering

that TCF functions are calculated in the framework of classical mechanics,

while, at least at low temperature, quantum fluctuations are surely impor-
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part of the dielectric constant, calculated for a system with V = 1.3 and

temperatures in the figure legend.

tant.

If the lattice phonon region of the IR spectra is adequately described

within the harmonic approximation, the same spectral region of Raman

spectra is dominated by anharmonicity effects. In this case we discuss the

parallel Raman, related to the stack polarizability. Calculated parallel Ra-

man spectra are shown in the left panel of figure 1.23. For V = 0.5 and

T = 250 K (black line) the spectra is characterized by the presence of a

single band around 120 cm−1 corresponding to twice the frequency of the

Peierls mode. The Peierls mode is Raman forbidden by symmetry in the

N regular phase, but overtones nωP with even n are Raman active. The

Raman spectra for V = 1.5 and T = 100 K (blue line) shows a broad and

highly asymmetric band, with the maximum located at 90 cm−1 ≈ 2ωP ; the

anomalous bandshape is due to the large anharmonicity upon approaching

NIT. A broad asymmetric band is also observed for V = 1.9 and T = 60 K

(green line) but the frequency of the maximum, located at 63 cm−1, is con-

siderably smaller than the 2ωP ≈ 80 cm−1. For V = 2.2 and T = 55 K we

notice the presence of two bands: the sharper band at lower frequency corre-
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Figure 1.23: Left panel: evolution of parallel Raman spectra with approach-

ing NIT, calculated for the parameter in the figure caption. The spectra are

not on the same scale, notice multiplicative factors. Right panel: integrated

Raman intensity between 0 and 150 cm−1 of parallel Raman spectra, nor-

malized at the value obtained for T = 250 K (V = 0.5). The dotted line is

a guide for the eye.

spond, even if redshifted, to 2ωP . The higher frequency broad band presents

a maximum at the twice of the frequency of the lower frequency one and can

be interpreted as the 4ωP overtone. For larger V and smaller T , the system

localizes completely within the two wells and the probability to cross the

barrier vanishes. The localization within the wells implies a lowering of the

symmetry and the change of the selection rules. In fact, for V = 2.5 and

T = 20 K Raman (orange line in figure 1.23) and IR spectra (not shown)

coincide and the single band observed around 90 cm−1 corresponds to the

hardened Peierls mode.

The T -dependence of the integrated Raman intensity between 0 and 150

cm−1 is reported in the right panel of figure 1.23. The intensity of the

parallel Raman scattering, normalized to the value obtained for T = 250 K

(V = 0.5), increases by three orders of magnitude upon approaching NIT.

The intensity of the parallel Raman spectra is related to the amplitude of
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the oscillation of the α TCF and hence to α(q, δ) surface and in particular

to its sharp and intense peak (see figure 1.16). In fact, upon approaching

NIT, the system explores larger and larger portions of the α peak as can

be seen in figure 1.17. The maximum of the Raman intensity is calculated

at T = 55 K (V = 2.2) and corresponds to a system that fully explore the

polarizability peak (see right lower panel of figure 1.17). When the system

localizes around the two minima, as for V = 2.5 and T = 20 K, it explores

only smooth regions of the α(q, δ) surface and the parallel Raman intensity

drops.

This theoretical result explains the recent observation of a growing in-

tensity in the Raman signal below 100 cm−1 in DMTTF-CA [57] reported

in figure 1.9. This observation, that triggered the theoretical study pre-

sented here, is however related to the perpendicular Raman, that we cannot

model with the stack polarizability. Measurement in the parallel polarization

are still in progress in the guest laboratory and preliminary results confirm

a growing Raman intensity in the lattice phonons region below 100 cm−1

upon approaching NIT.
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1.5 Diffuse X-ray and anomalous dispersion of lat-

tice phonons

1.5.1 Diffuse X-ray data and theirs interpretation

In X-ray diffraction experiments any deviation from the periodic crystalline

structure produces an extra diffuse scattering near Bragg peaks. Diffuse X-

ray (DXR) scattering is therefore a powerful tool to study pretransitional

fluctuations and/or occupational disorder. [74] An intense DXR signal was

observed in the N phase of both TTF-CA and DMTTF-CA, in (b∗, c∗) planes

of the reciprocal space around Bragg reflections with integer values of the

Miller index h [58, 59]. The DXR planes measured in TTF-CA at 84 K

are shown in figure 1.10 at page. 37. A scan in the perpendicular direction

of the reciprocal space with respect to DXR planes, reveals that the planes

profiles, at least in the proximity of NIT, present an almost Lorentzian shape.

DXR profiles, measured in TTF-CA at different temperatures, are shown in

figure 1.24. In the original papers, DXR peaks were fitted with Lorentzian

profiles to extract the intensity of the maximum IM and the half width at

half maximum q1/2. Temperature dependence of IM and q1/2 in TTF-CA

and DMTTF-CA are reported in figure 1.25. The intensity of DXR signal

grows upon approaching NIT in both compounds but sharper peaks were

observed in DMTTF-CA.

The presence of diffuse planes clearly indicates that pretransitional fluc-

tuations occur in the stack direction, further confirming the quasi 1D nature

of the transition [74, 75]. The microscopic origin of 1D fluctuations, and

therefore the physical mechanism of the transition, is the subject of this

section. The authors of references [58, 59] attributed the DXR signal to the

presence of nanoscopic domains with characteristic length ξ = q−1
1/2. These

domains were identified as lattice relaxed CT exciton string (LR-CT, i.e.

nanoscopic strings of a few I dimerized DA pairs embedded in the N reg-
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the (3 1 1) Bragg reflection. DXR intensity is in arbitrary units but same
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ular phase) and the DXR signal was presented as the first experimental

observation of these excitations. The growing intensity of DXR peaks upon

approaching NIT was ascribed to an increase of LR-CT concentration, while

the sharpening of the peaks was interpreted as a growth of their size. From

such an analysis the authors estimated that in TTF-CA LR-CT extend over

3 DA pairs at 200 K (6 DA pairs in DMTTF-CA at the same T ) and over

10 DA pairs at 84 K (12 in DMTTF-CA, same T ) [58, 59].

An alternative explanation of the origin of the DXR planes is however

possible and attributes the 1D fluctuations to the wide molecular oscillations

in the stack direction in the presence of a soft lattice mode. In fact the DXR

technique was widely used in the 80’s to study the soft mode that drives

lattice instabilities in 1D molecular conductors. [74, 75] In this context the

intensity of the DXR signal I(q), is related to the dispersion law of the soft
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phonon ω(q) by the simple relation [74, 75]

I(q, T ) ∝ kBT

ω2(q, T )
(1.34)

where q is the a∗ component of the wavevector, kB the Boltzmann constant

and T the absolute temperature. The sharp DXR profiles observed in TTF-

CA and DMTTF-CA require however a strong dispersion of the relevant

phonon, that is anomalous for the Peierls mode, that is the Brillouin zone

center mode (q = 0) of an optical branch. This was the basis for rejecting

the soft mode interpretation in favor of LR-CTs in one of the original papers

[59]. However electron-phonon (e-ph) coupling is extremely effective in 1D

systems with delocalized electrons and an anomalous dispersion of optical

phonons is well known in polyacetylene [39].

The soft-mode interpretation of DXR data is strongly supported by a

comparison between DXR data and vibrational spectra. In fact equation

(1.34) relates the frequency of the Peierls mode ω(0, T ) to the height of DXR

peaks I(0, T ). Reliable estimates of the frequency of the Peierls mode were

obtained from the analysis of combination bands in mid-IR spectra [55, 28].

The estimated temperature dependence of the frequency of the Peierls mode

in DMTTF-CA and TTF-CA is reported in figure 1.26 (circles). On the

same figure red diamonds show (on an arbitrary scale) the T -evolution of

the height of the DXR profiles, from data in references [58, 59]. The striking

agreement between these two independent sets of data strongly supports

the soft mode interpretation of the DXR data. However, to confirm this

hypothesis, a detailed modeling of the lattice dynamics in the presence of

e-ph coupling is required to address the issue of the anomalous dispersion of

the optical phonon branch around the Brillouin zone center.
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Figure 1.26: Temperature dependence of the soft mode frequency in TTF-

CA (left panel) and in DMTTF-CA (right panel), obtained from mid-IR and

Raman spectra (circles) [55, 28] and from DXR data (diamonds) [58, 59].

1.5.2 Anomalous dispersion of optical phonons at NIT

To calculate the lattice phonons dispersion we adopt the classical theory of

harmonic crystals. We consider a linear chain of N sites (Nc = N/2 cells)

and lattice constant a. A set of vibrational coordinates, xi, measures site

displacements from the equilibrium position of the regular chain and different

masses mD/A are assigned to D (odd sites) and A (even sites) molecules. In

the absence of e-ph coupling the vibrational problem reduces to the well

known problem of a linear chain with a diatomic basis. [76] The potential

energy of the chain reads

Vph =
1
2
K

∑

i

(xi − xi+1)2 (1.35)

where K is the elastic constant of the regular lattice.

The squared frequencies of the normal modes of the chain are obtained

from the eigenvalues of the dynamical matrix

Fij =
∂2 Vph

∂x̃i ∂x̃j
(1.36)

where x̃i =
√
mi xi are the mass weighted cartesian coordinates, with
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mi = mD on odd (D) sites and mi = mA on even (A) sites. In order to

obtain the dispersion relation of phonon frequencies we combine the carte-

sian coordinate according to the wavevectors of the reciprocal space:

ξD
q =

√
2
N

odd∑

j

e−iq j+1
2 x̃ j+1

2

ξA
q =

√
2
N

even∑

j

e−iq j
2 x̃ j

2
(1.37)

where q = (0,±1,±2 · · · ± (Nc − 1)/2)2π/Nc are the wavevectors (Nc is odd

for simplicity) in the first Brillouin zone. Because of the lattice translational

symmetry, only modes labelled by the same wavevector are mixed and the

dynamical matrix factorizes in N/2 two-dimensional blocks Fq:

Fq =




∂2 Vph

∂ξD
q ∂ξD

q

∂2 Vph

∂ξD
q ∂ξA

q

∂2 Vph

∂ξA
q ∂ξD

q

∂2 Vph

∂ξA
q ∂ξA

q


 =

=




2K
mD

− K√
mDmA

(1 + eiq)

− K√
mDmA

(1 + e−iq) 2K
mA


 (1.38)

The eigenvalues of Fq are the squared frequencies of the normal modes with

wavevector q. Lattice phonons dispersion laws are therefore calculated diago-

nalizing matrix (1.38) for each wavevector in the first Brillouin zone. Optical

and acoustic branches for the linear chain with diatomic basis, calculated for

the molecular masses of DMTTF-CA andK fixed as to get ω(0) = 110 cm−1,

are plotted in the upper panel of figure 1.27. Since the Peierls phonon is the

q = 0 optical mode, we are interested in the optical branch (red curve),

characterized by an almost dispersionless behavior around the zone center.

We now introduce the coupling between lattice and electronic systems,

described by the modified Hubbard (MH) Hamiltonian with Peierls coupling

H = Γ
∑

i

(−1)i n̂i +
∑

i,σ

[t0 + γ(xi+1 − xi)] (a†i,σai+1,σ + H.c.) (1.39)
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Figure 1.27: Acoustic (black) and optical (red) phonon branches of a mixed

stack with masses relevant to DMTTF-CA and ω0(0) = 110 cm−1. Upper

panel reports the dispersion laws of an unperturbed lattice (εd = 0), central

and middle panels refer to system with e-ph coupling with ρ = 0.22 and

ρ = 0.46 respectively. Circles are MH results, calculated for N = 20 and

εd = 0.27 and εd = 0.2 in middle and lower panels, respectively. Continuous

curves are SF results obtained for N = 902 and εd = 0.4 in both panels.
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where t0 is the CT integral of the regular chain (adopted as the energy unit)

and γ the e-ph coupling constant, related to the relaxation energy upon

dimerization by the relation γ2 = εdK. At variance with e-ph Hamiltonians

presented in chapter 1.2.3, where only the coupling to the Peierls mode was

considered, here all the lattice modes are included in the picture, in order to

calculate phonons dispersion laws. Holstein coupling and intersite Coulomb

interactions are implicitly included in a renormalization of Γ, that will be

considered as the parameter that induce the NIT.

In the framework of the harmonic approximation, e-ph coupling intro-

duces an additional contribution to the force constant matrix corresponding

to the second derivatives of the electronic ground state energy E versus sites

displacements:

F e−ph
ij =

∂2E

∂x̃i ∂x̃i+j
=

γ2

√
mimi+j

(Πj−1 − 2Πj + Πj+1) (1.40)

where the bond-bond polarizabilities Πj (BBP) are purely electronic quan-

tities, defined as

Πj = − ∂2E

∂ti ∂ti+j
(1.41)

The BBPs of the MH model, calculated as numerical derivatives of the

ground state energy of a 20 sites chain, are shown in the left upper panel of

figure 1.28. BBPs oscillates between positive and negative values, reflecting

the tendency of delocalized electrons to push the system toward dimeriza-

tion. Black and red circles refer to systems with ρ = 0.22 (Γ = 1) and

ρ = 0.46 (Γ = −0.2) respectively. In a system relatively far from NIT, as

for ρ = 0.22, e-ph coupling is mild and Πj decrease rapidly with j. Closer

to NIT, for ρ = 0.46, BBPs are larger in magnitude and acquire a long tail,

that can be only partially appreciated with a 20 sites chain.

Much as in polyacetylene, [4] the coupling to delocalized electrons leads to

long range BBPs, resulting in long-range force constants. The effect of BBPs
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culated for systems with ρ = 0.22 (black circles) and ρ = 0.46 (red circles).

Dotted lines are guides for the eye. Lower panels: inverse electronic suscep-

tibility of MH (left) and SF model (right panel). Size of the systems are

indicated in respective the legends.
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in figure 1.28 on the phonon dispersion is shown in middle and lower panels of

figure 1.27 for systems with ρ = 0.22 and ρ = 0.46 respectively. Acoustic and

optical branch frequencies of a 20 sites MH chain are marked with black and

red circles respectively. Minor effects are observed in the acoustic branch,

while upon approaching NIT, an anomalous dispersion (Kohn-like anomaly)

develops in the optical branch. The largest softening occurs at q = 0 (Peierls

mode) where a simple relation holds for the optical branch frequency:

ω(0) = ω0(0)
√

1− εdχ(Γ) (1.42)

where χ(Γ) is the electronic susceptibility defined as

χ(Γ) = − ∂2E(Γ, δ)
∂δ2

∣∣∣∣
δ=0

(1.43)

where δ, as usual, is the amplitude of dimerization. The susceptibility is a

purely electronic quantity that governs the lattice instability and the related

softening of the Peierls mode. [32] The (inverse) susceptibility of MH chains

of N = 14, 16 and 18 sites is plotted in the left lower panel of figure 1.28.

Size effects are evident for ρ > 0.4, signaling the increasing electronic delo-

calization upon approaching NIT. The susceptibility grows moving toward

NIT and diverges at the metallic N-I boundary of an infinite chain, where

the system is unconditionally unstable to dimerization. According to equa-

tion (1.42), the growth of χ results in the softening of the Peierls mode up

to εd = χ−1, where the frequency vanishes and the system dimerizes. The

inverse susceptibility corresponds therefore to the critical value of εd.

The softening of the Peierls mode and the related anomalous dispersion

of the optical branch around q = 0 are direct consequences of the coupling

between phonons and delocalized electrons. This result is obtained within

the MH model, the reference model for CT salts, that fully accounts for

electronic correlations. However, MH calculations are computationally very

demanding and chains longer than 20 sites cannot be treated, resulting in
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dispersion laws with only few points in the first Brillouin zone, as in figure

1.27. To obtain a higher q-space resolution, as required to fit DXR data,

longer chains must be considered. We therefore adopt an uncorrelated model

for the electronic system, i.e. the spinless fermion (SF) model described in

section 1.2.6. SF model is the uncorrelated counterpart of the MH model

and describes a collective CT from D and A sites with decreasing Γ. The

SF model is exactly soluble and relevant quantities, as stack ionicity or

electronic ground state energy, can be calculated trough analytic expressions

(see section 23). BBP in the SF model can be calculated using the following

sum over state expression:

Πj = 2
∑

k,l

〈GS|b̂i|kl〉〈kl|b̂i+j |GS〉
εl − εk

(1.44)

where GS is the ground state, |kl〉 is the excited state created from the GS

by promoting a fermion from the k-th filled orbital to the l-th empty orbital,

b̂i = (a†iai+1 + H.c.) is the bond order operator and εk is k-orbital energy

(see section 1.2.6). BBPs for a SF model with 902 sites chain are shown

in the right upper panel of figure 1.28. Results refer to a systems with

ρ = 0.22 (Γ = 0.75, black circles) and ρ = 0.46 (Γ = 0.06, red circles). The

comparison with the MH counterpart (left upper panel of the same figure)

is straightforward. As for MH model, BBP obtained with the SF model

oscillates between positive and negative values and show a slower decrease

with the intersite distance in the system closer to NIT. The smaller absolute

values of SF BBPs with respect to the MH counterpart indicates a stronger

e-ph coupling in the correlated model. [77]

The electronic susceptibility toward dimerization is expressed in the SF

model as:

χ = − ∂2E

∂δ2

∣∣∣∣
0

=
1
N

∑

k

sin2 k√
Γ2 + 4 cos2 k

(1.45)

where the sum runs over the k wavevectors of the first Brillouin zone. In
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the N →∞ limit, the susceptibility is expressed in term of complete elliptic

integrals as follows

χ =
4

π
√
γ2 + 4

cel(qc, p = 1, a = 0, b = 1) (1.46)

with q2c = Γ2/(Γ2 +4) and cel(qc, p, a, b) defined in equation 1.25 (page. 25).

[47] The inverse electronic susceptibility of the SF model is reported in the

right lower panel of figure 1.28, and presents a qualitatively similar behavior

as observed for the MH model (left lower panel): χ grows with approaching

NIT and diverges at ρ = 0.5 (Γ = 0) for an infinite chain, marking the

unconditional Peierls instability of a half filled 1D metal. Since in the SF

model the I phase is equivalent to a N phase with exchanged D and A sites,

results for ρ > 0.5 are not shown. Again, the smaller values of the SF

susceptibility with respect to the MH analogous confirm the stronger e-ph

of the correlated model. [77] Finite size effects are more important than in

the correlated model.

The phonon dispersion laws, calculated with the SF model for a 902 sites

chain, are presented in middle and lower panels of figure 1.27, for systems

with ρ = 0.22 and ρ = 0.46, respectively. Black and red continuous lines

correspond to optical and acoustical branches and are in excellent agreement

with MH results (black and red circles), calculated for same values of ρ, and

with εd = 0.4 (the same ω(0) is imposed in both models). The softening of

the Peierls mode and the related Kohn-like anomaly in the optical phonon

branch around q = 0 are therefore manifestations of the coupling between

delocalized electrons and phonons in a 1D system. Electronic correlation

quantitatively alter the picture, generally enhancing the effect of e-ph cou-

pling, [77] but the basic physics governing the dimerization instability is

grasped by the uncorrelated SF model.

A summary of the effects of the e-ph coupling on the optical branch

upon approaching NIT, is provided in figure 1.29. For Γ = 1 the system is
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Figure 1.29: Γ dependence of the optical branch calculated for molecular

masses relevant for DMTTF-CA, εd = 0.4, ω0 = 110 cm−1 on 902 sites.

The continuous red line is the dispersion curve of the unperturbed harmonic

lattice (εd = 0).

still far from NIT (ρ = 0.22) but the Peierls mode is already considerably

softer than in the uncoupled lattice (εd = 0, red line in background). Upon

approaching NIT, the Peierls mode undergoes a progressive and complete

softening according to equation (1.42) and a sharp Kohn-like anomaly in the

optical branch develops at q = 0.

1.5.3 Fit of diffuse X-ray profiles

With the dispersion relation of the optical branch ω(q) in hand, we can

model the DXR profiles. DXR profiles I(q) are measured as a function of T ,

while SF dispersion laws are computed as a function of Γ. In both cases the

profile is characterized by the peak height, IM = I(0), and by the half-width

at half-maximum q1/2, reported for TTF-CA and DMTTF-CA in figure 1.25.

The calculated DXR profiles I(q) in figure 1.30 are based on equation (1.34)

with ω(0) taken from vibrational data and the best-fit parameters, εd and

ω0(0) in the caption. Insets b and e specify Γ(T ) for DMTTF-CA and TTF-
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CA, respectively. An almost linear Γ(T ) relation is obtained in both cases.

The measured and calculated values of q1/2, shown in insets c and f are in

excellent agreement, especially close to the transition.

DXR profiles in mixed-stack CT salts close to NIT are quantitatively ex-

plained by the softening of the dimerization mode and the related anomaly

in the optical phonon branch. The sharp DXR peaks observed in DMTTF-

CA were previously assigned to the presence of long LR-CT excitations [58],

whereas the broader signals in TTF-CA were ascribed to shorter domains

[59]. Here the difference between the two systems is naturally related to

their different transitions. DMTTF-CA undergoes a continuous (or almost

continuous) dimerization transition [28]: ρ(T ) presents a continuous evolu-

tion, the Peierls phonon frequency ω(0) softens to zero (or almost so [28]),

and the related deep anomaly in the dispersion law leads to sharp DXR

peaks. On the other hand, only incipient soft-mode behavior is observed in

TTF-CA, whose discontinuous NIT at 81 K interrupts the softening [55]. As

a result, the dispersion anomaly does not fully develop and relatively broad

DXR peaks are observed.
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calculated in the SF model. Panel a: DMTTF-CA, εd = 0.4, ω0(0) =
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show the Γ(T ) relation. Insets c and f compare the calculated (black circles)
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1.6 Conclusions

Although the scenario of NIT is a very complex one, a coherent picture of the

physics governing the transition in now emerging. This picture is provided

by the modified Hubbard model accounting for Peierls coupling to lattice

phonons and Holstein coupling to molecular vibrations. [33, 46, 38, 37] The

model, despite its simplicity, gives a quantitative explanation of the rich

phenomenology related to NIT, as thoroughly discussed in this chapter.

The modified Hubbard model describes a system where delocalized elec-

trons in 1D are responsible for a nonlinear behavior related to a collective CT

from the D to the A molecules of the stack. Electrostatic interactions and

Holstein coupling to molecular vibrations confer cooperativity to the sys-

tem and enhance its nonlinearity, leading to a discontinuous N-I crossover

(charge instability) and to the related phenomenon of multistability. [33, 37]

At the same time, the coupling between electrons and lattice phonons results

in a spontaneous symmetry breaking phenomenon, fairly common in 1D sys-

tems, the stack dimerization (generalized Peierls instability). [32, 33, 37] The

interplay between the charge instability, leading a discontinuous crossover,

and the intrinsically second-order dimerization instability, explains the main

features of the phase diagram of mixed stack CT crystals. [37] In these

systems the intimate entangling between electronic and vibrational degrees

of freedom is amplified by the presence of electronic instabilities. In fact,

upon approaching NIT, the electronic system becomes largely susceptible,

and vibrations are responsible for most of the, only apparently, anomalous

features observed around NIT. The modified Hubbard model with coupling

to adiabatic vibrations offers a reliable tool to rationalize this complex be-

havior.

The large values of the static dielectric constant observed at NIT in many

CT crystals [53, 54] represent a clear manifestation of the effectiveness of
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e-ph coupling. As recognized by Painelli, Soos et al., [46, 38] the dielectric

anomaly is originated by the electronic charge fluxes along the stack induced

by the oscillations of the soft Peierls mode and to its huge IR intensity.

The soft Peierls mode is also responsible for the presence of the DXR

signal observed in TTF-CA and DMTTF-CA. [59, 58] In section 1.5 we

reported the calculations of the phonon dispersion laws of a mixed stack

in the presence of e-ph coupling. The coupling between lattice phonons

and delocalized electrons, quite irrespectively on electronic correlations, is

responsible for the appearance of long-range force constants resulting in an

anomalous dispersion (Kohn-like anomaly) of optical phonons around the

Brillouin zone center. The Kohn-like anomaly quantitatively explains the

sharp DXR profiles experimentally observed.

The most striking effects of e-ph coupling are seen in vibrational spectra.

[52, 55, 28, 53, 54, 63, 57] In fact, e-ph coupling is responsible for the soften-

ing of the coupled modes and for their strong anharmonicity, with nontrivial

effects in IR and Raman spectra. In section 1.4 a detailed simulation of IR

and Raman spectra of a mixed stack CT crystal undergoing a continuous

NIT is presented. The simulation is based on an original implementation of

the approach of TCF to spectroscopy. The method consists in a sort of min-

imal molecular dynamics simulation, where the vibrational dynamics of the

system is governed by the ground state PES. Minimal because the (intrinsi-

cally anharmonic) ground state PES, obtained from the modified Hubbard

model with Peierls and Holstein coupling, describes just two relevant coor-

dinates. Polarization and polarizability, whose TCF are directly related to

the IR and Raman spectra, are calculated within the modern theory of po-

larization in dielectrics. Despite its simplicity, this approach allows to fully

relax the harmonic approximation and satisfactorily reproduce the complex

and interesting behavior of mixed stack CT crystals at NIT.

The results of the simulations further confirm previous theoretical results
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based on the harmonic approximation, as the softening of the frequency of

Holstein and of Peierls modes, and the increasing IR intensity of the latter

upon approaching NIT. [46, 38] The simulations definitively confirm the

interpretation of the mid-IR sidebands as combinations of a Raman active

mv and of an effective soft Peierls mode. [55, 28] More interestingly, this

approach is able to catch new and interesting phenomena, fully governed by

anharmonicity, as the appearance of intense features in the lattice phonon

region of Raman spectra in the close proximity of NIT. [57] The enhancement

of the low-frequency Raman signal is due to vibrations, that in the close

proximity of NIT efficiently modulate the electronic properties, leading to a

orders of magnitude increase of the polarizability.

We conclude emphasizing the fact that the method here developed for

the simulation of vibrational spectra of mixed stack CT crystal provides a re-

liable and simple way to get an insight in extremely complex behaviors. This

method is extremely general and can be applied in systems where charge,

spin and vibrational degrees of freedom are strongly coupled, as charge or-

dering systems, ferroelectrics or multiferroics.





Chapter 2

Bistability in Crystals of

Valence Tautomeric

Molecules

2.1 Introduction: the valence tautomerism

of Fc-PTM

Ferrocene-perchlorotriphenylmethyl (Fc-PTM) is a valence tautomeric rad-

ical where the Fc group, a good electron donor (D), is linked trough a

vinylenic π-bridge to PTM, a very stable radical with electron acceptor

(A) properties [78, 79]. Figure 2.1 shows the two resonating structures

(or mesomeric forms) of Fc-PTM and a view of the crystal structure of

this compound. Fc-PTM radical combines a fully reversible electrochemical

switchability with the high nonlinear optical responses of DA dyads [78, 80].

Moreover, the presence of an unpaired spin confers to Fc-PTM a magnetic

interest. In view of its chemical, optical and thermal stability, Fc-PTM

is therefore an interesting system for the development of multifunctional
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Figure 2.1: The two mesomeric forms of Fc-PTM (top panel) and a view of

the crystal structure of Fc-PTM crystal (bottom panel).

molecular materials.

Optical absorption spectra of Fc-PTM collected in solution, reported in

figure 2.2, reveal that solvated Fc-PTM is a largely neutral DA molecule,

i.e. it resembles the D-π-A resonating structure [78]. The CT absorption

band, located in the near infrared region around 11000 cm−1, is related to

the photoexcitation towards a largely ionic (or zwitterionic) D+-π-A− state.

In other terms, in solution the D+-π-A− mesomeric form of Fc-PTM is more

than 1.3 eV higher in energy than the D-π-A.

However, Mössbauer spectra on Fc-PTM polycrystalline samples, re-

ported in figure 2.9, reveal an interesting temperature dependence valence

tautomerism [79]: the Mössbauer spectrum recorded at 4.2 K shows only

the typical doublet of Fc [81], but with increasing temperature a new dou-
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Figure 2.2: Fc-PTM absorption spectra of in organic solvents of different

polarity (see legend) from ref. [78].

blet with smaller splitting, characteristic of the ferrocinium cation Fc+ [81],

grows in at the expense of the Fc doublet. The conversion is gradual and

fully reversible up to room temperature, as also confirmed by subtle changes

in the magnetization data [79]. Although hysteresis was not observed, it is

worth mentioning that the Mössbauer spectrum taken of a rapidly cooled

sample at 70 K reveals about a 30% of trapped Fc+ component [79]. These

findings demonstrate that at room temperature both the D-π-A and D+-

π-A− forms of Fc-PTM coexist in similar proportions [79], suggesting an

energy gap between the two forms not larger than the thermal energy.

The simultaneous stability of the two mesomeric D-π-A and D+-π-A−

forms in crystals of DA molecules, resulting from cooperative electrostatic

interactions, was theoretically predicted a few years ago by Terenziani and

Painelli [20, 82]. However, an experimental proof of the predicted mechanism

was lacking. Here a detailed modeling of Fc-PTM crystal strongly supports

the suggestive hypothesis that the coexistence shown by Mössbauer spectra

can be explained in term of bistability induced by electrostatic interactions.

In the next section the general bottom up modeling strategy for crystal of
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DA molecules is presented. Two alternative approaches to the bottom up

modeling of Fc-PTM are then proposed in sections 2.3 and 2.4. Conclusions

and guidelines for the synthesis of bistable crystals of valence tautomeric

molecules are finally provided in section 2.5.
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2.2 Bottom up modeling of molecular crystals

The bottom up modeling strategy was developed in the guest laboratory

to describe linear and nonlinear optical properties of supramolecular ar-

chitectures (including crystals, films, aggregates and clusters) of DA-bases

chromophores. [83] DA-based chromophores (or dyes) are a class of organic

molecules characterized by the presence of D and A groups connected by

a π-conjugated bridge. These molecules are actively investigated since 90’s

due to their large nonlinear optical responses. [7] DA-based chromophores

include, besides the most popular dipolar DA molecules, as Fc-PTM, also

multibranched system as quadrupolar (DAD or ADA)[84] and octupolar

(DA3 or AD3) chromophores. [85] The bottom up approach was originally

developed for the study of excited states, but it can surely be applied to de-

scribe ground state properties, as relevant for Fc-PTM. Before discussing its

application to Fc-PTM crystal, we shortly describe the bottom up modeling

strategy.

We consider supramolecular architectures where intermolecular distances

are larger than Van der Waals radii, that the overlap between molecular

orbital of different molecules is negligible. The general Hamiltonian of a

crystal of non-overlapping molecules can be written as: [20, 82]

H =
∑

i

ĥi +
1
2

∑

i,j

V̂ij (2.1)

where the sums run on molecular sites, ĥi is the Hamiltonian of the i-th

molecule, and V̂ij is the operator that describes the interaction between

molecules at i and j sites.

Different levels of approximation are possible for the molecular Hamilto-

nian. The most detailed description of the molecular unit is offered by quan-

tum chemical Hamiltonians. However, these molecular Hamiltonians leads

to a very complex problem for the molecular crystal, which moreover applies
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only to the specific compound at hand. In order to keep the model as simple

and general as possible, we adopt an essential state picture for the molecular

units. The low energy physics of DA-based molecules is in fact governed by

intramolecular CT and can be approximately described accounting only for

a few relevant basis states, corresponding to the molecular resonance struc-

tures. In the simple case of the DA molecules the basis states correspond to

the D-π-A and D+-π-A−mesomeric forms, while more states are needed for

multibranched chromophores. [83] Few states models, extended to account

for molecular vibrations and solvation interaction, are validated by repro-

ducing the evolution of absorption and/or fluorescence spectra in solvent of

different polarity. Even more important, a set of environmentally indepen-

dent molecular parameters can be extracted from the analysis of the optical

spectra of the relevant compound. This specific molecular information can

then be used to describe the molecule in the crystal. [86, 87, 83, 88]

In traditional molecular crystals intermolecular interactions are gener-

ally weak, leading most often to additive behavior. This is not the cases

of DA-based chromophores where the presence delocalized π electrons res-

onating between D and A groups, confer (multi)polar and (hyper)polarizable

properties, resulting in strong electrostatic intermolecular interactions. Elec-

trostatic interactions, represent an additional and powerful source of nonlin-

earity in these materials, resulting in important collective and cooperative

effects that show up in nonlinear optical responses, multielectron transfer

and, as we will see in detail here, bistability [89, 20, 90, 83, 88]. Common pic-

tures for interactions in molecular crystals account electrostatic interaction

between molecular point dipoles. This approximation, however, necessarily

fails when intermolecular distances are comparable with the molecular size,

as in common DA dyes. An alternative approach is adopted here, that as-

sumes electrostatic interactions between extended charge distribution. This

approach presents the further advantage that, as we will see in the case
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of Fc-PTM, quantum chemical calculations can be directly mapped on few

state models, leading to reliable evaluation of the interaction strength.

The work on Fc-PTM represents an interesting development of a research

activity carried on in the host laboratory in the field of CT molecular ma-

terials. In particular the bottom up modeling of supramolecular system of

organic quadrupolar (DAD or ADA) molecules was investigated in detail

by the author of this thesis before starting the Ph.D. activity. Combining

a molecular description, based on an essential three-state model [89], and

electrostatic interactions between extended charge distributions, we demon-

strated the failure of common approaches based on point dipole interactions

and perturbative treatments. More interestingly, we showed that electro-

static interactions represent a powerful tool to further enhance the strong

two-photon absorption of quadrupolar dyes. [90] This work is part of an

invited review paper on the effects of electrostatic interaction on nonlin-

ear optical properties of supramolecular systems of DA-based organic chro-

mophores. [83]

We remark that bottom up modeling strategy provides a simple but reli-

able description of DA-based supramolecular architectures: by combining in-

formation on the molecule (obtained from optical spectroscopy and rational-

ized in term of few state models) with proper models for intermolecular elec-

trostatic interactions, collective and cooperative properties of supramolec-

ular system of (multi)polar and (hyper)polarizable molecules can be fully

described. Two alternative bottom up approaches to describe Fc-PTM crys-

tal are provided here: in the first one (presented in the next section), we

adopt the standard two-state model for DA molecules. In the second (sec-

tion 2.4), we introduce a three-model model, in order to better reproduce

the spectral properties of Fc-PTM in solution.
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2.3 Bottom up with the two-state DA model

2.3.1 Two-state model for Fc-PTM and Me9Fc-PTM

The low-energy physics of Fc-PTM is governed by the charge resonance

shown in figure 2.1. In close analogy with closed shell DA chromophores, we

describe the Fc-PTM radical in terms of a minimal model that just accounts

for two essential electronic states, D-π-A and D+-π-A−, corresponding to

the two resonating structures in figure 2.1 [91, 92, 93, 94]. The electronic

Hamiltonian reads

ĥel = 2z ρ̂− τ σ̂x (2.2)

where

ρ̂ =


 0 0

0 1


 (2.3)

is the ionicity operator, 2z is the ionization energy, i.e. the energy required

to separate the charge in a DA molecule, τ is the hybridization energy, that

drives the system toward mixed-valence states and σ̂x is the Pauli matrix

that mixes the two basis states. The diagonalization of Hamiltonian (2.2)

gives closed expressions for the ground and excited states:

|g〉 =
√

1− ρ |D+A−〉+
√
ρ |D+A−〉

|e〉 = −√ρ |D+A−〉+
√

1− ρ |D+A−〉 (2.4)

where

ρ =
1
2

(
1− z√

z2 + τ2

)
(2.5)

is the expectation value of the ionicity operator and measures the charge

transferred from D to A, or, equivalently, the fraction of unpaired spin on

the Fc fragment. For positive z/τ the ground-state is neutral (N, ρ < 0.5),

and becomes ionic (or zwitterionic) (I, ρ > 0.5) for negative z/τ .
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As recognized by Mulliken [95] the D+-π-A− state is characterized by

a large dipole moment µ0, so that all other matrix elements of the dipole

moment operator on the chosen basis can be neglected. With this approxi-

mation, relevant spectroscopic quantities are written as a function of ρ:

ωCT = τ
1√

ρ(1− ρ)
(2.6)

µCT = µ0

√
ρ(1− ρ) (2.7)

µg = µ0 ρ (2.8)

∆µ = = µe − µg = µ0 (1− 2ρ) (2.9)

where ωCT is the transition frequency, µCT the transition dipole moment, µg

(µe) is the ground (excited) state dipole moment and ∆µ is the mesomeric

transition dipole moment.

To account for the relaxation of the molecular geometry that accompa-

nies the CT and is responsible for the appearance of the Franck-Condon

structure in absorption spectra, we introduce an effective adiabatic vibra-

tional coordinate Q. As sketched in the left panel of figure 2.3, harmonic

potential energy surfaces (PESs) with same frequency ωv, but with different

equilibrium geometries are assigned to the two basis states. The resulting

vibrational relaxation energy εv, is defined in the left panel of figure 2.3. In

this approximation, the adiabatic Hamiltonian reads

ĥ(Q) = (2z −√2εv ωv Q) ρ̂− τ σ̂x +
1
2
ωv Q

2 (2.10)

This Hamiltonian can be diagonalized for each Q to get the Q-dependent

ground and excited states. TheQ-dependence of the relevant energies defines

the adiabatic PES in the right panel of figure 2.3. These PES contain all

the information needed for the calculation of optical spectra in a nonpolar

solvent.

Although adiabatic PES are anharmonic, for not too strong anharmonic-

ity, the absorption spectrum can be calculated in the local harmonic approx-
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Figure 2.3: Basis states (left) and adiabatic eigenstate PESs (right) obtained

from the diagonalization of Hamiltonian in equation (2.10) with z = 1 eV ,

τ = 0.5 eV , ωv = 0.2 eV and εv = 0.4 eV . In the left panel, εv marks the

vibrational relaxation energy relevant to the basis states, while λv in the

right panel, shows the same quantity for the adiabatic eigenstates.

imation [96, 97]. The absorption spectrum, expressed in terms of the molar

absorption coefficient, is calculated as follows:

ε(ω) =
NA ωCT µ

2
CT

60 log 10 ~ c2 ε0
e−S

σ
√

2π

∑
n

exp
[
−(ωCT + (n− S)ωv − ω)2

2σ2

]
(2.11)

S = λv/(~ωv) is the Huang-Rhys factor, where λv = εv(1 − 2ρ)2 is the

vibrational relaxation energy upon transition (see figure 2.3) and σ is the

intrinsic linewidth of the Gaussian shape assigned to each vibronic line. NA,

~, c and ε0 are the Avogadro number, the reduced Planck constant, the speed

of light and the vacuum dielectric permittivity, respectively. For the sake of

simplicity we set the vibrational frequency of the ground and excited state

to the same value ωv. A more rigorous choice does not provide appreciable

differences in the calculated spectra. [97]

The large redistribution of the electronic charge that accompanies the

optical transition implies a coupling to solvation degrees of freedom. In the

framework of the reaction field approximation, the solvent is described as an
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elastic polarizable medium that reacts to the presence of solute molecules

exerting, at the solute location, an electric field proportional to the solute

dipole moment. Different timescales characterize the solvent reaction to the

presence of a polar solute. The electronic polarization of solvent molecules

occurs on a very fast time scale: the electronic degrees of freedom of solvent

molecules react instantaneously to the CT transition and can be accounted

for by a renormalization of model parameters. [92] In the simplest approx-

imation only the solvent refractive index enters the renormalization, and in

view of the marginal variation of the refractive index in common organic

solvents, solvent-independent molecular parameters are safely assumed [92].

The reorientation of the polar solvent molecules around a polar solute is

a slow motion that can be accounted for by introducing an effective solvation

coordinate, proportional to the orientational component of the reaction field,

F . This solvation coordinate couples to the electronic system in the same

way as Q. The total Hamiltonian, also accounting for polar solvation, reads

[92, 96]:

ĥ(Q,F )=
(
2z −√2εv ωv Q− µ0F

)
ρ̂− τ σ̂x +

1
2
ωv Q

2 +
µ2

0

4εor
F 2 (2.12)

where the solvation relaxation energy εor, related to the solvent dielec-

tric constant and refractive index, is treated as an adjustable parameter

[92, 96, 93]. The vibrational coordinate Q and (the orientational component

of) the reaction field F enter the Hamiltonian (2.12) in a similar way, but

their different dynamics suggests a different treatment. In particular, F is

treated as a classical coordinate: the Hamiltonian (2.12) is diagonalized for

several F values, and, for each F , relevant optical spectra are calculated

according to equation (2.11). Finally, the total spectrum is obtained as the

sum of spectra calculated at different F , weighted according to the Boltz-

mann distribution [93]. As expected on physical basis, polar solvation is

responsible for the appearance of inhomogeneous broadening that smears
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out the vibronic structure.

In the following this two state model is applied to reproduce the ab-

sorption spectra of Fc-PTM and of its methylated derivative Me9Fc-PTM.

Although there are not available information about the solid state behavior

of Me9Fc-PTM, the simultaneous spectroscopic analysis of both compounds

will deepen our understanding and allow for a cross check of the model.

Spectra calculated for Fc-PTM and Me9Fc-PTM are reported in the mid-

dle panels of figure 2.4. The spectra have been obtained for the molecular

parameters listed in table 2.1, while adjusting εor for each solvent as shown

in figure 2.4. Both compounds present a largely N ground state, as con-

firmed by the positive solvatochromism typical of DA chromophores with

a N ground state: we estimate that ρ increases from 0.068 in cyclohexane

(C6H6) to 0.077 in dimethyl sulfoxide (DMSO) for Fc-PTM and from 0.103

in n-hexane (C6H12) to 0.132 in nitrobenzene (ArNO2) for Me9Fc-PTM. The

evolution with the solvent polarity of the main CT band of both compounds

is well reproduced. This is a non trivial result, because it is obtained by

varying, for each compound, just the single parameter εor, while keeping

fixed all other molecular parameters.

Adopting solvent-independent molecular parameters largely reduces the

number of free parameters with respect to the standard treatment based

on the Marcus-Hush of Jortner models. [98, 99, 100, 101] Despite the re-

duction of free parameters, the calculated spectra in the bottom panels of

figure 2.4 satisfactorily compare with experimental data, confirming the va-

lidity of the model. Moreover, the global fit of optical spectra in solvents of

different polarity allows for a reliable partitioning of the relaxation energy

into a vibrational and a solvation contribution, a delicate issue in the stan-

dard treatment where spectra measured in different solvents are analyzed

separately.

As expected on physical grounds, we notice that for both compounds
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εor vanishes in the nonpolar solvent and smoothly increases with the solvent

polarity. The smaller εor values estimated for the methylated compound are

in line with the larger cavity required to accommodate the bulkier solute

[91, 92]. The lower ionization energy of Me9Fc-PTM is well explained by an

inductive effect of the methyl groups on Fc, resulting in a stronger D char-

acter of the Me9Fc group. Other parameters are similar in both compounds.

The spectra do not show a resolved vibronic structure, hindering a precise

estimate of the vibrational frequencies ωv and of the intrinsic linewidths σ,

which are set to 0.18 and 0.07 eV, respectively, for both compounds. Vi-

brational relaxation energy εv, similar in the two compounds, are relatively

small if compared with the values relevant to closed-shell organic DA chro-

mophores. [91, 92, 93, 94, 96] This can be rationalized because in closed-shell

organic DA molecules the CT results in a change of the bond order alter-

nation, that has no counterpart in our open-shell systems like Fc-PTM and

Me9Fc-PTM. The parameter µ0 simply fixes the absolute scale of calculated

absorption spectra, while it is irrelevant for band shapes and frequencies.

The µ0 values in table 2.1 are set to reproduce the experimental extinction

coefficients and correspond to dipole lengths of 1.56 and 1.77 Å for Fc-PTM

and Me9Fc-PTM, respectively. These values are unreasonably small if com-

pared with geometrical DA distances (the distance from the Fe atom and the

central C atom of PTM is 9.5 and 9.7 Å for Fc-PTM and Me9Fc-PTM, from

crystallographic data). It is a very well known that the spectroscopic esti-

mate of µ0, based on the two-state model, leads in general to too small values,

if compared with molecular length. [101, 93, 94, 96, 102, 103, 104, 105, 106]

We will face this issue in section 2.4.2.

2.3.2 Bistability in crystals of DA molecules

In the solid state, intermolecular interactions (second term in equation (2.1))

can profoundly alter molecular properties. If the molecular units are modeled
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Figure 2.4: Experimental (top panels, from ref. [78]) and calculated (bottom

panels) spectra with the two-state model for Fc-PTM (left column) and

Me9Fc-PTM (right column). Calculated spectra are obtained with molecular

parameters in table 2.1 and the εor values in the legend. The intrinsic

bandwidth is set to σ = 0.07 eV in all calculated spectra.

parameter Fc-PTM Fc9-PTM

z (eV ) 0.61 0.36

τ (eV ) 0.35 0.30

µ0 (D) 7.5 8.5

εv (eV ) 0.10 0.12

ωv (eV ) 0.18 0.18

Table 2.1: Molecular parameters for Fc-PTM and Me9Fc-PTM described in

the two-state model.
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by the two-state electronic Hamiltonian (2.2), the charge distribution on

each molecule is fully described by the operator ρ̂, and the electrostatic

intermolecular interaction term in in equation (2.1) can be written as

V̂ij = Vij ρ̂iρ̂j (2.13)

where Vij is the interaction energy between the i-th and j-th molecules

both in the D+-π-A− state [20, 82, 83]. The crystal Hamiltonian obtained

from the general Hamiltonian (2.1), with the molecular two state model in

equation (2.2) and the interaction term expressed by (2.13) is equivalent

to a S = 1/2 Heisenberg model with longitudinal and transverse magnetic

field. The longitudinal field correspond to the molecular ionization energy,

the transverse field to the hybridization energy. Formally the interaction

between spins corresponds to the intermolecular electrostatic interactions.

For the sake of clarity, we start considering only the electronic Hamilto-

nian, while molecular vibrations, that in Fc-PTM play only a marginal role

because of the small value of εv, will be introduced later. To start with,

we first consider the τ = 0 limit. For τ = 0, each molecule can be either

in the D-π-A or in the D+-π-A− state. The energy required to switch the

N molecules of the crystal from the D-π-A to the D+-π-A− is 2N(z +M),

where M is the (half) Madelung energy of a crystal of zwitterions, defined

as:

M =
1

2N

∑

i,j

Vij (2.14)

When z +M < 0 the ground state of the crystal corresponds to a collection

of D-π-A molecules, but for z +M > 0 it describes a collection of D+-π-A−

molecules. An abrupt N-I crossover is located at z +M = 0.

Moving away from the τ = 0 limit opens the way to states with in-

termediate ionicity, but inevitably leads to a more complex problem. The

Hamiltonian (2.1) with electrostatic interactions expressed in equation (2.13)
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can be diagonalized exactly on clusters of N molecules, [20, 82] but, since

the basis dimension increases as 2N , it is impossible to obtain exact results

on large enough three dimensional clusters as required to understand the

role of long-range electrostatic interactions. We therefore adopt the mean

field (mf) approximation, a good and powerful approximation to describe

the ground-state properties of clusters of interaction DA molecules [20, 82].

In the mf approximation, the Hamiltonian of interacting molecules reduces

to the sum of effective molecular Hamiltonians, as follows:

Hmf =
∑

i

[2 (z +Mρ) ρ̂i − τ σ̂x
i ]−NMρ2 (2.15)

where the effective molecular Hamiltonian is simply obtained from equation

(2.2) with a renormalization of the ionization energy: zeff = z + Mρ. In

other terms, the energy required to ionize a DA molecule is 2z for isolated

molecules (more precisely for molecules in a nonpolar environment) but in

the crystal this energy becomes 2zeff , and depends on the charge distri-

bution of surrounding molecules ρ. The self consistent nature of the mf

Hamiltonian, with the effective ionization energy depending on the average

molecular ionicity, is able to capture the cooperative nature of intermolec-

ular interactions. Attractive interactions (M < 0) decrease the effective

ionization energy, favoring I lattices.

The solution of the mf Hamiltonian (2.15) is found by iteration: an initial

guess of ρ enters the definition of the mf Hamiltonian, which is diagonalized

to get an updated ρ estimate to be inserted again into the mf Hamilto-

nian. Convergence is reached upon a few iterations. The resulting ρ(M)

curves, calculated for a crystal of molecules with z = 0.61 eV (as relevant

for Fc-PTM) and two different values of τ , are reported in figure 2.5. Only

attractive interactions (M < 0) are considered. For τ = 1 eV (black con-

tinuous line) ρ increases smoothly from 0.25 in the limit of non-interacting

molecules (M = 0), to ρ ∼ 1 for M . −2 eV . Attractive interactions push
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Figure 2.5: M -dependence of ρ for a crystal of DA molecules described by

the mf Hamiltonian (2.15). The black continuous line refers to z = 0.61 eV

and τ = 1 eV . Symbols refer to z = 0.61 eV and τ = 0.35 eV . Blue circles

are obtained setting the initial guess for the self-consistent solution of the

mf Hamiltonian as ρ ≈ 0, red crosses are obtained with the choice ρ ≈ 1.

The dashed lines are drawn as guide to the eyes.

the system towards I states and the conventional N-I crossover (ρ = 0.5)

occurs at M = −2z. More interesting is the case of smaller τ = 0.35 eV . In

fact, in this case, two stable solutions are found in proximity of the interface,

depending on the initial guess for ρ. Specifically, the blue circles in figure

2.5 show results obtained fixing the initial guess as ρ ≈ 0, while red crosses

are obtained setting the guess ρ ≈ 1. The region, −1.8 < M < −1.1, where

the two results do not coincide defines the bistability region where a N and

an I solution coexist for the same model parameters.

The appearance of bistability also implies the presence of a region of

forbidden ρ values for the system (0.14 < ρ < 0.86). More specifically, the

N-I crossover becomes discontinuous with a sharp ionicity jump from a N to

an I state and a wide hysteresis loop. In particular, for isolated molecules

(M = 0) the unique stable solution has ρ ≈ 0.1. Increasing attractive

interactions barely affects ρ up to M = −1.75 eV where ρ abruptly jumps
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to ρ ≈ 1. Similarly, starting from the I lattice (ρ ≈ 1) relevant to the case of

large attractive interactions (M = −3 eV ), decreasing M has minor effects

on ρ up to M = −1 eV where the ionicity jumps from 0.86 to 0.1. It is worth

noting that the hysteresis cycle presented in figure 2.5 is obtained considering

the mf Hamiltonian (2.15) in the zero temperature limit, but the result

is practically unaffected by temperature. In fact, for Fc-PTM parameters

the energy gap between the ground and the excited state (corresponding to

the transition frequency in equation (2.6)) is always much larger than the

thermal energy and the ground state ionicity ρ barely differs from its thermal

averaged value up to 2000 K.

We now introduce the coupling between electronic and vibrational de-

grees of freedom. As discussed in the previous section, we account for a

vibrational coordinate Q on each molecule (see equation (2.10)). A single

vibrational coordinate q, corresponding to the in-phase vibration of all the

molecules of the crystal is introduced here. To simplify notation the new

vibrational coordinate is defined in energy units as follows:

q =

√
2εv
N

ωv

∑

i

Qi (2.16)

With this definition, the adiabatic mf Hamiltonian becomes

Hmf (q) =
∑

i

[
2

(
z +Mρ− q

2

)
ρ̂i − τ σ̂x

i

]
−NMρ2 + N

q2

4εv
(2.17)

The mf Hamiltonian again coincides with the two-state Hamiltonian in equa-

tion (2.2) but with a ρ and q-dependent zeff = z+Mρ−q/2. By substituting

q with its equilibrium value qeq = 2εvρ (obtained by applying the Hellmann-

Feynman theorem) we get a simple expression for the effective ionization

energy, zeff = z + (M − εv)ρ, accounting for both electrostatic intermolec-

ular interactions and molecular vibrations. The coupling between electronic

and vibrational degrees of freedom plays the same role as attractive electro-

static intermolecular interactions [33]. The ρ(M) curves in figure 2.5, then
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also apply in the presence of vibrational coupling, but with M replaced by

M − εv. For Fc-PTM εv = 0.1 eV and the vibrational contribution to M

represents just a minor correction.

More interesting is the calculation of the q-dependent ground state en-

ergy, obtained by the diagonalization of the q-dependent mf Hamiltonian in

equation (2.17). Panels a-d of figure 2.6 show the ground state potential en-

ergy surfaces (PES) calculated for a system with z = 0.61 eV , τ = 0.35 eV ,

εv = 0.1 eV , as relevant for Fc-PTM, and different M values. For relatively

weak interactions (M −εv = −0.9 eV , corresponding to a large and negative

zeff ), the ρ(z) curve in figure 2.5 leads to a single solution corresponding

to a N ground state with ρ(z) ≈ 0.1. The corresponding PES (panel a of

figure 2.6) is almost harmonic with a minimum located at qeq = 0.01 eV .

Similarly, for strong interactions (M − εv = −2.0 eV , corresponding to a

large and negative zeff ) a single solution is found, corresponding to an I

state with ρ(z) ≈ 1. The relevant PES (panel d of figure 2.6) is centered at

qeq = 0.2 eV . For M−εv within the bistability region two stable states, with

different ρ, are found. For M − εv = −1.2 eV , a N (ρ = 0.09) and an I state

(ρ = 0.9) are both stable. The corresponding PES in panel b of figure 2.6 are

almost harmonic with minima located at qeq = 0.018 and 0.18 eV . Of course

just one of the two states, the lowest energy one, is thermodynamically sta-

ble, while the other state is metastable. For M − εv = −1.3 eV (cf. panel

c, figure 2.6), again in the bistability region, the situation is reversed with

the stable state corresponding to an I state (ρ = 0.93), while the metastable

state corresponds in this case to a N state (ρ = 0.1).

The ground state properties of mf Hamiltonian in equation (2.15) (or

equivalently of Hamiltonian (2.17), by substituting in the following discus-

sion M →M−εv) are finally summarized in its zero temperature phase dia-

gram in in figure 2.7. Bistability is expected for crystals of largely N (closed

or open shell) molecules with strong attractive electrostatic intermolecular
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Figure 2.6: Ground state PESs obtained from the diagonalization of mf

Hamiltonian in equation (2.17), calculated for Fc-PTM molecular parame-

ters in table 2.1, and M = −0.8, −1.1, −1.2 and 2.0 eV , in panels from a to

d respectively.
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Figure 2.7: Zero temperature phase diagram of mf Hamiltonian (2.15).

Monostable phases (N and I) and bistability region (N&I) are indicated.

The black dot marks the quantum critical point. The z = −M/2 line be-

low the critical point (dashed line) marks states with ρ = 0.5 and above the

critical point (dotted line) indicates the degeneracy of N and I stable phases.

interactions; for this reason the phase diagram in figure 2.7 is drawn only for

positive z and negative M . For large molecular ionization energies (i.e. large

z) and weak intermolecular electrostatic interactions (small |M |) the crystal

is composed by N molecules (region marked as N in the figure), while, for

large |M | and small z values the molecules become I (region marked by I in

the figure). Below the (quantum) critical point (z/τ < 1), marked with a

black dot in the figure, the N-I crossover is continuous: ρ varies with conti-

nuity around the crossover value ρ = 0.5 (cf. the black continuous curve in

figure 2.5). The dashed line z = −M/2 in the figure marks the conventional

N-I crossover ρ = 0.5, separating systems with a N ground state (ρ < 0.5,

z > −M/2) from those with an I ground state (ρ > 0.5, z < −M/2). For

z/τ > 1, states with intermediate ionicity (ρ ∼ 0.5) become unstable and

the N-I crossover becomes discontinuous with the appearance of a bistabil-

ity region (N&I region within continuous lines in figure 2.7). In this region,
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two (meta)stable states are accessible to the crystal: a N and an I ground

state are both possible, in general with different energies. In particular, in

the bistability region located above the dotted line z = −M/2, the lowest

energy state, corresponding to the thermodynamically stable phase, is N

(ρ < 0.5), while the I state is metastable. The opposite situation occurs in

the bistability region below the dotted line. The two stable states are exactly

degenerate along the dotted line and they coalesce towards the same state

with ρ = 0.5 at the critical point. The continuous/discontinuous character of

the N-I crossover, and therefore the possibility to observe bistability, is gov-

erned by the hybridization energy τ . In the proximity of the N-I crossover,

i.e. for z ≈ −M/2, for large hybridization energy, i.e. τ > z, the system

prefers to delocalize the electron within each molecular unit leading to states

of intermediate ionicity. On the opposite, if the hybridization energy is small

(τ < z) mixed-valence states are unstable and the system is forced to choose

either one of the two (meta)stable states. [20]

2.3.3 The bistability of Fc-PTM

Results presented in the previous section demonstrate that a discontinuous

N-I crossover can be induced in crystals of DA chromophores by electrostatic

intermolecular interactions, and that, for the molecular parameters relevant

to Fc-PTM, the bistability region can be fairly large. In fact, in the spirit of

the bottom up approach, [86, 87, 83] all molecular parameters entering the

mf Hamiltonian in equation (2.17) are obtained from the analysis of solution

spectra of Fc-PTM, in the reasonable hypothesis that the two-state model

that describes Fc-PTM in solution also applies to the same molecule in the

crystal.

To support our hypothesis of electrostatically induced bistability in Fc-

PTM crystals we need a reliable estimate of M , defined in equation (2.14)

as the half Madelung energy of a lattice of fully I D+-π-A−molecules. In
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the crudest approximation [20, 82, 83], M can be estimated modeling the

charge distribution on the zwitterionic Fc-PTM in terms of a positive and

a negative electron charge located at the center of the D and A groups,

respectively. In this approximation, locating the charges at the positions

of the Fe atom and of the central C-atom of the PTM, we estimate M =

−0.72 eV , an encouraging result. However this approximation is too rough

for large molecules as Fc-PTM. An improved estimate of M can be obtained

modeling the charge distribution on each molecule as a collection of point

atomic charges as obtained by quantum chemical calculations [107]. The

calculation is not trivial, however, because we need electrostatic interactions

among Fc-PTM molecules in the D+-π-A− form, and not in the almost N

ground state that results from gas-phase calculations.

To overcome this subtle problem we perform calculations on a molecule

subject to an external static electric field as to force the charge transfer from

the D to the A unit. Figure 2.8 summarizes the results of restricted Hartree-

Fock PM6 calculations (MOPAC2007 package [108]) on an isolated Fc-PTM

molecule in the experimental crystallographic geometry [79]. A static electric

field F is directed along the x-axis that connects the central C-atom of the

PTM to the Fe-atom of the Fc. The top panel shows the F -dependence

of µx, the x-component of the molecular dipole moment, defined as µx =

e
∑

p qpxp, where e is the electronic charge, xp is the x-coordinate of the p-th

atom, and qp is the Coulson net atomic charge [108]. The S-shaped µx(F )

curve in figure 2.8 clearly points to two different regimes: a low and a high

field regime separated by a region at F ≈ 0.4 V/Å where charges rearrange

dramatically. In the central panel of figure 2.8 the dielectric polarizability,

α ∝ ∂µx/∂F , shows a large peak at the interface that separates two regions of

almost constant polarizability, whose boundaries are marked by dotted and

dash-dotted vertical lines. These two regions correspond to two different

regimes for Fc-PTM: an almost N regime with the ground state largely
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Figure 2.8: Results of PM6 calculations for Fc-PTM under an external

static electric field, F . F -dependence of the molecular dipole moment µx

(top panel), molecular polarizability α (central panel), and total net charges

(bottom panel) on the Fc (continuous line) and PTM (dashed line) units.
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the N and the I regimes, corresponding to flat regions of α.
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dominated by the D-π-A state and an I regime, dominated by the D+-π-A−

state. To further support this interpretation, the bottom panel of figure

2.8 shows the total charges on the Fc (continuous line) and PTM (dotted

line) units. The sum of the charges on the two units is approximately zero,

confirming the picture of a charge transfer from D to A with an electrically

neutral π-bridge. Moreover, in the small F regime the charge transferred

from D to A is approximately zero, while the region of the second plateau

corresponds to a system where approximately one electron is transferred. A

reasonable estimate of the charge distribution of the Fc-PTM D+-π-A− state

is therefore given by the Coulson net point atomic charges, obtained with

PM6 calculations on the Fc-PTM molecule in an electric field 0.65 < F <

0.9 V/Å, corresponding to region delimited by dash-dotted lines in figure

2.8.

We can now estimate M on the basis of the molecular charge distribution

obtained for Fc-PTM in the I regime of figure 2.8. To ensure at least two

significant digits in the estimate ofM , we sum all interactions among ∼19000

molecular sites (17× 17× 33 unit cells). For F values corresponding to the I

regime (region within dash-dotted lines in figure 2.8) we estimate M ranging

between −1.0 eV (for F = 0.65 V/Å) to −1.5 eV (for F = 0.9 V/Å). This

result safely locates Fc-PTM crystals in the bistability region of figure 2.5.

For comparison, in the N regime (region within dotted lines in figure 2.8)

|M | < 0.05 eV , i.e. confirming that electrostatic interactions between fully

N molecules are negligible.

The specific bottom up model built for Fc-PTM crystal explains the

temperature dependence of Mössbauer spectra reported in figure 2.9 (from

ref. [79]). In the 4.2K spectrum only the doublet assigned to the Fc appears,

indicating that the neutral D-π-A form of Fc-PTM largely dominates at low

temperature. With increasing temperature, an additional doublet appears

in Mössbauer spectra, characteristic of the ferrocinium ion (Fc+), signaling
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Figure 2.9: Temperature dependence of Mössbauer spectra of Fc-PTM. Dots

are experimental data from ref. [79]. Red lines are fittings of experimental

data based on the proposed model for bistability and fitting parameters in

table 2.2.
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the presence of the D+-π-A− form of Fc-PTM. The intensity of the Fc+

doublet increases with temperature at the expense of the intensity of the Fc

signal, suggesting an increasing population of the D+-π-A− form. At 293 K

the relative intensity of the two signals is comparable, pointing to similar

populations of the two species. This behavior can be rationalized in term

of the thermal population on an I metastable state, as described by the mf

treatment of electrostatic interactions. In fact Mössbauer spectra in figure

2.9 can be satisfactorily reproduced in term of the Boltzmann population of

an I metastable state separated from a N stable state by a temperature

independent energy gap ∆E = 14 meV ≈ 160 K. This energy gap is

obtained with the mf Hamiltonian in equation (2.17), adopting Fc-PTM

molecular parameters obtained from solution spectra and M = −1.1 eV ,

consistent with the estimate from PM6 calculation (see panel b of figure

2.6). Experimental Mössbauer spectra in figure 2.9 are fitted as a Boltzmann-

weighted sum of two couples of Lorentzian bands (for Fc and Fc+ doublets)

with adjustable positions and widths reported in table 2.2. In view of the

many approximations involved in the model, the overall quality of the fit

(red lines in figure 2.9) is good, as it can be appreciated from the agreement

with experimental data (blue dots) in figure 2.9.
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T (K) vII
1 vII

2 γII vIII
1 vIII

2 γIII

4.2 -0.76 1.58 0.12 -0.24 0.24 0.12

78 -0.76 1.58 0.12 -0.24 0.24 0.12

145 -0.80 1.55 0.10 -0.24 0.24 0.16

200 -0.80 1.50 0.11 -0.22 0.28 0.14

250 -0.80 1.44 0.14 -0.22 0.28 0.12

293 -0.80 1.40 0.17 -0.22 0.28 0.11

Table 2.2: Parameters of the T -dependent Mössbauer spectra fit (red lines in

figure 2.9) expressed in mms−1. Spectra shapes are obtained as the sum of 4

Lorentzian peaks: vII
1 and vII

2 represent the peaks positions of the Fc doublet

and γII theirs half width at half maximum. Same notation is adopted for

Fc+. Fc and Fc+ doublets are weighted by relative thermal populations,

obtained with a T -independent energy gap ∆E = 14 meV .
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2.4 Bottom up with a three-state model

2.4.1 Three state model for Fc-PTM and Me9Fc-PTM

A deeper analysis of Me9Fc-PTM optical absorption spectra, reported in the

right upper panel of figure 2.11, reveals the presence of a shoulder around

15000 cm−1, that is safely assigned to a secondary CT absorption implying a

π-bridge to A transition [78]. This assignment is supported by the absence of

any absorption feature in this spectral range in either the methylated Fc unit

or in the PTM unit and is further corroborated by the weak solvatochromism

of this band [78]. Similar features are observed for Fc-PTM around 15000-

17000 cm−1 (see left upper panel of figure 2.11), but in this case, the overlap

with the localized absorption of the Fc unit makes the analysis delicate.

To account for the secondary CT bands involving the π-bridge, at least

the three resonating structures D-π-A ↔ D-π+-A−↔ D+-π-A−, must be

accounted for, where the first and the latter structures (corresponding to

the fully N and fully I structures of the previous section) largely dominate

over the third, higher energy (virtual) state. The CT occurs through the

bridge, so on the basis of the three states, D-π-A, D-π+-A− and D+-π-A−,

the electronic Hamiltonian reads

ĥ
(3)
el = 2z̃ ρ̂D + 2x̃ ρ̂π − τ̃ σ̂(3) (2.18)

where the operators

ρ̂D =




0 0 0

0 0 0

0 0 1


 and ρ̂π =




0 0 0

0 1 0

0 0 0


 (2.19)

measures the charge transferred from the D and from the π-bridge to the A
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respectively, and

σ̂(3) =




0 1 0

1 0 1

0 1 0


 (2.20)

accounts for the mixing between the D-π-A and the D+-π-A−states, medi-

ated by the bridge state; 2x̃ and 2z̃ measure the energy of the states D-π+-A−

and D+-π-A− respectively, having set to zero the energy of the D-π-A state

(the tilde identifies the three-state model parameters with respect to the

two-state model parameters in the previous section). As discussed above,

the CT state involving the bridge is higher in energy that the main CT state,

i.e. x̃ > z̃.

A detailed parametrization of the three-state model is difficult, particu-

larly because of the large overlap of the second absorption band with higher

energy absorptions in both compounds. In the absence of additional data,

as fluorescence or absorption from the first excited state, in order to avoid

the proliferation of free parameters, the same matrix element τ̃ describes

the electron hopping from the bridge to the acceptor and from the donor

to the bridge. With the same spirit, the dipole moment of the D-π+-A−

state is set to the reasonable value µ̃0/2, where µ̃0 is the dipole moment of

the D+-π-A−state. This choice locates the centroid of positive charge of the

bridge state just halfway between the D and A centers.

As in the two-state model, the coupling to an effective molecular vibra-

tion is introduced assigning harmonic PESs with same frequency but differ-

ent equilibrium geometries to the basis states, as shown in the left panels

of figure 2.10. In principle, different geometries are expected for each of the

three basis states leading to two independent vibrational relaxation energies

for D-π+-A− and D+-π-A− states. However, getting reliable information on

the vibrational coupling of the third state is difficult, and we impose the same

geometry on the two charge-separated states (see figure 2.10, left panel), so
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Figure 2.10: Basis states (left panels) and eigenstate (right panel) PES for

the three-state model in equation (2.21) with z̃= 1 eV , x̃= 2 eV , τ̃= 0.5 eV

ω̃v= 0.2 eV , ε̃v= 0.4 eV and ε̃or= 0 eV .

that the same relaxation energy, ε̃v, applies to both states. Different choices

are of course possible but do not alter the main results.

Polar solvation is treated again in the framework of the reaction field

model, with the reaction field proportional to the molecular dipole moment.

Since the dipole moment of the third state is set to a fixed fraction of µ̃0,

polar solvation is described by the single parameter ε̃or. The total Hamil-

tonian, accounting for both vibrational coupling and polar solvation, then

reads

ĥ(3)(q, F ) =
(
2z̃ −

√
2ε̃v ωv Q− µ̃0F

)
ρ̂D (2.21)

+
(

2x̃−
√

2ε̃v ωv Q− µ̃0

2
F

)
ρ̂π

− τ̃ σ̂(3) +
1
2
ω̃v Q

2 +
µ̃2

0

4ε̃or
F 2

where again the tilde marks symbols relevant to the three-state model. For

each F , the diagonalization of the Q-dependent Hamiltonian leads to three

Q-dependent eigenstates, that describe the PES relevant to the ground state,



116 Bistability in Crystals of Valence Tautomeric Molecules

parameter Fc-PTM Fc9-PTM

z̃ (eV ) 0.78 0.50

x̃ (eV ) 0.87 0.69

τ̃ (eV ) 0.47 0.47

µ̃0 (D) 15.0 15.5

ε̃v (eV ) 0.06 0.07

ω̃v (eV ) 0.18 0.18

Table 2.3: Molecular parameters for Fc-PTM and Me9Fc-PTM described in

the three-state model.

g, and to the first and second excited states, e1 and e2, respectively. Right

panel of figure 2.10 shows the PES obtained for the specific set of parameters

reported in the figure caption. Absorption spectra are calculated extending

the summation in equation (2.11) to the n and n′ vibrational states of the

first and second excited states, accounting for the relevant Huang-Rhys fac-

tors, Si = λvi/(~ω̃v), with λvi defined in the left panel of figure 2.10 and

i = 1, 2. The calculation is repeated for different F , and the calculated spec-

tra, Boltzmann-weighted on the total ground-state energy, are summed up

to give the absorption spectrum.

The spectra calculated within the three-state model are reported in bot-

tom panels of figure 2.11. Spectra are calculated for the molecular parame-

ters in table 2.3 and the ε̃or values in the legends. The vibrational frequencies

and the intrinsic line width are set to the same values as in the two-state

model. To facilitate the comparison, experimental spectra are reported in

the upper panels of the same figure. As expected, the three-state model

results in two absorption bands, which reproduce the experimental observa-

tion of two solvatochromic CT absorption bands. A detailed comparison of

calculated and experimental spectra is hindered, particularly for Fc-PTM,
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Figure 2.11: Experimental (top panels, from ref. [78]) and calculated (bot-

tom panels) spectra with the three-state model for Fc-PTM (left column) and

Me9Fc-PTM (right column). Calculated spectra are obtained with molecu-

lar parameters in table 2.3 and the ε̃or values in the legend. The intrinsic

bandwidth is set to σ = 0.07 eV in all calculated spectra.
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by the overlap of the secondary CT band with nearby localized absorption

bands. It is certain possible to improve the quality of calculated spectra by

increasing the number of parameters, however the basic role of the bridge

state is captured already in the simplest model.

From table 2.3, it turns out that x̃ > z̃ for both compounds, as required on

physical basis. Moreover τ̃ , which measures the direct charge hopping from

either the D or the A site to the bridge, is larger than the bridge-mediated

hopping, τ , in the two-state model (cf. table 2.1). The effective strength of

the vibrational coupling is roughly halved in the three-state model, suggest-

ing that the effective εv estimated in the two-state model is roughly the sum

of the contributions from the two excited states. The values of the solvent

relaxation energy in the three-state, reported in the legend of figure 2.11

model are instead larger than the corresponding two-state model results (cf.

figure 2.4). This increase compensates for the reduction of the mesomeric

dipole moment in the three-state model. The sizable weight of the D-π+-A−

in the first excited state in fact leads to a decrease of the relevant dipole

moment with respect to the two-state model, so that larger solvent relax-

ation energies are required in the three-state model to reproduce the same

solvatochromism. While microscopic models relate the solvation relaxation

energy to the solvent dielectric constant and refractive index and to the size

and shape of the cavity occupied by the solute [109, 94], this analysis demon-

strates that εor is best treated as an adjustable parameter, whose specific

value also depends on the model adopted to describe the solute electronic

structure.

More important to understand the role of the π-bridge in the intramolec-

ular CT is the observation that the effective dipole length extracted in the

three-state model, µ̃0 in table 2.3, is about twice the corresponding estimate

in the two-state model (c.f. table 2.1) and corresponds to a DA distance of 3.1

and 3.3 Å for Fc-PTM and Me9Fc-PTM, respectively. These values are still
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small compared with the geometrical DA distance (9.5 and 9.7 Å for Fc-PTM

and Me9Fc-PTM), but they considerably improve over the corresponding es-

timates obtained in the two state approach, leading to a ratio between the

geometrical and spectroscopic estimate of the DA distance in line with sim-

ilar results for other DA molecules. [101, 93, 94, 96, 102, 103, 104, 105, 106]

2.4.2 Dipole length: the role of the bridge

The three-state model described above does not add much to our under-

standing of the main (low-energy) CT absorption band whose basic features

are already well captured by the two-state model. However, the three-state

model leads to a more reasonable estimate of the dipole length compared

with the unphysically small values obtained for both Fc-PTM and Me9Fc-

PTM within the two-state approximation. This result suggests that the

well-documented discrepancy between geometrical DA distance and its spec-

troscopic estimate within the two-state model, results from the presence of

low-lying π-bridge states. To generalize this result and to set it on a firmer

basis, we discuss here an electronic model for a D-π-A dye where several

bridge states are accounted for.

The model, recently introduced in the literature [110], describes the elec-

tron transfer from D to A as the result of several successive hops through the

bridge sites. The bridge states are virtual states, since they present higher

energy than the relevant CT state. We limit attention to the purely elec-

tronic model. Specifically, we consider a N -site molecule, where the electron

is transferred from D to A via N −1 hops involving only adjacent sites. The

resulting N states are schematically shown in figure 2.12 for N = 5. The

same energy x̃ is assigned to all bridge states, while the D+-π-A− state has

energy z̃ < x̃. The same hopping integral τ̃ describes the CT between all ad-

jacent sites along the chain. The relevant Hamiltonian is a trivial extension
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Basis states Energy Dipole

D - b1 - b2 - b3 - A 0 0

D - b1 - b2 - b+
3 - A− 2x̃ 1/4 µ̃0

D - b1 - b+
2 - b3 - A− 2x̃ 1/2 µ̃0

D - b+
1 - b2 - b3 - A− 2x̃ 3/4 µ̃0

D+ - b1 - b2 - b3 - A− 2z̃ µ̃0

Figure 2.12: Schematic representation of the basis state for a 5-state molecule

with corresponding energies and dipole moments.

of the three-state electronic Hamiltonian in equation (2.18):

ĥN =




0 −τ̃ 0 0 · · · 0 0

−τ̃ 2x̃ −τ̃ 0 · · · 0 0

0 −τ̃ 2x̃ −τ̃ . . . 0 0

0 0 −τ̃ 2x̃
. . .

...
...

...
...

...
. . . . . . −τ̃ 0

0 0 0 · · · −τ̃ 2x̃ −τ̃
0 0 0 · · · 0 −τ̃ 2z̃




(2.22)

Consistent with the three-state model described in the previous section, the

dipole moment of the D+-π-A−state is set to µ̃0, while the dipole moments of

bridge states are fractions of µ̃0, as relevant to a system with equally spaced

sites (see figure 2.12), leading, for the general case in equation (2.22), to

the following values: 0, µ̃0/(N − 1), 2µ̃0/(N − 1), 3µ̃0/(N − 1) . . . (N −
2)µ̃0/(N − 1).

We limit our attention to a systems with an almost neutral ground state,

in which bridge sites are weaker donors than D, so that 0 < z̃ < x̃. For

x̃ − z̃ >> τ̃ bridge states become very high in energy and a perturbative

treatment on τ̃ /(2x̃ − 2z̃) reduces the N -state model to an effective two-



2.4 Bottom up with a three-state model 121

0

10

20

ω
fi
  (

eV
)

N=3 N=4 N=5

0 5 10
x

0

0.05

0.1

|µ
fi
|2

5 10
x

5 10 15
x~ ~~

Figure 2.13: Transition energies (top panels) and squared transition dipole

moments (bottom panels) calculated for N = 3, 4 and 5 state models (panels

from left to right) with z̃= 1, µ̃0= 1, variable x̃ and τ̃=
(
τ(2x̃)N−2

) 1
N−1 . Red

lines refer to the lowest energy (main CT) transition. Dotted lines show the

(x̃-independent) results relevant to the limiting two-state model (see text).

state model with z =z̃, µ0=µ̃0 and

τ =
τ̃N−1

(2x̃− 2z̃)N−2
(2.23)

where, as before, the tilde applies to symbols relevant to the N -state model,

while bare symbols refer to the two-state model.

N -site (or N -state) molecules have N −1 optical excitations whose ener-

gies and transition dipole moments are shown in figure 2.13 as a function of

x̃−z̃ for systems with N = 3, 4, and 5 sites. In all cases, model parameters

have been chosen as to converge, in the large x̃ limit, to the two-state model

with z = τ = 1, and µ0 = 1 (in this section, we work with dimensionless

quantities, fixing τ as the energy unit and µ0 as the unit dipole moment).

With this choice, we expect convergence, in the large x̃ limit, to a two-
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state model with ρ ≈ 0.15 (see equation (2.5)). The corresponding limiting

values of the transition frequency and squared transition dipole moments

(ωCT ≈ 2.8 and µCT ≈ 0.13; see equations (2.6) and (2.7)) are shown as dot-

ted lines in figure 2.13. The lowest energy or main CT transition (marked

by red lines in figure 2.13) is well separated from higher energy transitions

involving bridge states and has by far the largest intensity: the main CT

transition dominates the low energy portion of the spectrum. The corre-

sponding energies and transition dipole moments (red lines in figure 2.13)

properly converge toward the two-state limit (dotted lines) for x̃− z̃→ ∞
(or equivalently x̃→ ∞). The convergence becomes slower with increasing

N .

To investigate the effect of bridge states in the definition of an effec-

tive two-state model and in particular on the estimate of the relevant dipole

length, we focus attention on this lowest energy main CT absorption, disre-

garding higher energy transitions involving the bridge. In other terms, we

analyze the data relevant to the main CT transition, obtained from the di-

agonalization of the N -state model, to extract an effective two-state model

in an analogous way as usually done by analyzing experimental absorption

spectra. In particular, the parameters of the effective two-state model, τ ,

z (or equivalently ρ), and µ0, can be estimated from three spectral prop-

erties. Equations (2.6), (2.7) and (2.9) are therefore used to extract ρ, τ ,

and µ0 out of the transition frequency, transition and mesomeric dipole mo-

ment (difference between ground and excited state dipoles, i.e. the quantity

directly related to solvatochromism) calculated in the N -state model. The

right panel of figure 2.14 shows the (x̃ − z̃) dependence of the effective µ0

estimated along these lines for the N = 3, 4, and 5 state models in figure

2.13. In all cases, the effective µ0 converges toward the exact limit, µ0 = 1,

for x̃→∞, but it is always underestimated for any finite x̃, i.e. when bridge

states are closer in energy to the D+-π-A− state. It is worth noting that the
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Figure 2.14: Dipole length extracted from the two-state analysis of the main

CT band of the N -state models described in figure 2.13. Left panel shows

results obtained by extracting the two-state model parameters (x, τ and µ0)

from the frequency, the squared transition dipole moment and the mesomeric

dipole moment; right panel shows similar results obtained using the ground

state dipole moment instead of the mesomeric dipole moment.

µ0 underestimate increases with the number of bridge state involved in the

D to A CT mechanism. Different estimates of the effective two-state model

parameters can be obtained if a different choice is made about the reference

spectral properties. In fact, using equations (2.6), (2.7) and (2.8), the pa-

rameters of the effective two-state model can be extracted by reproducing

the transition frequency, transition dipole moment and ground state dipole

moment (instead of mesomeric dipole moment). The effective µ0 obtained

according to this alternative procedure (right panel of figure 2.14) shows a

qualitatively similar behavior to the previous one and even larger deviations

from the limiting value than before.

This discussion clearly demonstrates that the unphysically small DA dis-

tances, extracted from the two-state model analysis of optical spectra of DA

molecules, results from the presence of low-lying bridge states, playing an

active role in the D to A CT. The larger discrepancy between the geomet-
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rical and spectroscopic values of µ0 obtained for Fc-PTM and Me9Fc-PTM

with respect to common organic DA chromophores, is then naturally ex-

plained by the presence of (at least) a secondary low-lying CT transition

in the absorption spectra. Moreover this picture explains why this discrep-

ancy is not observed in the µ0 values obtained from the optical spectra of

CT complexes and crystals. In fact the optical properties of CT complex

and crystals, where an intermolecular CT occur trough space because of the

direct overlap of frontier orbitals, can be described by the same two state

model of DA molecules. However in these systems, where the D to A CT

is not mediated by any virtual state, the dipole lengths obtained from the

intensity of the CT bands are well comparable with geometrical distances.

[111, 112, 113, 114]

2.4.3 Bistability in crystals of three-state molecules

In the previous section we introduced a specific three-state model for the

description of the low energy physics of Fc-PTM (and Me9Fc-PTM), gov-

erned by intermolecular CT. Following the bottom up modeling approach

presented in section 2.2 and in strict analogy with the model for a crystal of

two-state molecules presented in section 2.3.2, we now develop a model for a

crystal of three-state molecules. When molecular units are modeled by the

three-state electronic Hamiltonian (2.18), the charge distribution on each

molecule is described by the two operators ρ̂D and ρ̂π, defined in equation

(2.19). The electrostatic intermolecular interaction term in in equation (2.1)

is written as

V̂ij = Vij ρ̂
D
i ρ̂

D
j + V ′ij ρ̂

π
i ρ̂

π
j + V ′′ij

(
ρ̂D

i ρ̂
π
j + ρ̂π

i ρ̂
D
j

)
(2.24)

where the coefficients measure the electrostatic interaction energy between

i-th and j-th molecules with different charge distributions. Specifically, Vij

measures the interaction between the i-th and j-th molecules both in the
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D+-π-A− state and coincides with the Vij parameter introduced in equation

(2.13) for the two-state model; V ′ij is instead the interaction between the

i-th and j-th molecules both in the D-π+-A− state, while V ′′ij is a mixed

term that describes the interaction between the i-th molecule in the D+-

π-A− state and the j-th molecule in the D-π+-A− state or vice versa. We

only account for electronic degrees of freedom, since, as discussed in section

2.3.2, molecular vibrations in Fc-PTM play only a marginal role, and can be

implicitly considered with a renormalization of the interaction parameters.

In the mean field (mf) approximation the crystal Hamiltonian reduces to

H
(3)
mf =

∑

i

[
2(z̃ +MρD +M ′′ρπ)ρ̂D

i + 2(x̃+M ′ρπ +M ′′ρD)ρ̂π
i

− τ̃ σ̂
(3)
i

]
−N

(
M(ρD)2 +M ′(ρπ)2 + 2M ′′ρDρπ

)
(2.25)

where M is the half Madelung energy as defined in equation (2.14),

M ′ =
1

2N

∑

i,j

V ′ij (2.26)

is the interaction energy of a molecule in the D-π+-A− state with the sur-

rounding molecules in the same state, and similarly

M ′′ =
1

2N

∑

i,j

V ′′ij (2.27)

is the interaction energy of a molecule in the D-π+-A−state with surrounding

molecules in the D+-π-A− state (or vice versa). As it is always the case, the

mf Hamiltonian leads to a self consistent problem whose solution can be

found iterating on the two parameters, ρD and ρπ, corresponding to the

ground state expectation values of the ρ̂D and ρ̂π operators, respectively.

The estimate of the generalized Madelung energies M ′ and M ′′, entering

the three-state mf Hamiltonian in equation (2.25) (or equivalently of the V ′ij
and V ′′ij terms entering the interaction Hamiltonian in equation (2.24)), is a

delicate issue. In fact, it requires information about the charge distribution
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in the D-π+-A− state. As discussed in section 2.3.3, we can force the Fc-PTM

molecule into a D+-π-A− state by applying a static electric field, but there

is no numerical way to force the Fc-PTM molecule in the D-π+-A− state.

We therefore use the crudest approximation, and estimate the interactions

accounting for unit charges located at the centroids of the D, A and π-

bridge. Locating the centroids of the D group on the Fe atom and that of

the A sites on the central C atom of PTM, one estimates M = −0.72 eV .

Locating the π-bridge centroid midway between the D and A centroids, we

get M ′ = 0.41 eV and M ′′ = 0.41 eV . These values of the generalized

Madelung energies are very rough and probably represent a lower limit to

the actual values. Therefore we use these values just to set the relative

magnitude of the three energies as M ′ = M ′′ = 0.6M . With these ratios

fixed, we solve by iteration the self consistent mf Hamiltonian in equation

(2.25) for the (electronic) molecular parameters obtained from the three-

state analysis of the two CT bands of Fc-PTM, reported in table 2.3.

Figure 2.15 shows the calculated M -dependence of ρD, the charge resid-

ing on the D site. Blue circles in the figure refer to a self-consistent iterative

solution obtained starting with a N guess (ρD ≈ 0, ρπ ≈ 0), while red crosses

refer to solutions obtained starting from an I guess (ρD ≈ 1, ρπ ≈ 0). The

results are similar to those obtained with the two state molecular model (cf.

figure 2.5). For M > −1.2 eV the ground state of the crystal corresponds

to a collection of largely N molecules (ρD ≈ 0) that turn I (ρD ≈ 1) for

M < −2.9 eV . On the other hand, starting from the I side and decreasing

|M |, the molecules stay I down to M < −1.2 eV . For −2.9 < M < −1.2 eV ,

a wide bistability region is found where a largely N and a largely I are both

accessible to the system. The width of the bistability window depends on the

M ′/M and M ′′/M ratios, and increases when the two ratios decrease. In any

case, apart from quantitative aspects, bistability is a robust phenomenon,

and survives for reasonable choices of the generalized Madelung energies.
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Figure 2.15: The M -dependence of ρD for a crystal of three-state molecules

described by mf Hamiltonian (2.25), calculated for z̃ = 0.78 eV , x̃ = 0.87 eV ,

attractive intermolecular interactions (M ′ = M ′′ = 0.6M < 0) and two

different τ̃ . Black continuous line refers to τ̃ = 1 eV . Blue circles and red

crosses correspond to the two solutions obtained for τ̃ = 0.47 eV , via a self-

consistent iterative procedure with the initial choice of ρD set to 0 and 1,

respectively (the initial values of ρπ is set to 0 in both cases). Dashed lines

are drawn as guide for the eyes.
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As observed for the two-state model, bistability is suppressed by increasing

the hybridization energy (cf. continuous curve in figure 2.15 obtained for

τ = 1 eV ).
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2.5 Discussion and conclusions

Electrostatic interactions in molecular materials with low-lying CT degrees

of freedom are responsible for an interesting and rich physics, eventually

resulting in extreme cooperative phenomena as the occurrence of first order

phase transitions and the related phenomena of multistability. [20, 82] The

most impressive example of the coupling between CT and electrostatic inter-

action, is surely provided by the N-I phase transition (NIT) in mixed stack

CT crystals [26, 27], as extensively discussed in chapter 1. The fundamen-

tal role of intermolecular electrostatic interactions was early recognized by

McConnell, that about 15 years before the discovery of NIT, predicted the

possibility of discontinuous N-I crossovers and suggested the phenomenon of

phase coexistence [24].

Mixed stack CT crystals share some basic physics with crystals of DA

chromophores, but, while in CT crystals the intermolecular CT leads to delo-

calized electrons in 1D, in crystals of DA molecules electrons are completely

localized within each molecular unit. The strict confinement of electrons

greatly simplifies the description of these systems, without spoiling the co-

operative nature of electrostatic intermolecular interactions. [20, 82] The

possible appearance of discontinuous charge crossovers and bistability in

crystals of DA molecules has been proposed a few years ago, [20] but so far

this suggestion has not found experimental demonstration. Here, a detailed

analysis of optical spectra of Fc-PTM in solution, and the specific model-

ing of electrostatic intermolecular interactions in the crystal, quantitatively

explains the coexistence of N and I Fc-PTM species, in terms of bistability

induced by electrostatic interactions.

The basic physics of interacting DA molecules can be described adopting

a two state model for the molecular units, that can be reliably parametrized

for specific compounds from a detailed analysis of solution spectra. The
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procedure, called bottom up modeling, is simple and exploits the important

solvatochromism shown by absorption spectra of DA chromophores to define

an environment independent molecular model that is then transferred to

describe the molecule in the crystal. [86, 87, 90, 83] Specific and reliable

description of intermolecular electrostatic interactions can be obtained by

combining structural data with molecular charge distribution, obtained from

quantum chemical calculations.

The two state model captures the basic physics of intramolecular CT in

DA molecules, and provides an adequate description of optical spectra of

Fc-PTM and several chromophores. [91, 92, 93, 94, 96] Quite unavoidably,

however, it leads to an oversimplified description of the molecular proper-

ties. In section 2.4.1 we have shown that, the presence of a secondary CT

absorption in Fc-PTM and Me9Fc-PTM, suggests the introduction of a third

state in the electronic molecular model, to account for the active role of the

π-bridge. The three-state model description enable us to better describe the

spectroscopic properties of Fc-PTM and Me9Fc-PTM. Moreover, by intro-

ducing the three-state model and its N -state generalization, we were able to

solve the long-standing problem of the underestimation of DA distances, as

obtained on a two-state interpretation of spectroscopic data. While spectral

properties are largely affected by the presence of low-lying bridge states, the

bistability induced by electrostatic interactions is a robust phenomenon that

does not depend on the specific model adopted to describe molecular units.

The basic physics of bistability in crystals of DA molecules is already cap-

tured in the simplest two-state molecular model: more refined models may

change some details, but do not alter the global picture.

The mf treatment of electrostatic intermolecular interactions leads to a

very simple picture of intramolecular CT degrees of freedom coupled by elec-

trostatic intermolecular interactions. The mf approximation, not accounting

for many-body correlations, most probably overestimates the bistability re-
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gion. However, the comparison with exact results obtained for linear clusters

of DA molecules [20] gives us confidence on the reliability of the mf for the

ground state properties of these kind of system. Moreover, exact diagonal-

ization can be performed only on small finite size clusters that can hardly

reproduce the long range nature of electrostatic interactions. On more gen-

eral grounds, it is well known that in discontinuous transitions, involving the

simultaneous switching of a macroscopic number of molecules, cooperative

interactions provide kinetic barriers between the two phases and the relax-

ation from metastable states towards thermal equilibrium can be a very slow

process.

Bistability in crystal of DA molecules induced by electrostatic interac-

tions is a new and interesting finding that opens the way to many future

perspectives. A priority, in order to confirm or refuse the predicted mecha-

nism, is represented by the study of pressure effects. In fact, the application

of pressure and the consequent lattice contractions are expected to alter the

strength of the electrostatic interactions. Measurement of Mössbauer spectra

under pressure have already been planned. The possibility to photoinduce

the transition will be also investigated.

More generally, we hope that our work will trigger systematic studies on

other compounds, looking for other bistable systems. The phase diagram

in figure 2.7 provides simple guidelines, setting molecular and supramolecu-

lar requirements to observe bistability induced by electrostatic interactions

in crystals of valence tautomeric molecules. Bistability requires largely N

molecules and a delicate balance between molecular ionization energy and

electrostatic interactions. The analysis of optical spectra of DA molecules

in solution offers a handy procedure to select suitable molecules. Largely

N molecules (z/τ > 1 or equivalently ρ < 0.15) can be recognized by a CT

absorption band showing a weak positive solvatochromism (red shift of the

absorption band with the increase of the solvent polarity). For fluorescent
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molecules an even more prominent solvatochromism of the fluorescence band

is predicted. [91, 92, 93, 94, 96] The second requirement for bistability is

related to electrostatic intermolecular interactions in the solid state, that

must be attractive and of a comparable strength with the molecular ion-

ization energy (M ≈ −2z). [20] The Madelung energy of the crystal is a

measure of the overall strength of electrostatic intermolecular interactions

but unfortunately it is not experimentally accessible, nor easily tuned from

the synthetic point of view. In the specific case of Fc-PTM, we estimated

M from the crystal structure and a non standard application of quantum

chemical calculations. However, useful information on the nature of the

interactions can be in general obtained from the analysis of structural data.

To conclude, we mention that a temperature-dependence valence tau-

tomerism, very similar to those observed for Fc-PTM, was recently observed

by Kondo et al. in a ferrocenyloxodihydrodibenzochromenylium salt (Fc-

Pyl+ X−, with X−=TFSI−,PF−6 ,BF−4 ). [115] Fc-Pyl+ is a Fc-based DA

molecular cation characterized by the charge resonance Fc-Pyl+ ↔ Fc+-Pyl.

Quite interestingly the valence tautomerism of Fc-Pyl+, detected also in this

case by Mössbauer spectroscopy, depends on the counterion. In particular,

while with two counterions (TFSI− and PF−6 ) a growing intensity of the

Fc+ doublet is observed with increasing temperature, the Mössbauer spec-

tra of the third compound (counterion BF−4 ) presents only the Fc doublet at

all the temperature. The counterion-dependent behavior suggests that also

in this case electrostatic interactions play an important role. However the

model presented here for crystal of DA molecules does not apply to crystals

of molecular ions. In fact, while the molecular two-state model apply quite

irrespective to the net molecular charge, the treatment of intermolecular in-

teractions in a crystal of molecular ions requires a specific modeling. More

effort is therefore needed to understand this intriguing behavior.



Chapter 3

Vibronic Model for Spin

Crossover Complexes

3.1 Introduction: spin crossover in metal complexes

The term spin crossover (SC) generally refers to the thermal conversion from

a low spin (LS) to a high spin (HS) electronic configuration, observed in some

octahedrally coordinated transition metal complexes. [116, 14] The SC phe-

nomenon, discovered by Cambi et al. in 1931 [116], results from the presence

of two low-lying electronic states, due to the competition between the ligand

(or crystal) field and electronic repulsions. In fact an octahedral ligand field

splits of the five d orbitals of the metal into a subset of three orbitals (t2g

symmetry) and a subset of two orbitals (eg symmetry) of higher energy. [117]

Figure 3.1 shows the LS and HS states for a d6 configuration in an octahe-

dral field, as relevant for iron(II) complexes. For a strong ligand field, the

energy separation between the two manifolds is large and electrons occupy

the orbitals of the three lowest energy states, leading to a LS state (S = 0, in

the specific d6 case). On the other hand, for weak ligand fields the splitting
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Figure 3.1: Schematic representation on the electronic configurations of the

LS and HS state of a transition metal with d6 configuration in a octahedral

ligand field.

is small and electronic repulsions favor a HS state (S = 2). The strength of

the ligand field, unlike electronic repulsions, is largely affected by the metal-

ligand distances and in SC complexes both the electronic configurations are

stable, corresponding to different molecular geometries. [118, 117]

The SC phenomenon can be described as a thermal equilibrium between

the LS and the HS (meta)stable forms. The LS to HS conversion with

increasing temperature is entropically driven, due to higher density of states

of the HS state. This higher density of states partially results from the

higher spin degeneracy of the HS state, but a major contribution comes from

vibrational degrees of freedom. [119, 120] In the HS state, in fact, the metal-

ligand bonds are weaker, and the the LS-HS conversion is accompanied by

the softening of many vibrations, resulting in a higher density of vibrational

levels. The SC is fairly common and was observed in many transition metal

complexes with electronic configurations from d4 to d7. [14] Among them,

the iron(II) complexes are by far the most studied.

For almost isolated SC molecules (such as complexes in solution or in

diluted crystals) the temperature dependence of the fraction of complexes
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in the HS is gradual and follows a Boltzmann distribution between the two

states. More interestingly, in neat SC crystals cooperative interactions of

elastic origin, due to the large differences in metal-ligand bond lengths (0.12-

0.2 Å), [121, 122, 123] result in steeper transition curves, up to the occur-

rence of first order phase transitions. Moreover, a large variety of intriguing

behaviors, including abrupt transitions, hysteresis loops, transitions with

and without accompanying structural transformations, stepwise and partial

transitions, have been reported. [14] The application of external pressure

strongly affects the spin transition and generally stabilize the LS state. [124]

The spin transition is also affected by the application of high magnetic fields.

[125]

SC systems represent one of the most representative and promising ex-

amples of bistability in molecular crystals, as evidenced by the presence of

hysteresis loops and photoinduced phase transitions (light induced excited

spin state trapping, LIESST). [9, 126] In particular the possibility to re-

versibly switch between two phases [127, 126, 128], characterized by different

optical and magnetic properties, makes SC systems suitable candidates for

multifunctional molecular materials. [129, 130] Interesting applications as

molecular switches, memory devices and displays have already been demon-

strated. [130]

Several models have been proposed to explain the cooperativity in SC

systems. [131, 132, 133, 134, 135, 136, 137] These models allowed to un-

derstand the cooperative nature of the spin transition and provided quan-

titative explanations of most of its features. However, the development of

microscopic models based on a realistic quantomechanic description of SC

molecules, has not been pursued yet.

A microscopic model for SC complexes was developed by Biernacki and

Clerjaud [138] by introducing an adiabatic linear dependence of the strength

of crystal field on a totally symmetrical molecular vibration (breathing mode).
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Following the basic idea in ref. [138], here we present a quantomechanic

model for the coupling between electronic and vibrational degrees of free-

dom. More specifically, we introduce linear and quadratic coupling to the

breathing mode, to explicitly account for different equilibrium geometries

and vibrational frequencies of LS and HS states. Moreover, we explicitly

introduce the mixing between LS and HS states, provided by higher order

spin-orbit coupling and responsible for the relaxation (tunneling) from the

photoexcited HS state. [139] The quantomechanical and thermal proper-

ties of the model are obtained via exact (non-adiabatic) diagonalization for

a physically reasonable set of parameters. These results are discussed and

compared with the results obtained in the adiabatic approximation in section

3.2. The molecular model is then adopted to study the cooperative effects

of intermolecular interactions. The effects of different phenomenological in-

teraction terms, treated within the mean field approximation, are discussed

in section 3.3.
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3.2 The vibronic model for spin crossover molecules

3.2.1 The model

The electronic structures of a SC complex can be described on the basis of

one LS state and g degenerate HS states, where g is the multiplicity of the

HS state. Being 2∆ the energy gap between the LS and the HS states and J

the corresponding mixing matrix element, the electronic Hamiltonian reads

H = ∆ σ̂g + J σ̂x
g (3.1)

where

σ̂g = −|LS〉〈LS|+
g−1∑

k=0

|HSk〉〈HSk| (3.2)

σ̂x
g =

g−1∑

k=0

(|LS〉〈HSk|+ |HSk〉〈LS|) (3.3)

For the sake of simplicity, and in the lack of specific experimental data,

we assume that the same matrix element, J , couples the LS state to all

the g HS states. Although the assumption of the same J for all HS states is

probably a rough approximation, it represent, at least, a useful starting point

for subsequent perturbative treatments. With this assumption, the g HS

states are equivalent and Hamiltonian (3.1) is invariant with respect to their

permutations. We introduce the symmetry adapted linear combinations of

the HS states:

|HS∗k〉 =
1√
g

g−1∑

l=0

e
2πi kl

g |HSl〉 with k = 0, 1, 2...g−1 (3.4)

The representation of Hamiltonian (3.1) on the basis of LS state and of

the g symmetry adapted HS states is a block diagonal matrix: the original

Hamiltonian matrix of dimension g + 1 factorizes in a bidimensional block

plus g−1 monodimensional blocks.
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The bidimensional block mixes the |LS〉 and |HS∗0〉 = 1√
g (|HS0〉 +

|HS1〉+ |HS2〉+ ...+ |HSg−1〉), and in this subspace the electronic Hamil-

tonian can be written as

H2 = ∆ σ̂z + J ′ σ̂x (3.5)

where σ̂z and σ̂x are the Pauli matrices and J ′ =
√
gJ . The energy spec-

trum of Hamiltonian (3.1) is constituted by energies ±√∆2 + J ′2 , obtained

diagonalizing the bidimensional block, and g−1 unperturbed levels of energy

∆, due to uncoupled HS states.

Molecular vibrations (mv) are introduced to account for the different

equilibrium geometries [121, 122, 123] and vibrational frequencies [140, 141,

142, 120] in the LS and HS states. We consider a single effective mv, cor-

responding to the totally symmetric deformation of the molecule (breathing

mode). Harmonic potentials are assigned to the electronic basis states, with

equilibrium positions and force constants depending on the spin state. The

resulting electron-mv (e-mv) Hamiltonian includes both linear and quadratic

coupling:

H =
(
∆− lq̂ − λq̂2

)
σ̂g + Jσ̂x

g +
1
2
kq̂2 +

p̂2

2m
(3.6)

where q̂ is the position operator of the coupled mv, with conjugated mo-

mentum p̂ and effective mass m. k is the force constant of the uncoupled

system while l and λ are the linear and quadratic e-mv coupling constants,

respectively. The harmonic potential of the |LS〉 state is characterized by

a force constants kLS = k + 2λ and an equilibrium position qeq
LS = −l/kLS ,

while the potential of the |HS∗0〉 state has kHS = k − 2λ and qeq
HS = l/kHS .

Hamiltonian (3.6) is still invariant with respect to permutations of the

HS states and with the implementation of symmetry the problem factorizes

and becomes easier to handle. In the subspace {|LS〉, |HS∗0〉} Hamiltonian

(3.6) describes two displaced harmonic oscillators with different frequencies
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coupled by J ′, as follows:

H2 =
(
∆− lq̂ − λq̂2

)
σ̂z + J ′σ̂x +

1
2
kq̂2 +

p̂2

2m
(3.7)

The vibronic Hamiltonian for each of the states |HS∗k〉, with k = 1, 2 . . . g−
1, describes a displaced harmonic oscillator

HHS = ∆ +
1
2
kHS q̂

2 − lq̂ +
p̂2

2m
(3.8)

The energies of vibronic levels are

EHS
n = ∆ + ~ωHS

(
n+

1
2

)
− l2

2kHS
(3.9)

where ωHS =
√
kHS/m. Eigenstates of Hamiltonian (3.8) are purely HS

states, i.e. 〈σ̂g〉 = 1 and 〈q̂〉 = l/kHS . Since Hamiltonian (3.8) is already

diagonal on its natural basis, in the following we will concentrate on Hamil-

tonian (3.7), relevant to the subspace {|LS〉, |HS∗0〉}.

3.2.2 Exact and adiabatic solution of the vibronic problem

Hamiltonian (3.7) can be solved either exactly or within the adiabatic ap-

proximation. The non-adiabatic problem can be set up by writing the Hamil-

tonian on a basis obtained as the direct product of the two electronic states

{|LS〉, |HS∗0〉} times the eigenstates |n〉 of an undisplaced harmonic oscilla-

tor:

Hbasis =
p̂2

2m
+

1
2
k q̂2 (3.10)

The vibronic basis set then reads

|LS, n〉 = |LS〉 ⊗ |n〉
|HS∗0 , n〉 = |HS∗0〉 ⊗ |n〉 (3.11)

The vibronic basis is infinite and, to maintain the problem tractable, we

truncate the basis to large enough n values as not to affect the quantities of

interest.
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The eigenfunctions of (3.7) are expressed as a linear combinations of the

basis states

Ψk =
∑

n

cLS
nk |LS, n〉+ cHS

nk |HS∗0 , n〉 (3.12)

The expectation values of the operators σ̂z and q̂ of the k-th vibronic level

are calculated as follow

〈Ψk|σ̂z|Ψk〉 =
∑

n

∣∣cHS
nk

∣∣2 −
∣∣cLS

nk

∣∣2 (3.13)

〈Ψk| q̂ |Ψk〉 =

√
~

2mω

∑
n

[√
n

(
cLS
n,k c

LS
n−1,k + cHS

n,k cHS
n−1,k

)
+

√
n+ 1

(
cLS
n,k c

LS
n+1,k + cHS

n,k cHS
n+1,k

) ]
(3.14)

The density of probability in the q-space of the k-th level is calculated sum-

ming up the densities of probability of its LS and HS components:

Pk(q) = |〈LS|Ψk〉|2 + |〈HS∗0 |Ψk〉|2 =

=
∣∣∣
∑

n

cLS
n,k χn(q)

∣∣∣
2
+

∣∣∣
∑

n

cHS
n,k χn(q)

∣∣∣
2

(3.15)

where χn(q) is the wavefunction of the state |n〉.
The adiabatic or Born-Oppenheimer approximation separates the elec-

tronic and vibrational motion on the basis of the different timescales that

characterize theirs dynamics. The basic assumption is that the electronic

motion is fast enough to react instantaneously to molecular vibrations. Within

the adiabatic approximation the wavefunction is written as the product of

an electronic and a vibrational part. The electronic adiabatic Hamiltonian

is obtained from the exact Hamiltonian (3.7) neglecting the vibrational ki-

netic energy, so that the position operator q̂ becomes a classic variable. The

adiabatic q-dependent electronic Hamiltonian matrix is

HBO
2 =


−∆ + lq + λq2 J ′

J ′ ∆− lq − λq2


 +

1
2
k q2 (3.16)
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The diagonalization of Hamiltonian (3.16) gives the q-dependent adiabatic

energies or potential energy surfaces (PES) of the two electronic states

E±(q) =
1
2
kq2 ±

√
(∆− lq − λq2 )2 + J ′2 (3.17)

and the corresponding eigenvectors

ψ−(q) =
√

1− ξ(q) |LS〉+
√
ξ(q) |HS∗0〉

ψ+(q) =
√
ξ(q) |LS〉 −

√
1− ξ(q) |HS∗0〉 (3.18)

where

ξ(q) =
1
2

(
1− (∆− lq − λq2)√

(∆− lq − λq2 )2 + J ′2

)
(3.19)

measures the q-dependent weight of |HS∗0〉 in the ground state ψ−. The

Hellmann-Feynman theorem provides the equilibrium position of the ground

state PES:

qeq =
l 〈σ̂z〉

k − 2λ〈σ̂z〉 (3.20)

Figure 3.2 shows the adiabatic PES calculated for different J ′ valued and

the set of parameters reported in the caption. In panel a (J ′ = 0) the two

harmonic potential assigned to the |LS〉 and |HS∗0〉 state are drawn. The

LS (HS) oscillator is characterized by equilibrium position qeq
LS = −l/kLS

(qeq
HS = l/kHS) and force constant kLS = k + 2λ (kHS = k − 2λ). For finite

values of J ′ (panels b-d) the mixing term is effective. For relatively small

J ′ (J ′ = 10 meV and J ′ = 25 meV , panels b and c, respectively), a bistable

ground state is obtained. Increasing J ′ the energy barrier between the two

stable geometries lowers, and for large J ′ the energy barrier vanishes and

the PES present a single minimum, as shown in panel d for J ′ = 55 meV .

Vibronic levels and corresponding wavefunctions are obtained by solving,

for each electronic eigenstate, the corresponding Schrödinger equation:
(
E±(q) +

p̂2

2m

)
X±

k (q) = E±k X±
k (q) (3.21)
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Figure 3.2: Adiabatic PES from equation (3.17) calculated for ∆ = 25 meV ,

k = 7.5 eV/Å2, l = 0.81 eV/Å, λ = 0.75 eV/Å2 and J ′ = 0 (panel a),

10 meV (panel b), 25 meV (panel c) and 55 meV (panel d).
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The adiabatic vibrational Hamiltonian in equation (3.21) is represented on

the basis of the eigenfunctions of Hamiltonian (3.10) and numerically diago-

nalized. Vibrational wavefunctions can be expressed as a linear combinations

of the basis states

X±
k (q) =

∑
n

c±nk χn(q) (3.22)

where χn(q) is the wavefunction corresponding to |n〉. The adiabatic wave-

function is the product of the electronic state in equation (3.18) and of the

vibrational wavefunction

Ψ±
k (q) = ψ±(q) X±

k (q) (3.23)

Expectation values of σ̂z and q̂ in the k-th vibronic level of the ψ± electronic

adiabatic state are calculated as follows

〈Ψ±
k |σ̂z|Ψ±

k 〉 = ±
∫
X±

k (q) (1− 2 ξ(q)) X±
k (q) dq (3.24)

〈Ψ±
k |q̂|Ψ±

k 〉 =

√
~

2mω

∑
n

(√
n c±n,k c

±
n−1,k+ (3.25)

+
√
n+ 1 c±n,k c

±
n+1,k

)
(3.26)

The density of probability of the k-th level of the ψ± electronic state is the

square modulus of the corresponding vibrational wavefunction:

P±k (q) =
∣∣X±

k (q)
∣∣2 (3.27)

It is worth noting that the eigenstates of the the vibronic problem relative

to the |HS∗k〉, with k = 1, 2 . . . g−1 are exactly adiabatic. In fact, since

these states are uncoupled, their wavefunctions are always the product of an

electronic HS state and a vibrational wavefunctions.
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3.2.3 Model parameters

Experimental data fix reliable estimates of the parameters entering the Hamil-

tonian (3.6). Information on the LS-HS energy gap 2∆ are obtained from

calorimetric measurements and, more specifically, from the enthalpy varia-

tion accompanying the spin conversion. Typical values are 5 − 20 kJ/mol.

[143] The mixing term, J , originated from higher order spin-orbit coupling,

is difficult to estimate. Buhks and coworkers, on the basis of ligand field

arguments, estimated, for a d6 configuration, J of the order of 20 meV .

[139] The electronic degeneracy of HS states of a metal with d6 configura-

tion in an octahedral ligand field, including spin and orbital contribution, is

g = 15. However, because of the lower symmetry of actual geometries, the

value g = 5, due to only spin multiplicity, is probably a safer estimate. [139]

Vibrational frequencies are directly accessible from spectroscopy. Im-

portant variations of the frequencies of the coupled modes upon SC were

detected in the wide spectral range 200 − 2000 cm−1. [141, 120] However,

the most important modes are the lower frequencies ones, that present the

larger relative softening, and give the most important contributions to the

variation of vibrational entropy. [141, 120, 119] Reasonable values of the

ratio between the vibrational frequencies in the HS and LS state are around

0.5 − 0.8 [119]. This ratio fixes the quadratic coupling constant λ. Force

constants of octahedrally coordinated iron complexes, have values in the

range 5− 15 eV/Å2. [144, 145, 146] With these values for the force constant

and a frequency of 300 cm−1 the effective mass ranges between 10−24 and

2 10−23 Kg. Finally, the value of the linear coupling constant l is chosen

in order to have, according to structural data, a difference of about 0.2 Å

between LS and HS equilibrium geometries. [121, 122, 123]

Table 3.1 summarizes the values of the model parameters that will be

adopted in most of the following calculations. These values are obtained on

the basis of the previous considerations. Parameters J and g are not listed in
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∆ (meV ) k (eV/Å2) l (eV/Å) λ (eV/Å2) m (Kg)

25 7.5 0.81 0.75 1.78 10−24

Table 3.1: Molecular parameters entering Hamiltonian (3.6).

the table. In the following section, where the quantomechanical properties

of the model are discussed, we will present results for different values of

the relevant parameter J ′ =
√
gJ . In the discussion of thermodynamic

properties in section 3.2.5, the effects of g and J are treated separately.

3.2.4 Quantum mechanical properties of a SC molecule

In this section we present results from the exact and adiabatic diagonal-

ization of Hamiltonian (3.7), relevant to the subspace {|LS〉, |HS∗0〉}. The

results are obtained for the set of parameters reported in table 3.1 and J ′ = 0,

10, 25 and 55 meV .

Hamiltonian (3.8), for the |HS∗k〉 (with k = 1, 2 . . . g−1) uncoupled states,

simply describes displaced harmonic oscillators. The vibronic levels of un-

coupled HS states are equivalent to those of the |HS∗0〉 basis state and will

not be further discussed.

We start with the trivial case of unmixed LS and HS states (J ′ = 0).

In this case Hamiltonian (3.7) describes two uncoupled harmonic oscillators

and the energy spectrum is

ELS
n = −∆ + ~ωLS

(
n+

1
2

)
− l2

2kLS
(3.28)

EHS
n = ∆ + ~ωHS

(
n+

1
2

)
− l2

2kHS
(3.29)

where ωLS =
√
kLS/m and ωHS =

√
kHS/m are the vibrational frequen-

cies of LS and HS state, respectively. The left panel of figure 3.3 shows the

adiabatic PES (black thick line), that for J ′ = 0 coincide with the diagonal



146 Vibronic Model for Spin Crossover Complexes

−0.4 −0.2 0 0.2 0.4

−50

−25

0

25

50

q (Angstrom)

E
 (

m
eV

)

−1 0 1

−50

−25

0

25

50

<σz>

E
 (

m
eV

)

−0.1 0 0.1

−50

−25

0

25

50

<q> (Angstrom)

E
 (

m
eV

)

Figure 3.3: Left panel: adiabatic PES (black thick lines), exact (blue dashed

lines) and adiabatic (red crosses) vibronic levels and the corresponding exact

density of probability (blue continuous lines). Central panel: exact (blue

plus) and adiabatic (red crosses) values of 〈σ̂z〉. Right panel: exact (blue

plus) and adiabatic (red crosses) values of 〈q̂〉. Results obtained for from

Hamiltonian (3.7) with parameters of table 3.1 and J ′ = 0.

energies of Hamiltonian (3.16). Superimposed in the same figure are shown

the exact energies of vibronic levels (blue dashed lines) and the correspond-

ing densities of probability (blue continuous line). Red crosses on the left

side of the figure mark the energy of vibronic levels calculated in the adia-

batic approximation. Central and right panels report exact (blue plus) and

adiabatic (red crosses) values of 〈σ̂z〉 and 〈q̂〉, respectively. In the absence of

mixing, the two oscillators coincide with the basis states and the adiabatic

solution is exact.

For finite J ′, Hamiltonian (3.7) ((3.21) in the adiabatic case) cannot be

solved analytically, and the analysis relies on numerical diagonalization. Re-

sults presented in the following are obtained with a phonon basis truncated

at n = 19 (20 states). The dimension of basis basis set is large enough as
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not to affect the energies of the thermodynamically relevant levels.

Figure 3.4 shows results obtained for a system with J ′ = 10 meV . Same

quantities of figure 3.3 are shown and same symbols are adopted. In this

case J ′ is small compared with the energy gap 2∆, and the level scheme

does not differ too much from the case J ′ = 0 (c.f. left panel of figure 3.3).

The density of probability of vibronic levels still resembles the case of two

uncoupled oscillators. However, levels with comparable or higher energy

with respect to the top of the energy barrier are more delocalized, showing a

small but finite probability in the whole domain of q. The minimal degree of

mixing between the electronic states is confirmed by the expectation values

of 〈σ̂z〉 (blue plus, central panel of figure 3.4) that are very close to the values

±1 of pure LS/HS states. Same argument holds also for 〈q〉 (blue plus, right

panel of figure 3.4) that barely differs from the values of pure LS and HS

states.

The adiabatic approximation, with the exception of the ground state,

provides energy levels that are significantly different from exact values (red

crosses, left panel of figure 3.4) and fails, even more clearly, in the calcula-

tion of the expectation values 〈σx〉 and 〈q〉 (red crosses, central and right

panels of figure 3.4). In general, adiabatic eigenstates overestimate the mix-

ing between LS and HS (see expectation values of 〈σ̂z〉 in the central panel

of figure 3.4). The higher LS-HS mixing obtained in the adiabatic approx-

imation results in more delocalized densities of probability with respect to

exact results, as shown in detail for the first four vibronic levels in figure

3.5. The failure of the adiabatic approximation is not surprising: in fact

when the differences between electronic energies are comparable to the vi-

brational frequencies the separation of the two motions is no more a valid

approximation.

Figure 3.6 shows the results for a system with J ′=25 meV . The energy

levels now substantially differ from the case of uncoupled oscillators (c.f. left
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Figure 3.4: Same quantities reported in figure 3.3, obtained for parameters

of table 3.1 and J ′ = 10 meV .
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Figure 3.5: Exact (black lines) and adiabatic (red lines) density of probability

of the ground state (panel a) and of the first three excited vibronic levels

(panels b-d) obtained for parameters in table 3.1 and J ′ = 10 meV .
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Figure 3.6: Same quantities reported in figure 3.3, obtained for parameters

of table 3.1 and J ′ = 25 meV .

panel of figure 3.3) and the corresponding densities of probability, with the

exception of the ground state, extend in a larger q region. As shown in the

central and right panels of figure 3.6, the values of 〈σ̂z〉 and 〈q̂〉 indicates that,

although the ground state still resembles a pure LS state, higher energy states

are a mixture of LS and HS states, with comparable weights. The adiabatic

approximation fails both for energy levels and expectation values (see figure

3.6). The failure of the adiabatic approximation, although less evident than

for J ′ = 10 meV , is recognized also in the probability distributions, shown

in figure 3.7.

Figure 3.8 refers to a system with J ′ = 55 meV . In this case J ′ is

large enough to completely remove the energy barrier so that the ground

state PES (black thick lines in left panel of figure 3.8) presents a single

minimum. The shape of the ground state PES is qualitatively different

from the previous cases and the energy levels are completely different than

for the uncoupled oscillators (notice different energy scales in figures 3.8

and 3.3). Densities of probability, with the exception of the ground state,

are completely delocalized in the q-space (see continuous blue lines in left
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Figure 3.7: Exact (black lines) and adiabatic (red lines) density of probability

of ground state (panel a) and the first three excited vibronic levels (panels

b-d) obtained for parameters in table 3.1 and J ′ = 25 meV .

panel of figure 3.8). As shown in the central and right panels of figure

3.8, the values of 〈σ̂z〉 and 〈q̂〉 indicates that, although the ground state still

resembles to a LS state, higher energy states are mixtures, with almost equal

proportions, of LS and HS states. The adiabatic approximation provides in

this case reliable results: adiabatic energy levels, expectation values (central

and right panels of figure 3.8) and densities of probability (figure 3.9) are

extremely similar to exact results. In fact, for large J ′, the energy gap

between the ground and the excited state is larger than the vibrational

frequencies and the adiabatic approximation works pretty well.

We notice that for λ = 0, independently of other model parameters, for

each of the vibronic levels we have 〈q̂〉 = (l/k)〈σ̂z〉. Although the e-mv

coupling naturally leads to a correlation between spin state and molecular

distortion, this result is quite unexpected since the two operators are in-

trinsically different and the corresponding expectation values are obtained
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Figure 3.8: Same quantities reported in figure 3.3, obtained for parameters

of table 3.1 and J ′ = 55 meV .
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Figure 3.9: Exact (black lines) and adiabatic (red lines) density of probability

of ground state (panel a) and the first three excited vibronic levels (panels

b-d) obtained for parameters in table 3.1 and J ′ = 55 meV .
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from different expressions (c.f. equations 3.14 and 3.13). It is worth noting

that this result is not a consequence of the Helmann-Feynman theorem, that

relates the equilibrium points of the adiabatic PES to the expectation value

of the electronic operator.

3.2.5 Thermodynamic properties of a SC molecule

The vibronic model presented in section 3.2.1 (non-adiabatic results) is ap-

plied here to describe the thermal LS to HS conversion observed in solvated

complex or diluted crystals. The thermal behavior of non interacting SC

complexes, described by the model Hamiltonian in equation (3.6), is calcu-

lated in the standard framework of the canonical ensemble. [71] The parti-

tion function of the system is

Z =
∑

i

e
− Ei

kBT (3.30)

where Ei are the eigenvalues of Hamiltonian (3.6), T is the absolute temper-

ature and kB is the Boltzmann constant. The thermal average of a generic

observable, described by the operator Â, is calculated as

〈Â〉 =
1
Z

∑

i

Ai e
−Ei/kBT (3.31)

where Ai is the expectation value of operator Â in the i-th eigenstates. With

the vibronic model Hamiltonian in equation (3.6) we have access both to the

spin state, described by the electronic operator σ̂g, and to the molecular ge-

ometry, described by the operator q̂. Hereafter the macrospic spin state will

be expressed in term of the HS fractions, i.e. the experimentally accessible

quantity, defined as

nHS =
1
2
(〈σg〉+ 1) (3.32)

The thermal evolution of nHS (transition curve) and 〈q〉 for a SC complex

described by parameters in table 3.1, g = 15 and different J are reported
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Figure 3.10: nHS and 〈q〉 calculated for the parameters in table 3.1, g = 15

and J = 0 eV (continuous line), J = 5 meV (dashed line) and J = 25 meV

(dotted line).

in figure 3.10. The behaviors obtained for J = 0 (continuous line) and

J=5 meV (dashed line), are similar, corresponding to a gradual and almost

complete conversion from a macroscopically LS state to a macroscopically

HS state. The change of the spin state is accompanied by an increase of

molecular distortion of ∼ 0.2 Å. The main difference between J = 0 and

J = 5 meV transition curves appears in the low temperature limit, where

only the quantomechanic ground state is relevant. In fact, while for J = 0

the ground state is a pure LS state (nHS = 0), for finite J a non vanishing

HS component in the ground state is always present (nHS > 0). This effect

is more evident in the J = 25 meV curves, where nHS ≈ 0.3 for T→0.

The effect of the different vibrational frequencies in LS and HS is con-

sidered in figure 3.11, where are shown the nHS(T ) and 〈q〉(T ) curves for

systems characterized by different force constants of the HS state (see fig-

ure caption). By lowering kHS , and hence the HS vibrational frequency, we

notice a decrease of the equilibrium temperature T1/2, defined as the temper-

ature where nHS = 0.5. To understand how different vibrational frequencies

of LS and HS state affect the equilibrium, we consider the analytical solution

for uncoupled oscillators. Specifically, for J = 0 the partition function can
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Figure 3.11: nHS and 〈q〉 calculated for ∆ = 25 meV , J = 5 meV , g = 15,

l = 0.81 eV/Å, m = 1.78 10−24Kg, kLS = 9 eV/Å2 and kHS = 9 eV/Å2

(continuous line), kHS = 7.2 eV/Å2 (dashed line) and kHS = 6 eV/Å2

(dotted line).

be written as

Z = e∆/kBT + geff (T ) e−∆/kBT (3.33)

where

geff (T ) = g gvib(T ) exp
[

l2

2kBT

(
1
kLS

− 1
kHS

)]
(3.34)

is a T -dependent effective degeneracy of a fictitious HS states in a two-state

(Ising-like) picture. The first factor in equation (3.34) is the multiplicity

of the HS state g, while the third factor is due to the different zero point

energies of the LS and HS oscillators and can be treated as a renormalization

of ∆. More interesting is the second term

gvib(T ) =
sinh (~ωLS/2kBT )
sinh (~ωHS/2kBT )

(3.35)

originated by the different vibrational frequencies of LS and HS state. The

higher density of vibronic levels in the HS state is therefore responsible for

the vibrational contribution to the entropy variation upon SC (gvib > 1 for

ωLS > ωHS), as results from figure 3.11. Such a vibrational contribution
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favors the conversion to a macroscopic HS state and lowers the equilibrium

temperature. The vibrational entropy represents the main contribution to

the total entropy variation, because the spin conversion is accompanied by

the softening of several vibrational modes. [141, 120, 119] In the hypothesis

of many uncoupled modes, in fact, the total gvib is the product of the partial

contributions from each vibration.

For the sake of completeness, figure 3.12 shows the temperature depen-

dence of the free energy F , internal energy U , entropy S and heat capacity C,

calculated for parameter values in table 3.1, J = 5 meV and g = 15, within

the standard framework of the canonical ensemble. [71] The thermodynamic

properties of our model, are in qualitative agreement within experimental

data. [140, 143] A quantitative agreement cannot be achieved with a single

mode picture. In order to show a system presenting an almost complete con-

version at room temperature, we compensate for the lack in the vibrational

entropy setting the electronic degeneracy to its upper limit g = 15.

Figure 3.13 shows the thermal densities of probability in the q-space

calculated at different temperatures. The thermal density of probability is

calculated by summing up the quantum densities of probabilities of vibronic

levels weighted by their Boltzmann factors. At 50 K (continuous line) the

system is macroscopically LS (nHS ∼ 0.03) and the oscillator is localized

around the equilibrium position of the pure LS state. With increasing tem-

perature, the HS vibronic levels become populated and the system delocal-

izes. For T1/2 = 128 K (dashed line) the thermal density of probability is

completely delocalized in the q-space. When the spin conversion is almost

complete, as for T = 300 K (nHS ∼ 0.85, dotted line), the system is mainly

localized at the equilibrium position of a HS state.



156 Vibronic Model for Spin Crossover Complexes

0 100 200 300 400
−10

−5

0

T (K)

F
 (

kJ
 m

ol
−

1 )

0 100 200 300 400
0

2

4

6

8

T (K)

U
 (

kJ
 m

ol
−

1 )
0 100 200 300 400

0

10

20

30

40

T (K)

S
 (

J 
K

−
1 m

ol
−

1 )

0 100 200 300 400
0

10

20

30

T (K)
c 

(J
 K

−
1 m

ol
−

1 )

Figure 3.12: Temperature dependence of Helmholtz free energy F , internal

energy U , entropy S and heat capacity C, calculated for the parameters in

table 3.1, J = 5 meV and g = 15.
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Figure 3.13: Thermal densities of probability along the vibrational coordi-

nate q, calculated for the parameters in table 3.1, J = 5 meV and g = 15 at

T = 50 K (continuous line), T =T1/2 = 128 K (dashed line) and T = 300 K

(dotted line).
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3.3 Intermolecular interactions and cooperativity

3.3.1 Phenomenological model for intermolecular interactions

The simple and general model for SC molecules presented in section 3.2.1,

is now adopted to describe interacting SC complexes. Cooperativity in SC

systems results from elastic interactions, due to the large changes of molec-

ular geometries that accompany the change of spin state. The molecular

Hamiltonian in equation (3.6), represents a reliable starting point for the

development of a model for interacting systems. A microscopic description

of the coupling between spin state, mv and lattice phonons is needed to shed

light on the origin of interactions. However the development of a vibronic

model for SC crystals goes beyond the scopes of this work. Here we shortly

address a phenomenological treatment of intermolecular interactions.

The molecular Hamiltonian in equation (3.6) is defined in terms of two

operators, σ̂g (hereafter replaced by σ̂), characterizing the spin state, and q̂,

measuring the molecular distortion. In this work spin-spin and distortion-

distortion interactions between nearest neighboring SC units are considered.

The crystal Hamiltonian is

H =
∑

i

ĥi − Jσ
∑

〈i,j〉
σ̂iσ̂j − Jq

∑

〈i,j〉
q̂iq̂j (3.36)

where ĥi is the Hamiltonian of the i-th molecule, defined in equation (3.6),

and Jσ (Jq) is the spin-spin (distortion-distortion) interaction term.

Hamiltonian (3.36) is solved within the mean field (mf) approximation.

The mf Hamiltonian reads

HMF =
∑

i

(
ĥi− zJσ〈σ〉 σ̂i− zJq〈q〉 q̂i

)
+
Nz

2
(
Jσ〈σ〉2 + Jq〈q〉2) (3.37)

where z is the number of nearest neighbors and 〈σ〉 and 〈q〉 are the thermal

averages of spin state and molecular distortion. The macroscopic spin state

is again expressed in term of the HS fraction nHS = (〈σ〉+ 1)/2.
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3.3.2 Interactions between SC molecules: results

The mf Hamiltonian in equation (3.37), self consistently depends on two

order parameters 〈σ〉 (or equivalently nHS) and 〈q〉. Self consistency is

achieved by minimizing the difference between input (entering the Hamilto-

nian (3.37)) and output (obtained after diagonalization) values of the order

parameters. The minimization is performed using a Newton optimization al-

gorithm for functions of two variables. Imposing self consistency corresponds

to localize the minima of the free energy function F (nHS , 〈q〉). Results re-

ported in the following are referred to molecular parameters in table 3.1,

J = 5 meV , g = 15 and z = 6 nearest neighbors.

We consider first the case of spin-spin interaction (Jq =0 in Hamiltonian

(3.37)), so that the only relevant order parameter is nHS . Figure 3.14 shows

the T -dependence of the nHS and 〈q〉 for different strength of the spin-

spin interactions. Upon increasing Jσ, the transition curves nHS(T ) (left

panel) becomes steeper and steeper (c.f. black and red lines, calculated for

Jσ =0 and Jσ =1 meV , respectively). The increase of Jσ does not affect the

equilibrium temperature T1/2 = 128 K and all the continuous nHS(T ) curves

cross at T1/2. For Jσ > Jσ
cr ≈ 1.9 meV the crossover becomes discontinuous.

For Jσ = 2.5 meV , within the temperature interval 102-136 K, the mf

Hamiltonian has two stable solutions, corresponding to LS and HS phases.

Molecular distortion 〈q〉 (right panel of figure 3.14) follows the change in the

spin state, both in gradual and in abrupt crossovers.

The free energy dependence on nHS is shown in figure 3.15. The left

panel refers to a system with weak interactions (Jσ = 1 meV ), showing a

gradual SC. In this case the single minimum of the free energy (corresponding

to the solution of mf Hamiltonian (3.37)), moves from nHS = 0 toward 1

with increasing temperature, describing the LS to HS conversion. For a

discontinuous transition (Jσ = 2.5 meV ), as shown in the right panel of

figure 3.15, for T values within the bistability region, F shows two minima,
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Figure 3.14: T -dependence of nHS and 〈q〉 for a non-interacting system

(Jσ = 0, black line) and interacting systems with Jσ = 1 meV (red curve),

Jσ = 1.9 meV ≈ Jσ
cr (green line) and Jσ = 2.5 meV on cooling (blue dashed

line) and on heating (blue dot-dashed line). Jq = 0 for all calculations.

corresponding to two stable solutions of Hamiltonian (3.37).

Figure 3.16 shows the energies (upper panels) and the expectation values

of σ̂ (lower panels) of the four lowest energy vibronic levels. For clarity

the quantities referred to the {|LS〉, |HS∗0〉} subspace are plotted in black,

while quantities associated with the uncoupled HS states in red (each red

curve refers to g − 1 identical states). The case of a continuous crossover

(Jσ = 1.5 meV , c.f. red transition curve in the left panel of figure 3.14) is

reported in the left column of figure 3.16. The increase of the HS fraction

with temperature lowers the energy difference between HS and LS levels.

As for the {|LS〉, |HS∗0〉} subspace, this change of the energy levels causes

significant variations in the composition of the states (|LS〉-|HS∗0〉 mixing),

as can be observed from the corresponding σi values (black lines in left

bottom panel). The ground state (marked with 1) remain a largely LS state

(σ1≈−1) even at high temperatures, while the states 2 and 3 are strongly

mixed. The presence of a LS ground state in a macroscopic HS state, is a

natural consequence of the higher degeneracy of the HS state. This feature

persists also in the discontinuous crossover, as for the case Jσ = 2.5 meV ,
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Figure 3.15: Free energy profiles calculated for Jσ = 1 meV (left panel) and

Jσ = 2.5 meV (right panel) at T = 100, 130 and 160 K (blue, green and

red lines respectively). Jq = 0 for all calculations.

considered in the middle panels of figure 3.16. T -dependence of Ei and σi

(top and bottom panels respectively) refer to the heating curve (c.f. dot-

dashed transition curve in the left panel of figure 3.14). The discontinuity in

the nHS(T ) curve at T = 128 K results in an abrupt change in the vibronic

levels. However, also in the HS phase, the quantomechanic ground state (1)

remains an almost LS state. For stronger interaction, as for Jσ = 4 meV

(right panels of figure 3.16), the abrupt change of the vibronic energy levels

causes the switch to a HS ground state.

In the presence of only distortion-distortion interactions (Jσ =0), Hamil-

tonian (3.37) self-consistently depends on the order parameter 〈q〉. In figure

3.17 are shown the thermal evolution of the equilibrium nHS and 〈q〉, in left

and right panels respectively. The results are very similar to the previous

case: distortion-distortion interactions induce a LS-HS transition accompa-

nied by an increase of molecular distortion. With the increase of Jq the

LS-HS transition becomes steeper and for Jq > Jq
cr ≈ 118 meV an hystere-

sis loop appears. The dependence of the free energy on the order parameter
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Figure 3.16: T -dependence of lowest energy levels (upper panels) and of the

respective expectation value of σi (lower panels) calculated for Jσ = 1 meV

(left panels), Jσ = 2.5 meV on heating (central panels) and Jσ = 4 meV

on heating (right panels). Black lines refer to levels of the {|LS〉, |HS∗0〉}
subspace, red lines to levels from HS subspace. Jq = 0 for all calculations.
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Figure 3.17: Temperature dependence of nHS and 〈q〉 calculated for Jq = 0

(black line), Jq = 80 meV (red line), Jq = Jq
cr = 118 meV (green line) and

Jq = 150 meV on cooling (blue dashed line) and on heating (blue dot-dashed

line). Jσ = 0 for all calculations.

〈q〉 is shown in figure 3.18, for a continuous (Jq = 80 meV ) and a discontin-

uous crossover (Jq = 150 meV ), in left and right panels respectively. The F

behavior is, mutatis mutandis, analogous that obtained in the case spin-spin

interactions (c.f. figure 3.15). Spin-spin and distortion-distortion interaction

terms are responsible for extremely similar effects. This similarity is due to

the e-mv coupling in the molecular Hamiltonian (3.6), that assumes different

equilibrium geometries for LS and HS states.

We now consider Hamiltonian (3.37) in its general form (Jσ 6= 0 and

Jq 6= 0). In this case the Hamiltonian self-consistently depends on the two

order parameters nHS and 〈q〉. Figure 3.19 shows the dependence of nHS

and 〈q〉 with temperature. Results are analogous to those observed when

single interactions are introduced separately (c.f. figures 3.14 and 3.17). An

approximately additive effect of the two interactions is observed.

In figure 3.20 are shown the contour plot of the free energy versus the two

order parameters nHS and 〈q〉. The free energy in the case of a continuous

crossover (Jσ = 1 meV , Jq = 50 meV , red transition curve in figure 3.19) is

plotted in the upper panels with increasing temperature from left to right.
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Figure 3.18: Free energy profiles calculated for Jq = 80 meV (left panel)

and Jq = 150 meV (right panel) at T = 60, 100 and 130 K (blue, green and

red lines respectively). Jσ = 0 for all calculations.
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Figure 3.19: Temperature dependence of nHS and of 〈q〉 calculated for a non-

interacting (Jσ = Jq = 0, black line), a weakly interacting (Jσ = 1 meV ,

Jq = 50 meV , red line) and a strongly interacting (Jσ = 15 meV ,

Jq = 80 meV , blue dashed and dot-dashed line on cooling and on heat-

ing respectively) system.
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Figure 3.20: Free energy contour plots calculated for a weakly-interacting

system (Jσ = 1meV , Jq = 50meV , upper panels) and a strongly-interacting

system (Jσ = 1.5 meV , Jq = 80 meV , lower panels) at T = 50, 120 and

160 K (left, central and right columns respectively). Equilibrium positions

(minima) of F (〈q〉, nHS) are marked with black crosses.

In this case F always presents a single minimum (marked with a cross) that

moves gradually from a macroscopic LS state to a macroscopic HS state upon

increasing T . The free energy surfaces for a discontinuous transition (Jσ =

15 meV , Jq = 80 meV , blue lines in figure 3.19) are plotted in the bottom

panels of figure 3.20. In this case for temperatures outside the bistability

region (hysteresis loop) F presents a single minimum, corresponding to a

LS phase (left bottom panel) at low temperature and to a HS phase at high

temperature (right bottom panel). Within the bistability region F presents

two minima, corresponding to a LS and a HS phase (middle bottom panel).
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3.4 Discussion and Conclusions

In this chapter we presented a simple microscopic model, that describes the

basics physics of SC molecules. The model describes a LS state and g degen-

erate HS states, as relevant for a d6 configuration, coupled to a vibrational

coordinate, corresponding to the breathing mode of the ligand cage. Linear

(Holstein) and quadratic e-mv coupling is considered to account for the dif-

ferent equilibrium geometries and vibrational frequencies in the LS and HS

states. The effect of the mixing between LS and HS states, due to higher

order spin-orbit coupling, is introduced with an off-diagonal matrix element

J . Although the thermal properties cannot be quantitatively reproduced by

our model, because of the single vibrational mode approximation, it provides

a reliable description of the quantomechanics of SC molecule.

Our approach, based on a rigorous distinction between electronic (spin

state) and vibrational (molecular distortion) degrees of freedom, represents

the first study of e-mv coupling in SC complexes beyond the adiabatic ap-

proximation. The comparison with adiabatic results demonstrates that,

apart from the two unrealistic limits of uncoupled oscillators (J = 0) and of

very large J , the adiabatic approximation fails. This result is not surprising

since in SC complexes the electronic energies are comparable with vibra-

tional frequencies and raises the issue of the applicability to SC problems of

quantum chemical electronic structure calculations.

The model for SC molecules sets a solid basis for the development of

models for interacting system. In this chapter we consider intermolecular

interactions between spin states and molecular distortions. As well estab-

lished from the study of the Ising-like model, ferromagnetic-like interac-

tions between fictitious spins create macroscopic barriers between LS and

HS phases, leading to bistability. Analogous effects are obtained consider-

ing the interaction between molecular distortions. The development of a
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microscopic model for elastic intermolecular interactions, that explicitly in-

troduces lattice vibrations represents an interesting further development of

the present work.



Conclusions and Perspectives

Molecular materials for advanced applications combine interesting function-

alities with the versatility of chemical synthesis and the processability and

low-cost and of organic materials. To fully exploit the potential offered by

functional molecular materials, the understanding of molecular properties

is, however, not enough. In fact, intermolecular interactions in condensed

phases can profoundly alter molecular properties and, in some cases, are re-

sponsible for the emergence of brand new phenomena, not supported at the

molecular level. Emergent phenomena are typically cooperative in nature,

phase transitions and multistability being the most representative examples.

A deep understanding of cooperativity or, more generally, of non-additive

and non-linear behavior in molecular materials, is therefore a basic require-

ment for the optimization of materials properties.

The research work described in this thesis represents a contribution to

the understanding of cooperative phenomena in switchable molecular ma-

terials due to the complex interplay between charge and/or spin degrees of

freedom, phonons (including molecular and lattice vibrations) and/or elec-

trostatic interactions. Our contribution is mainly in the development and

exploitation of general microscopic models to describe the essential physics

governing functional molecular materials. The investigated systems include

mixed stack charge transfer (CT) crystals, crystals of valence tautomeric

molecules and spin crossover (SC) complexes.
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In mixed stack CT crystals electron-donor (D) and acceptor (A) molecules

pack face to face forming stacks, leading to delocalized electrons in one-

dimension. In these intrinsically cooperative systems, electrostatic interac-

tions, molecular vibrations and lattice phonons drive the neutral-ionic phase

transition (NIT), a collective electron transfer from D to A molecules, always

accompanied by lattice dimerization. NIT is the subject of active research

since decades [26] and in recent years the field attracted renewed attention.

NIT in fact offers an intriguing example of a quantum phase transition, [25]

leading to ferroelectric [2] and potentially multiferroic states. [21]

A coherent picture of the rich and complex phenomenology of NIT is

emerging, based on a modified Hubbard model accounting for Peierls cou-

pling to lattice phonons and Holstein coupling to molecular vibrations. In-

deed, most of the intriguing phenomenology of mixed stack CT crystals can

be quantitatively explained in terms of an amplified response of the elec-

tronic system in the proximity of NIT, due to electron-phonon coupling. In

this thesis we modeled the dispersion of lattice phonons in mixed stack CT

crystals and proved that a Kohn-like anomaly develops in the optical phonon

branch at NIT. This anomaly quantitatively explains the sharp diffuse X-ray

profiles experimentally observed in the pretrantional regime in TTF-CA and

DMTTF-CA crystals. [59, 58] Moreover, an original implementation of the

time correlation function approach to spectroscopy, based on the modern

theory of polarization and polarizability in insulators, allowed us to calcu-

late infrared and Raman spectra of mixed stack systems without invoking

the harmonic approximation. The results confirm the current interpreta-

tion of experimental data, including the softening of coupled modes, and the

increase of IR intensity of the Peierls mode upon approaching NIT. More

interestingly, this approach fully rationalizes more subtle phenomena gov-

erned by anharmonicity, as the appearance in the IR spectra of bands due

to combinations of molecular and lattice modes and the enhancement of the
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low frequency Raman signal in the close proximity of NIT, recently observed

in the guest laboratory.

Crystals of valence tautomeric DA molecules share some basic physics

with mixed-stack CT crystals, with the difference that D and A sites now

correspond to chemical groups located on the same molecule. Electrons are

now strictly confined on each molecular unit, but delocalized between the D

and the A group. The Hamiltonian of a crystal of DA molecules corresponds

the δ = 1 limit of the modified Hubbard Hamiltonian for mixed stack CT

crystals. The charge instability in crystals of DA molecules and the related

phenomenon of bistability were theoretically predicted a few years ago in the

guest laboratory. [20, 82] In this thesis we demonstrate that the proposed

mechanism for bistability quantitatively explains the temperature dependent

valence tautomerism observed in Fc-PTM crystals. [79] Following a bottom

up modeling procedure, [83] the basic physics of interacting DA molecules is

described adopting a two state model for the molecular units, that is reliably

parametrized for the specific compound at hand from a detailed analysis of

its solution spectra. A reliable description of intermolecular electrostatic

interactions is obtained with the support of quantum chemical calculations.

Moreover, the development of a three-state model for DA molecules, that

explicitly accounts for an active role of the π-bridge in the CT, allowed us

to solve a long-standing problem in the field of optical spectroscopy, and, at

the same time, demonstrates the robustness of our model for bistability.

The final part of this thesis is devoted to SC complexes, one of the most

striking examples of bistable molecular material. [14] Cooperativity in SC

has an elastic origin and results from the interplay between the molecular

spins and intramolecular and intermolecular vibrational degrees of freedom.

In this thesis we develop a vibronic model for SC molecules, that accounts

for the coupling between the molecular spin and an effective molecular vibra-

tion in a non-adiabatic picture. The model is simple but describes the basic
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physics of SC. In particular it accounts for the different equilibrium geome-

tries and vibrational frequencies of the two spin states, and for the mixing of

LS and HS states provided by spin-orbit coupling. The comparison between

exact and adiabatic results demonstrates that in SC molecules, as expected

in systems where electronic energies are comparable with vibrational fre-

quencies, the adiabatic approximation fails. This result raises the issue of

the reliability of standard quantum chemical calculations for SC complexes.

Preliminary results on cooperative effects of intermolecular interactions in

SC crystals demonstrate the possibility to describe cooperative phenomena,

while fully accounting for the non-adiabatic coupling of molecular vibrations

to spin degrees of freedom.

The theoretical study of multistability in different families of molecular

materials, adopting different models and techniques, leads to a thorough

understanding of the highly nontrivial physics underlying cooperativity in

these systems. Contrasting and comparing the behavior of the different

classes of materials allows to identify unifying features as well as more specific

characteristics. The charge instabilities in mixed stack CT crystals and

in crystals of valence tautomeric molecules are quantum phase transitions,

where temperature plays only a marginal role, because excited states are

not thermally relevant. In these systems, strong intermolecular interactions

not only lead to multistability, but are also required to stabilize states with

different charge distributions. In SC systems, instead, the low energy of spin

excitations and the large degeneracy of high spin states, make SC a true

thermal process that does not require intermolecular interactions. Weak

intermolecular interactions are enough to create kinetic barriers between

stable phases, leading to bistability.

To conclude with, we remark the interplay between charge and/or spin

degrees of freedom, electrostatic interactions, molecular vibrations and lat-

tice phonons is a primary source of cooperativity in molecular materials.



Cooperativity in functional molecular materials 171

With particular focus on mixed stack CT crystals, crystals of DA molecules

and SC complexes, we demonstrate that simple microscopic models are able

to catch and quantitatively describe complex cooperative phenomena. The

models we propose are simple and general enough to provide deep insight in

the physical origin of the material properties. In this respect, this work can

be extended in several directions. The original approach developed for the

calculation of vibrational spectra of CT crystals can prove extremely useful

if applied to other systems where the interaction between electronic and vi-

brational degrees of freedom drives the systems towards instabilities: charge

ordering and ferroelectric phase transitions are of course the immediate tar-

get. The model for crystals of DA molecules yields to simple guidelines for

the search of bistable systems: we really hope that our results will trigger

some work in this direction, while additional measurements on the system

at hand can deepen our understanding of this fascinating phenomenon. Our

work on SC systems provides a first detailed description of the coupling be-

tween spin and molecular vibrations, opening the way to new families of

models where subtle phenomena, including relaxation dynamics, can find a

microscopic description.
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