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Introduction

This thesis focuses on the challenging problem of the optimalplanning for

mechatronic systems. The general goal is to find strategies which maximize

or minimize some cost criteria defined over a given constrained problem. The

planning for mobile or industrial robots is a general framework under which several

different open research issues can be found. In fact, the motion planning involves the

solution of a variety of optimality problems which range from the optimal path design

to the optimal planning of trajectory, or alternatively, ofvelocity. The aforementioned

planning issues can be solved by algorithms that can act either offline or online, i.e.,

respectively, by designing the overall motion before any movement of the controlled

system or by constantly planning or shaping the motion during the task execution.

Since, obviously, this is a very wide research field we have limited the scope of our

analysis to the cases depicted in Figure 1, which gives a graphical overview of the

topics investigated in this work.

Most of the proposed approaches aim at guarantee a perfect path tracking of a

generic mobile or industrial robot if trajectories are planned according to the so-

called path-velocity decomposition. In this framework, the trajectory to be execute is

obtained by first defining a desired geometric path and, only subsequently, by assign-

ing a time law to move along it.
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Figure 1: A graphical overview of the thesis structure

The first problem analyzed in this thesis is, therefore, the optimal path generation.

In particular the attention has been focused on the design ofoptimal planar paths for

mobile robots. There does not exists a unique solution to this issue, since different

planning primitives and optimality criterion can be used. In this work we use theη3-

splines, a powerful path planning primitive recently devised by the Control System

Group of the University of Parma. One of the features of such primitives is the pos-

sibility to modify the shape of the generated path by simply acting on a set of six

free parameters. This is both the strength and the weakness of the η3-splines since

it imposes to find an effective procedure for the assignmentsof the free parameters,

in order to generate smooth profiles. In Chapter one, this problem is investigated and

heuristic relations, which generate suboptimal paths withminimum curvature deriva-

tive, are proposed.

As it was early anticipated, path planning is only one aspectof the optimality

problems analyzed in this thesis: dynamics and kinematics constraints have not been

considered so far. The planning of the velocity profile represents a crucial step to

guarantee the overall trajectory feasibility with respectto the system kinematic and

dynamic constraints. Several offline algorithms can be found in the literature to deal
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with this problem. Our attention has been mainly focused on the analysis of those

generating minimum-time trajectories. In particular, ourefforts have been spent, in

Chapter two and three, to devise control schemes to online shape any desired, pos-

sibly unfeasible, trajectory into a new one which fulfills given constraints. Velocity

profiles are typically off-line evaluated by means of optimization algorithms which

fulfill given dynamic constraints of the systems’ models. Obviously, generated solu-

tions are not robust against mismodelling or external perturbations, especially when

profiles requiring the maximization of the actuator effortsare planned, such as, e.g.,

the minimum-time trajectories. This is the reason why online trajectory scaling al-

gorithms are required to avoid that saturations of the control actions could deter-

mine a path tracking lost. In particular, Chapter two is devoted to present a novel

control scheme, based on a nonlinear filter, able to account for velocity and accel-

eration/torque constraints while Chapter three extends the approach to account for

torque and torque derivative constraints.

As a part of the research on the optimal planning, the last chapters of this thesis

presents some contributions to the generation of optimal set-points for constrained

nonlinear systems with a particular focus on the minimum-time trajectory planning.

More in details, two different approaches are analyzed. Thefirst one, described in

Chapter four, uses the discretization to convert the nontrivial optimum problem, for

linear systems, into a simpler equivalent set of feasibility tests which can be solved by

linear programming algorithms. The method, which can easily manage input, output

and state constraints, has been successfully applied to thefeedforward control of a

flexible joint: its nonlinear model has been linearized around the equilibrium point in

oder to use this linear programming approach.

Even if the algorithm of Chapter four has returned very interesting results, the

minimum-time problem has been further investigated in Chapter five in order to pro-

pose a new pure differential method able to manage also nonlinear systems. The

solution is based on the Pontryagin maximum principle and has been tested against

the nonlinear model of the flexible joint.

Finally some conclusion and future works recommendations are proposed in the

last chapter.





CHAPTER 1

Generation of minimum curvature derivative paths for mobile

robots

The path may not be left for an instant.

If it could be left, it would not be the path.

Confucius

Several approaches can be found in the literature in order to generate appro-

priate paths for autonomous vehicles. They can be roughly divided into two

different frameworks. In the first one, usually indicated as“motion planning”,

a structured and known environment is considered. Therefore, a path joining two

given points can be generated taking into account the obstacle avoidance problem

and possibly satisfying some given geometric constraints,e.g. minimizing the max-

imum path curvature. The first work related to motion planning was proposed by

Dubin [1]. In his work a minimum length path was generated as acomposition of lin-

ear segments and circular arcs. Subsequently, many other works addressed the same
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problem [2, 3, 4] and only recently it has been enriched by considering the generation

of continuous curvature paths [5].

In the second framework, usually indicated with the term of “motion generation”,

the planing phase assumes local characteristics being focused on the generation of

short distance paths. This framework is generally encountered when a limited infor-

mation on the vehicle surroundings is available, such in thecase of a car vehicle

moving along an unknown road or an autonomous robot moving inside an environ-

ment with strong dynamics characteristics. Obstacle avoidance is generally handled

through an opportune choice of the goal point and of the final robot orientation: if a

collision is detected, a different target point is selected.

In a motion generation context, path geometric characteristics are extremely rel-

evant. Several path primitives, which generate continuouscurvature paths, were pro-

posed in the past: clothoids, cubic spirals [6], polar polynomials [7], intrinsic splines

[8], etc.. Recently, the attention has been focused on planning primitives whose cur-

vature is continuously differentiable [9]. Paths which possess this characteristic are

namedG3-paths.G3-continuity is essential for unicycle-like robots: in [10]it has

been proved thatG3-paths are compulsory in order to obtain continuously differen-

tiable control signals. This requirement is not strictly necessary in the case of other

autonomous vehicles, however the use of paths whose curvature is continuously dif-

ferentiable leads to the generation of smooth command signals, which is, undoubt-

edly, a positive characteristic.

In [11, 12], a new planning primitive, namedη3-splines, has been proposed for

the generation ofG3-paths.η3-splines are planned by means of closed form expres-

sions and always fulfill any arbitrarily assigned set of interpolating conditions. The

shape ofη3-splines can be refined by acting on a set of six free parameters which do

not affect the curve boundary points: the assigned interpolating conditions are always

fulfilled independently from the choice of such parameters.Consequently, given an

appropriate shaping criterion,η3-splines can be considered a powerful tool for the

generation of optimal paths. Two main questions arise: which is the most appropriate

optimality criterion to be fulfilled? And, moreover: is it possible to devise the optimal

shaping parameters by means of a simple method? There is not asingle answer to the

first question. Since the control strategy proposed in [10] aims at generating smooth
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and accurate robot movements, the emphasis has been posed onthe generation of

paths whose curvature derivative is minimized. In this chapter it will be shown that,

owing to this choice, lateral solicitations acting on a moving vehicle can be reduced.

The answer to the second question is not trivial. Ifη3-splines are used in a motion

planning context, the optimal planning problem can be offline solved by means of an

algorithm for the global semi-infinite optimization which is able to manage nonlinear

object functions. This approach is not suited in a motion generation framework since,

owing to the problem complexity, evaluation times are not compatible with online

applications. As a consequence, the solution must be found through a different ap-

proach. The method analyzed in this chapter for the optimal planning ofη3-splines

does not require the explicit online solution of an optimization problem and, conse-

quently, can be efficiently used in a real-time framework.

The current chapter is organized as follows. In §1.1, theG3-interpolation problem

is formalized (Problem 1) and the closed form expressions (η3-splines) proposed in

[11, 12] for its solution are recalled. The optimal shaping problem (Problem 2), is

formulated in the same section, while the proposed solutionis described in §1.2. The

results are verified in §1.3 by means of a path planning and tracking test case.

1.1 Problem formulation

A curve in the Cartesian planar space can be described by means of the function

p : [u0,u1] → R
2

u → p(u) = [α(u)β(u)]T ,

where[u0,u1] is a real closed interval. The associated “path” is the imageof [u0,u1]

under the vectorial functionp(u), i.e.,p([u0,u1]). We say thatp(u) is a regular curve

if ṗ(u) is piecewise continuous, i.e.,ṗ(u) ∈Cp([u0,u1]), andṗ(u) 6= 0, ∀u∈ [u0,u1].

The arc length or, equivalently, the curvilinear coordinate measured alongp(u), de-

noted bys, can be evaluated as

f : [u0,u1] → R

u → s=

∫ u

u0

‖ṗ(ξ)‖dξ
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where‖·‖ denotes the Euclidean norm.

Given any point of a regular curve it can be defined a tangent vector θ(u) mea-

sured along thex-axis, a scalar curvatureκ(u), and a curvature derivativėκ(u) :=
dκ
ds(u). If θ(u) andκ(u) are continuous functions over[u0,u1], thenp(u) is aG2-curve,

i.e., it has a second order geometric continuity. If alsoκ̇(u) is continuous over[u0,u1],

thenp(u) has a third order geometric continuity and is indicated as aG3-curve.

Remark 1 A composite G3-path can be generated by combining several G3-curves if

it is possible to assign tangents, curvatures, and curvature derivatives at the extreme

points of each of them.

Therefore the following interpolation problem can be stated.

Problem 1 Assume that two pointspA := [xA yA]T and pB := [xB yB]T have been

assigned in the Cartesian space. Generate a G3-curvep(u) betweenpA andpB which

fulfills given interpolating conditions on the initial and final tangent anglesθA and

θB, curvaturesκA andκB, and curvature derivativeṡκA and κ̇B.

In order to solveProblem 1, a new planning primitive, namedη3-splines, has been

proposed in [11, 12]. It is given by two seven order polynomial functions defined as

follows

p(u) := [α(u) β(u)]T ,u∈ [0,1] (1.1)

where

α(u) := α0 + α1u+ α2u
2 + α3u3 + α4u4 + α5u5 + α6u6 + α7u7; (1.2)

β(u) := β0 + β1u+ β2u
2 + β3u3 + β4u

4 + β5u
5 + β6u6 + β7u

7 . (1.3)

In the same paper, closed form expressions were proposed in order to efficiently
evaluate coefficientsαi andβi on the basis of the interpolating conditions. For the
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completeness of the discussion they are recalled in the following.

α0 = xA (1.4)

α1 = η1cosθA (1.5)

α2 =
1
2

η3cosθA−
1
2

η2
1κAsinθA (1.6)

α3 =
1
6

η5cosθA−
1
6

(
η3

1κ̇A +3η1η3κA
)

sinθA (1.7)

α4 = 35(xB−xA)−
(

20η1+5η3+
2
3

η5

)
cosθA +

(
5η2

1κA +
2
3

η3
1κ̇A +2η1η3κA

)
sinθA

−
(

15η2−
5
2

η4 +
1
6

η6

)
cosθB−

(
5
2

η2
2κB−

1
6

η3
2κ̇B−

1
2

η2η4κB

)
sinθB (1.8)

α5 = −84(xB−xA)+ (45η1 +10η3+ η5)cosθA−
(
10η2

1κA + η3
1κ̇A +3η1η3κA

)
sinθA

+

(
39η2−7η4+

1
2

η6

)
cosθB +

(
7η2

2κB−
1
2

η3
2κ̇B−

3
2

η2η4κB

)
sinθB (1.9)

α6 = 70(xB−xA)−
(

36η1+
15
2

η3 +
2
3

η5

)
cosθA +

(
15
2

η2
1κA +

2
3

η3
1κ̇A +2η1η3κA

)
sinθA

−
(

34η2−
13
2

η4 +
1
2

η6

)
cosθB−

(
13
2

η2
2κB−

1
2

η3
2κ̇B−

3
2

η2η4κB

)
sinθB (1.10)

α7 = −20(xB−xA)+

(
10η1 +2η3+

1
6

η5

)
cosθA−

(
2η2

1κA +
1
6

η3
1κ̇A+

1
2

η1η3κA

)
sinθA

+

(
10η2−2η4+

1
6

η6

)
cosθB +

(
2η2

2κB−
1
6

η3
2κ̇B−

1
2

η2η4κB

)
sinθB (1.11)

β0 = yA (1.12)

β1 = η1sinθA (1.13)

β2 =
1
2

η3sinθA +
1
2

η2
1κAcosθA (1.14)

β3 =
1
6

η5sinθA +
1
6

(
η3

1κ̇A+3η1η3κA
)

cosθA (1.15)

β4 = 35(yB−yA)−
(

20η1+5η3+
2
3

η5

)
sinθA−

(
5η2

1κA +
2
3

η3
1κ̇A +2η1η3κA

)
cosθA

−
(

15η2−
5
2

η5 +
1
6

η6

)
sinθB +

(
5
2

η2
2κB−

1
6

η3
2κ̇B−

1
2

η2η4κB

)
cosθB (1.16)

β5 = −84(yB−yA)+ (45η1 +10η3+ η5)sinθA +
(
10η2

1κA + η3
1κ̇A +3η1η3κA

)
cosθA

+

(
39η2−7η4+

1
2

η6

)
sinθB−

(
7η2

2κB−
1
2

η3
2κ̇B−

3
2

η2η4κB

)
cosθB (1.17)

β6 = 70(yB−yA)−
(

36η1+
15
2

η3 +
2
3

η5

)
sinθA−

(
15
2

η2
1κA +

2
3

η3
1κ̇A +2η1η3κA

)
cosθA
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−
(

34η2−
13
2

η4 +
1
2

η6

)
sinθB +

(
13
2

η2
2κB−

1
2

η3
2κ̇B−

3
2

η2η4κB

)
cosθB (1.18)

β7 = −20(yB−yA)+

(
10η1 +2η3+

1
6

η5

)
sinθA +

(
2η2

1κA+
1
6

η3
1κ̇A +

1
2

η1η3κA

)
cosθA

+

(
10η2−2η4+

1
6

η6

)
sinθB−

(
2η2

2κB−
1
6

η3
2κ̇B−

1
2

η2η4κB

)
cosθB (1.19)

From a rapid analysis of (1.4)–(1.19), it can be observed their dependence on the

assigned interpolating conditionsxA,yA,xB,yB,θA,θB,κA,κB, κ̇A, andκ̇B and on a set

of six real parametersηi . Such parameters, which give their name to the planning

primitive, can be packed into a single vectorη := [η1 η2 η3 η4 η5 η6]
T ∈ H ⊂

(R+)2×R
4.

Among the other characteristics of theη3-splines, one, in particular, needs to be

highlighted: η3-splines always fulfill boundary conditions independentlyfrom the

values ofη which, therefore, can be used to shape the curve interior points. This is an

important feature ofη3-splines since it introduces flexibility in their design. Onthe

other hand, it forces to find an appropriate method for the selection ofη. Different

choices are possible: e.g., in motion planningη can be used to avoid obstacles while

in a motion generation context, like that considered in thisresearch,η can be assigned

to fulfill an appropriate optimality criterion.

The control strategy proposed in [10], [13] aims at obtaining smooth robot move-

ments by generating minimum curvature paths. Indeed, it is well knows that the path

shape has a strong impact on the robot lateral solicitations. In particular, lateral accel-

erations are related to the path curvature while lateral jerks depend on the curvature

derivative with respect tos. In order to reduce lateral stresses,η can be selected by

solving the following optimization problem.

Problem 2 Given any set of interpolating conditions xA,yA,xB,yB,θA,θB,κA,κB, κ̇A,

and κ̇B, find the optimalη3-spline which solves the following semi-infinite minimax

problem

min
η∈H

max
u∈[0,1]

{∣∣∣∣
dκ
ds

(u;η)

∣∣∣∣
}

(1.20)

subject to

‖ṗ(u;η)‖ > 0, ∀u∈ [0,1] . (1.21)
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Constraint (1.21) is added to guarantee the curve regularity.

Problem (1.20), (1.21) is strongly nonlinear and is characterized by a very large

number of local minima. For this reason, it can only be solvedby means of global

optimization algorithms. For example, in this chapter the optimal solution is gained

using the hybrid genetic-interval algorithm proposed in [14], [15]. Unfortunately,

this approach can only be adopted for off-line cases, since,owing to the problem

complexity, evaluation times are normally not compatible with realtime applications.

Consequently, it has been necessary to devise an efficient heuristic rule to be used

when computational efficiency represents an important issue. Such rule, which re-

turns effective solutions and is characterized by an almostzero evaluation time, is

described in the next section. In the same section a comparison is made with a prelim-

inary approach proposed in [11, 12]. In particular, it will be shown how, in most prac-

tical cases, the selection method proposed in [11, 12] returns very good results from

the point of view of problem (1.20), (1.21), even if better solutions can be achieved

by means of the new approach.

1.2 The heuristic rule

Let us indicate byΓ := [xA yA xB yB θA θB κA κB κ̇A κ̇B]T ∈G ⊂R
4× [−π,π]2×R

4 the

vector containing the interpolating conditions used to plan a genericη3-spline. The

minimizerη∗ of (1.20), (1.21) necessarily depends onΓ, so that it will be indicated in

the following asη∗(Γ). In order to avoid an explicit online solution of (1.20), (1.21)

an algebraic function

η̂ : G → H

Γ → η̂(Γ) ,

which at the best approximatesη∗(Γ), needs to be estimated. Evidently, any effort is

spent to guarantee that curves generated byη̂(Γ) have performance indexes close to

those obtained by means ofη∗(Γ).

A preliminary η̂(Γ) function was proposed in [11, 12]. More precisely, it was

selected on the sole basis of the Euclidean norm betweenpA andpB according to the



12 Chapter 1. Optimal Path generation

following rule

η̂(Γ) := [‖pA−pB‖ ‖pA−pB‖ 0 0 0 0]T .

In this section, a neŵη(Γ) function, which uses all the interpolating conditions,

is proposed with the purpose of generating curves with a smaller curvature deriva-

tive. The new functionη̂(Γ) is devised through a two steps design. The first step

focuses on finding a possible structure forη̂(Γ). In particular, the structure of̂η(Γ)

is guessed by solving (1.20), (1.21) for a set of appropriateinterpolating conditions

Γi and analyzing the corresponding solutionsη∗(Γi). The result of such analysis is

a parametric function̂η(Γ;k), wherek := [k1 k2 . . . k11]
T ∈ K ⊂ R

11 is a vector of

real parameters used for its “tuning”. The first step also returns an initial proposal for

k. Subsequently,k is refined in the second step as the solution of a new optimization

problem.

1.2.1 Devising the structure ofη̂(Γ;k)

The structure of̂η(Γ) must be characterized by its simplicity. To this purpose, let us

consider some typical planning cases where the solution of problem (1.20), (1.21)

is known. Evidently, whenκA = κB, the optimal solution of (1.20), (1.21) is gained

when dκ
ds(u; η̂) ' 0, i.e.,κ(u; η̂) is kept as constant as possible along the curve or,

equivalently, the curve at the best approximates a circulararc. In the same way, if

κA 6= κB, the optimal solution is characterized by a functionκ(u; η̂) which almost

linearly depends ons, so thatdκ
ds(u; η̂) is almost constant and the curve at the best

approximates a clothoid. Bearing in mind this idea, a set of interpolating conditions

Γi, compatible with arcs and clothoids, has been generated (see Tables 1.1 and 1.2).

For each configurationΓi the optimal solutionη∗(Γi) has been found by using the

genetic-interval algorithm proposed in [14], [15]. As expected, when the interpolating

conditions are compatible with circular arcs, problem (1.20), (1.21) converges toward

solutions withdκ
ds ' 0, i.e.,η3-splines almost perfectly emulate circular arcs, while,

when clothoids are emulated, it converges toward constant values ofdκ
ds. Moreover, in

the case of circular arcs, owing to the symmetry characteristics of such curve (κA =

κB, κ̇A = κ̇B = 0), the minimizers show the following relationships:η1 ' η2, η3 '
−η4, andη5' η6. Minimizersη∗(Γi), i=1,2,...,12, corresponding to circular arcs, are
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Table 1.1: Interpolating conditionsΓi compatible with circular arcs

xA yA xB yB θA θB κA κB κ̇A κ̇B

Γ1 0 0 1.4142 0.5858 0 π/4 1/2 1/2 0 0

Γ2 0 0 3.5355 1.4645 0 π/4 1/5 1/5 0 0

Γ3 0 0 5.3033 2.1967 0 π/4 1/7.5 1/7.5 0 0

Γ4 0 0 7.0711 2.9289 0 π/4 1/10 1/10 0 0

Γ5 0 0 10.6066 4.3934 0 π/4 1/15 1/15 0 0

Γ6 0 0 14.1421 5.8579 0 π/4 1/20 1/20 0 0

Γ7 0 0 2.0000 2.0000 0 π/2 1/2 1/2 0 0

Γ8 0 0 5.0000 5.0000 0 π/2 1/5 1/5 0 0

Γ9 0 0 7.5000 7.5000 0 π/2 1/7.5 1/7.5 0 0

Γ10 0 0 10.0000 10.0000 0 π/2 1/10 1/10 0 0

Γ11 0 0 15.0000 15.0000 0 π/2 1/15 1/15 0 0

Γ12 0 0 20.0000 20.0000 0 π/2 1/20 1/20 0 0

Table 1.2: Interpolating conditionsΓi compatible with clothoids

xA yA xB yB θA θB κA κB κ̇A κ̇B

Γ13 0 0 2.9511 0.7832 0 π/4 0 1/2 1.5915e-1 1.5915e-1

Γ14 0 0 7.3776 1.9582 0 π/4 0 1/5 2.5465e-2 2.5465e-2

Γ15 0 0 11.0664 2.9373 0 π/4 0 1/7.5 1.1318e-2 1.1318e-2

Γ16 0 0 14.7552 3.9165 0 π/4 0 1/10 6.3662e-3 6.3662e-3

Γ17 0 0 22.1327 5.8747 0 π/4 0 1/15 2.8294e-3 2.8294e-3

Γ18 0 0 29.5104 7.8329 0 π/4 0 1/20 1.5915e-3 1.5915e-3

Γ19 0 0 4.9107 2.7091 0 π/2 0 1/2 7.9577e-2 7.9577e-2

Γ20 0 0 12.2769 6.7727 0 π/2 0 1/5 1.2732e-2 1.2732e-2

Γ21 0 0 18.4152 10.1590 0 π/2 0 1/7.5 5.6588e-3 5.6588e-3

Γ22 0 0 24.5538 13.5454 0 π/2 0 1/10 3.1831e-3 3.1831e-3

Γ23 0 0 36.8305 20.3181 0 π/2 0 1/15 1.4147e-3 1.4147e-3

Γ24 0 0 49.1075 27.0909 0 π/2 0 1/20 7.9577e-4 7.9577e-4
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reported in Table 1.3.

Table 1.3: Minimizersη∗(Γi) for problem (1.20)–(1.21) when interpolating condi-

tions are congruent with circular arcs

η1,η2 η3,−η4 η5,η6

∣∣∣dκ
ds
∗∣∣∣

Γ1 1.1881e+00 2.3650e+00 -5.7853e+00 2.1210e-05

Γ2 3.6537e+00 1.3173e+00 -1.0960e+00 4.2403e-06

Γ3 5.6959e+00 1.0188e+00 -3.7426e+00 1.5579e-07

Γ4 7.6425e+00 1.4546e+00 -9.3034e+00 5.5453e-07

Γ5 1.1565e+01 1.2535e+00 -8.9196e+00 4.6852e-08

Γ6 1.5467e+01 1.3156e+00 -1.0510e+01 2.2694e-08

Γ7 3.1334e+00 1.0140e-01 -8.4748e+00 2.9981e-05

Γ8 7.5226e+00 2.0679e+00 -2.1859e+01 5.1968e-06

Γ9 1.0618e+01 5.6298e+00 -1.5491e+01 8.2154e-07

Γ10 1.5179e+01 1.6468e+00 -2.0441e+01 8.0685e-06

Γ11 2.2828e+01 2.3025e+00 -3.3042e+01 3.3372e-06

Γ12 2.9739e+01 8.4987e+00 -6.3444e+01 9.1094e-07

In the case of clothoids,η1 andη2 are no more equal, but they remain each other

close. The same happens forη3 and−η4, and forη5 andη6. For example, for the

clothoid whose interpolating conditions are given byΓ24 the resulting minimizer is

η1 = 43.8944,η2 = 44.8416,η3 = 34.2107,η4 = −28.1348,η5 = −250.1721,η6 =

−253.6511.

By scrutinizing optimal solutionsη∗(Γi) it has been possible to identify some

correlations between them and the interpolating conditions reported in Tables 1.1 and

1.2. Such information has been used to propose the followingstructure forη̂(Γ;k)

η1 = k1 ‖pA−pB‖+k2 |θB−θA|+k3

√
|κA| , (1.22)

η2 = k1 ‖pA−pB‖+k2 |θB−θA|+k3

√
|κB| , (1.23)

η3 = k4 ‖pA−pB‖2 +k5 |θB−θA|+k6

√
|κA|+k7

√
|κ̇A| , (1.24)

η4 = −(k4 ‖pA−pB‖2 +k5 |θB−θA|+k6

√
|κB|+k7

√
|κ̇B|) , (1.25)
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η5 = k8 ‖pA−pB‖2 +k9

√
|θB−θA|+k10 |κA|+k11

√
|κ̇A| , (1.26)

η6 = k8 ‖pA−pB‖2 +k9

√
|θB−θA|+k10 |κB|+k11

√
|κ̇B| , (1.27)

where‖·‖ indicates the Euclidean norm andk := [k1 k2 . . . k11]
T ∈K ⊂R

11 is a vec-

tor of real parameters. It is easy to verify that, when boundary conditions are compati-

ble with circular arcs, (1.22)–(1.27) correctly returnη1 = η2, η3 =−η4, andη5 = η6,

while different, but similar, values have to be expected in the case of clothoids. The

same selection rule proposed in [11, 12] can be obtained from(1.22)–(1.27) by setting

k = k ′ := [1 0 0 0 0 0 0 0 0 0 0]T ,

An initial estimate fork has been found by means of a least square approach

which minimizes the differences betweenη∗(Γi) and η̂(Γi;k), for i = 1,2, . . . ,24.

The obtained value ofk, indicated in the following ask ′′, is shown in Table 1.4.

1.2.2 Estimating the optimal k

Starting fromk ′′, it is possible to find a more “performing” value ofk. To this pur-

pose, let us introduce the following optimization problem

min
k∈K
{J(k)} , (1.28)

where

J(k) :=
24

∑
i=1

wi

[
dκ̂
ds

(Γi ;k)−
∣∣∣∣
dκ∗

ds
(Γi)

∣∣∣∣
]2

(1.29)

and wheredκ̂
ds(Γi;k) := maxu∈[0,1]

{∣∣dκ
ds [u; η̂(Γi ;k)]

∣∣} is the maximum curvature

derivative obtained by means ofη̂(Γi ;k), wi is the weight assigned to each inter-

polating conditionΓi , while
∣∣dκ∗

ds (Γi)
∣∣ represents the maximum curvature derivatives

corresponding to the optimal solutionsη∗(Γi) of problem (1.20), (1.21). The same

interpolating conditionsΓi used for the first phase have been adopted (see Tables 1.1

and 1.2). Weightswi are introduced to take into account the different order of magni-

tude of minimizerη∗(Γi) (see the last column of Table 1.3). It is worth remembering

that
∣∣dκ∗

ds (Γi)
∣∣ is equal to zero when interpolating conditions are compatible with cir-

cular arcs, while it is equal to the elements of the last column of Table 1.2 in the case

of clothoids. Practically, the solution of (1.28), (1.29) generatesη3-splines whose
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Table 1.4: Possible optimal parameterizations for (1.22)–(1.27)

k ′ k ′′ k ′′′

k1 1 0,986215955980423 0,9900370309156421

k2 0 0,04694051539639 0,2338305460827709

k3 0 0,074863997949512 -0,2337321418102114

k4 0 0,017994903356811 0,03957912032871749

k5 0 0,233918712355343 0,1008348340478730

k6 0 0,674868034806584 1,505166060904769

k7 0 6,17884077781871 0,5363811172337601

k8 0 -0,062562404082537 -0,5105585534956896

k9 0 -35,718866041005704 -4.340011523955019

k10 0 65,80182824188454 -17,91610461019005

k11 0 54,58725230016439 -14,14677605082785

maximum curvature derivative is very close to the minimum achievable for the con-

sidered interpolating conditions.

Problem (1.28), (1.29) has been solved with a standard optimization algorithm

whose starting point was set equal tok ′′. The algorithm has converged to solutionk ′′′

shown in Table 1.4, consequently improving the cost index from 5.88589 down to

1.28337e-2.

The effectiveness ofk ′, k ′′, andk ′′′ is discussed in the following with the help

of two performance indexes. In particular we define Mean Squared Deviation (MSD)

the mean, evaluated over all the interpolating conditionsΓi, of the squared differences

betweendκ̂
ds(Γi;k) and

∣∣dκ∗
ds (Γi)

∣∣, that is

MSD=
1
n∑

i

[
dκ̂
ds

(Γi;k)−
∣∣∣∣
dκ∗

ds
(Γi)

∣∣∣∣
]2

, (1.30)

wherek = k ′,k ′′,k ′′′, while n is the number of considered interpolating conditions

Γi. In the same way, we define Maximum Deviation (MD) the following index

MD = max
i

{
dκ̂
ds

(Γi ;k)−
∣∣∣∣
dκ∗

ds
(Γi)

∣∣∣∣
}

, (1.31)
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i.e., the maximum difference, evaluated over a set of interpolating conditionsΓi , be-

tween the optimal cost indexes and those obtained by means of(1.22)–(1.27).

Fig. 1.1 shows some statistic results concerning circular arcs. They have been

evaluated by considering the set of interpolating conditions of Table 1.1. The pie dia-

gram shows the percentage of best solutions, from the point of view of the curvature

derivative, amongk ′,k ′′, andk ′′′. In the 66,7% of casesk ′′′ exhibits the smallest cost

index. The histogram in the same figure comparesk ′,k ′′, andk ′′′ by means of (1.30)

and (1.31), assumingn = 12 and
∣∣dκ∗

ds (Γi)
∣∣ = 0. Also in this casek ′′′ represents the

best solution since theMSDand theMD indexes are, respectively, one order and two

orders of magnitude smaller that those obtained fork ′.

In the case of clothoids, the comparisons are shown in Fig. 1.2. The pie diagram

evidences that best solutions are equally spread amongk ′ andk ′′′. Nevertheless, some

further conclusions can be drawn from the histogram. It has been evaluated by con-

sideringi = 13, . . . ,24 andn = 12. Necessarily, terms
∣∣dκ∗

ds (Γi)
∣∣ depend on the inter-

polating conditionsΓi (see the last column in Table 1.2). The histogram reveals that

theMSDand theMD indexes ofk ′′′ are evidently better than those ofk ′. The reason

of this result is that whenk ′ is characterized by the best cost indexes,k ′′′ has worst

but similar performance indexes, while whenk ′′′ returns the best solutions they are

neatly better than those proposed byk ′.

Owing to the method used for selectingk, function η̂(Γ;k ′′′) generates curves

which very well approximate circular arcs and clothoids. Itcould be interesting to

verify what happens in the case of generic interpolating conditions. To this purpose

30 interpolating conditionsΓi have been randomly chosen belonging to the following

intervals: xB ∈ [0,15],yB ∈ [−5,5],θB ∈ [−π/2,π/2],κA,κB ∈ [−0.4,0.4], κ̇A, κ̇B ∈
[−0.04,0.04]. Without any loss of generality, it has been supposed thatxA = xB =

θA = 0 since, according to (1.22)–(1.27), termsηi are evaluated on the sole basis of

differencespB−pA andθB−θA.

For each value ofΓi an optimal solutionη∗(Γi) has been obtained by solving

(1.20), (1.21) with the genetic-interval algorithm. The resulting cost indexes
∣∣dκ∗

ds (Γi)
∣∣

have been compared with the performance indexesdκ̂
ds(Γi ;k) evaluated fork ′, k ′′, and

k ′′′. The pie diagram of Fig. 1.3 shows thatk ′′′ can be considered the best solution

in the 83% of cases. Nevertheless,k ′ andk ′′ have comparable performance indexes,
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Figure 1.1: A comparison between solutionsk ′,k ′′, andk ′′′ in the case of interpolat-

ing conditions compatible with circular arcs. The pie diagram reports the percentage

of best solutions amongk ′,k ′′, and k ′′′, while the histogram compares their Mean

Squared Deviation (MSD) and the Maximum Deviation (MD). A logarithmic scale

has been adopted.

as can be deduced from the histogram in the same figure. This conclusion is also

confirmed byJ(k): for the three cases it is respectively equal toJ(k ′) = 2,1596,

J(k ′′) = 2,6015, andJ(k ′′′) = 1,3943. Fig. 1.4 further proves this assertion by show-

ing a direct comparison, for 7 of the 30 analyzed cases, between the maximum cur-

vature derivatives obtainable with the three proposed methods and those returned by

the genetic-interval algorithm. In any situation the best solutions are those devised

by the genetic-interval algorithm, but the performance indexes ofk ′, k ′′, andk ′′′ are

each other comparable and very close to those of the actual minimizers.

Some conclusions can be drawn form the comparisons. Generally, k ′′′ generates

the smallest curvature derivatives. Even whenk ′ or k ′′ are characterized by smaller

curvature derivatives, the performance indexes ofk ′′′ are only slightly worse. In the

case of generic interpolating conditionsk ′, k ′′, andk ′′′ can be considered equivalent:
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Figure 1.2: A comparison between solutionsk ′,k ′′, andk ′′′ in the case of interpolating

conditions compatible with clothoids. The pie diagram reports the percentage of best

solutions amongk ′,k ′′, andk ′′′, while the histogram compares their Mean Squared

Deviation (MSD) and the Maximum Deviation (MD). A logarithmic scale has been

adopted.

this result proves that the method originally proposed in [11, 12] for the selection of

η represents a sufficiently good solution for problem (1.20),(1.21).

One final doubt is instilled by Fig. 1.4. It seems that, in the case of generic inter-

polating conditions, the selection ofη is not particular critical since the cost indexes

of k ′, k ′′, andk ′′′ are each other comparable and close to those of the global optimal

solutions. This is not true, as can be evinced from the example case proposed in the

next section where theη-parameters obtained from (1.22)–(1.27) andk ′′′ are slightly

perturbed, thus causing an immediate rise ofκ̇.
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Figure 1.3: A comparison between solutionsk ′,k ′′, and k ′′′ in the case of generic

interpolating conditions. The pie diagram reports the percentage of best solutions

amongk ′,k ′′, andk ′′′, while the histogram compares their Mean Squared Deviation

(MSD) and the Maximum Deviation (MD). A logarithmic scale has been adopted.

1.3 An application case

The example case proposed in the following points out the influence exerted by the

curvature derivative on the motion performances of a mobilerobot. Let us consider an

unicycle mobile robot which must move along a composite curve planned by means

of η3-splines. The interpolating conditions used for the generation of theη3-spline

paths are listed in Table 1.5. More in details, the interpolating conditionsΓ25, Γ27

andΓ29 are compatible with a clothoid, a circular arc and a linear segment respec-

tively, while interpolating conditionsΓ26 andΓ28 are not compatible with any stan-

dard planning primitive in order to emulate a set of actual data obtained, e.g., from

a visual system. It can be immediately evinced from Table 1.5that the interpolating

conditions of each partial curve, i.e., initial and final tangents, curvatures, and cur-

vature derivatives, are selected such to guarantee the required continuity conditions.

Necessarily, the overall composite path isG3-continuous.
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Figure 1.4: A comparison between the performance indexes ofη∗, k ′,k ′′, andk ′′′ for

seven generic sets of interpolating conditions. A linear scale has been adopted.

Table 1.5: Interpolating conditionΓi chosen for the example

xA yA xB yB θA θB κA κB κ̇A κ̇B

Γ25 0 0 4.10 1.66 0 3π/8 0 1/2 0.106 0.106

Γ26 4.10 1.66 7.00 10.00 3π/8 0 1/2 -0.1 0.106 0

Γ27 7.00 10.00 14.07 7.07 0 −π/4 -0.1 -0.1 0 0

Γ28 14.07 7.07 15.40 5.00−π/4 −5π/8 -0.1 0 0 0

Γ29 15.40 5.00 15.78 4.08−5π/8 −5π/8 0 0 0 0

In order to verify the relevance of designing curves with minimum curvature

derivative, three different scenarios have been considered. In the first case, indicated

in the following as the nominal one, theη parameters are evaluated by means of

(1.22)–(1.27) and coefficientsk ′′′ shown in Table 1.4. In the second and in the third

scenarios, the perturbed cases, the previously evaluatedη-parameters are slightly

modified. More precisely,η1 andη2 have been increased and decreased respectively

by the 10% with respect to the nominal case. As a result, threedifferent composite

curves satisfying the assigned interpolating conditions have been generated. It is pos-

sible to evince from Fig. 1.5 that the three curves have a verysimilar shape, but a
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Figure 1.5: The nominal path (continuous curve) compared with the paths obtained

by increasing (dashed line) or decreasing (dash-dotted line) η1 andη2 by the 10%.

comparison between Fig. 1.6 and Fig. 1.7, which reportκ andκ̇ for the nominal case

and one of the two modified cases, highlights how the small perturbations introduced

in η1 andη2 produce evident changes in the curvature and in the curvature derivative.

It is worth noticing from Fig. 1.6, the evidently better emulation of a clothoid and of a

circular arc obtained in the nominal case: differently fromthe perturbed scenario, the

curvature derivative is almost constant. As expected,κ̇ is generally higher in the per-

turbed case. The situation worsens especially in the case ofΓ28, thus demonstrating

how the selection ofη can be very critical also when generic interpolating conditions

are considered.

To better point out the differences between the three composite curves, they have

been tracked by an unicycle-like mobile robot driven accordingly to the control strat-

egy proposed in [10]. The robot model used for the simulations takes into account the

vehicle dynamics and the existence of sliding effects between wheels and ground. To

this purpose, the wheels traction model originally proposed in [16] has been adopted.

The vehicle moves at a constant longitudinal velocity, thusthe shape of the accel-

eration profile is similar to the curvature shape, while the jerk profile mimics the

curvature derivative profile. Fig. 1.8 shows the lateral acceleration and the lateral jerk

acting on the vehicle during its movement along the nominal path. The detail in the
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Figure 1.6: The curvature and its derivative for the nominalcase, expressed with

respect to curvilinear coordinates.

same figure reveals how the lateral skidding phenomenon can appear every time lat-

eral accelerations and jerks are sufficiently high. As previously asserted, lateral jerk

is directly correlated to the curvature derivative and, consequently, the nominal case

is characterized by smaller lateral solicitations, being an (almost) optimal solution

for problem (1.20), (1.21). On the contrary, Fig. 1.9 reveals that ifη1 andη2 are in-

creased, the lateral skidding phenomenon can more easily appear owing to the higher

lateral stresses acting on the vehicle. The situation does not improve whenη1 andη2

are decreased with respect to the optimal values, as can be evinced from Fig. 1.10.
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Figure 1.7: The curvature and its derivative obtained by increasingη1 and η2, ex-

pressed with respect to curvilinear coordinates.
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Figure 1.8: The lateral acceleration and jerk along the nominal curve, expressed with

respect to the time.
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Figure 1.9: The lateral acceleration and jerk along the curve obtained by increasing

η1 andη2 by the 10%, expressed with respect to the time.
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Figure 1.10: The lateral acceleration and jerk along the curve obtained by decreasing

η1 andη2 by the 10%, expressed with respect to the time.





CHAPTER 2

Online trajectory scaling for robotic manipulators subject to

torque and velocity constraints

In the middle of the journey of my life,

I found myself in a dark wood, for I had lost the right path.

Eventually I would find the right path,

but in the most unlikely place.

Dante

M otion control of industrial manipulators requires the generation of appro-

priate reference signals in order to improve the system performances in

terms of precision and time efficiency.

In robotics, great attention has been devoted to design algorithms able to mini-

mize the time required to complete an assigned task. The fulfillment of this require-

ment is crucial in order to increase the production rate in industrial applications which

are often limited by the robot performances rather than the process constraints. Un-
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fortunately, traveling time minimization leads to an increment of the mechanical so-

licitations. Moreover, the actuators dynamic limits can easily be exceeded, causing

a degeneration of the control performances. For this reason, it is important to take

into account robots dynamic and kinematic constraints during the trajectory plan-

ning phase. In the last decades, several methods have been proposed; they can be

roughly divided into two groups: offline and online planners. Methods of the former

group devise the optimal trajectory as the outcome of offlinecomputations and can

ulteriorly be subdivided into two different approaches. Inthe first one, constrained

optimization algorithms are used, either determining the robot trajectory as a whole,

see [17, 18, 19], or by using the path-velocity paradigm [20,21, 22]. In the second

one, a scaling factor is introduced to offline guarantee the feasibility for a given robot

trajectory. Main results for nonredundant manipulators can be found in [23], while in

[24] the method is extended to robots used in cooperative tasks and in [25] manipula-

tors with elastic joints have been considered. The main drawback of these algorithms

is represented by the need of a perfect knowledge of the robotmodel, a requirement

which is often not realistic. Moreover, when minimum-time trajectory are planned,

there is always at least one joint working at its torque limits: any external distur-

bances or robot unmodelled dynamics cannot be compensated by the controller so

that tracking is lost.

To overcome these limitations, nominal trajectories are typically online modi-

fied by means of appositely devised algorithms. In case of redundant manipulators,

the path tracking problem under kinematic and/or dynamic constraints is commonly

solved by taking advantage of the redundancy [26, 27, 28, 29]. For nonredundant

manipulators the feasibility of a given trajectory is obtained by online scaling the

velocity profile used to move along an assigned path. In [30] this method has been

adopted to account for joint velocity limits, while accelerations bounds are consid-

ered in [31]. Some two-level control algorithms have been proposed in [32, 33, 34]

which take into account torque limits. They consist in an inner loop, based on stan-

dard feedback controllers, and in an outer loop, which slowsdown the robot reference

velocity when torque saturations are reached.

Previously cited methods have a common denominator: the dynamic constraints

are online converted into kinematics bounds on the velocityprofile used for the mo-
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tion along the assigned path. In a broader sense, the nominalvelocity profile is some-

how filtered in order to generate an output signal which fulfills the assigned bounds.

A similar problem has been investigated in the past, dealingwith the optimal filtering

of rough reference signals for electrical axes [35, 36].

The goal of this chapter is to illustrate an online trajectory tracking control for

robotic manipulators subject to torque and velocity constraints. Most of the follow-

ing results have been presented in [37]. The chapter can be roughly divided in two

parts. In the first one, it will be shown how to implement a feedback control scheme

able to track at best a given path despite the presence of dynamic and kinematic

constraints. To this purpose, a trajectory filter is required. The used filter is then ex-

tensively analyzed and improved version of [36] is presented.

The new control scheme introduces several novelties with respect to similar ap-

proaches [32, 33, 34]. First of all, not only torque constraints are considered, but also

the existence of explicit limits on the maximum joint velocities is taken into account.

Secondly, even if the path tracking is still the main target of the controller, now any

effort is spent in order to respect the time law assigned for the movement along the

curve.

The chapter is organized as follows. The robotic problem is posed in §2.1. In the

same section, it is shown how joint torque and velocity constraints can be converted

into equivalent kinematic constraints. Such constraints are used to scale the trajectory

by means of a dynamic filter: the design and the characteristics of a new discrete-

time filter are discussed in §2.2, while a detailed analysis of the filter convergence

properties is reported in Section 2.5. Comparisons betweenthe new filter and the one

proposed in [32] are made in §2.3, where some practical implementation issues are

also discussed. The usefulness of the approach is investigated in §2.4 by means of an

example concerning a cartesian manipulator.

2.1 Online trajectory scaling for robotic manipulators

The problem here investigated is similar to that described in [32], where an online

trajectory scaling filter has been proposed to account for joint torque constraints.

To this purpose a two-level control scheme was designed. At the primary level, a
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standard feedback controller was adopted, tuned for disturbances rejection and good

transient performances. At the secondary level, a dynamic filter was used to modify

the nominal, and potentially rough, trajectory in order to fulfill the manipulator torque

constraints and track, at the best, a given path.

In our research, the same two-level approach is assumed. Thefirst level is repre-

sented by a standard computed torque controller, while a novel filter is used for the

optimal trajectory scaling.

Some preliminary definitions can be useful for the discussion. The robot trajec-

tory is defined according to the so-called path-velocity decomposition [20]. For this

reason, the path to be followed is described in the joint space by means of a vectorial

functionΓ(x) defined as follows

Γ : [0,xf ] → R
n

x → qd := Γ(x) .
(2.1)

wherex∈ R
+ is the scalar which parametrizes the curve, whilen∈N is the number

of the robot independent joints. Without any loss of generality, the path is assumed in

the joint space. In fact, it is always possible to convert a task space path into a joint

space one by means of an appropriate use of the manipulator Jacobian matrixJ(q).

In the same way, a monotonically increasing time-law, used to move the end

effector alongΓ(x), is defined

x : [0, t f ] → [0,xf ]

t → xd := x(t)
(2.2)

wheret f is the total traveling time. Evidently, the overall robot trajectory is obtained

by combining (2.1) and (2.2):qd(t) := Γ(x(t)).

Consider now a serial link rigid-body manipulator. Its generalized forces can be

evaluated by means of the classical inverse dynamics equation, so that for each joint

k = 1,2, . . . ,n it follows that

τk =
n

∑
j=1

hk j(q) q̈ j +
n

∑
j=1

n

∑
i=1

ci jk(q) q̇i q̇ j +gk(q)+ fk(q, q̇) , (2.3)

where

ci jk =
1
2

(
∂hk j

∂qi
+

∂hki

∂q j
− ∂hi j

∂qk

)
(2.4)
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are the so called Christoffel symbols of the first order. By defining the generalized

force vector asτ := [τ1 τ2 · · · ,τn]
T , and introducing the new terms

ck j(q, q̇) :=
n

∑
i=1

ci jk(q) q̇i , (2.5)

equation (2.3) can be rewritten in the well known matrix form[38]

τ = H(q) q̈+C(q, q̇)q̇+g(q)+ f(q, q̇) . (2.6)

As usual,H(q)∈R
n×n is the symmetric and positive definite inertia matrix,C(q, q̇)∈

R
n×n is the matrix of centripetal and Coriolis terms,g∈R

n is the vector of the gravity

forces, andf(q, q̇) ∈ R
n describes the friction effects. The manipulator is subjectto

dynamic and kinematic constraints. More precisely, maximum admissible torques are

bounded, so that it holds

τk ≤ τk ≤ τk, k = 1,2, . . . ,n , (2.7)

whereτk andτk represent the lower and upper bounds on thek-th joint torque. Anal-

ogously, maximum joint velocities are bounded, i.e.,

q̇
k
≤ q̇k ≤ q̇k, k = 1,2, . . . ,n , (2.8)

where q̇
k

and q̇k represent the lower and upper bounds on thek-th joint velocity.

Owing to (2.7) and (2.8) the following tracking problem can be defined.

Problem 3 Given a manipulator described by (2.6) and a desired trajectory (2.1),

(2.2), design a control law to achieve the best possible tracking subject to torque

constraints (2.7) and joint velocity constraints (2.8).

The control scheme proposed to deal with Problem 3 is shown inFigure 2.1. As

early anticipated, it is based on a computed torque controller. The controller output

is saturated to account for (2.7), while the robot dynamics has been modified in order

to introduce the effects of (2.8). If an improper trajectoryis used to drive the torque

controller, saturations will cause a drastic degenerationof the tracking performances

as proved in §2.4. For this reason, the trajectory controller, on the basis of the current
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Figure 2.1: Proposed trajectory control scheme

state of motion and considering (2.7) and (2.8), dynamically evaluates equivalent

acceleration and velocity bounds which must be fulfilled by time law (2.2). Such

bounds are used by the nonlinear filter described in §2.2 to scale any given nominal,

but possibly unfeasible, reference signalr(t).

In the following it will be shown how (2.7) and (2.8) can be converted into equiv-

alent constraints for ˙x andẍ. By using the chain differentiation rule, it is possible to

evaluate the trajectory time derivatives as

q̇d = Γ
′
(x)ẋ , (2.9)

q̈d = Γ
′′
(x)ẋ2 + Γ

′
(x)ẍ , (2.10)

Superscript
′
indicates a differentiation with respect tox, e.g.,Γ(x)

′
= dΓ(x)

dx , while, as

usual, dots indicate time derivatives, e.g., ˙x(t) = dx(t)
dt . Due to (2.1), (2.9), and (2.10)

it is always possible to compute the torque required to tracka given path by means of

(2.6)

τ = b1(x)ẍ+b2(x, ẋ) (2.11)

where

b1(x) := H(Γ(x))Γ
′
(x) , (2.12)

b2(x, ẋ) := H(Γ(x))Γ
′′
(x)ẋ2 +C(Γ(x),Γ

′
(x)ẋ)Γ

′
(x)ẋ

+f(Γ(x),Γ
′
(x)ẋ)+g(Γ(x)) . (2.13)
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Let us defineb1(x) := [b1,1(x),b1,2(x), . . . ,b1,n(x)]T and, in a similar way,b2(x, ẋ) :=

[b2,1(x, ẋ),b2,2(x, ẋ), . . . ,b2,n(x, ẋ)]T . Due to (2.11), constraints (2.7) can be rewritten

as follows

τi ≤ b1,i(x)ẍ+b2,i(x, ẋ)≤ τi , i = 1,2, . . . ,n . (2.14)

In the same way, by using equation (2.9) inequality (2.8) became

q̇
i
≤ Γ

′
i(x)ẋ≤ q̇i , i = 1,2, . . . ,n . (2.15)

Given two torque bound vectorsτ := [τ1 τ2 · · · τn]
T andτ := [τ1 τ2 · · · τn]

T and two

velocity bound vectorṡq := [q̇
1

q̇
2

. . . q̇
n
]T andq̇ := [q̇1 q̇2 . . . q̇n]

T , it is possible to

define theadmissible region(AR) [21] as the set of points in the(x, ẋ)-plane where

(2.15) is satisfied and where there exists at least one value ¨x which fulfills (2.14). It

is worth noting that the AR does not depend on time law (2.2). Conversely, it only

depends on the path (2.1) and on the robot dynamics (2.6).

A time lawx(t) assigned to move along the path is feasible, and the overall robot

trajectory is feasible, if and only if all points(x(t), ẋ(t)) belong to the AR for any

t ∈ [0, t f ]. Independently from the adopted controller, trajectory islost any time a

non-feasible velocity profile is used.

In case of online evaluation of the admissible region, more realistic bounds on ˙x

andẍ which consider also the output of the feedback controller are required (see also

[32]). For example, if a computed torque controller is considered, the output torqueτ
is evaluated as follows:

τ(qd, q̇d, q̈d) = H(qd)q̈q+C(qd, q̇d)q̇d + f(qd, q̇d)+g(qd)+kT
p e+kT

v ė (2.16)

wherekp,kv∈ (R+)n are the controller gain vectors ande := q−qd, ė := q̇− q̇d are,

respectively, the trajectory tracking error and its derivative. Equation (2.16) can be

synthetically rewritten as

τ(x, ẋ, ẍ,q, q̇) = b1(x)ẍ+ b̃2(x, ẋ,q, q̇) (2.17)

whereb1(x) is defined according to (2.12), while

b̃2(x, ẋ,q, q̇) := b2(x, ẋ)+kT
pe+kT

v ė , (2.18)
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with b̃2(x, ẋ,q, q̇) := [b̃2,1(x, ẋ,q, q̇), b̃2,2(x, ẋ,q, q̇), . . . , b̃2,n(x, ẋ,q, q̇)]T andb2(x, ẋ)

equal to (2.13).

Owing to (2.12) and (2.18), given the current status of motion (x, ẋ), and torque

boundsτk,τk, for each actuated joint the acceleration upper boundφk and lower bound

ψk are obtained by rearranging (2.14). In particular, it holdsthat

φk =





τk−b̃2,k

b1,k
, if b1,k > 0

τk−b̃2,k

b1,k
, if b1,k < 0

∞, if b1,k = 0

and ψk =





τk−b̃2,k

b1,k
, if b1,k > 0

τk−b̃2,k

b1,k
, if b1,k < 0

−∞, if b1,k = 0

Since boundsφk andψk must be simultaneously fulfilled∀k = 1,2. . . ,n, any feasible

acceleration ¨x must belongs to the range[U−, U+] where

U+ := min
k=1,...,n

{φk} , U− := max
k=1,...,n

{ψk} . (2.19)

As long asU+ ≥U− current state(x, ẋ) lies inside the AR.

In a similar way, an online strategy to evaluate bounds on admissible velocity ˙x

can be defined. First of all, since negative velocities alongthe path are not allowed, it

has been assigned ˙x− := 0. Instead, the upper bound can be evaluated, due to (2.15),

by means of the following relation

ρk =





q̇k

Γ′k(x)
, if Γ′k(x) > 0

q̇
k

Γ′k(x)
, if Γ′k(x) < 0

∞, if Γ′k(x) = 0

.

Velocity ẋ is feasible only if it lies in the interval[ẋ−, ẋ+] where

ẋ+ := min
k=1,...,n

{ρk} , ẋ− := 0 . (2.20)

2.2 Nonlinear bounded-dynamics filter

The dynamic system shown in Fig. 2.2 has been successfully used in the past to gen-

erate smooth set-points for motion control systems, as reported in [35, 36]. In the
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following, a new nonlinear filter, based on a similar scheme,is devised to solve Prob-

lem 3. It is able to automatically online modify a given scalar trajectory to satisfy

limits on ẋ−, ẋ+,U−, andU+ which derive from (2.19) and (2.20). Since (2.19) does

not guarantee symmetric bounds on the acceleration, it has not been possible to di-

rectly use the filter proposed in [36], but it has been necessary to completely redesign

the control law which drives the double integrator chain.

Let us consider the following design problem

Problem 4 Design a nonlinear discrete-time filter whose output x tracks “at best” a

given reference signal r by fulfilling the following requirements:

1) the first and second time derivatives of x must be bounded:

ẋ− ≤ ẋ≤ ẋ+, U− ≤ ẍ≤U+ , (2.21)

whereẋ−, ẋ+ ∈ R, U+ ∈ R
+ and U− ∈ R

−.

2) bounds (2.21) can be time-varying and can also change during transients;

3) if (2.21) is not satisfied owing to the filter initial conditions or to a sudden

change of the bounds,ẍ must be forced in a single step within the given limits,

while ẋ must reach the assigned bounds in minimum time;

4) when a reference signal r satisfying (2.21) is applied, the tracking condition

x = r is reached in minimum time and without overshoot;

5) when a discontinuous reference signal is applied (or the reference signal has

time derivatives larger than the bound values), the tracking is lost. As soon

as the reference signal newly satisfies (2.21), tracking is achieved in minimum

time;

6) the time derivativeṡx andẍ of the bounded output must be available for the

generation of feedforward actions.

Problem 4 is an optimal minimum-time tracking problem subject to bounded dy-

namic signals. As early anticipated, its optimal solution is based on a chain of two
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Figure 2.2: The optimal bounded-dynamics trajectory tracker.

integrators like that shown in Fig. 2.2, whose dynamic equation is

[
xk+1

ẋk+1

]
=

[
1 T

0 1

][
xk

ẋk

]
+

[
T2

2

T

]
uk , (2.22)

whereT is the system sampling time,(x, ẋ) is the internal state, whileu is the control

command of the integrator chain. Subscriptk indicates the sample number, so thatuk

represents the command signal at timetk = kT.

The integrators are driven by an algebraic discrete-time nonlinear controllerC

designed by means of variable structure control techniques[39]. In order to meet the

requirements imposed by Problem 4, the following control law C is proposed

C : uk :=

{
U−sat(σk) if σk≥ 0

−U+sat(σk) if σk < 0
(2.23)

σk := żk− ˙̃zk , (2.24)

whereżk and˙̃zk are evaluated by means of the following expressions

ż+ := − ẋ+− ṙk

TU−
, (2.25)

z+ := −dż+e
[
ż+− dż

+e−1
2

]
, (2.26)

ż− :=
ẋ−− ṙk

TU+
, (2.27)

z− := d−ż−e
[
−ż−− d−ż−e−1

2

]
, (2.28)
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[α β] :=





[U+ U−] if
yk

T
+

ẏk

2
> 0

[U− U+] if
yk

T
+

ẏk

2
≤ 0

, (2.29)

zk :=
1

Tα

∣∣∣∣
yk

T
+

ẏk

2

∣∣∣∣ , (2.30)

γk :=





z+ if zk < z+

zk if z+ ≤ zk ≤ z−

z− if zk > z−
, (2.31)

mk := Int

[
1+
√

1+8 |γk|
2

]
, (2.32)

˙̃zk :=− γk

mk
−mk−1

2
sgn(γk) , (2.33)

żk :=





ẏk

T |α| if

[
(zk ≥ 0 &

ẏk

T |α| ≤
˙̃zk)or (zk < 0 &

ẏk

T |α| ≥
˙̃zk)

]
;

ẏk

T |β| +
(

mk−1
2

+
|γk|
mk

)
α+ β
|β| otherwise,

(2.34)

and whererk is the sampled reference signal, ˙rk is the corresponding discrete-time

derivative,yk := xk− rk is the filter tracking error, ˙yk := ẋk− ṙk is the filter velocity

error. Functiond·e provides the upper integer part of its argument, while sat(·) satu-

rates its argument to±1. Signalsrk and ˙rk are assumed to be known. Moreover, ˙rk is

supposed to be piece-wise constant.

The filter behavior is summarized in the following with the help of Figs. 2.3

and 2.4. The interested reader can find the demonstrations ofthe filter convergence

properties in Section 2.5.

The aim of controllerC is to force the system state(y, ẏ) toward the origin of

the phase plane since this implies, according to the definition of y and ẏ, that a per-

fect tracking ofr is reached. This result must be achieved in minimum time and by

satisfying, if possible, the given constraints on the maximum velocity and accelera-

tion. To this purpose, any point in the(y, ẏ)-plane is transformed into an equivalent

one in the(z, ż)-space by means of (2.25)–(2.34). It is possible to verify that such

mapping is bijective and the origin of the two spaces coincides. As a consequence,

tracking is achieved if controllerC is able to force the state(z, ż) and, in turn,(y, ẏ)
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Figure 2.3: The (y, ẏ) phase plane.

toward the origin. The two constants ˙z+ and ż− represent the transformed values in

the (z, ż)-plane of velocity constraints ˙x+ andẋ−. Analogously, ˙y+ andẏ− represent

the transformed values in the(y, ẏ)-plane of the same constraints. Since the filter sta-

bility requires ż+ ∈ R
+ and ż− ∈ R

− (see Appendix 2.5), the following condition

must necessarily hold

ẋ− ≤ ṙ ≤ ẋ+. (2.35)

From a practical point of view, control law (2.23)–(2.34) creates a sliding surface

in the phase plane, whose equation, due to (2.24), is clearlygiven by (2.33). The slid-

ing surface has been planned such that it monotonically decreases whenz∈ [z+,z−],

while it becomes constant and equal to˙̃z= ż+ if z≤ z+ or ˙̃z= ż− if z≥ z−. Sliding

surface˙̃z is surrounded by a boundary layer (BL): if the filter state is outside such

BL, the command signal isu=U+ or u=U− otherwiseu lies in the range[U−,U+].

In this way, being ¨x= u, the constraint on the maximum acceleration is automatically

fulfilled.

Fig. 2.3 shows some system trajectories in the(y, ẏ)-plane by considering differ-

ent starting conditions, while Fig. 2.4 shows the same trajectories in the transformed
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Figure 2.4: The (z, ż) phase plane.

domain. From the two figures it is possible to deduce that the origin of the (z, ż)-

plane is reached in two steps: the system state is first driventoward ˙̃z, then it slides

along such surface by pointing to the origin. When outside the BL (regionR1), tran-

sients are obtained by applying the maximum command signal:the BL is reached

with certainty and in minimum time, as demonstrated in Section 2.5.2. Control lawC

guarantees that the BL cannot be crossed: as soon as the system state reaches region

R2, with a single step it is forced to the sliding surface and, then, it slides toward the

origin with command signalu = 0 (see Section 2.5.3). Finally,(z, ż) enters region

R3 and, again with a single step, it is forced to the frontier of the BL: the origin is

reached by applying the maximum command signal and with a deadbeat behavior

(see Appendix 2.5.4). Apart from the two single-step transients fromR1 to R2 and

from R2 to R3, the command signal is alwaysu∈ {U−,0,U+}, i.e., the controller has

a bang-zero-bang behavior.

From Figs. 2.3 and 2.4 it can be evinced that if the constrainton the maximum

velocity is violated, e.g., ˙z /∈ [ż−, ż+] for a sudden change of the given bounds, the

system is forced within the new bounds by applying the maximum control action,

i.e., in minimum time as required by point 3) of Problem 4.
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2.3 Comparison with the Dahl-Nielsen filter and

applicative issues

Several details diversify the approach proposed in [32] with the one here devised. The

first is particularly clear since in [32] explicit bounds on the joint velocities were not

considered. Another one is less evident but very important.In [32] the main emphasis

was posed on an accurate path tracking. The time law assumed for the motion along

the path was defined through a function ˙r(r), i.e., by associating a desired velocity

to each point along the path. An accurate path tracking can beachieved by means of

that method, but any time-delay caused by saturations cannot be recovered: as long

as saturations cease, the system automatically assume the velocity planned for the

current path position, so that time-delays accumulate along the trajectory, reducing

the robot productivity. The filter proposed in this work assumes a time law directly

defined in the time domain according to (2.2). Two advantagesdescend from this

choice. The first is that reference signalr(t) can be generated in a natural way by

means of standard planning methods. The second is that any delay accumulated due

to saturations is extinguished as soon as dynamic conditions will make it possible:

efficiency is preserved and, at the same time, a good path tracking is achieved.

Some remarks can be useful in order to adopt the filter for actual applications.

The first issue to be pointed-out is the same already highlighted in [32]. WhenU+

approachesU−, filter state(x, ẋ) is clearly moving toward the boundary of the AR.

This is clearly a dangerous situation since the limitednessof available dynamics –

remember that ¨x∈ [U−,U+] – makes it difficult to move away from the boundary of

the AR, so that tracking can easily be lost because torque constraints are violated.

In [32] the problem was solved by means of a dynamic filter usedto scale reference

trajectoryr(t) on the basis of the tracking error. Owing to the characteristics of the

filter here proposed, several solutions are possible, all ofthem based on an appropriate

reduction of ˙x+. For example, in the next section the value of ˙x+ obtained by means

of (2.20) is replaced bẏ̃x
+

where

˙̃x
+

:=

{
ẋ+ if min{U+,−U−} ≥U

Kẋ+ min{U+,−U−} if min{U+,−U−}< U
. (2.36)
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Table 2.1: Robot link inertial parameters

Link Mass Center of gravity Inertia Friction

q m(Kg) x(m) y(m) z(m) Ixx(Kg.m2) Iyy(Kg.m2) Izz(Kg.m2) B(N.s/rad)

d1 23.90 0 0 0.090 2.171 2.171 0.358 1.5e-3

d2 3.88 0 0 0.048 0.336 0.336 0.026 2.8e-3

If dynamic boundsU+ and−U− are sufficiently large, velocity bound ˙x+ is not

scaled, otherwise it is reduced in order to force(x, ẋ) toward the AR. ConstantK is

chosen such thatK min{U+,−U−} ≤ 1, whileU represents the activation threshold

of the scaling method.

The convergence properties of the filter are valid until the hypothesis (2.35) is

fulfilled. This condition cannot be guaranteed a priori since ẋ+ and ẋ− are continu-

ously modified. The solution to this problem is straightforward, since it is sufficient

to force ˙r between the assigned bounds: velocity tracking is lost, butthe filter remains

stable, so that the nominal referencer(t) is newly gained as soon as ˙r returns inside

the interval[ẋ− , ẋ+].

2.4 Simulation results

In order to show the effectiveness of the filter when applied to the path tracking

problem, a two-link planar robot has been considered. The manipulator dynamic pa-

rameters are defined according to Table 2.1.

The manipulator path is an ellipsoid represented by means ofa curve in the joint

space parametrized with respect to angleθ ∈ [0, 2π], i.e., Γ(θ) := [Γ1(θ) Γ2(θ)]T ,

where {
Γ1(θ) := 0.4(1−cos(θ))

Γ2(θ) := 0.8sin(θ)
.

The trajectory is completely defined once time-lawr(t) = θd(t) is assigned. Func-

tion θd(t) has been chosen such that it lies within the nominal AR, but, at the same
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time, it is too demanding with respect to the robot velocity constraints

r(t) = θd(t) :=





π
12t2, 0≤ t ≤ 2

π
3(t−1), 2≤ t ≤ 6
π
6(t +4), 6≤ t ≤ 8

. (2.37)

Correspondinġθd(t) can be obtained straightforward.

Simulations are carried out by considering joint velocities and torques constrained

between the following bounds:|q̇i | ≤ 0.65 s−1 and|τi | ≤ 15 N, i = 1,2. The feed-

back controller is a standard computed torque controller with feedback gains equal

to kp = [200 200]T andkv = [60 60]T .

Figure 2.5 shows what happens if (2.37) is directly applied to the robot torque

controller. In particular, Figures 2.5b-2.5c highlight that whenθ ' 2.5 rad, joint ve-

locity q̇2 reaches the maximum admissible value, so that trajectory tracking is lost.

After a few time alsoτ2 saturates and the situation worsens. The generated path is

shown in Figure 2.5a compared with the planned one: the maximum error is equal to

emax= maxθ∈[0,2π]{‖e‖}= 0.1619 m.

With the use of the proposed filter the situation neatly improves. Figs. 2.6c and

2.6d show that when ˙q2 saturates,τ2 decreases owing to the filter. As soon as ˙q2 exits

from the saturation condition,τ1 increases until it saturates: during this phase the

system is trying to eliminate the time-delay accumulated with respect toθd(t) due

to the trajectory scaling. This conclusion can also be evinced from Fig. 2.7b which

compares reference signalθd(t) with the actualθ(t): the time instant when tracking

is lost is clearly shown, as well as the moment when tracking is newly gained.

Figs. 2.6a and 2.6b compare currentθ̇(t) and θ̈(t) with the boundsU+,U−, ẋ+,

andẋ−, obtained by means of (2.19) and (2.20). The asymmetry ofU+,U− is clearly

shown and justifies the use of the proposed filter. Since all constraints are always

satisfied, a very accurate path tracking is achieved. Fig. 2.7a shows that path tracking

error reduces of several order of magnitude with respect to the previous case: in the

worst situation it is close to 1.816e-4 m. A further analysis of Figs. 2.6c and 2.6d

highlight another filter feature: until reference signalθd(t) lies inside the AR the

filter has a bypass behavior, while it starts working when saturations are touched. As

early mentioned, when the system saturates the tracking ofθd(t) is temporarily lost,
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Figure 2.5: Tracking performances of a standard torque controller due to joint veloc-

ity and torque saturations: (a) reference robot path (dashed line) compared with the

actual robot path (solid line); (b) joint torquesτ1 (solid line) andτ2 (dashed line); (c)

joint velocitiesq̇1 (solid line) and ˙q2 (dashed line).

but the system immediately starts trying to hung-upθd(t) in minimum time, as can

be noted by the bang-bang behavior shown in Figs. 2.6c and 2.6d: until θd(t) is not

reached there is always one active torque or velocity constraint.
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Figure 2.6: Simulation results using the nonlinear trajectory scaling filter: (a) longi-

tudinal velocity ẋ (solid line), online evaluated velocity bound ˙x+(dotted line) and

nominal AR (dashed line); (b) longitudinal acceleration ¨x (solid line) and online ac-

celeration boundsU+ andU− (dotted lines); (c) joint torquesτ1 (solid line) andτ2

(dashed line); (d) joint velocities ˙q1 (solid line) and ˙q2 (dashed line).
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2.5 Stability proofs

In the following, the stability of the proposed filter is proved. Simultaneously, some

relevant properties of the same filter are highlighted. The discussion reported here-

after will analyze a system evolution starting from a point(z, ż) located in the left

plane of the(z, ż)-space, i.e. such thatz≤ 0. An analogous discussion holds when

z> 0: the corresponding demonstrations are omitted for conciseness.

2.5.1 General properties

It is easy to verify that, whenz≤ 0, (2.29) returns[α β] := [U−U+], so that equations

(2.30)–(2.34) simplify as follows

zk :=− 1
TU−

(
yk

T
+

ẏk

2

)
, (2.38)
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γk :=

{
z+ if zk < z+

zk if z+ ≤ zk ≤ 0
, (2.39)

mk := Int

[
1+
√

1−8γk

2

]
, (2.40)

˙̃zk :=− γk

mk
−mk−1

2
sgn(zk) , (2.41)

żk :=





− ẏk

TU−
if

(
− ẏk

TU−
≥ ˙̃zk

)

ẏk

T U+
+

(
mk−1

2
− γk

mk

)
U+ +U−

U+
if

(
− ẏk

TU−
< ˙̃zk

) (2.42)

The following two properties have general validity and willbe used in the last

part of the section to prove the system stability.

Property 1 For any point(zk, żk) lying inside the BL the filter command signal is

given by

uk := − ẏk

T
+

(
γk

mk
−mk−1

2

)
U− . (2.43)

Proof.Potentially, two different control laws could apply insidethe BL due to (2.42).

Let us analyze the switching condition which appears in (2.42) and suppose that

− ẏk

TU−
= ˙̃zk . (2.44)

According to (2.42) it immediately follows that ˙zk = − ẏk
TU− = ˙̃zk, so that, due to

(2.24), it is possible to conclude that, when (2.44) holds, the considered point is lying

on the sliding surface. Practically, (2.42) define two alternative mappings that can be

used depending on the position of the considered point with respect to the sliding

surface.

Now hypothesize that− ẏk
TU− < ˙̃zk, and, equivalently, thatσk < 0. Since(zk, żk) is

located inside the BL but below the sliding surface, it is possible to write

uk =−U+σk =−U+(żk− ˙̃zk) .

Equation (2.43) is easily obtained after few algebraic manipulations by means of

(2.41) and (2.42).
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Similarly, when− ẏk
TU− ≥ ˙̃zk or, equivalently, whenσk ≥ 0, the control law be-

comes

uk = U−σk = U−(żk− ˙̃zk) .

Also in this case, (2.43) is immediately obtained by considering (2.41) and (2.42).

Property 2 Given any point(zk, żk) lying within the BL, controller C generates a

new point such that

zk+1 = zk + ˙̃zk . (2.45)

Moreover, the following condition holds

sgn(zk) = sgn(zk+1) . (2.46)

Proof.Being ṙk piece-wise constant, and assuming that

ṙk =
rk+1− rk

T
,

the discrete-time evolution (2.22) is converted into an equivalent one in the(y, ẏ)-

plane defined as follows
[

yk+1

ẏk+1

]
=

[
1 T

0 1

][
yk

ẏk

]
+

[
T2

2

T

]
uk . (2.47)

By applying command signal (2.43), system (2.47) evolves inthe(y, ẏ)-space as fol-

lows

ẏk+1 =

(
γk

mk
−mk−1

2

)
TU− (2.48)

yk+1 = yk +
T
2

ẏk +
T2

2

(
γk

mk
−mk−1

2

)
U− (2.49)

By considering (2.38), (2.48), and (2.49), it is suddenly possible to write

zk+1 =− 1
T U−

(
yk+1

T
+

ẏk+1

2

)
=− 1

T U−

(
yk

T
+

ẏk

2

)
+

mk−1
2
− γk

mk
(2.50)

or, newly due to (2.38),

zk+1 = zk +
mk (mk−1)−2γk

2mk
. (2.51)
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From (2.40) it descends that, whenzk ≤ 0, the following inequality is verified

zk ≤ γk ≤−mk +1 , (2.52)

so that (2.51) implies

zk+1 ≤
(mk−1)(2−mk)

2mk
. (2.53)

Due to definition (2.40) we have thatmk ∈N\0. As a consequence, it is possible

to deduce form (2.53) thatzk+1 ≤ 0, thus (2.46) holds.

Equation (2.45) immediately descends from (2.50) by considering (2.38) and

(2.41). Property 2 practically asserts that any point within the BL cannot abandon

the left planez≤ 0. Properties 1 and 2 generically apply to any point within the BL.

2.5.2 Behavior inside regionR1

Proposition 1 Given any starting point(z, ż) lying inside region R1, the BL which

surrounds sliding surfacė̃z is reached in minimum time and in a finite number of

steps.

Proof.The proof is straightforward since from (2.23) and (2.24) itdescends that

above the sliding surfaceuk =U−, while belowuk =U+. Due to (2.47), it is possible

to conclude that ˙y monotonically decreases above˙̃z while it monotonically increases

below ˙̃z: owing to the shape of the sliding surface regionR2 or, alternatively, re-

gion R3 are certainly reached after a finite number of steps (see also Fig. 2.3).

2.5.3 Behavior inside regionR2

Proposition 2 Given any point(zk, żk) lying within the BL and with zk < z+, con-

troller C generates a command signal such that the system evolves as follows
[

zk+1

żk+1

]
=

[
1 0

0 0

][
zk

żk

]
+

[
ż+

ż+

]
. (2.54)

Proof.Sincezk < z+, due to (2.39) we can writeγk = z+, so that (2.40) and (2.41)

become constant and can be rewritten as follows

m+ := Int

[
1+
√

1−8z+

2

]
, (2.55)



2.5. Stability proofs 49

˙̃zk := − z+

m+
+

m+−1
2

. (2.56)

Due to (2.48) and (2.56) it is possible to write

− ẏk+1

TU−
=

m+−1
2
− z+

m+
= ˙̃zk . (2.57)

It was early anticipated that the sliding surface has been designed such that̃̇z= ż+

whenz< z+, so that from (2.57) it descends

− ẏk+1

TU−
= ż+ . (2.58)

Owing to the shape of the sliding surface (see also Fig. 2.4),it is possible to assert

that, in any case,̃̇zk+1≤ ż+. Thus, from (2.58) it follows

− ẏk+1

TU−
≥ ˙̃zk+1 . (2.59)

Equation (2.59) indicates that ˙zk+1 must be evaluated according to (2.42) and, conse-

quently, bearing in mind (2.58), we finally obtain, as desired,

żk+1 =− ẏk+1

TU−
= ż+ . (2.60)

The expression forzk+1 is obtained straightforward by means of (2.45) and taking

into account that̃̇zk = ż+.

Remark 2 Equation (2.54), implies that when the system state enters into the BL and

z< z+, ż is forced to the sliding surfacėz+ with a single step and there it remains.

Moreover, beingż+ ≥ 0, coordinate z increases, i.e., the state slides to the right.

Necessarily, after a finite number of steps it reaches regionR3.

2.5.4 Behavior inside regionR3

It is clear that, after a finite number of steps, the system reaches the BL of the region

z+ ≤ z≤ 0 directly fromR1 or, alternatively, fromR2. The following discussion is

devoted to demonstrate that the system state cannot abandonthe BL and it must move

toward the origin of the(z, ż)-space.

Due to (2.39), we can assumeγk = zk whenz+ ≤ z≤ 0.
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Property 3 Assume that at step k system state(zk, żk) is lying within the BL, with

z+ ≤ zk ≤ 0 and it is characterized by mk. The new state(zk+1, żk+1) generated by

controller C satisfies the following equality

mk+1 = mk−1 .

Proof. It is possible to rearrange (2.51) as follows

zk+1 = (mk−1)

(
zk

mk
+

1
2

)
. (2.61)

It is worth noting that (2.40) induces a partition along thez-axis. In particular, owing
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Figure 2.8: Phase-plane in the(z, ż)-plane: details in the vicinity of the origin. Circled

numbers indicate the corresponding value ofm.

to (2.40), associated with anym∈N\0 there is an intervalSm in zdefined as follows

(see also Fig. 2.8)

Sm :=

{
z :−(m+1)m

2
< z≤−m(m−1)

2

}
. (2.62)

Now hypothesize that currentzk is contained inSmk, i.e.,zk ∈Smk. According to (2.62)

it is possible to write

−(mk +1)mk

2
< zk ≤−

mk(mk−1)

2
. (2.63)
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By taking into account (2.61) it is possible rewrite (2.63) as follows

−(mk +1)mk

2
<

(
zk+1

mk−1
− 1

2

)
mk≤−

mk(mk−1)

2
, (2.64)

or, equivalently, as

−mk(mk−1)

2
< zk+1≤−

(mk−2)(mk−1)

2
. (2.65)

Now define

mk+1 := mk−1 (2.66)

so that (2.65) can be posed into the form

−(mk+1 +1)mk+1

2
< zk+1≤−

mk+1(mk+1−1)

2
. (2.67)

By comparing (2.67) with (2.62) it is immediately possible to conclude that

zk+1 ∈ Smk+1, wheremk+1 is defined by (2.66).

Property 4 Given any point(zk, żk) lying within the BL, with z+ ≤ zk ≤ 0, the new

point (zk+1, żk+1) generated by controller C is located on the upper frontier ofthe BL.

Proof. Due toProperties 2and3, it is possible to assert thatzk < zk+1 ≤ 0, so that

the position of the sliding surface corresponding tozk+1 can be certainly written,

according to (2.41), as follows

˙̃zk+1 = − zk+1

mk+1
+

mk+1−1
2

= − zk+1

mk−1
+

mk−2
2

,

or, due to (2.61),

˙̃zk+1 =− zk

mk
+

mk−3
2

. (2.68)

Bearing in mind (2.48), it is possible to assert that

− ẏk+1

TU−
=− zk

mk
+

mk−1
2

. (2.69)



52 Chapter 2. Online trajectory scaling: torque and velocity constraints

By comparing (2.68) with (2.69) it is possible to conclude that żk+1 must be eval-

uated by means of (2.42) since the new point is located above the sliding surface.

Consequently

żk+1 =− zk

mk
+

mk−1
2

. (2.70)

The position of the new point with respect to the sliding surface is

σk+1 = żk+1− ˙̃zk+1 = 1 , (2.71)

i.e., it exactly lies on the upper frontier of the BL.

The previous properties are used in the following to prove the stability of the filter

controller.

Proposition 3 Given any starting point(zk, żk) lying within the BL, with z+ ≤ zk ≤
0, controller C forces the system trajectory toward the origin of the(z, ż)-plane in

minimum time and with a deadbeat dynamics.

Proof.According to (2.61) and (2.70), the system evolution only depends on the

currentzk andmk. Owing to Property 3,m decreases at each step until it reaches the

value m = 1. When it happens, owing to (2.61) and (2.70) we havezk+1 = 0 and

żk+1 =−zk. It is easy to verify by means of (2.40) thatmk+1 will be still equal to one,

so that at the next step (2.61) and (2.70) returnzk+2 = 0 andżk+2 = 0: the origin of the

(z, ż)-plane is reached with a deadbeat behavior. The system cannot leave the origin

during the next sampling times. It is important to note that,due to Property 4, once

the system reaches the BL it is forced in a single step toward the frontier of the BL

itself. The same Property 4 makes it possible to assert that during the subsequent steps

the system does not abandon such frontier, so that the evolution toward the origin is

obtained by applying the maximum control commanduk = U−, i.e., in minimum

time.



CHAPTER 3

Online trajectory scaling for robotic manipulators subject to

generalized forces constraints

If everything seems under control,

you’re just not going fast enough.

Mario Andretti

The online path tracking control for robotic manipulators subject to velocity

and torque constraints has been devised in the previous chapter, where a non-

linear control is used to push toward the origin in minimum-time the tracking

error and its first order derivative. In this chapter the previous geometrical ideas are

extended to take into account also for torque derivative constraints. Indeed, it is well

known that high torques derivatives cause high mechanical stresses and solicit the

manipulators unmodelled dynamics, thus decreasing the controller effectiveness: real

actuators can only generate limited torque variations, so that path tracking is lost with

certainty every time torque derivatives exceed the given limits.
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In the first part of the chapter the same controller previously proposed is used at

the purpose. Since the controller is of order two, only torque-derivatives and torque

constraints are online managed. Therefore, no restrictions are imposed on the robot

joint velocities, assuming they are fulfilled by an offline optimization algorithm. Part

of the obtained results have been presented in [40].

Finally, the control problem of a chain of three integrator is introduced in order

to simultaneously account for torque, torque derivative and velocities constraints.

3.1 Problem formulation

As for the control problem considered in the previous chapter, the solution here pro-

posed is based on the so called path-velocity decomposition[20]: a robot trajectory

is obtained by first planning a path to be followed and, then, by generating a velocity

profile to move along such path. Paths can be indifferently planned in the task space

or in the joint space. For this reason and without any loss of generality, let us define

a parametric curve in the joint space by means of a vector function Γ(x) and a mono-

tonically increasing time lawx(t) according to definition (2.1) and (2.2) respectively.

Consider a serial link rigid-body manipulator, whose standard dynamic is de-

scribed in (2.6) subject to dynamic and kinematic constraints. More precisely, max-

imum admissible torques are bounded, so that it is still possible to write inequalities

(2.7). Analogously, maximum joint torque-derivatives arebounded, i.e

τ̇k ≤ τ̇k ≤ τ̇k, k = 1,2, . . . ,n , (3.1)

whereτ̇k andτ̇k represent the lower and upper bounds on thek-th joint torque deriva-

tive.

In order to verify the feasibility of the trajectory with respect to (3.1), an analyti-

cal representation oḟτ is required. It can be obtained differentiating (2.6) with respect

to time, obtaining for each robot jointk = 1,2, . . . ,n

τ̇k =
n

∑
j=1

n

∑
i=1

∂hk j(q)

∂qi
q̇i q̈ j +

n

∑
j=1

hk j(q)
...
q j +

n

∑
j=1

n

∑
i=1

n

∑
l=1

∂ci jk(q)

∂ql
q̇l q̇i q̇ j +

n

∑
j=1

∂gk(q)

∂q j
q̇ j +

2
n

∑
j=1

n

∑
i=1

ci jk(q) q̇i q̈ j +
n

∑
j=1

∂ fk(q, q̇)

∂q j
q̇ j +

n

∑
j=1

∂ fk(q, q̇)

∂q̇ j
q̈ j . (3.2)
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By defining

ḣk j(q, q̇) :=
n

∑
i=1

∂hk j(q)

∂qi
q̇i ,

dk j(q, q̇) :=
n

∑
i=1

n

∑
l=1

∂ci jk(q)

∂ql
q̇l q̇i ,

bk j(q, q̇) :=
∂gk(q)

∂q j
+

∂ fk(q, q̇)

∂q j
,

ek j(q, q̇) :=
∂ fk(q, q̇)

∂q̇ j
,

equation (3.2) is synthetically rewritten as follows

τ̇k =
n

∑
j=1

ḣk j(q, q̇) q̈ j +
n

∑
j=1

hk j(q)
...
q j +

n

∑
j=1

dk j(q, q̇) q̇ j +

2
n

∑
j=1

ck j(q, q̇) q̈ j +
n

∑
j=1

bk j(q, q̇) q̇ j +
n

∑
j=1

ek j(q, q̇) q̈ j . (3.3)

Finally, the following matrix form can be obtained from (3.3)

τ̇ = Ḣ(q, q̇) q̈+H(q)
...
q +D(q, q̇) q̇+2C(q, q̇) q̈+B(q, q̇) q̇+E(q, q̇) q̈ . (3.4)

The first two terms represent the component of the generalized force derivative which

are due to the system inertia. In the same way, the second two terms are due to the

Coriolis and centripetal components, while the last two refer to the gravity and fric-

tion effects. Owing to (2.7) and (3.1) the following tracking problem can be defined

Problem 5 Given a manipulator described by (2.6) and a desired trajectory (2.1),

(2.2), design a control law to achieve the best possible tracking compatibly with

torque constraints (2.7) and torque derivative constraints (3.1).

The following question immediately arises: given a trajectory qd := Γ(x(t)), is it

possible to verify its feasibility with respect to (2.7) and(3.1)?

By taking into account the chain differentiation rule, the trajectory time deriva-

tives till the third order are

q̇d = Γ
′
(x)ẋ , (3.5)

q̈d = Γ
′′
(x)ẋ2 + Γ

′
(x)ẍ , (3.6)

...
qd = Γ

′′′
(x)ẋ3 +3Γ

′′
(x)ẋẍ+ Γ

′
(x)

...
x . (3.7)



56 Chapter 3. Online trajectory scaling: generalized forceconstraints

where superscript
′

indicates a differentiation with respect tox, e.g.,Γ(x)
′
= dΓ(x)

dx ,

while, as usual, dots indicate time derivatives, e.g., ˙x(t) = dx(t)
dt .

Due to (3.5)–(3.7), equations (2.6) and (3.4) can be expressed in function ofx and

its derivatives

τ(x, ẋ, ẍ) = b1(x)ẍ+b2(x, ẋ) (3.8)

τ̇(x, ẋ, ẍ, ...x) = c1(x)
...
x +c2(x, ẋ, ẍ) (3.9)

whereb1(x) := [b1,1 b1,2 · · · b1,n]
T ∈R

n andb2(x, ẋ) := [b2,1 b2,2 · · · b2,n]
T ∈ R

n are

defined according to (2.12) and (2.13) respectively, while

c1(x) := H(Γ(x))Γ
′
(x) (3.10)

c2(x, ẋ, ẍ) := Ḣ(Γ(x),Γ
′
(x)ẋ) [Γ

′′
(x)ẋ2 + Γ

′
(x)ẍ]+

H(Γ(x)) [Γ
′′′
(x)ẋ3 +3Γ

′′
(x)ẋẍ]+D(Γ(x),Γ

′
(x)ẋ)Γ

′
(x)ẋ+

2C(Γ(x),Γ
′
(x)ẋ) [Γ

′′
(x)ẋ2 + Γ

′
(x)ẍ]+B(Γ(x),Γ

′
(x)ẋ)Γ

′
(x)ẋ+

E(Γ(x),Γ
′
(x)ẋ) [Γ

′′
(x)ẋ2 + Γ

′
(x)ẍ]. (3.11)

beingc1(x) := [c1,1 c1,2 · · · c1,n]
T ∈ R

n andc2(x, ẋ, ẍ) := [c2,1 c2,2 · · · c2,n]
T ∈R

n.

By means of (3.8), (3.9), constraints (2.7) and (3.1) can be used to check the

feasibility of a given trajectory: for each jointk= 1,2, . . . ,n the following inequalities

must be satisfied

τk ≤ b1,k(x)ẍ+b2,k(x, ẋ)≤ τk , (3.12)

τ̇k ≤ c1,k(x)
...
x +c2,k(x, ẋ, ẍ)≤ τ̇k . (3.13)

Assignedτk andτk, it is possible to verify, for any pairx, ẋ, if there exists at least

one value ¨x which fulfills (2.14): in this way a region in the plane (x, ẋ), where at

least one feasible solution exists, can be found (see, e.g.,the area delimited by the

continuous line in Fig. 3.1). Analogously, assignedτ̇k andτ̇k, it is possible to verify,

for any tripletx, ẋ, and ẍ, if there exists at least one value
...
x which fulfills (3.13):

in this way it is possible to find a volumeA , an admissible region AR, in the space

(x, ẋ, ẍ) where a feasible solution is defined (see, e.g., the volume delimited by the

two surfaces in Fig. 3.1).
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Figure 3.1: An example of the ARA corresponding to the manipulator proposed in

Section 3.6

Definition 1 Given a curveΓ(x) and a time law x(t), the resulting trajectory is fea-

sible if and only if triplet(x(t), ẋ(t), ẍ(t)) belongs toA for any t∈ [0, t f ].

As already remarked in Chapter 2, independently from the adopted controller, tra-

jectory tracking is lost any time a non-feasible trajectoryis planned. This can mainly

happen for two reasons. In the first scenario the trajectory is planned by optimizing

a performance index. For example, it is very common to plan time optimal trajecto-

ries which minimize the robot traveling time. The resultingtrajectory has bang-bang

characteristics, that is, there is always at least one robotjoint working at its dynamic

limits. This corresponds to a point(x(t), ẋ(t), ẍ(t)) which is constantly moving along

the boundary surfaces of regionA . Due to model uncertainties or external distur-

bances, the point could abandon the feasible area, so that trajectory tracking is lost.

Lost of tracking can also arise when the trajectory is programmed by an operator.

Normally, in this case dynamic constraints are not considered during the planning,

thus the resulting trajectory could be unfeasible.

When path tracking is a priority, online trajectory scalingalgorithms are able to

overcome these issues. A sketch of the proposed control strategy is given in Fig. 3.2.

The manipulator is driven by a torque controller whose output signals are saturated
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Figure 3.2: Proposed trajectory control scheme

both in amplitude and slew rate. Any standard torque controller can be used at the

purpose since it can be parametrized with respect to a scalarvalue x by means of

(3.5)–(3.7). In the following sections, two of the most usedfeedback controller are

considered: the Feedforward Controller with Position and Velocity feedback (FCPV)

and the Inverse Dynamics Controller (IDC). The same torque controller evaluates,

depending on the current status of motion, appropriate bounds on the longitudinal ac-

celeration and jerk in order to fulfill the dynamic constraints on the maximum torque

and torque derivative. The velocity scaling filter modifies the reference trajectory in

order to satisfy such bounds.

3.2 FCPV controller parametrization

In this section, the parametrization with respect to the scalar valuex is obtained for a

feedforward controller with position and velocity feedback. In Chapter 2, the standard

formulation of the controller has been recalled in (2.16), while its torque parametriza-

tion has been already presented in (2.17).

It is worth recalling that the two vectorsb1(x) := [b1,1 b1,2 · · · b1,n]
T andb̃2(x, ẋ) :=

[b̃2,1 b̃2,2 · · · b̃2,n]
T are evaluated at each iteration of the control algorithm on the ba-

sis of the reference position along the pathx(t) and the tracking errore. Typically,

an efficient iterative Newton-Euler algorithm [41] is used to this purpose. Vectors

b1(x) andb̃2(x, ẋ) are used for the online evaluation of the admissible bounds on the
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longitudinal acceleration according to the technique proposed in [32], which yield to

condition (2.19).

In this chapter the control strategy is improved by considering the boundedness

of the torque derivatives. By means of (3.5)–(3.7) its parametric form is given by

τ̇(x, ẋ, ẍ, ...x , q̇, q̈) = c1(x)
...
x + c̃2(x, ẋ, ẍ) (3.14)

wherec1(x) is defined according to (3.10), while

c̃2(x, ẋ, ẍ, q̇, q̈) := c2(x, ẋ, ẍ)+kT
pė+kT

v ë . (3.15)

with c2(x, ẋ, ẍ) defined by (3.11).

In order to avoid huge online computations, the two termsc1(x) := [c1,1 c1,2 · · · c1,n]
T ∈

R
n andc̃2(x, ẋ, ẍ) := [c̃2,1 c̃2,2 · · · c̃2,n]

T ∈R
n are evaluated by means of the extended

iterative Newton-Euler algorithm recently proposed in [42], which returns the ma-

nipulator generalized forces. The additional computational burden needed for their

evaluation is comparable with the one required forb1(x) andb2(x, ẋ,q, q̇): the result-

ing overall procedure is therefore suitable to be used online.

3.3 IDC controller parametrization

In this section, the parametrization with respect to the scalar valuex is obtained for

an inverse dynamic controller whose equation, according to[38], is given as follows

τ = H(q) q̈d +C(q, q̇)q̇+g(q)+ f(q, q̇)+kT
p e+kT

v ė . (3.16)

As previously,e := qd−q andė := q̇d− q̇ respectively represent the tracking errors

and their first derivatives whilekp ∈ R
n and kv ∈ R

n are the gain vectors of the

feedback action. Differently from the FCPV controller (2.16), the sole dependence

on the desired trajectory,̈qd, is related to the inertial effects; the other terms depend

on the manipulator current status of motion,q, q̇. A detailed analysis, regarding the

converge properties of the controller (3.16), can be found in [38].

The controller equation can be reparametrized by means of (3.6) in the form

τ(u, u̇, ü;q, q̇) = b1(u;q)ü+ b̃2(u, u̇;q, q̇) , (3.17)
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where, this time,

b1(u;q) := H(q) f
′
(u) , (3.18)

b̃2(u, u̇;q, q̇) := H(q) f
′′
(u)u̇2 +C(q, q̇)q̇+g(q)+ f(q, q̇)+kT

p e+kT
v ė .(3.19)

Analogously, differentiating (3.16) with respect to time and by using (3.6) and

(3.7), the following parametric representation of the torque derivative can be found

τ̇ = c1(u;q)
...
u + c̃2(u, u̇, ü;q, q̇, q̈) , (3.20)

where

c1(u;q) := H(q) f
′
(u) , (3.21)

c̃2(u, u̇, ü;q, q̇, q̈) := Ḣ(q, q̇) [f
′′
(u)u̇2 + f

′
(u)ü]+H(q) [f

′′′
(u)u̇3 +3f

′′
(u)u̇ü]

+D(q, q̇) q̇+2C(q, q̇) q̈+B(q, q̇) q̇

+E(q, q̇) q̈+kT
p ė+kT

v ë . (3.22)

Termc1(u;q) is already known since it coincides with (3.18), while the evaluation

of c̃2(u, u̇, ü;q, q̇, q̈) is not straightforward. Equation (3.22) reveals it is possible to

computẽc2(u, u̇, ü;q, q̇, q̈) only if the derivative of the inertia matrix, i.e.,̇H(q, q̇), is

available. To this purpose, a method for the online evaluation of Ḣ(q, q̇) is proposed.

Such method is general and therefore can be also used in scenarios different from the

one here considered.

3.3.1 Evaluation of the inertia matrix derivative

The proposed solution evaluates the coefficient ofḢ(q, q̇) with a two step algorithm.

In the first step, termsck j(q, q̇) of the Coriolis/centripetal matrixC(q, q̇) are com-

puted, then the second step devisesḣk j(q, q̇) of Ḣ(q, q̇).

Let us indicate the unit vectors of a standard orthonormal base asej ∈ R
n, j =

1,2, . . . ,n: only the j-th component ofej is equal to one while the other terms are

null. In the following, friction and gravity coefficients are always set equal to zero,
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so that (2.3) and (3.2) simplify as follows

τk =
n

∑
j=1

hk j(q) q̈ j +
n

∑
j=1

n

∑
i=1

ci jk(q) q̇i q̇ j , (3.23)

τ̇k =
n

∑
j=1

ḣk j(q, q̇)q̈ j +
n

∑
j=1

hk j(q)
...
q j +

n

∑
j=1

dk j(q, q̇)q̇ j +2
n

∑
j=1

ck j(q, q̇)q̈ j .(3.24)

As a first step, the Newton-Euler algorithm is invokedn times with q̈ = 0, q̇ =

ej ; j = 1,2, . . . ,n. From (3.23) it can be immediately evinced that, under thesecondi-

tions, the recursive algorithm returns all the Christoffelsymbols which have the same

first two indexes, i.e.,

yk j := τk j = c j jk(q) . (3.25)

Subsequently, the inverse dynamics is newly evaluated withq̈ = 0, q̇ = ej +

ei ; i, j = 1,2, . . . ,n; i 6= j. This time its output is

ỹi jk := τi jk = c j jk(q)+c jik(q)+ci jk(q)+ciik(q) . (3.26)

Sincec jik(q) = ci jk(q), and remembering that termsc j jk(q) = yk j have already been

computed, rearranging equation (3.26) it holds that

ci jk(q) =
ỹi jk(q)−yk j(q)−yki(q)

2
. (3.27)

Once all Christoffel symbolsc j jk(q) have been evaluated, elementsck j(q, q̇) of

matrix C(q, q̇) are computed by means of (2.5).

The second step of the procedure is based on the use of the extended Newton-

Euler algorithm [42]. If we assume
...
q = 0, q̈ = ej ; j = 1,2, . . . ,n, it is possible to

evince from (3.24) that the algorithm returns

wk j(q, q̇) := τ̇k = ḣk j(q, q̇)+2ck j(q, q̇)+
n

∑
j=1

dk j(q, q̇) q̇ j . (3.28)

Analogously, by assuming
...
q = 0, q̈ = 0, from (3.24) it is possible to evince that

w̃k j(q, q̇) := τ̇k =
n

∑
j=1

dk j(q, q̇) q̇ j . (3.29)

By rearranging (3.28) and considering (3.29), we finally obtain the components of

matrix H(q, q̇)

ḣk j(q, q̇) = wk j(q, q̇)− w̃k j(q, q̇)−2ck j(q, q̇) . (3.30)
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3.4 Online bounds evaluation

To satisfy condition (3.1), independently from the adoptedcontroller, it is necessary

to impose

τ̇i ≤ c1,i
...
x + c̃2,i ≤ τ̇i , i = 1,2, . . . ,n . (3.31)

Evidently,
...
x is feasible if

...
x ∈

n⋂

i=1

[δi ,γi ], with

γi =





τ̇i−c̃2,i

c1,i
, if c1,i > 0

τ̇i−c̃2,i

c1,i
, if c1,i < 0

∞, if c1,i = 0

and δi =





τ̇i−c̃2,i

c1,i
, if c1,i > 0

τ̇i−c̃2,i

c1,i
, if c1,i < 0

−∞, if c1,i = 0

(3.32)

or, equivalently, if
...
x ∈ [S− ,S+] where

S+ := min
i=1,...,n

{γi} , S− := max
i=1,...,n

{δi} . (3.33)

As for condition (2.19), also in this caseS+ > S− only if triplet (x, ẋ, ẍ) is feasible,

otherwise there does not exist any solution which fulfills the torque derivative con-

straints.

It is worth remarking again thatS+, S−, U+, andU− are evaluated by simulta-

neously considering the manipulator dynamics and the feedback controller actions.

This means that feasible volumeA is online reshaped to account for any deed of the

feedback controller.

Moreover, the described version of the filter does not managevelocity constraints,

so that they are indirectly considered during the planning phase by designing velocity

profiles compatible with the maximum admissible joint velocities.

3.5 Online trajectory scaling

Bounds on longitudinal jerk (3.33) and acceleration (2.19)are used to online scale

the robot trajectory. To this purpose, the trajectory scaling filter shown in Fig. 3.3 has

been developed. The filter behavior is the same of the one extensively described in

Chapter 2. Practically, the filter output ˙x(t) exactly coincides with ˙xd(t) only if the
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Figure 3.3: Block diagram of the nonlinear filter used for thetrajectory scaling.

assigned bounds are fulfilled, i.e., if ¨xd ∈ [U−,U+] and
...
xd ∈ [S−,S+], while tracking

is voluntarily lost every time such bounds are violated. In this case a new velocity

profile ẋ, which satisfies the given constraints, is generated. The dynamic filter is

designed such that ˙x robustly converges in minimum time toward ˙xd as soon as ˙xd

newly fulfills the dynamic constraints.

The output of the variable-structure controller is evaluated according to the dis-

crete time law presented in Section 2.2, where all the derivative signals related tox

and its transformed values in thez-plane are augmented of one order. In this way, the

filter is used to regulate the tracking error on jerk and acceleration, while the scalar

feedbackx is obtained as the outcome of the chain of the three discrete integrators

depicted in Figure 3.3 whose state-space representation isequal to




xk+1

ẋk+1

ẍk+1


= A




xk

ẋk

ẍk


+b

...
xk =




1 T T2

2

0 1 T

0 0 1







xk

ẋk

ẍk


+




T3

6
T2

2

T


 ...

xk , (3.34)

whereT is the sampling time and subscriptk represents the current data sample.

3.6 Simulation results on a planar PP robot

The trajectory controller has been evaluated considering the same two link planar ma-

nipulator introduced in Section 2.4, whose dynamic parameters are defined according

to Table 2.1, moved along an assigned ellipsoid path parametrized in the joint space.
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The following nominal velocity profile has been assumed

ẋd(x) =





−K1(x−a)2 +K2, 0≤ x≤ a

4a, a≤ x≤ b

2a, b≤ x≤ 2b

−K3(x−c)2 +K4, 2b≤ x≤ c

3a, otherwise,

(3.35)

wherea = 0.5, b = 1.8, c = 3.9 andK1 = 7.6, K2 = 2, K3 = 5.56 andK4 = 1.5.

The corresponding nominal acceleration can easily be computed by considering the

differentiation chain rule

ẍd(x) =
dẋd(x)

dt
=

dẋd(x)
dx

ẋd(x). (3.36)

Clearly ẋd(x) is too demanding with respect to the dynamic constraints. Indeed, at

x = b, an infinite acceleration is required, so that such profile could only be tracked

if an infinite torque is available.

The torque controller used for the evaluation is the FCPV, whose gains arekp =

[200 200]T andkv = [60 60]T respectively. The path tracking performance has been

firstly analyzed by assuming a perfect knowledge of the robotmodel and, subse-

quently, considering a perturbed system. In both cases, torques and torque deriva-

tives have been constrained between the following bounds:|τk| ≤ 30 N and |τ̇k| ≤
350N s−1, k = 1,2.

3.6.1 Perfect knowledge of the manipulator model

In the first example the manipulator model is supposed to be completely known, so

that control law (2.17) is implemented. The control improvements due to the time

scaling filter are highlighted by considering three different scenarios:

Case1 - the filter is disabled and reference velocity (3.35) and acceleration (3.36) are

directly used to drive the manipulator controller (dotted lines);

Case2 - the time scaling filter is activated but only to account fortorque constraints

(2.7) (dashed lines), thus mimicking [32] where jerk boundswere not consid-

ered;
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Figure 3.4: Exact model knowledge: (a) actual reference velocities; (b) and (c) track-

ing errors for the two joints. Dotted lines refer toCase1, dashed lines refer toCase

2, while continuous lines refer toCase3.

Case3 - the filter is fully activated to simultaneously fulfill (2.7) and (3.1) (continuous

lines).

Since (3.35) and (3.36) are not feasible, i.e., the nominal trajectory does not always

belong to regionA , path tracking is evidently lost when the scaling strategy is not

used. This conclusion is immediately confirmed by Fig. 3.5, where the robot path is

plotted using a dotted line. As expected, tracking errors drastically reduce if the time

scaling filter is activated. More precisely, from Fig. 3.4, errors detected forCase2

are almost one order of magnitude smaller than those obtained for Case1. Fig. 3.4

also demonstrates that, when the proposed filter is used to account for (2.7) and (3.1)

(Case3), maximum tracking errors reduce of almost two orders of magnitude with
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Figure 3.5: Exact model knowledge: dotted line refers toCase1, dashed line toCase

2, while continuous line refers toCase3. The reference path is perfectly shadowed

by the path obtained by means of the time scaling filter.

respect toCase1, yielding toemax = maxx∈[0,2π]{‖q(x)− f(x)‖} = 6.012· 10−4 m

whereq(x) = (q1,q2) is the actual path followed by the manipulator whilef(x) is the

desired path. Pathsq(x) obtained for the three cases are shown in Fig. 3.5.

Fig. 3.6 specifically refers toCase3. More precisely, Fig. 3.6a and Fig. 3.6b

respectively show the real time evaluated bounds on ¨x and
...
x (dotted lines) compared

with the actual manipulator longitudinal accelerations and jerks (continuous lines):

constraints are evidently active in several points along the path. Finally, Fig. 3.6c and

3.6d, respectively show the controller output torques and torque derivatives: dynamic

constraints are always fulfilled despite any interference of the feedback controller.

3.6.2 Approximate knowledge of the manipulator model

The behavior of the control scheme has also been verified whenonly a partial and

wrong knowledge of the robot model is available. The following controller, based on

an insufficient dynamics knowledge, is assumed

τ(x, ẋ, ẍ,q, q̇) = Ĥ(Γ(x))[Γ
′′
(x)ẋ2 + Γ

′
(x)ẍ]+kT

pe+kT
v ė (3.37)

whereĤ(·) denotes an estimated inertia matrix obtained by perturbingthe coefficients

of nominalH(·) by the 5%. In practice, the robot is considered as a pure inertial sys-
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Figure 3.6: Simulation results when the time scaling filter is used: (a) longitudinal

acceleration (continuous line) and acceleration bounds (dotted lines); (b) longitudinal

jerk (continuous line) and jerk bounds (dotted lines); (c) joint 1 torque (continuous

line), joint 2 torque (dashed line); (d) joint 1 torque derivative (continuous line), joint

2 torque derivative (dashed line).

tem and its nonlinear dynamics are neglected. The use of thissimplified robot model

is justified by the fact that the identification of the whole manipulator parameters, es-

pecially for systems with many degree of freedom, can be quite a demanding task. On

the contrary, the inertia matrix can be obtained with practical recursive algorithms,

such as the one proposed in [38].
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Figure 3.7: Velocity reference signal ˙ud (dashed line) compared with the filter output

u̇ (solid line).

For the example herein considered, the maximum tracking error only slightly

increases with respect toCase3, i.e.,emax = 6.144·10−4 m. As early asserted, the

filter constantly forces the system inside current regionA by scaling the trajectory. As

a consequence, tracking tolerance does not depend on its behavior but it is mainly due

to the performances of the inner controller (3.37). Tracking tolerance considerations

could be performed by extending the techniques proposed in [43].

3.7 Simulation results on a planar RP robot

In order to test the behavior of the control scheme even in presence of non-negligible

Coriolis and centrifugal effects, a different manipulatorhas been simulated. More-

over, in order to remark the possibility of using different torque controllers within the

same framework, the IDC parametrization described in Section 3.3 has been adopted.

The chosen robot is a RP planar manipulator characterized bythe dynamic pa-

rameters reported in Table 3.1. The path to be tracked is an ellipse parametrized as

follows

f(u) =

[
θ1

d2

]
:=

[
Atan2(0.8sinx,0.4cosx)√

0.42 cos2 x+0.82 sin2x

]
, x∈ [0,2π] . (3.38)

The following tuning parameters have been selected for the controller:kp = [500 400]T ,

kv = [10 60]T . The velocity reference is shown in Fig. 3.7 by means of a dashed line

and defined as in the previous section. Once again the reference signal is chosen such
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Table 3.1: Robot inertial parameters

Link Mass Center of gravity Inertia Friction

q m(Kg) x(m) y(m) z(m) Ixx(Kg.m2) Iyy(Kg.m2) Izz(Kg.m2) B(N.s/rad)

θ1 23.90 0 0.10 0 2.521 1.671 1.358 1.5e-3

d2 3.88 0 -0.30 0 0.336 0.336 0.026 2.8e-3

to be unfeasible with respect to the robot dynamic constraints that are supposed active

on both joints. In particular, the following limits have been used for the torques and

the torque derivatives:τ1,τ2 ∈ [−13,13], τ̇1 ∈ [−200,200], andτ̇2 ∈ [−150,150].
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Figure 3.8: Velocity and acceleration bounds online evaluated

Fig. 3.8 is useful to understand the system behavior. Dashedlines correspond

to upper an lower bounds on ¨x and
...
x evaluated by means of (2.19) and (3.33): the

time scaling system generates an output signal ˙x whose first and second derivatives

fulfill the imposed constraints. A comparison between the original ẋd andẋ is shown

in Fig. 3.7. The feasibility of the generated profile is proven by Fig. 3.10: actualτ
and τ̇ always satisfy the given constraints. It is relevant to notethat every time the
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Figure 3.9: Paths generated by adopting the filter (solid line) and without the filter

(dashed line). The manipulator is clockwise moving starting from the red point.

constraints onτ andτ̇ are touched, the velocity tracking is lost in order to maintain a

correct path tracking.

The overall accuracy of the controller is verified by measuring the path tracking

error defined as the Euclidean distance, expressed in function of x, between the ma-

nipulator tool frame and the reference path. Fig. 3.11 compares the errors detected

with and without the filter: the maximum error without the filter is equal to 3.770e-

2 m, while it decreases to 6.946e-4 m when the filter is used.

The relevance of the constraints on the generalized force derivatives are high-

lighted in Fig. 3.9: when the filter is not used, it is sufficient to reduce the bounds on

τ̇1 to±160 Nms−1 to obtain a complete tracking lost.

3.8 Minimum time tracking problem for a chain of three

integrators with bounded input

In the path tracking problems analyzed so far, it has always been used the stabiliza-

tion filter devised in Chapter 2. However, when dealing with the online trajectory

scaling of manipulators subject to generalized forces and velocities constraints, it is
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Figure 3.10: Generalized forces and their derivatives for the two joints

interesting to study the stabilization problem of a constrained discrete set of three

integrators.

This problem has been already extensively studied in the continuous time case,

also for a chain of arbitrary order with saturated input [44], where the solution is

found on the basis of the Pontryagin Maximum Principle. A discrete time solution

has been recently proposed in [45], where only the boundedness of the control input

is considered. By defining the normalized tracking error andits derivatives as

y =
x− r
U

, ẏ =
ẋ− ṙ
U

, ÿ =
ẍ− r̈
U

,
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Figure 3.11: The path tracking error without (dashed line) and with (solid line) the

velocity scaling filter.

wherer, ṙ and ¨r are, respectively, the reference input and its derivatives, wherex, ẋ,

ẍ are the system state space variables, as depicted in Figure 3.3, and whereU is the

input constraint, the following problem has been solved.

Problem 6 Design the nonlinear static function uk = uk(yk) such that, starting from

any initial conditiony0 = [y0, ẏ0, ÿ0]
T , system

yk+1 = Ayk +buk,

with A andb defined according to (3.34), is controlled to the origin in the minimum

time compatible with the constraint|uk| ≤ 1, being uk the normalized control action.

The problem solution is investigated for the equivalent formulation obtained by

applying a state space bijective transformation in order toeliminate any dependen-

cies of the discrete system from the sampling timeT. The new state space variables,

at time instantk, are indicated with the vectorzk := [z1,k,z2,k,z3,k]
T . By using the

transformationzk = Tyk, where

T =
1

T2




1
T 1 T

3

0 1 T
2

0 0 T


 ,

the following equivalent system is obtained

zk+1 = Āzk + b̄uk, (3.39)
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with

Ā =




1 1 1

0 1 1

0 0 1


 , b̄ =




1

1

1


 .

According to [45], the following definitions holds.

Definition 2 Let B−k,0 and B+
k,0 denote the points of the state spacezk from which it

is possible to reach the origin in a number k of sampling periods when the constant

normalized inputs uk =−1 and uk = 1, respectively, are applied.

Definition 3 Let B−h,k and B+
h,k denote the points of the state space from which it is

possible to reach the point B+k,0 and B−k,0 respectively, in h sampling periods by using,

respectively, the constant inputs uk =−1 and uk = 1.

For example, the set of pointsB+
h,k is obtained by inverting the system (3.39) and

solving it with control input equal touk = 1 and initial conditionz0 = B−k,0. It’s closed

form expression is given by

B+
h,k = AhB−k,0−∑h−1

n=0An−1b = AhB−k,0−B−h,0 =

=




k(k−1)(k−2)
6 + k(k−1)h

2 + h(h−1)k
2 − h(h−1)(h−2)

6
h(h−1)

2 −hk− k(k−1)
2

k−h


 ,

(3.40)

whereh,k≥ 0. In a similar way it is possible to devise the set of pointsB−h,k.

It is worth noting that the pointsB+
h,k,B

+
h,k+1,B

+
h+1,k andB+

h+1,k−1, with h≥ 0 and

k≥ 1, define a parallelogram in the state space. Denote this parallelogram by using

the symbolP+
h,k. The union of all the parallelograms clearly describe a surface from

which it is possible to reach a point belonging toP+
0,k in h steps, by applying the max-

imum positive controluk = 1. Denote this surface with the symbolσ+
d . Analogous

considerations apply to definition of the parallelogramsP−h,k and the surfaceσ−d .

The discrete time control lawC which solves Problem 6, as proved in [45], is

given by

C : uk :=−sat(σk) (3.41)
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σk := z3,k +
2h+k−1
h(h+k)

z2,k +
2

h(h+k)
z1,k + (3.42)

+
2h3 +k3+3h2k−3hk−3h2 +h−k

6h(h+k)
η (3.43)

where

(h,k,η) =

{
(h,k,1) if (z1,k,z2,k) ∈ P̄+

h,k,

(h,k,−1) if (z1,k,z2,k) ∈ P̄+
h,k,

and wherēP±h,k is the projection of the parallelogramP±h,k on the plane(z1,z2).

Equationσk is obtained computing the distance, along the componentz3, of the

system statezk from the middle of the boundary layer identified onceσ+
d andσ−d are

known. The integer parametersh,k andη are completely determined given the state

zk. To this purpose the following iterative search has been implemented.

3.8.1 Algorithm for computing h,k,η

The algorithm is mainly subdivided into two different steps: the first one determines

the value ofη, i.e. if the projection of the current pointzk belongs toP̄+ or P̄−. Then,

the second step iteratively searches the polygonP̄h,k inside which the current point is

located.

In practice, as depicted in Figure 3.12, the algorithm movesthe operating point

z along the sliding surface represented by a solid blu line. Ateach iteration of the

algorithm, the value of the parameterh is kept constant to zero, while the other inte-

ger parameterk is increased. The couple(h,k) is then used in (3.40) to compute the

new operating point. The sliding along the surface continues until a sign change in

the first component ofz is detected, represented in Figure 3.12 by two solid red lines.

Let us indicate withzp andza the system point before and after the stop condition, re-

spectively. The value ofη is then determined as the sign of the cross product between

the displacement vector(za−zp) and the error vector between the current operative

point z and the input datazk.

Once the sign ofη has been computed, the second stage of the algorithm is ex-

ecuted. In particular, the couple of values(h,k), identifying the parallelogram̄Ph,k

inside whichzk is located, are determined by the following computations.
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Figure 3.12: Example of the iterative search for theη value in the (z1, z2)-plane

Assigned a value ofh, which identifies in the(z1,z2)-plane one of the parabolas

depicted in Figure 3.12, the algorithm searches with a bisection method the value

of k which minimizes the distance between the input pointzk and the one identified

by the triplet(h,k,η). A boolean flag is also returned to indicate if the desired point

zk is located above or bottom with respect to the base of the polygon identified by

the current values ofh andk. Based on this information, an upper and lower bound

couple of values,(h̄, k̄) and (h,k), are stored. Then, a new candidate value ofh is

chosen within the previous range, according to a bisection method. The algorithm

iterates until the distance between the upper and lower bound on h, i.e. (h̄− h), is

less or equal to one. Figure 3.13 illustrates the described procedure: green lines are

the error vectors computed for the different points investigated by the algorithm, the

red dot is the input pointzk while the red polygon̄Ph,k is the one computed using the

returned values(h,k,η).

The solution (3.41)-(3.42) introduced by [45], stabilizesthe integrator chain by

considering the presence of a single constraint, namely theone on the control input.

However, as already remarked throughout this chapter, in order to use this nonlinear

filter in the context of the trajectory scaling problem for robotic manipulators, it is

necessary to account also for acceleration and velocity constraints, i.e., with reference
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Figure 3.13: Example of the iterative search for the values of (h,k) in the (z1, z2)-

plane

to Figure 3.3, considering also the boundedness of ¨x andẋ. For this reason, the author

is currently involved in extending the previously described method in order to initially

account for acceleration constraints. Even if not yet completely formalized from a

mathematical point of view, good and promising results havebeen already achieved,

which will be part of next publications.



CHAPTER 4

A minimum-time feed-forward control of a flexible joint

He who controls the present, controls the past.

He who controls the past, controls the future.

George Orwell

I n many applications, such as robotic manipulators, disk-drive heads, or point-

ing systems, sophisticated control algorithms are required to make optimal use

of the maximum torque available for rapid maneuvers, [46] [47]. Unfortunately,

any minimum time performance is usually achieved by maximizing the actuators dy-

namic efforts possibly leading to undesirable results in the case of standard feedback

controllers. Indeed, due to saturations, the system behavior could be characterized by

overshoots and oscillations, as extensively remarked in the previous chapters. These

effects are even more relevant for robotic manipulators showing a significant elastic

coupling between joints, like those designed to share theirworkspace with human

beings. In such cases the use of elastic joints increases thesystem safety by reducing

the arm stiffness. In fact, as stated in [48], by decoupling the actuators inertia from
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the inertia of the links, it is possible to reduce the end-effector impact force such to

limit potential danger to the operator. In recent literature a considerable attention has

been given to the control of robot with flexible joints, see for instance [49, 50, 51], or

[52] for a survey.

A major drawback of manipulators with a significant elastic coupling is that

the output reacts slowly to the input, thus degrading the manipulator performances.

Hence, it is interesting to consider the minimum-time control problem, that is to

find the control input that allows performing a desired rest-to-rest transition for the

end-effector, by minimizing at the same time the robot traveling time. This makes it

possible to improve the resulting control performances despite the elastic coupling.

However, for such kind of robots, any sudden torque change, an implicit require-

ment of minimum-time motions, can excite the oscillatory dynamics. It is therefore

important to introduce, together with the usual input constraints considered in the

robotic literature, also output constraints. In this chapter a time-optimal solution for

an electrically driven flexible joint arm is proposed. Explicit bounds on the motor

feeding voltage are considered but, at the same time, a zero overshoot solution is

required.

The minimum-time transition is obtained by discretizing the continuous-time

model of the flexible joint and formulating an equivalent discrete-time optimization

problem solved by means of linear programming techniques. More precisely, upper

and lower bounds on the input voltage, as well as those on output overshoot and

undershoot, are expressed by linear inequalities on a vector u, representing the in-

put voltages at sampling times. The optimization method searches the input vector

u such that the end-effector performs a rest-to-rest transition in a number of steps

less or equal than an initial guessn, while fulfilling the input and output constraints.

Hence, the minimum-time problem is reformulated as a feasibility test for a linear

programming (LP) problem and the minimum number of steps required to complete

the given rest-to-rest transition can be found through a simple bisection algorithm.

Since the sampling timeT is fixed, minimizing the number of steps implies achiev-

ing the minimum-time solution which fulfills the given constraints.

The use of linear programming techniques for solving minimum-time problems

for linear discrete-time systems, subject to bounded inputs, dates back to Zadeh [53].
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Subsequently, many contributions have appeared focusing on various improvements.

For example a faster algorithm is proposed in [54]. Work [55]presents a more general

linear programming algorithm for solving optimal control problems for linear sys-

tems under generic constraints. In [56] a feasibility test is presented to improve the al-

gorithm speed. For what concerns time-optimal control for continuous time systems,

a related result, under different hypotheses, is presentedin [57]. It applies a com-

parison principle to a time-optimal control problem for a class of state-constrained

second-order systems.

The chapter is organized as follows. In §4.1 the dynamic model of a flexible joint

is devised. It will be used for the synthesis and the validation of the proposed control

technique. In §4.2 the control problem is proposed and a solution is obtained in the

subsequent section by means of a linear programming algorithm. An experimental

test case is discussed in §4.4.

Notation: Given a sequenceu(k) : Z → R, U(z) = Z{u(k)} represents itsZ-

transform,‖u(k)‖∞ = max{|u(k)| : k ∈ Z} is the infinity norm ofu(k). For x ∈ R,

bxc= max{i ∈ Z|i < x} is the floor ofx and 1n ∈ R
n = (1,1, . . . ,1)T . Given a matrix

M ∈ R
n×n,‖M‖2 = max{‖Ax‖ : x∈ R

n with ‖x‖ = 1} is the 2-norm.

4.1 Flexible joint model

The minimum-time control problem is solved for a single flexible joint device pro-

duced by Quanser Consulting. Fig. 4.1 shows the top view of the considered system:

a rigid arm is connected, through a flexible joint, to a rotating “body”, which is ac-

tuated by a dc servo motor. Both the body and the arm can rotatearound the vertical

axis “O” of Fig. 4.1. The elastic coupling between the body and the armis obtained

by means of two springs whose stiffness isKe and whose unstretched length isl0.

The control technique proposed in §4.3 is based on the knowledge of the system

model. For this reason, an accurate nonlinear model, mainlyused for simulation pur-

poses, is proposed in the following. The linearized versionof the same model, to be

used for the controller synthesis, is then devised.

Spring forcesf1 andf2 cover an important role in the system dynamics. In order to
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Figure 4.1: Flexible joint experiment: Top view.

evaluate their amplitude, let us assign a reference frame {1} whose origin is located in

“O” and integral with the body. Moreover, let us assign a furtherframe {2}, located

in “O” but integral with the arm, and indicate byθ2 the joint angle between the two

frames. Angleθ2 is counterclockwise positive. In the same way, let us indicate byθ1

the counterclockwise positive joint angle between the bodyframe {1} and a given

stationary frame.

The three points“A” , “B” , and “C” shown in Fig. 4.1 can be described with

respect to frame {1} by means of three vectorspa := [−dm h]T , pb := [dm h]T , and

pc := [−Rsinθ2 Rcosθ2]
T wheredm, h, andR are the geometrical dimensions re-

ported in the same figure.

The spring force norms, i.e.,f1 := ‖f1‖ and f2 := ‖f2‖, depend on the spring

lengthsl1 andl2 according to equations

f1 = Ke(l1− l0) , (4.1)
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f2 = Ke(l2− l0) , (4.2)

wherel1 andl2 can be evaluated as follows

l1 = ‖pc−pa‖

=
√

R2 +d2
m+h2−2R(dmsinθ2 +hcosθ2) , (4.3)

l2 = ‖pc−pb‖

=
√

R2 +d2
m+h2 +2R(dmsinθ2−hcosθ2) . (4.4)

Forces acting on point“C” can be described with respect to frame {2} leading to

[
f1x

f1y

]
=

[
f1 cos(α)

f1sin(α)

]
=

[
−Ke(l1− l0)cos(α)

−Ke(l1− l0)sin(α)

]

and [
f2x

f2y

]
=

[
f2 cos(β)

f2sin(β)

]
=

[
Ke(l2− l0)cos(β)

−Ke(l2− l0)sin(β)

]

whereα,β ∈ R
+ are the two auxiliary angles shown in Fig. 4.1 which can be evalu-

ated by means of the following equations

α(θ2) = arctan

[
Rcos(θ2)−h
dm−Rsin(θ2)

]
−θ2 ,

β(θ2) = arctan

[
Rcos(θ2)−h
dm+Rsin(θ2)

]
+ θ2 .

Elastic forces induce an elastic nonlinear torque in the armthat can be expressed

as

τe(θ2) = [− f1x(θ2)− f2x(θ2)] R . (4.5)

It is worth noting that componentsf1y and f2y do not generate any torque with respect

to “O” .

It is now possible to propose the dynamic equation of the rigid arm described

with respect to“O”

Jload(θ̈2 + θ̈1) = [− f1x(θ2)− f2x(θ2)] R−BL
eqθ̇2 (4.6)
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Figure 4.2: Inertia and gears ratio chain view from motor rotor axis

whereJload is the arm inertia evaluated with respect to“O” , while BL
eq is the friction

coefficient associated to angular velocityθ̇2. Practically, arm dynamics takes into

account torques which are due to inertia, friction and elasticity.

It is similarly possible to devise the dynamic equation of the “body”. It is made of

a chain of inertial loads and reduction gears driven by a permanent magnet dc motor

according to the scheme shown in Fig. 4.2. More precisely, the motor, characterized

by an inertiaJm, is connected through a chain of reduction gears to the output shaft.

Each reduction gear is characterized by a reduction ratio, see e.g.kG,kl , and an inertia,

see e.g.J120,J72, andJ24. The first reduction gear is characterized by an efficiency

coefficientηG, while the the body inertia isJFJ. Output angleθ1 is measured through

a potentiometer coupled to the output shaft by means of a gearwhich has reduction

ratio k = 1.

The system is affected by torques which are due to inertia, friction and elasticity,

yielding to

J0
eqθ̈1 = τ0−B0

eqθ̇1− [− f1x(θ2)− f2x(θ2)] R+BL
eqθ̇2 , (4.7)

whereJ0
eq is the equivalent inertia of the system composed by motor, reduction gears,

and “body”, τ0 is the motor torque reflected through the gears ratios, whileB0
eq is

the friction coefficient associated to angular velocityθ̇1. All quantities in (4.7) are

referred to the output shaft of the system. For the system of Fig. 4.2 the equivalent

inertia can be expressed as

J0
eq =

[
Jmk2

gk2
l ηg +J24k

2
l +J120+2J72+JFJ

]
.
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The dynamics of a dc motor is given by the following equations, [58]

{
L di

dt = −Rmi−kmωm+vin;

τm = kmi,
(4.8)

whereτm is the torque at the output shaft of the dc motor,Lm is the armature induc-

tance,ωm is the motor angular velocity,km is the motor electric constant,Rm is the

motor winding resistance, andvin is the motor feeding voltage.

Due to (4.8), the motor electrical pole is equal to

Rm

Lm
' 1·104 rad s−1

which is negligible with respect to the mechanical pole equal to 11 rads−1. Therefore

(4.8) can be approximated as follows

τm' km

(
vin−kmωm

Rm

)
.

Hence, according to Fig. 4.2, the output torqueτ0 can be expressed as

τ0 = τm(kgkl ηgηm) =
kgkl kmηgηm

Rm
vin−

k2
gk2

l k2
mηgηm

Rm
θ̇1 (4.9)

whereηm is the motor efficiency.

Bearing in mind (4.9), (4.7) can be rewritten as follows

J0
eqθ̈1 =−Gθ̇1 +BL

eqθ̇2− [− f1x(θ2)− f2x(θ2)] R+Hvin , (4.10)

where

G =
k2

gk2
l k2

mηgηm

Rm
+ β0

eq , (4.11)

H =
kgkl kmηgηm

Rm
. (4.12)

Equations (4.6) and (4.10) represent the complete nonlinear dynamic model of the

flexible joint and are used to simulate the system behaviour.For the synthesis of
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the control technique proposed in §4.3, an equivalent linear model is devised. Elas-

tic torqueτe is the sole nonlinear term which appears in (4.6) and (4.10).It can be

linearized inθ2 = 0 leading toτe'−Ksti f f θ2, where

Ksti f f =−dτe(θ2)

dθ2
|θ2=0 =

2R2d2
mkl

(R−h)2+d2
m

is the stiffness constant. Consequently, (4.6) and (4.10) can be rewritten as

J0
eqθ̈1 = −Gθ̇1+BL

eqθ̇2 +Ksti f fθ2 +Hvin , (4.13)

Jload(θ̈2 + θ̈1) = −BL
eqθ̇2−Ksti f fθ2 . (4.14)

The output of the system is given by the angle formed by the end-effector with

respect to the stationery frame. Hence,y = θ1+θ2, i.e, the sum of the angle between

the body and the stationary frame and the angle formed by the arm with respect to

the body. Finally, it is possible to rewrite (4.13) and (4.14), into a state-space form
{

ẋ = Ax +bvin

y = Cx+dvin

by assumingx := [x1x2x3x4]
T = [θ1θ2θ̇1θ̇2]

T and defining

A :=




0 0 1 0

0 0 0 1

0 Ksti f f

J0
eq

− G
J0
eq

BL
eq

J0
eq

0 −Ksti f f (Jload+J0
eq)

JloadJ0
eq

G
J0
eq
−BL

eq(Jload+J0
eq)

JloadJ0
eq




, b :=




0

0
H
J0
eq

− H
J0
eq




C :=
[

1 1 0 0
]
, d := 0 (4.15)

The corresponding discrete-time system is obtained from (4.15) by the zero-order

hold equivalence, yielding to
{

ẋn+1 = A0xn +b0vin

yn+1 = C0xn+1 +d0vin,
(4.16)

whereA0 = eAT, b0 =
∫ T

0 eAτbdτ, C0 = C, d0 = d andT is the sampling period.
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4.2 Problem formulation

In this section, the minimum-time feedforward control problem is stated for scalar

discrete-time systems in a general case and then for the specific case of the flexible

joint presented in § 4.1.

4.2.1 General formulation

A linear discrete-time systemΣd is described by the proper scalar transfer function

H(z) =
b(z)
a(z)

=
bmzm+bm−1zm−1 + · · ·+b0

anzn +an−1zn−1 + · · ·+a0
. (4.17)

a(z), b(z) are coprime,Σd is stable, and its static gainH(1) 6= 0. The system input

and output sequences are denoted byu(k) andy(k) respectively,k∈ Z.

The behaviorBd of systemΣd is the set of all input-output pairs(u(·),y(·)), where

u(·),y(·) : Z→ R, satisfying the difference equation:

any(k+n)+an−1y(k+n−1)+ · · ·+a0y(k) =

bmu(k+m)+bm−1u(k+m−1)+ · · ·+b0u(k) . (4.18)

The set of input-output equilibrium points ofΣd is E :=
{
(u,y) ∈ R

2 : y = H(1)u
}

and the setKs ⊂ Bd of all rest-to-rest constrained transitions from(0,0) ∈ E to

(
yf

H(1) ,yf ) ∈ E is defined as follows.

Definition 4 Given the parameter sets:= {Uc,Yc,yf }, where Uc = [u−c ,u+
c ] and Yc =

[y−c ,y+
c ] are the constraint intervals for the input and output respectively and yf is the

final rest value of the output,Ks is the set of all pairs(u(·),y(·)) ∈Bd for which there

exists kf ∈N such that:

u(k) = 0 ∀k < 0 , u(k) =
yf

H(1)
∀k≥ kf , (4.19)

u(k) ∈ Uc ∀k∈ Z , (4.20)

y(k) = 0 ∀k < 0 , y(k) = yf ∀k≥ kf , (4.21)

y(k) ∈ Yc ∀k∈ Z . (4.22)
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The minimum-time feedforward constrained control problemfor discrete-time sys-

tems consists in finding the optimal input sequenceu∗(k), k = 0,1, . . . ,k∗f − 1 for

which the pair(u∗(·),y∗(·)) ∈Ks is a minimizer for the optimization problem:

k∗f = min
(u(·),y(·))∈Ks

K f (u(·),y(·)) . (4.23)

where

K f (u(·),y(·)) := min{k1 ∈N : u(k) =
yf

H(1)
, y(k) = yf ,∀k≥ k1} .

is the rest-to-rest transition time associated to pair(u(·),y(·)).

4.2.2 An approximated solution to the continuous time problem using
discretization

Given a continuous systemH(s), a time-optimal constrained control problem can be

converted into the previously defined discrete-time one through the following proce-

dure:

• find the discretized systemH(z) using a zero-order equivalence, with sampling

periodT, by applying relationH(z) = (1−z−1)Z{H(s)
s } ;

• find the time-optimal input sequenceu∗(k) such that (4.23) is satisfied;

• transform the discrete sequenceu∗(k) into the continuous functionuc(t) by

using a zero-order hold, that is the signal is kept constant between one sampling

time and the next one;

• apply the input functionuc(t) to the continuous-time system.

Fig. 4.3 gives a representation of the signals involved in the discretization. Due to

the procedure given before, the control found with this method is optimal only with

respect to the class of input functions which are constant ineach sampling period.

Hence, the resulting transition time is higher than the minimum one achievable with

continuous time input functions.
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Hold H(s)
u∗(k) uc(t) yc(t) y∗(k)

Figure 4.3: Zero-order hold equivalence

Moreover note thaty∗(k) fulfills for certainty the prescribed constraints, so that

the outputyc(t) of the continuous system satisfies the following condition

yc(kT) ∈Yc,∀k∈ Z ,

while it is not guaranteed thatyc(t) ∈Yc if the time t is not multiple of the sampling

periodT. In other word, the output may exceed the prescribed bounds between two

consecutive sampling times. Obviously, the maximum constraints violation ofyc(t) is

strictly related to the choice of the sampling periodT. In § 4.3.1 a bound on maximum

violation is found and, in turn, considerations on the choice of T are presented.

4.2.3 Problem formulation for the flexible joint system

Consider the system obtained by discretizing the rotary flexible joint system intro-

duced in §4.1. The problem to be solved is the following one.

Problem 7 (Minimum time control problem for the flexible join t) Consider the discrete-

time system (4.16) and intervals Uc = [u−c , u+
c ] of admissible values for the input volt-

age vin and Yc = [y−c ,y+
c ] of admissible values for the output angle y= θ1+θ2, where

y−c and y+c represent maximum undershoot and overshoot specifications. Find the in-

put sequence u∗(k) that minimizes the time required for the rest-to-rest transition of

the output y∗(k) from the initial angle0 to the desired final angle yf , while satisfying

the input and output constraints

u∗(k) ∈Uc, y∗(k) ∈Yc, ∀k > 0 .
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4.3 Problem resolution

In this section a general method is proposed for the solutionof the rest-to-rest control

problem for scalar systems with bounded input and output. Inthe next section it will

be applied to the linearized flexible-joint system.

The following theorem proposes a feasibility condition forthe existence of a

solution of the constrained rest to rest transition problem, which is equivalent to the

non-emptiness of setKs defined in Definition 4.

Theorem 1 SetKs is not empty if

{0,
yf

H(1)
} ⊂ (u−c ,u+

c ) and {0,yf } ⊂ (Y−c ,Y+
c ) , (4.24)

with the convention thatyf

H(1) = 0 if H (s) has a pole in1.

Proof.: see Appendix 4.5.

The following proposition allows to convert the time-optimal problem into a LP-

problem.

Proposition 4 The setKs of all rest-to-rest constrained transitions is not empty ifand

only if there exist kf ∈N and a vectoru ∈R
kf for which the following LP problem is

feasible:

y−c ·1kf ≤ Hu ≤ y+
c ·1kf (4.25)

u−c ·1kf ≤ u≤ u+
c ·1kf (4.26)

H̄

[
u

yf

H(1) ·1n

]
= yf ·1n (4.27)

whereH ∈R
kf×kf = (hi, j ) is defined by hi, j := h(i− j) andH̄ ∈R

n×(kf +n) = h̄(i, j)

by h̄i, j := h(i +kf − j).

Proof.(Necessity) Assume that there exists a vectoru for which equations (4.25)–

(4.27) are satisfied. Define the input sequence

u(k) =





0 if k < 0

u(k) if 0 ≤ k < kf
yf

H(1) if k≥ kf ,

(4.28)
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which satisfies Properties (4.19) and (4.20) of Definition 4.The output is given by

y(k) = ∑∞
i=0 u(k− i)h(i), whereh(k) is the impulse response of the discrete system.

Settingy ∈ R
kf = (y1,y2, . . . ,ykf )

T : yi = y(i) andȳ ∈ R
n : ȳi = y(kf + i), it is

y = Hu , ȳ = H̄

[
u

yf

H(1) ·1n

]
,

and, by virtue of (4.25),y(k) satisfies Property (4.22) of Definition 4,∀k< kf . Finally

y(k) = yf , ∀k≥ kf because of Lemma 1 (see Appendix 4.5).

(Sufficiency) Assume that for a givenkf , the setKs is not empty, therefore it contains

at least a pair(u(k),y(k)). If u andy are defined as above, due to (4.20) and (4.22) it

follows that

u−c ·1kf < ū < u+
c ·1kf

y−c ·1kf < ȳ < y+
c ·1kf ,

moreover, beingy(k) = ∑+∞
i=0h(k− i)u(i),

[
y

ȳ

]
=

[
H 0

H̄

]
=

[
ū

yf

H(1) ·1n

]
,

therefore equations (4.25)–(4.27) are satisfied.�

By virtue of Proposition 1, the minimum-timek∗f and an associated optimal feed-

forward inputu∗(k), k = 0,1, . . .k∗f −1 can be determined by means of a sequence of

LP feasibility tests, defined by (4.25)-(4.27)), through the simple bisection algorithm

reported below. In this algorithmLPP(s,H(z),kf ,u) denotes a linear programming

procedure that solves problem (4.25)-(4.27): if the problem is feasible it returns a

Boolean true value along with a solutionu.
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Algorithm 1 : Compute the minimum-time feedforward control with input and

output constraints for discrete-time systems

input : H(z) ands

output: k∗f andu∗(k), k = 0,1, . . . ,k∗f −1

begin
kf ←− 1;

l ←− 0;

while ∼ LPP(s,H(z),kf ,u) do
l ←− kf ;

kf ←− 2kf

h←− kf ;

while h− l > 1 do
kf ←− bh+l

2 c;
if ∼ LPP(s,kf ,u) then

l ←− kf ;

else
h←− kf

k∗f ←− h;

u∗(k)←− u
end

Note that parameter sets := {Uc,Yc,yf} (see Definition 4) contains the input and

output constraints and the desired final output value.

4.3.1 Choice of the sampling period

The choice of sampling periodT is critical for the proposed algorithm, since larger

values ofT allow a faster computation but less accurate results. The continuous time

input signaluc(t) is obtained, from the optimal discrete-time sequenceu∗(k), through

a zero-order hold, that is the signal is kept constant between one sampling time and

the next one:

uc(t) = u∗(k) , wherek = {maxi|iT ≤ t} .

Let yc(t) be the system output andy∗(k) the corresponding sampled signal. The
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proposed approach guarantees thaty∗(k) satisfies the prescribed constraints, that is

yc(kT) ∈Yc,∀k∈ Z .

It is worth noting that there is not any certainty thatyc(t)∈Yc for t 6= kT, since the op-

timization algorithm only checks the constraints at the sampling times. The following

proposition shows that the maximum excursion of the continuous time signalyc(t)

from the prescribed constraints is bounded by a term that goes to 0 as the sampling

timeT approaches to 0.

Proposition 5 Consider the continuous-time scalar system

ẋ = Ax+bu

y = Cx ,

where A is a nonsingular matrix and let Yc = [y−c , y+
c ] be two nonempty intervals.

If u(t) is constant in[kT,(k+ 1)T[, ∀k ∈ Z, and y(kT) ∈ Yc, ∀t = kT , then for any

integer l∈ Z, l ≥ 2 the following inequality is satisfied

max
t∈R

{y(t)−y+
c , y−c −y(t)} ≤

(
‖C‖(e‖A‖T −1−‖A‖T)−

l

∑
i=2

T i

i!
(‖C‖‖A‖i −‖CAi‖

)

·(max
k
‖x(kT)‖+‖B‖‖A‖−1 max

k
‖u(kT)‖) .

(4.29)

Proof.: see Appendix 4.6.

Remark 3 Proposition 5 gives a set of estimates for the maximum outputconstraints

violation maxt∈R{y(t)−y+
c , y−c −y(t)}. The estimates depend on the integer param-

eter l and become more accurate as l increases and the sample time T decreases.

Choosing l= 2, for instance, the following bound is obtained

max
t∈R

{y(t)−y+
c , y−c −y(t)} ≤

(
‖C‖(e‖A‖T −1−‖A‖T)− T2

2
(‖C‖‖A‖2−‖CA2‖

)

·(max
k
‖x(kT)‖+‖B‖‖A‖−1 max

k
‖u(kT)‖) .

(4.30)
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Note that the proposed approach guarantees the discretizedsystem reaches the

desired equilibrium at the final samplek∗f , but this does not necessarily imply that

also the underlying continuous-time system reaches the equilibrium. The following

proposition shows that this requirement is fulfilled if a restriction on sampling time

T is imposed.

Proposition 6 Let be given a continuous-time systemΣ with transfer function

H(s) =
bmsm+bm−1sm−1 + . . .+b0

sn +an−1sn−1 + . . .+a0
,

where n> m, T> 0, t0 ∈R. Consider an input-output pair(u(t), y(t)) ∈B such that

u(t) =
yf

H(0)
, ∀t ≥ t0 ,

y(t0 +kT) = yf , for k = 0, . . . ,n−1 , (4.31)

and for which the distinct roots p1, . . . , pl of the characteristic polynomial sn +

an−1sn−1 + . . .+a0 satisfy

pi − pr 6= k
2π j
T

, ∀i, r = 1, . . . , l , ∀k∈ Z−{0} , (4.32)

then the following condition is satisfied

y(t) = yf , ∀t ≥ t0 .

Proof.: see Appendix 4.7.

Remark 4 Condition (4.32) is satisfied if

T <
2π j

maxi{Im{pi}}
∀i = 1, . . . , l , (4.33)

that is the sampling time is less that2π divided by the largest imaginary part among

the system poles.

In conclusions the sampling timeT must be chosen sufficiently small such that

condition (4.33) is satisfied and bound (4.29) is sufficiently small.
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4.4 Simulation and experimental results

In this section the control method proposed in §4.3 is applied to the case of the flexible

joint model derived in §4.1.

Simulation are executed on a P4 3.0Ghz computer within Matlab programming

environment. The freely available library GPLK (GNU LinearProgramming Kit)

[59] is used as linear programming solver and interfaced with Matlab through [60].

Experimental results are obtained by interfacing the flexible joint device with Matlab

through the Quanser Q4 PCI data acquisition board.

Electrical data Gears parameters Viscous frictions

Rm km ηm kg kl ηg B0
eq BL

eq

2.6 7.67 10−3 0.69 14 5 0.9 14.99 10−3 11.42 10−3

Inertias

Jm J120 J72 J24 JFJ Jload

0.386 10−6 0.440 10−6 5.274 10−6 0.195 10−6 2.10 10−3 11.03 10−3

Table 4.1: Flexible joint parameters

By substituting the flexible joint parameters defined in Table 4.1 in state-space

model (4.15), the following numerical representation for the plant is obtained

A :=




0 0 1 0

0 0 0 1

0 379.9 −56.65 2.956

0 −512.9 56.65 −3.99




, b :=




0

0

93.74

−93.74




C :=
[

1 1 0 0
]
, d := 0. (4.34)

Two different cases have been considered. In the first one, output constraints have

been imposed only on the end-effector angle. According to the flexible joint model
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in §4.1, this imply to set a limit on the sum of the rotation angle of the body,θ1, plus

the displacementθ2 induced by the joint elasticity, i.e.y = θ1 + θ2. In the second

case, additional constraints on the joint displacementθ2 have been added. In fact,

limiting the angle induced by the joint flexibility between the arm and the rotating

body, allows keep bounded the torsion moment on the joint itself, which in turn,

implies reducing the reflected joint solicitation torque.

4.4.1 Control without constraints onθ2

A rest-to-rest transition fromy= 0 toy= yf = π/4 is considered. The flexible joint is

driven with an amplifier whose maximum bipolar voltage is equal to±5V. Therefore,

the input constraint is‖u(t)‖∞ ≤ 5, so thatUc = [−5,+5]. A strong requirement has

been set on the output function: a maximum of 0.1% overshoot and undershoot is

allowed ony, so thatYc = [−7.8539·10−4,π/4 +7.8539·10−4]. First of all note that

condition (4.24) of Theorem 1 is satisfied. In fact, since theflexible joint discretized

transfer function has two poles inz= 1, condition (4.24) reduces to

{0} ∈Uc,
π
4
∈Yc .

This mean that setKs is nonempty.

Condition (4.33) must be satisfied in order to ensure that thecontinuous-time

system reaches the equilibrium with the same transient timeof the discretized one.

This implies thatT < 0.57 s. In all the simulation examples, the sampling time has

been chosen equal toT = 0.001s. Simulation results, obtained with the algorithm

described in §4.3, are shown in Figs. 4.4 and 4.5.

Fig. 4.4 highlights the bang-bang control input which makesit possible to ob-

tain a rest-to-rest transition time oft∗f = 0.305s. Fig. 4.5 plots a comparison between

the ideal simulated output and the real behavior of the flexible joint. The real out-

put shows a small overshoot and undershoot: this is due to thesmall mismatching

between the real plant and the flexible joint model devised in§4.1.

The maximum error on the output constraints for the continuous-time system,

obtained with (4.29) for a sampling timeT = 0.001s, is given by maxt∈R{y(t)−
y+

c , y−c −y(t)} ≤ 0.00113rad.
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Figure 4.4: Optimal input signal devised with the proposed approach.

The herein proposed approach has been compared with that presented in [61] and

[62], where a time-optimal control is found by means of dynamic inversion based on

the so called “transition polynomials” (see [61]). For brevity we recall here only the

general expression of this type of interpolating polynomials that allows an arbitrarily

smooth transition between two constant output values (in this case 0 andπ/4):

y(t;τ) =





0 if t ≤ 0,
(2k+1)!
k!τ2k+1 ∑k

i=0
(−1)k−i

i!(k−i)!(2k−i+1)τit2k−i+1 if 0 ≤ t ≤ τ,
π/4 if t ≥ τ

wherey is the desired output function,k is the relative order of the plant transfer

function andτ is the minimum transition time. In this case the plant transfer function,

from (4.34), is equal to:

H(s) =
96.97s+1.247·104

s4 +60.64s3 +571.5s2 +7534s

thus the relative order isk = 3.

Results obtained by applying that planning method are shownin Figs. 4.6 and

4.7. Comparing Fig. 4.6 and Fig. 4.4, it is clearly visible that the approach based

on “transition polynomials” allows to generate smoother input control. However, the
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Figure 4.5: Expected system output y (dashed line) and measured plant output (solid

line)

output function presents a slightly oscillatory behavior,causing an increase of the real

transition time with respect to the simulated one, which wasequal tot∗f = 0.360 s.

Hence, the two methods are both suitable for the constrainedcontrol of the considered

flexible joint. However, when the application requires rapid maneuvers, the proposed

bang-bang control allows to perform the required output transition in a smaller time.

4.4.2 Control with constraints onθ2

The minimum-time control law used in the previous simulations and experiments

does not take care of the solicitation torque induced to the joint by the deflection

angleθ2: the only constraint that has been imposed is related to the end-effector

position, i.e. the sum ofθ1 + θ2.

On a real flexible-joint robot it can be interesting to devisea time-optimal transition

control also constraining the maximum admissible displacement between the link

position and the joint position, thus reducing the mechanical solicitation on the joint

itself.

Thus, under the same constraints used in previous section, alimit on θ2 angle has
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Figure 4.6: Optimal transition polynomial input signal
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Figure 4.7: Expected system output y (dashed line) and measured plant output (solid

line)
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Figure 4.8: The time-optimal control with angle limit onθ2

been added such thatθ2 ∈ [−5π/180,5π/180].

Simulated and experimental results are reported in Figs. 4.8 and 4.9. In particular

in Fig. 4.10 is reported the time-waveform of the relative displacement between the

arm and the rotating body. As it is shown, theθ2 angle is constantly saturated to

the imposed constraint value, and this is the reason why the optimal control is no

longer a bang-bang function. Clearly the optimal transition time increases: in this

caset∗f = 0.59 s.

4.4.3 Computational complexity

In this section, some considerations are given for what concern the computational

complexity of the time-optimal algorithm. In particular, Table 4.2 shows the compu-

tational time required by the proposed approach to devise the time-optimal control

sequence. Symbol∆θ has been used to represent the overall rest-to-rest transition,

while T indicates, as always, the sample time required by the discretization phase. As

it can be seen, performances strongly depend on the used sampling time: by reducing

T, which means sampling the continuous-time system with an higher frequency, the

dimension of the resulting LP problem increases, thus causing an increment of the
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Figure 4.9: Expected system output y (dashed line) and measured plant output (solid

line)

total computational time. Considering the computational complexity, Karmarkar has

shown in [63] that a linear programming problem can be solvedby means of an algo-

rithm with running time proportional ton3.5, wheren is the number of inequalities.

In our case this would means that each feasibility test wouldrequire a time propor-

tional ton3.5
s , wherens is the total number of samples. The complexity of the bisec-

tion search, with respect to the minimum number of samples, is given byO(logns),

therefore the total complexity of the proposed algorithm isgiven byO(lognsn3.5
s ).

In our tests the dual simplex method has been used. It is well known (see [64]) that

the simplex method complexity is theoretically exponential with respect ton, due to

the existence of special worst cases, but, in practice, the complexity is almost linear

with respect ton. This would mean that the “practical” complexity of the proposed

algorithm isO(lognsns). In any case, it is important to keep the number of samples

(which is inversely proportional to the sampling timeT) as small as possible.

Generally the time required by the algorithm to obtain the optimal control has an

order of magnitude of a few seconds and can be further improved if the algorithm is

directly coded in C/C++. Since the algorithm performances are predictable, once the

sampling time is set, the proposed approach can be used in a real-time context.
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4.5 Proof of Theorem 1

The following lemma will be used in the proof.

Lemma 1 Consider system (4.17) and be the pair(u(k),y(k)) ∈ Bd. If

y(i +N) = yf for i = 0, . . . ,n−1

u(i +N) =
yf

H(1) for i ≥ 0 ,

then

y(i) = yf ,∀i ≥ N. (4.35)

Proof of the lemmaConsider the input-output pair(u2(k),y2(k)) =
(

u(k)− yf

H(0) ,y(k)−yf

)
.

Sinceu2(k) = 0,∀k≥N, therefore, fork≥N, y2(k) satisfies the following difference

equation

{
any2(k+n) =−an−1y(k+n−1)−an−2y2(k+n−2)−·· ·−a0y2(k)

y2(N) = y2(N+1) = · · ·= y2(N+n−1) = 0 ,

which has solutiony2(k) = 0, ∀k≥ N. Consequently, (4.35) follows.�
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∆θ (rad) T(s) Computation time (s) Transition timet∗f (s)

π/4

1·10−3 7.943·100 3.05·10−1

1·10−2 1.023·100 3.10·10−1

5·10−2 6.854·10−1 4.00·10−1

π/2

1·10−3 9.275·100 3.88·10−1

1·10−2 6.882·10−1 3.90·10−1

5·10−2 8.906·10−1 5.00·10−1

Table 4.2: Algorithm Perfomances

Proof of the theoremDefine a continuous functionl(t) which has the following

properties: 



l(t) = 0 if t ≤ 0

l(t) =
yf

H(1) if t ≥ 1

0≤ l(t)≤ yf

H(1) ∀t ∈ [0,1]

ImposeuN(k) = l( k
N ) and letUN(z) be the correspondingZ-transform. Moreover,

beYN(z) = UN(z)H(z) andyN(k) = Z−1{YN(z)}.
First of all it is proved that

lim
N→+∞

||H(1) uN(k)−yN(k)||∞ = 0 (4.36)

Indeed,

H(1) UN(z)−YN(z) = H(1) UN(z)−H(z)UN(z) = (H(1)−H(z))UN(z) .

Being H(1)−H(z)|z=1 = 0, functionH(1)−H(z) has a zero inz = 1. Hence,

H(1)−H(z) = (z− 1)H ′(z), whereH ′(z) has the same poles asH(z). Therefore

(H(1)−H(z))UN(z) = H ′(z)(z−1)UN(z) and

lim
N→+∞

||H(1) uN(k)−yN(k)||∞ ≤ lim
N→∞
||Z−1{H ′(z)}||2 ||uN(k+1)−u(k)||∞ = 0 ,
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in fact

lim
N→+∞

||uN(k+1)−u(k)||∞ = 0

because functionl(t) is uniformly continuous and‖Z−1{H ′(z)}‖2 is finite because

H ′(z) is stable.

Equation (4.36) shows that asN approaches infinity, the outputyN(k) becomes

equal to inputuN(k) multiplied by the static gainH(1) and, fork ≥ N, the differ-

enceyN(k)− yf tends to zero. In the following a correcting term ¯yN(k) is intro-

duced such thatyN(k) + ȳN(k) = yf , ∀k ≥ N. Define the error vectoreN ∈ R
n =

(eN,0,eN,1, . . . ,eN,n−1)
T as

eN,i = yN(N+ i)−yf , i = 0, . . . ,n−1 ,

let M ∈R
n×N = (mi, j) be such that

mi, j = h( j− i), i = 1, . . . ,n, and j = 1, . . . ,N ,

whereh(k)= Z−1{H(z)} denotes the system impulse response. SetūN = (ūN,0, ūN,1, . . . , ūN,n−1)
T

as

ūN =−M+eN ,

whereM+ = M t(M tM)−1 is the pseudo-inverse ofM .

Define the correcting input vector ¯uN as
{

ūN(N+k) = uN,k if 0 ≤ k < n−1 ,

0 otherwise

and letȳN(k) be the corresponding output. Consider as inputuN(k)+ ūN(k), the cor-

responding output isyN(k)+ ȳn(k). The following conditions are satisfied:

yN(k)+ ȳN(k) = yf , ∀k≥ N , (4.37)

lim
N→+∞

‖ūN(k)‖∞ = 0, (4.38)

lim
N→+∞

‖ȳN(k)‖∞ = 0. (4.39)

If fact (4.37) follows from the fact that

yN(N+k)+ ȳ(N+k) = yf +eN(k)−eN(k) = yf . k = 0, . . . ,n−1 ,
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andyN(k) + ȳN(k) = yf , ∀k≥ N as a consequence of Lemma 1. Conditions (4.38)

and (4.39) follows from the following inequalities

lim
N→+∞

‖ūN(k)‖∞ ≤ ‖M+‖2 lim
N→+∞

‖en‖∞ = 0 ,

lim
N→+∞

‖ȳN(k)‖∞ ≤ ‖h(k)‖2‖M+‖2 lim
N→+∞

‖en‖∞ = 0 ,

being limN→∞ ‖en‖∞ = 0 by (4.36).

Therefore

lim
N→∞

max

{
uN(k)+ ūN(k)− yf

H(1)
,−uN(k)− ūN(k),

yN(k)+ ȳN(k)−yf ,−yN(k)− ȳN(k)
}

= 0

and, because of (4.24), forN sufficiently large the following property holds

max
{

uN(k)+ ūN(k)−u+
c ,−uN(k)− ūN(k)−u−c ,

yN(k)+ ȳN(k)−y+
c ,−yN(k)− ȳN(k)−y−c

}
< 0 ,

(4.40)

therefore all properties (4.19)-(4.22) are verified. In fact (4.19) is verified by con-

struction, (4.21) comes from (4.37) and(4.20), (4.22) follow from (4.40).�

4.6 Proof of Proposition 5

For anyk∈ Z andτ ∈ [0,1], set

e(τ) = y(kT + τT)− [τy((k+1)T)+ (1− τ)y(kT)] , (4.41)

and note thate(0) = e(1) = 0. Sincey(kT+τT) = CeAτTx(kT)+C
∫ τT

0 eAhBu(kT)dh

equation (4.41) becomes

e(τ) = C(eAτT − I− τ(eAT − I))x(kT)+C
(∫ τT

0
eAhdh− τ

∫ T

0
eAhdh

)
Bu(kT) ,

(4.42)

It is known that ∫ x

0
eAhdh= (eAx− I)A−1
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therefore (4.42) can be rewritten as follows

e(τ) = C(eAτT − I − τ(eAT − I))(x(kT)+A−1Bu(kT)) . (4.43)

Definez(τ) = C(eAτT− I−τ(eAT− I)). It is easily verifed thatz(0) = 0 anddz
dτ (0) = 0.

Consequentlyz(τ) can be expanded as follows

z(τ) = C
+∞

∑
i=2

A iT iτi

i!
, (4.44)

i.e. the two first element of the series are missing. Equation(4.44) can be manipulated

leading to

z(τ)≤
+∞

∑
i=2

‖CA iT i‖τi

i!
≤

l

∑
i=2

‖CA iT i‖
i!

+‖C‖
+∞

∑
i=l+1

‖AT‖i
i!

=

= C(e‖A‖T − I−‖A‖T)−
l

∑
i=2

(‖C‖‖A‖i −‖CA i‖)T i

i!
.

(4.45)

Finally, substituting (4.45) in (4.43) and using the fact that maxt∈R{y(t)− y+
c , y−c −

y(t)} ≤maxt∈R |e(t)|) we obtain the thesis.�

4.7 Proof of Proposition 6

Defineȳ= y−yf andū= u− yf

H(0) , then the following differential equation is satisfied

∀t ≥ t0:

Dnȳ(t)+an−1Dn−1ȳ(t)+ . . .+a0ȳ(t) = 0 . (4.46)

Indicate withρi , i = 1, . . . , l the multiplicities respectively associated to any root

pi , then,∀t ≥ t0 the solution of (4.46) can be expressed in the following form

y(t) = ∑
i=1,...,l

∑
j=0,...,ρi−1

ci, j ·

·(t− t0)(t− t0−T) · · · (t− t0− ( j−1)T)

T j( j−1)!
epi(t−t0− jT ) ,

(4.47)

whereCi, j are suitable constants. Due to (4.47), (4.31) can be writtenas follows

0 = VC , (4.48)
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whereV = [V1,V2, . . . ,V l ] and

V i =




1 0 0 . . . 0

eT pi 1 0 . . . 0
...

...
...

...

e(ρi−1)T pi (ρi−1)e(ρi−1)T p1 (ρi−2)(ρi−1)
2 e(ρi−1)T pi . . . 1




,

C =
(
c1,0, c1,1, . . . , c1,ρ1−1, c2,0, . . . , cl ,ρl−1

)T
.

V is thegeneralized Vandermonde matrixand, as stated in [65],det(V)= ∏1≤i< j≤l (e
piT−

epj T)ρiρ j . Because of (4.32),detV 6= 0, so that from (4.48) it follows thatC = 0, and

thereforey(t) = 0, ∀t ≥ t0. �





CHAPTER 5

Minimum-time feedforward control based on convexity

What is now proved was once only imagined.

William Blake

I n the previous chapter the optimal control problem has been solved by discretiz-

ing the linear or linearized dynamic of the considered system, converting the

original constrained problem into a set of feasibility tests of an equivalent linear

programming formulation. The proposed approach allows to simplify the search of

the optimal minimum-time solution for a constrained rest-to-rest transition but, as

previously remarked, it has two major drawbacks: it is designed only to deal with

linear systems and, due to the discretization step, the choice of the sampling time is

critical in order to fulfill given constraints between two sampling instant.

For these reasons efforts have been spent in order to define a computational al-

gorithm able to solve the minimum-time problem with a pure differential method.

Moreover the original goal has been to consider a wider classof dynamic systems,

also nonlinear, satisfying some necessary conditions for the algorithm convergence.
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In the general case the solution of minimum time problems canbe formulated

using the Pontryagin’s Maximum Principle (PMP) for which, under some hypothesis,

every optimal solution can be generated with the knowledge of two parameters: the

transition time,t∗, and the final costate,q1, which is the normal vector to the boundary

of the set reachable at timet∗ at the final state. Generally the analytical solution of

PMP is quite hard to find unless the system is of low order, timeinvariant and linear.

Such problems may be solved numerically, and a number of time-optimal bang-

bang control algorithms have been proposed in the literature, such as the shooting

method or other iterative procedures. The shooting method for time optimal control

was originally proposed in [66] for a class of simple systemsfor which an initial

good guess of the costate values were possible. In general, the shooting method has

shown an high convergence sensitivity to the costate initial guess. Other proposed

approaches make use of geometrical considerations. In particular, for the scope of

this chapter, one can recall those introduced in [67] and [68]. The geometric ideas at

the basis of the approach described in the following are similar.

The proposed algorithm, based on PMP, is in fact able to find the right values of

t∗ andq that guarantee to reach the final statex1, through a geometric method that

makes use of the convexity of the system reachable sets. The algorithm is based on a

differential equation that determines a functionx(λ) which is a vector that converges

to the final statex1. For everyλ, x(λ) belongs to the boundary of the set reachable

from the initial statex0 in a time that grows withλ. The error function, defined as the

norm of the distance between the statex(λ) and the final statex1 is monotonically

decreasing. A proof of convergence is presented.

The chapter is organized as follows. In §5.1 the control problem is proposed and

the solution is obtained in the subsequent section. In §5.3 some considerations about

numerical issues are presented; then in §5.4 some simulations are discussed.

Notation: For any two vectorsv,w∈ R
n, < v, w >= ∑n

i=1viwi denotes the scalar

product. Givenv∈ R
n, v̂ = v

‖v‖ denotes the unit vector having the same direction as

v. Given a setA ⊂ R
n, ∂A denotes the boundary ofA andI (A) denotes its internal

part. Given a differential manifoldM ∈ R
n, Tx(M ) denotes the tangent space ofM

atx. The setSn⊂ R
n+1 = {x∈ R

n+1 : ‖x‖ = 1} is the unit ball ofRn+1.
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5.1 Preliminaries

Consider a time independent non linear system of the following form

{
ẋ = f (x,u)

x(0) = x0
(5.1)

wherex∈ R
n, u(t) ∈ R

m. It is assumed that the input functionu(t) satisfies the fol-

lowing condition

u(t) ∈U,∀t ≥ 0,

whereU ⊂ R
m is an arbitrary convex set. The notationxu(t) denotes the solution

of (5.1) for a given input functionu(t).

Thetime-optimal problemconsists in minimizing the time needed for a transition

from an initial statex0 to a final statexf

min
u
{t∗|xu(t

∗) = xf} ,u(t) ∈U, ∀t ≥ 0 .

5.1.1 Characterization of the optimal solution

One of the most important tools for optimal control is the Pontryagin’s Maximum

Principle (PMP), which gives a necessary condition for optimality. In the case of

minimum-time problem it can be formulated as follows.

Theorem 2 (PMP) If u∗(t) is an admissible control for system (5.1) that is a solution

of the time-optimal problem with final time t∗, then there exists a Lipschitz function

q(t) ∈ R
n, q(t) 6= 0,∀t ∈ [0, t∗]

such that, almost everywhere on[0, t∗],

< q, f (x,u∗) >= maxu∈U < q, f (x,u) > ,

q̇T(t) =−qT d f
dx|x=xu∗ (t) ,

< q, f (x,u∗) >= 1 .

(5.2)
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FunctionH(x,q,u) =< q, f (x,u) > is called Hamiltonian and its value is constantly

1 along the time-optimal solution.

In the case of linear systems Equation (5.1) takes the form

ẋ = Ax+bu

x(0) = x0

and the costate equation reduces as follows

q̇ =−ATq

< q, f (x,u∗) >= maxu∈U < q, Bu> .

The reachable setAx0(t) represents the states that can be reached at timet, starting

from the initial conditionx0.

Definition 5 The reachable set of system (5.1) is

Ax0(t) = {xu(t)|u∈ L∞([0, t],U)} .

Remark 5 If state xf ∈ R
n is reached in minimum time t∗ from the initial state x0,

then it must be

xf ∈ ∂Ax0(t
∗) ,

that is xf belongs to the boundary of the set accessible from x0 in time t∗.

5.1.2 Characterization of convexity

A subsetC of R
n is strictly convex when the internal part of the segment joining any

couple of points ofC belongs to its interior.

Definition 6 A setC ∈ R
n is strictly convexif ∀x,y∈ C , x+ λ(y− x) ∈ I (C ), ∀λ ∈

(0,1).

A vector w is said to be normal to a convex subsetC at a pointx, wherex ∈ C , if

w does not make an acute angle with any line segment inC with x as endpoint, i.e

< x−y, w >≥ 0 for everyy∈ C . The set of all vectorsw normal toC in x is called

the normal cone toC atx, as reported in Definition 2, chapter 5 of [69].
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Definition 7 The normal cone at x∈ C whereC is a convex subset ofR
n, is given by

NC (x) = {p∈ R
n|< p, x−y >≥ 0 ,∀y∈ C} . (5.3)

Proposition 7 If C is a closed, bounded and strictly convex subset ofR
n then for any

q∈ Sn−1 there exist one and only one x∈ R
n such that q∈NC (x).

Proof.Givenq∈Sn−1 define the family of hyperplanes normal toqand parameterized

by λ ∈R

H (λ) = λq+{x|< x, q >= 0}.

Because of the boundedness ofC the following maximum is well-defined

λ̄ = max{λ > 0|H (λ)∩C 6= /0}

moreoverH (λ)∩C contains only one vectorx0 ∈R
n. In fact if there existedx1, x2 ∈

H (λ)∩C , with x1 6= x2, then, beingH (λ)∩C ∈ ∂C a convex set,

x1 + λ(x2−x1) ∈H (λ)∩C ∀λ ∈ [0, 1]

subsetC cannot be strictly convex because the segment connectingx1 andx2 belongs

to its boundary. By the Proposition 7, the mapping

T(q) = x, if q∈NC (x) , (5.4)

is well defined. MappingT(q) associates to every possible normal vectorq(t) ∈ Sn−1

the vectorx which lies on the boundary of manifoldC such thatq belongs to the

normal cone ofC atx.

Proposition 8 For any q1, q2 ∈ Sn−1 mapping T satisfies the following property

< T(q2)−T(q1), q2−q1 >≥ 0. (5.5)



112 Chapter 5. Minimum-time control

Proof.By the definition ofT, q2 ∈ NC (T(q2)), therefore it satisfies

< q2, T(q2)−T(q1) >≥ 0, (5.6)

which comes from Definition 7, settingx = T(q2) andy = T(q1). In the same way it

is

< q1, T(q2)−T(q1) >≤ 0, (5.7)

by subtracting (5.7) to (5.6) the thesis follows.

Theshape operatoris a linear operator that is associated to the derivative of the

normal vector to a differential manifold with respect to theposition on the surface

and is defined as follows.

Definition 8 Consider a n−1 dimensional differentiable manifoldM , embedded in

R
n, represented by the image of the differentiable function M: Ω⊂R

n−1→ R
n, i.e.

M = M(Ω) ,

let n̂(x) ∈ Sn−1 be the normal unit vector toM at x∈M , then theshape operator

associated toM is the mappingS : TxM → TxM , such that

Sx(v) =−dn̂(x+ λv)
dλ

, (5.8)

where v∈ TxM .

The shape operator is related to the curvature of trajectories defined on a manifold as

follows: let γ(t) ∈M be a smooth arc-length parametrized curve such thatγ(0) = x

andγ̇ = v, then

< γ̈, n̂(x) >=< v, Sxv > .

The shape operator defines a quadratic form< v, Sxv> that represents the component

of the curvature ofγ(t) normal to the manifoldM .

Proposition 9 Given a convex subsetC ⊂ R
n, let x∈ ∂C and q∈ Sn−1 be such that

x= T(q), where T is the mapping defined in (5.4), and letSx(v) be the shape operator

defined on x. Then if T is differentiable in q it is

dT(q)

dq
= S−1

x (v)
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Proof.By (5.4)

T(q) = x, if q∈ NC (x).

Assumeq = q(x), if T is differentiable inq then

dT
dq

dq
dx

= I .

From the definition of shape operator in (5.8), it follows that

dT
dq

Sx = I

Proposition 10 Given a closed, bounded and strictly convex manifoldC ⊂ R
n, if

mapping T defined in (5.4) is differentiable then

dT(q)

dq
≥ 0

that is dT(q)
dq is positive semi-definite.

Proof. Given q ∈ Sn−1, andV ∈ TqSn−1 and letqi be a succession of values in

Sn−1 such that
lim i→∞ qi = q

lim i→∞Vi = V,

whereVi = qi−q
‖qi−q‖ , then it is

< V,
dT
dq

V >= lim
i→∞

< Vi ,
T(qi)−T(q)

‖qi −q‖ >=<
qi −q
‖qi −q‖ ,

T(qi)−T(q)

‖qi −q‖ >

Since (5.5) holds, the thesis follows.

A consequence of this result is the following property (see (3.2), chapter 7 of

[70]).

Proposition 11 If C is a closed, bounded and strictly convex subset ofR
n, then on

its boundary the shape operator is positive semi-definite, i.e.

< V, Sx(x)V >≥ 0 ,∀x∈ ∂C ,∀V ∈ Tm
x ∂C . (5.9)
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5.1.3 Problem formulation

Definition 9 Given an initial state x0 ∈ R
n, thefinal costate mappingγ f : R

n×R→
R

n, is given by

γ f (q1, t) = x(t),

where x(t) is the solution at time t of the augmented system (5.1) + (5.2)with initial

state x(0) = x0 and final costate condition q(t) = q1.

Theinitial costate mappingγi : R
n×R→ R

n, is given by

γi(q0, t) = x(t),

where x(t) is the solution at time t of the augmented system (5.1) + (5.2)with initial

condition x(0) = x0 and initial costate condition q(0) = q0.

The only difference between functionsγi andγ f lies on the fact that the boundary

condition on the costate is given on the initial and, respectively, the final state. The

relations between the two functions is given by following proposition.

Proposition 12 Let φ(t) ∈ R
n×n be the solution of system

{
φ̇ =−d f(x,u∗)T

dx |x=xu∗ (t)φ,

φ(0) = I ,

where u∗ is given by (5.2), then it is

γ f (φ(q0),T) = γi(q0,T).

The general problem considered in this chapter is the following

Problem 8 (Shooting problem)Given a nonlinear system of the form (5.1) and a

final state x1, find a initial costate q0 and a time T such that

x1 = γi(q0,T)
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5.2 Main result

The basic geometric idea of the proposed algorithm is depicted in Fig. 5.1. Given a

final costateq1 and a final timet, consider the final statex1 = γ f (q1, t). Remark that

q1 represents the normal vector atx1 to the set of states reachable in timet. The error

vector is defined ase= xf −x1 and it is decomposed as follows

eN =< e, q̂1 > ; eT = e−< e, q̂1 > q̂1,

whereeN is the error component parallel toq1 andeT is parallel to the tangent space

to the boundary of the reachable setAx0(t) atx.

If q1 is varied by the small quantityδq1 it follows that the final state varies by

δx1 = S−1δq1,

which satisfies< δx1, δq1 >≥ 0, because of the convexity of the reachable set.

Therefore ifδq1 is proportional to the tangential error, i.e.δq1 = KeT , the tangen-

tial error is reduced. On the other hand the normal error can be reduced by increasing

the final timet by a term proportional to the normal error itself, exploiting the fact that

the state derivativef (x,u∗) is always directed outwards with respect to the reachable

set, as a consequence of the third equation of (5.2).

A key technical fact is that the error vector will always be inside a cone with axis

q and semi-aperture arcsin
√

1−β2, whereβ is a tuning parameter close to 1.

The following theorem is the main contribution of this paperand present and

algorithm for solving Problem 8.

Theorem 3 Let t̂ be a time greater than the optimal time t∗, and let K,β, α, M, χ be

positive real constants that satisfy the properties

0 < χ < min
x∈A0(t̂)

{< q̂, f̂ (x,u∗) >} , (5.10)

β−χ−1
√

1−β2 > M > 0 (5.11)

1−β2

β
< α <

1−β2

β(1−βM)
. (5.12)
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Figure 5.1: A schematic representation of the control technique.

Consider system (5.2), with the associated final state mapping x1 = γ f (q1, t). and

define the error function as e(q, t) = xf −S(q1, t). Consider the following differential

system
dt
dλ = Kα <e, q̂1>

< f , q̂1>
‖e‖

dq̂1
dλ = K(e−< e, q̂1 > q̂1) ,

(5.13)

then if the reachable setsAx0(t) are convex for all t≥ 0 and if

< ê(0), q̂1(0) >> β , (5.14)

then

< ê(t), q̂1(t) >> β ,∀t ≥ 0 . (5.15)

moreover it is

lim
λ→∞

e(λ) = 0 . (5.16)

Proof.Equation (5.15) is equivalent to

< e, q̂1 >−β‖e‖ ≥ 0 , ∀t ≥ 0 ,

deriving the above expression, it follows that

d < e, q̂1 >−β‖e‖
dλ

=< ė, q̂1 > + < e, ˙̂q1 >−β < ė, ê> , (5.17)

where the dot denotes the derivatives with respect toλ.
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Rewrite the first of the three terms in (5.17) taking into account (5.13)

< ė, q̂1 >=−Kα < e, q̂1 > ‖e‖ =−Kα < ê, q̂1 > ‖e‖2 .

The second term in (5.17) is given by

< e, ˙̂q1 >=< e, K(e− < e, q̂1 > q̂1) >= K‖e‖2(1− < ê, q̂1 >2) ,

and the third one by

−β < ė, ê>= β
(Kα < f , ê>< e, q1 >

< f , q̂1 >
‖e‖+

+K < ê−< ê, q̂1 > q̂1, S−1
x1

(e− < e, q̂1 > q̂1) >
)

whereS−1 is the inverse shape operator computed onx1 which lies on the boundary

of the reachable setAx1(t1). Being the border of the reachable set convex, matrixS is

negative definite by Proposition 11. Moreover

< f , e>=< q̂1, f >< q̂1, e> + < f−< q̂1, f > q̂1, e>

and equation (5.17) can be bounded as follows

d < e, q̂1 >−β‖e‖
dλ

≥ K‖e‖2(1− < ê, q̂ >2−α < ê, q̂1 > +βα < f , ê>< ê, q1 >)

evaluating this expression for< ê, q̂1 >= β it follows that

d < e, q̂1 >−β‖e‖
dλ

≥ K‖e‖2(1−β2−αβ+ βα(β−χ−1
√

1−β2)) .

Applying (5.11) and (5.12) it follows that

d < e, q̂1 >−β‖e‖
dλ

≥ K‖e‖2(1−β2−αβ+ βαM)≥ 0 if ‖e‖ ≥ 0 ,

therefore (5.15) must hold.

Consider now the equation for the normal error< e, q̂1 >, it is d
dλ < e, q̂1 >=<

ė, q̂1 > + < e, ˙̂q1 >, which corresponds to the first two terms of (5.17) and it follows

that

d
dλ

< e, q̂1 >=−Kα < e, q̂1 > ‖e‖+K‖e‖2[1−< e, q̂1 >2]≤

≤−‖e‖2 < ê, q̂1 > K[(1−β2)−αβ)]≤−‖e‖2 < e, q̂1 > Kc≤−< e, q̂1 >3 Kc .
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where property (5.12) had been applied andc> 0 is a positive constant. Therefore by

the comparison lemma

lim
λ→∞

< e, q1 >= 0,

and, being, by (5.15),‖e‖ ≤ ‖< e, q̂1 > ‖
√

1+ β2 , (5.16) follows.

Remark 6 Theorem 3 represents a procedure that can be used for the computation

of the time-optimal control for systems whose reachable sets are convex. The convex-

ity is crucial because allows the inverse of the shape operator Sx1 to be semidefinite

positive. The property of convexity is enjoyed by various kind of systems, for exam-

ple linear time-varying systems, some bilinear systems [71], nonlinear systems with

small inputs [72].

Remark 7 Conditions (5.11), (5.12) can always be satisfied for some value ofβ, α
and K provided that the value ofχ in (5.10) is found. Doing this may be difficult,

because it requires an a priori estimate of a reachable set containing the final state,

xf . In practice, if the algorithm does not converge, the termχ can be reduced (making

β closer to1) until convergence is achieved.

5.3 Numerical implementation

The approach devised in §5.2 has been numerically implemented as reported in Al-

gorithms 2 and 3.

The input parameters are the following:K ∈ R
+ is a gain constant,xf is the

final state,εe represent the error tolerance andα, β are the parameters appearing in

Theorem 3. Moreoverφ(q, t) ∈ R
n×n is the solution of

{
φ̇(t) =−d f(x,u∗)T

dx |x=xu∗ (t)φ(t)

φ(0) = I

where f is the system function,x ∈ R
n is the state-vector andu∗ is found with

(5.2). The algorithm is a direct application of Theorem 3. Inparticular Equation

(5.13) is solved using the initial statet(0) = 0 andq0(0) = q1(0) = x1, such that
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< ê(0), q̂1(0) >= 1, and (5.14) holds. The algorithm ends when the norm of the er-

ror between the final statex1 and the current stateγi(q0, t∗) is less than the tolerance

εe.

Algorithm 2 : Compute the minimum-time feedforward control

input : xf , εe, α, β, K

output: q1 andt∗

begin
t0 = 0;

q0 = x1−x0
‖x1−x0‖ ;

repeat
(dt1

dλ , dq̂1
dλ )←−G(q0, t);

q0←− q0 + φ(q0, t)−1 dq̂1
dλ ;

t←− t + dt
dλ ;

until e≥ εe ;

q1←− φ(q0, t)q0;

t∗ = t;

u∗(t)←− sgn(q1B);
end

Remark 8 The Euler algorithm is used here only for simplicity, but anykind of dif-

ferential equation solver can be adopted, i.e. Runge-Kuttamethod.

Algorithm 3 : G(q, t): Compute the derivative of time t and the initial costate q
input : t1, q0 ande

output: dt
dλ and dq̂1

dλ
begin

x1←− γ1(q0, t);

e←− ‖xf −x1‖;
Computeφ(q0, t);
dt
dλ ←− Kα <e, q̂1>

< f , q̂1>
‖e‖;

dq
dλ ←− K(e−< e, q̂1 > q̂1);

end
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5.4 Simulation and experimental results

Three different types of systems have been used to evaluate the correctness and the

convergence of the proposed approach. Simulations have been performed in Matlab,

while experimental results have been obtained using the WinCon real-time extension.

First of all the algorithm has been tested with a dummy problem, a double order

integrator system. Then simulations and experimental results have been carried on the

linearized model of a flexible joint device, and finally the algorithm has been tested

on a non-linear system, without any modification.

5.4.1 Double order integrator

It is given byẋ = Ax+Bu, where

A =

[
0 1

0 0

]
b =

[
0

1

]
. (5.18)

The reachable setA0(1) = γi(S1,1) is shown in Fig. 5.2: the set is convex, with

two non-differentiable points respectively inx = [−2.5 ,−5]T andx = [2.5 ,5]T .
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Figure 5.2: The reachable set att∗f = 1 s for the double order integrator

The control law allowing to reach the final statexf = [1, 0]T has been computed

with the input constraint‖u(t)‖∞ ≤ 1. Simulation results are shown in Fig. 5.3. As
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Figure 5.3: Simulation of a double order integrator subjectto input constraint for a

transition to final statex = [1 0]T .
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expected the input control is a standard bang-bang signal; in the first half of the

optimal transition the system accelerates at the maximum rate and then it decelerates,

always at the maximum admissible rate.

5.4.2 Flexible joint system

To further validate the effectiveness of the proposed algorithm, a mechanical simula-

tor of a flexible joint has been used. It’s mathematical modelis described in Chapter 4

and published in [73]. The system state space model is ˙x = Ax+Bu, where

A =




0 0 1 0

0 0 0 1

0 379.9 −56.65 2.956

0 −512.9 56.65 −3.99




B =




0

0

93.74

−93.74




.

Time-optimal feedforward controlu∗(t) has been found by means of the al-

gorithm described in §5.3, to get a rest-to-rest transitionfrom x0 = [0,0,0,0]T to

xf = [π/4,0,0,0]T with the input constraint‖u(t)‖∞ ≤ 5 Volts.

The optimal transition is performed int∗ = 0.31 s and the related control sig-

nal is reported in Fig. 5.4. Fig. 5.4(b) shows the comparisonbetween the simulated

plant output and the real one. Since the proposed approach has been tested on the

linearized model of the flexible joint, the behavior difference is mainly due to friction

and other neglected system non-linearities. As validationof the correctness of the

devised solution, this result has been successfully compared with the one obtained by

the algorithm described in [73].

5.4.3 Mass on a cart

Consider now the mechanical system made of a massM on a linear cart subject to an

external forceu. The state space vector is given byx = [x1, x2], wherex1 is the cart

position andx2 is its linear velocity. The control problem is to devise a bounded input

u in order to move the cart in minimum-time from an initial state x0 = [x10, x20] to a

desired final statexf = [x11, x21].
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Figure 5.4: Experimental results of the control technique applied to the linearized

model of a rotary flexible joint subject to input constraint for a rest-to-rest transition

to final statexf = [π/4 ,0 ,0 ,0]T .

Figure 5.5: A schematic representation of the mass on a cart system.
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Figure 5.6: Static friction and reachable set for a mass on a cart.
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In order to remark the ability of the proposed algorithm to deal also with non-

linear systems, static and dynamic frictions are taken intoaccount in the modeling

phase. Since the augmented system (5.2) has to be differentiable, the static frictionτs

defined as

τs =

{
Ks if x2≥ 0

−Ks otherwise

has been approximated, see Fig. 5.6(a), with the function

τs = Ksarctan(ηx2)
2
π
,

which depends on the parameterη: the higher is its value, the more accurate is

the similarity with the friction heaviside function.

The system model is then equal to:
{

ẋ1 = x2

ẋ2 = −Kv
M x2−arctan(αx2)

2
π

Ks
M + u

M

whereKv is the dynamic friction constant,Ks is the static friction andM is the mass.

Fig. 5.6(b) shows the reachable setA0(1) = γi(S1,1) which is, as expected, con-

vex. The Time-optimal feedforward controlu∗(t) has been obtained with the algo-

rithm described in §5.3, to get a rest-to-rest transition from x0 = [0, 0] to xf = [1, 0],

satisfying the input constraint given by‖u(t)‖∞ ≤ 1. Simulation parameters areKs =

0.7, Kv = 1, α = 100 andM = 1. The optimal transition is performed int∗ = 4.1279

s and the related control and output signals are reported in Fig. (5.7).



126 Chapter 5. Minimum-time control

0 0.5 1 1.5 2 2.5 3 3.5 4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

B
an

g−
ba

ng
 in

pu
t c

on
tr

ol

(a) Bang-bang input control

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Time (s)

 

 
Cart position
Cart velocity

(b) System output

Figure 5.7: Results of the control technique applied to the non-linear model of a mass

on a cart for a rest-to-rest transition to final statexf = [1 ,0]T .



Conclusion and Future Work

The goal of this thesis was to develop new efficient strategiesfor the optimal

planning of mechatronic systems and, more in details, to deeply analyze the

problem of optimal path generation and online path tracking. In this section,

we discuss to what extent these research goals have been accomplished.

In Chapter 1, an effective solution to the optimal path planning problem for mo-

bile robots has been described. To this purpose, it has been used a power planning

primitive, calledη3-splines, which allows to generate paths with a third order geo-

metric continuity. The shape of theη3-splines can be modeled to fulfill a given opti-

mality criterion by acting on a vectorη of freely tunable parameters. The selection of

η represents a key point for the generation of optimal paths: awrong choice can easily

introduce undesired vehicle solicitations. In particular, it has been shown how, by act-

ing onη, it is possible to generate curves with minimum curvature derivative with the

purpose of minimizing the vehicle lateral jerk. In order to avoid the execution of huge

online optimizations, an heuristic method has been proposed for the optimal selection

of η. When interpolating conditions are compatible with circular arcs and clothoids,

the devised expressions generate curves which at the best emulate such primitives.

In the case of generic interpolating conditions, the maximum curvature derivative is

very close to the actual achievable minimum. To show the strong impact of the lat-
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eral solicitations on the motion performances, a test case based on a unicycle-like

mobile robot has been simulated also considering the traction forces generated at the

interface between the wheels and the ground. Results have shown that later skidding

phenomena can be drastically reduced when the proposed planning is used.

In Chapters 2 and 3, the problem of the trajectory scaling forconstrained path

tracking of robotic manipulators has been studied. In particular, it has pointed out,

and proved by simulations, that it is essential to design control schemes able to on-

line shape any given desired input trajectory in order to fulfill robot kinematic and

dynamic constraints, thus allowing a good path tracking. This requirement is not

only important when trajectories are planned by an operatorbut it is still fundamen-

tal when offline optimization algorithms are used in the planning phase to design

minimum-time trajectories.

More in details, in Chapter 2 the problem originally proposed by Dahl and Nielsen

has been improved by also considering explicit constraintson the manipulator joint

velocities and torques. To this purpose, a newly devised discrete-time filter has been

used to online scale any nominal trajectory, which could be infeasible. The proposed

control scheme requires minor adaptations of standard manipulators controllers, since

the desired result is obtained by simply inserting the new filter between a reference

signal and the controller itself. Simulation results demonstrate that path tracking per-

formances neatly improves and, simultaneously, also the velocity reference signal is

followed at best, compatibly with the manipulator constraints.

The same strategy, in Chapter 3, has been improved to accountfor manipulator

high-order dynamic constraints, namely torque and torque derivatives. This analysis,

using the same filter structure devised in Chapter 2, has required to use an efficient

algorithm for the evaluation of the high order manipulator dynamics and, for the

controller parametrization, an algorithm for the efficientonline evaluation of the robot

mass matrix derivative has been devised.

Simulation results have proved that, in both cases, a good path tracking is achieved

even when reference trajectories are not physically feasible. The algorithms have also

been tested in presence of model uncertainties and also by using two different ma-

nipulator standard torque controllers.

Finally, in the last part of the thesis, corresponding to Chapters 4 and 5, the design
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of algorithms for the constrained minimum-time control of both linear and nonlinear

systems has been studied. Differently from the previous methods, where the path-

velocity paradigm has been used, in these chapters the aim ofthe proposed algorithms

is to generate the optimal trajectory controls as a whole, given the system model.

Initially, the problem has been solved by using a discretization method which

converts the minimum-time problem for linear systems into aset of feasibility tests

solvable by standard linear programming methods. The described approach has been

successfully applied to the control of a flexible joint device. Even if its model is

clearly nonlinear, very good results have been achieved by using the proposed feed-

forward method by linearizing the system around its equilibrium point. A comparison

with an inversion-based feedforward control has confirmed the effectiveness of the

new approach. Moreover, it applies to any stable linear plant, so that it is foreseeable

an extension of the technique to the more challenging cases of systems with unstable

zero-dynamics like, for example, flexible links [74]. Nevertheless, general nonlinear

systems cannot be managed and, moreover, the sampling time assumes a critical role

in the fulfillments of the system output constraints. For these reasons, a new way to

obtain the optimal solution has been investigated.

In Chapter 5 an algorithm able to devise the minimum-time control for nonlinear

systems has been described. The approach proposes a geometric invariant in time-

optimal control for an input constrained transition based on the convexity of the sys-

tem reachable sets. Therefore, it is useful for those systems whose reachable sets

are convex, such as linear systems, weakly nonlinear systems and a class of bilinear

systems. The described method is based on the solution of twonested differential

equations: the inner one computing the initial state mapping and the outer one com-

puting the movement in the state parametrization in order toreduce both the normal

and the tangential error vector. A proof of convergence has been devised and exper-

imental results have been presented for three different plants. Among them also the

system model of the flexible joint has been used as a benchmark. Good results have

been obtained from the proposed method, whose main novelty is represented by the

complete differential approach.
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Recommendations for future works

The answers to the research problems treated by this thesis have led to more ques-

tions, and hence several directions for future research. Inparticular, for what concerns

the path generation for mobile or industrial robots, it could be interesting improve the

mathematical definition of theη3-splines by adding a third dimension, thus allowing

to plan 3D paths while maintaining all the good features of the current primitives.

Moreover, the proposed approach has been tested uniquely insimulation; hence, it

could be interesting having a test bed with a real robot in order to directly measure

the path tracking improvements due to the reduction of the lateral vehicle skidding. In

the same way it could be also possible to measure the tyre shear stresses and therefore

experimentally validate the model devised in [75].

For what concern the online strategies for the path trackingproblem, an interest-

ing enhancement of the current methods is certainly to continue the research on the

three stage integrator filter in order to simultaneously deal with velocities, torque and

torque derivative constraints. Moreover, we have so far defined the robot trajectory

in the joint space. Even if from a theoretical point of view itis always possible to

convert a task space path into a joint space one, from a practical point on view this

poses some difficulties inside the considered framework: itrequires to evaluate the

high order derivative of the manipulator jacobian matrix, which is still an open re-

search issue. Another improvement, as for the previous case, is to test the proposed

control scheme with a newly bought six degree of freedom industrial robot.

Finally, for what concern the time optimal control algorithm, an interesting im-

provement is to speed up the convergence by solving some numerical problems high-

lighted during the conducted simulations.
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