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Introduction

his thesis focuses on the challenging problem of the optptaining for

mechatronic systems. The general goal is to find strategmshvwnaximize

or minimize some cost criteria defined over a given constdhpproblem. The
planning for mobile or industrial robots is a general framgxwnder which several
different open research issues can be found. In fact, themmplanning involves the
solution of a variety of optimality problems which rangerfréhe optimal path design
to the optimal planning of trajectory, or alternativelyvedocity. The aforementioned
planning issues can be solved by algorithms that can acraitfline or online, i.e.,
respectively, by designing the overall motion before anyemaoent of the controlled
system or by constantly planning or shaping the motion dutine task execution.
Since, obviously, this is a very wide research field we hawdtdid the scope of our
analysis to the cases depicted in Figure 1, which gives ahgralpoverview of the
topics investigated in this work.

Most of the proposed approaches aim at guarantee a perfictrpeking of a
generic mobile or industrial robot if trajectories are plad according to the so-
called path-velocity decomposition. In this frameworle thajectory to be execute is
obtained by first defining a desired geometric path and, adgequently, by assign-
ing a time law to move along it.
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Figure 1: A graphical overview of the thesis structure

The first problem analyzed in this thesis is, therefore, fiteval path generation.
In particular the attention has been focused on the desigptohal planar paths for
mobile robots. There does not exists a unique solution wifisiue, since different
planning primitives and optimality criterion can be usedtHis work we use thg3-
splines, a powerful path planning primitive recently dedidy the Control System
Group of the University of Parma. One of the features of suahitives is the pos-
sibility to modify the shape of the generated path by simmiing on a set of six
free parameters. This is both the strength and the weakri¢ke n3-splines since
it imposes to find an effective procedure for the assignmeitise free parameters,
in order to generate smooth profiles. In Chapter one, thislgno is investigated and
heuristic relations, which generate suboptimal paths mitiimum curvature deriva-
tive, are proposed.

As it was early anticipated, path planning is only one aspédthe optimality
problems analyzed in this thesis: dynamics and kinematinstcaints have not been
considered so far. The planning of the velocity profile repris a crucial step to
guarantee the overall trajectory feasibility with respecthe system kinematic and
dynamic constraints. Several offline algorithms can be dauarthe literature to deal



with this problem. Our attention has been mainly focusedhenanalysis of those
generating minimum-time trajectories. In particular, etforts have been spent, in
Chapter two and three, to devise control schemes to onliapeshny desired, pos-
sibly unfeasible, trajectory into a new one which fulfill¥gn constraints. Velocity
profiles are typically off-line evaluated by means of opfiaiion algorithms which
fulfill given dynamic constraints of the systems’ modelsvidhbsly, generated solu-
tions are not robust against mismodelling or external peations, especially when
profiles requiring the maximization of the actuator effats planned, such as, e.g.,
the minimum-time trajectories. This is the reason why anlirajectory scaling al-
gorithms are required to avoid that saturations of the obractions could deter-
mine a path tracking lost. In particular, Chapter two is deslato present a novel
control scheme, based on a nonlinear filter, able to accauntdiocity and accel-
eration/torque constraints while Chapter three extendsafiproach to account for
torque and torque derivative constraints.

As a part of the research on the optimal planning, the lagttelhs of this thesis
presents some contributions to the generation of optimabaats for constrained
nonlinear systems with a particular focus on the minimumetirajectory planning.
More in details, two different approaches are analyzed. firaeone, described in
Chapter four, uses the discretization to convert the ngatroptimum problem, for
linear systems, into a simpler equivalent set of feasyhitists which can be solved by
linear programming algorithms. The method, which can gasanage input, output
and state constraints, has been successfully applied tied¢déorward control of a
flexible joint: its nonlinear model has been linearized abthe equilibrium point in
oder to use this linear programming approach.

Even if the algorithm of Chapter four has returned very iegéing results, the
minimum-time problem has been further investigated in @aipve in order to pro-
pose a new pure differential method able to manage alsoneamlisystems. The
solution is based on the Pontryagin maximum principle arslldegen tested against
the nonlinear model of the flexible joint.

Finally some conclusion and future works recommendatioagpeoposed in the
last chapter.






CHAPTER 1

Generation of minimum curvature derivative paths for mobile

robots

The path may not be left for an instant.
If it could be left, it would not be the path.

Confucius

veral approaches can be found in the literature in ordeeteigte appro-

riate paths for autonomous vehicles. They can be roughideati into two

ifferent frameworks. In the first one, usually indicatedrastion planning”,
a structured and known environment is considered. Thexgbpmpath joining two
given points can be generated taking into account the dbstaoidance problem
and possibly satisfying some given geometric constramts, minimizing the max-
imum path curvature. The first work related to motion plagnimas proposed by
Dubin [1]. In his work a minimum length path was generated esrmposition of lin-
ear segments and circular arcs. Subsequently, many othks wddressed the same



6 Chapter 1. Optimal Path generation

problem [2, 3, 4] and only recently it has been enriched byitiating the generation
of continuous curvature paths [5].

In the second framework, usually indicated with the termmbtion generation”,
the planing phase assumes local characteristics beingddoon the generation of
short distance paths. This framework is generally encoedtehen a limited infor-
mation on the vehicle surroundings is available, such inchee of a car vehicle
moving along an unknown road or an autonomous robot movisiglenan environ-
ment with strong dynamics characteristics. Obstacle avaid is generally handled
through an opportune choice of the goal point and of the fiolabr orientation: if a
collision is detected, a different target point is selected

In a motion generation context, path geometric charatiesiare extremely rel-
evant. Several path primitives, which generate continwangature paths, were pro-
posed in the past: clothoids, cubic spirals [6], polar potwials [7], intrinsic splines
[8], etc.. Recently, the attention has been focused on igrrimitives whose cur-
vature is continuously differentiable [9]. Paths which gess this characteristic are
namedG3-paths.G3-continuity is essential for unicycle-like robots: in [1@]has
been proved thaB3-paths are compulsory in order to obtain continuously cffie
tiable control signals. This requirement is not stricthcessary in the case of other
autonomous vehicles, however the use of paths whose cteviataontinuously dif-
ferentiable leads to the generation of smooth command Isigwaich is, undoubt-
edly, a positive characteristic.

In [11, 12], a new planning primitive, namegf-splines, has been proposed for
the generation o63-paths.n3-splines are planned by means of closed form expres-
sions and always fulfill any arbitrarily assigned set of ipt#ating conditions. The
shape of3-splines can be refined by acting on a set of six free parasateich do
not affect the curve boundary points: the assigned intatimg conditions are always
fulfilled independently from the choice of such paramet&snsequently, given an
appropriate shaping criterion-splines can be considered a powerful tool for the
generation of optimal paths. Two main questions arise: wlsithe most appropriate
optimality criterion to be fulfilled? And, moreover: is it psible to devise the optimal
shaping parameters by means of a simple method? There isimgila answer to the
first question. Since the control strategy proposed in [I@kat generating smooth
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and accurate robot movements, the emphasis has been posed generation of
paths whose curvature derivative is minimized. In this ¢dap will be shown that,
owing to this choice, lateral solicitations acting on a nmgviehicle can be reduced.
The answer to the second question is not triviahdfsplines are used in a motion
planning context, the optimal planning problem can be afnlved by means of an
algorithm for the global semi-infinite optimization whichable to manage nonlinear
object functions. This approach is not suited in a motioregation framework since,
owing to the problem complexity, evaluation times are nahpatible with online
applications. As a consequence, the solution must be fduodigh a different ap-
proach. The method analyzed in this chapter for the optirzaipng ofn3-splines
does not require the explicit online solution of an optini@a problem and, conse-
quently, can be efficiently used in a real-time framework.

The current chapter is organized as follows. In §1.1GRénterpolation problem
is formalized Problem 3 and the closed form expressiong{splines) proposed in
[11, 12] for its solution are recalled. The optimal shapimglgem @Problem 3, is
formulated in the same section, while the proposed solusiolescribed in §1.2. The
results are verified in 81.3 by means of a path planning ac#itrg test case.

1.1 Problem formulation

A curve in the Cartesian planar space can be described bysnoédime function

p:lug,uy] — R?
u — p(u=apw,
where[up, u;] is a real closed interval. The associated “path” is the imafgep, us ]
under the vectorial functiop (u), i.e.,p ([up, u1]). We say thap(u) is a regular curve
if p(u) is piecewise continuous, i.g2(u) € Cy([up,uq]), andp(u) # 0, Yu € [up, Uq].
The arc length or, equivalently, the curvilinear coordinateasured along(u), de-
noted bys, can be evaluated as

fifuo,us] — R

I A LGIL:
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where||-|| denotes the Euclidean norm.

Given any point of a regular curve it can be defined a tangectbwé(u) mea-
sured along the-axis, a scalar curvatune(u), and a curvature derivative(u) :=
g—‘;(u). If 8(u) andk (u) are continuous functions ov@, us], thenp(u) is aG?-curve,
i.e., it has a second order geometric continuity. If al§o) is continuous ovejug, U],
thenp(u) has a third order geometric continuity and is indicated &s-aurve.

Remark 1 A composite &path can be generated by combining severdlo@rves if
it is possible to assign tangents, curvatures, and cureatigrivatives at the extreme
points of each of them.

Therefore the following interpolation problem can be sdate

Problem 1 Assume that two pointsa := [xa ya]' and pg := [xg yg]" have been
assigned in the Cartesian space. Generate’a&@vep(u) betweerpa andpg which
fulfills given interpolating conditions on the initial anchéil tangent angle$, and
Bg, curvaturesk andkg, and curvature derivativesa andkg.

In order to solvéProblem 1 a new planning primitive, nameg-splines, has been
proposed in [11, 12]. It is given by two seven order polyndriuactions defined as
follows

p(u) := [a(u) B(u)]",ue[0,1] (1.1)

where
a(u) := 0o+ asu+ au? + agu® + a4u + asu® + agul + azu’; (1.2)
B(u) := Bo + Bau+ Bau? + Bau® + Bau* + Bsu® + Beul + 7’ . (1.3)

In the same paper, closed form expressions were proposedien  efficiently
evaluate coefficients; and 3 on the basis of the interpolating conditions. For the
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completeness of the discussion they are recalled in theWip.

Oo
a1

oz

as

OV

Os

Oe

az

Bo
B1

B2

B3

Ba

Bs

Be

XA (1.4)
N1COSHA (1.5)
%ngcoseA— %rﬁKAsinGA (1.6)
1 1 . .

6n5coseA— 5 (N3Ka+ 3n1n3Ka) SiNBA (1.7)

2 2 .. .
35(xg — Xa) — (2m1+5r]3+ §n5) €cosBa + (5r]§KA+ érﬁKA+ 2r]1r]3KA) SinBa

5 1 .. 1 .
(15ﬂ2— “Na+ = ﬂe) cosdp — <§n§KB — SN3ke — §ﬂ2ﬂ4KB) sinGg (1.8)
4(Xg — Xa) + (4511 + 10N3+Ns) COSBa — (10NTKA + N3KA + 3N1N3KA) SINGA
1 .. 3 .
+ (39ﬂ2— ma+ - ﬂe) cosBg + <7H§KB - éﬂ%KB - §ﬂ2ﬂ4KB) sinBg (1.9)

15 2 15
70(xg — Xa) — (36ﬂ1+ S Ns+ érls) cosBa + <?H%KA+ 3ﬂ1KA+ 2ﬂ1ﬂ3KA) SinBa
13 1 13 1 .. .
- <34n2— SNa+ znﬁ) cosBg — <?H%KB - ErngB - §n2n4KB) sinBg (1.10)

1 1 .. 1 .
—20(xg — Xa) + <10r]1+ 2n3+ 67]5) cosa — <2r]§KA+ énfkm— §n1n3KA> SinBa

1 1 5. 1 .
+ (10I’]2— 2n4+ éﬂa) CcOoBp + (ZI’]%KB — éﬂgKB — §n2n4KB> sinBg (1.12)
YA (1.12)
N1SiNBa (1.13)
}ngsinGAJr }r]%KACOSGA (1.14)
r]5sm9A+ (n1KA+ 3N1N3Ka) COSHA (1.15)
. 2 4.
35(yg — ya) — <20r]1+5r]3+ §n5) SinBa — <5r]§KA+ érﬁKm— 2n1n3KA> cosbp
1 . 5 1. 1
(15ﬂ2— Ns+ éﬂe) sinBs + <§n§KB — 5N3ke — §ﬂ2ﬂ4KB) cos9p (1.16)
—84(yg — Ya) + (4501 + 10N3+N5) SiNOA + (10NTKA + N3KA + 3N1M3KA) COSDA
1 5. 3
+(3M2—7na+ = ﬂe) sindg — (7n§KB — 5N3Ke — §ﬂ2ﬂ4KB) cos9p (1.17)

15 . 15 2 ,.
70(yg8 —Yya) — <3ﬁﬂl+ S Ns+ §f]5) sinBa — (7H%KA+ §ﬂ§KA+ 2f]1ﬂ3KA) cosBa
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13 1 . 13 1 .. 3
— (34ﬂ2— SNt éﬂe) sinBs + (7n%KB — SN3Ke - Er]Zr]AKB) coshg  (1.18)
1. , 1 1
Bz = —20(ys—Yya)+ 1011+2ﬂ3+6ﬂ5 Sinéa+ 2ﬂ1KA+éﬂ1KA+§ﬂ1ﬂ3KA cosfa
1\ , 1, 1
+ 10{]2—2n4+6n6 sinBg — ZnZKB—énZKB—ermeB cosBg (1.19)

From a rapid analysis of (1.4)—(1.19), it can be observen tlependence on the
assigned interpolating conditions, ya, Xg, Yg, 0a, 08, Ka,Kg,Ka, andkg and on a set
of six real parameterg;. Such parameters, which give their name to the planning
primitive, can be packed into a single vectpr= [Ny N2 N3 N4 N5 Ne]’ € H C
(RT)2 x R4

Among the other characteristics of thé-splines, one, in particular, needs to be
highlighted: n3-splines always fulfill boundary conditions independerftgm the
values ofn which, therefore, can be used to shape the curve interiotgdihis is an
important feature ofj3-splines since it introduces flexibility in their design. @
other hand, it forces to find an appropriate method for thecsiein ofr. Different
choices are possible: e.g., in motion plannimgan be used to avoid obstacles while
in a motion generation context, like that considered intbégarchr can be assigned
to fulfill an appropriate optimality criterion.

The control strategy proposed in [10], [13] aims at obtajrsmooth robot move-
ments by generating minimum curvature paths. Indeed, ieiskmows that the path
shape has a strong impact on the robot lateral solicitatlonzarticular, lateral accel-
erations are related to the path curvature while laterisjdepend on the curvature
derivative with respect ts. In order to reduce lateral stressgsgan be selected by
solving the following optimization problem.

Problem 2 Given any set of interpolating conditiong,¥a, Xg, Y&, 0a, O, Ka, Kg, KA,
andkg, find the optimah3-spline which solves the following semi-infinite minimax

problem
min max{ d—K(U' ) } (1.20)
nexuel0.]] | | ds N '
subject to

[p(un)l >0, VYuel0,1]. (1.21)
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Constraint (1.21) is added to guarantee the curve regularit

Problem (1.20), (1.21) is strongly nonlinear and is chamdémtd by a very large
number of local minima. For this reason, it can only be solggdneans of global
optimization algorithms. For example, in this chapter tpé&roal solution is gained
using the hybrid genetic-interval algorithm proposed i4][115]. Unfortunately,
this approach can only be adopted for off-line cases, sioaing to the problem
complexity, evaluation times are normally not compatiblhwealtime applications.
Consequently, it has been necessary to devise an efficieristie rule to be used
when computational efficiency represents an importantisSuch rule, which re-
turns effective solutions and is characterized by an almest evaluation time, is
described in the next section. In the same section a conopagsnade with a prelim-
inary approach proposed in [11, 12]. In particular, it wil §hown how, in most prac-
tical cases, the selection method proposed in [11, 12]netuery good results from
the point of view of problem (1.20), (1.21), even if bettelusions can be achieved
by means of the new approach.

1.2 The heuristic rule

Letus indicate by := [Xa Ya Xa Y& 0a 08 KaKg KaKg]" € G C R4 x [T 11% x R* the
vector containing the interpolating conditions used to@ageneria)3-spline. The
minimizern* of (1.20), (1.21) necessarily dependslarso that it will be indicated in
the following asn*(I"). In order to avoid an explicit online solution of (1.20),21)
an algebraic function

=
l
=

g
r

which at the best approximatgs(I"), needs to be estimated. Evidently, any effort is
spent to guarantee that curves generateq by have performance indexes close to
those obtained by meansigpf(I").

A preliminary A(I") function was proposed in [11, 12]. More precisely, it was
selected on the sole basis of the Euclidean norm betwg@mdpg according to the
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following rule
A(T) := [Ipa—Pell [Pa—ps| 000Q" .

In this section, a newj(I") function, which uses all the interpolating conditions,
is proposed with the purpose of generating curves with alemalirvature deriva-
tive. The new functiom (") is devised through a two steps design. The first step
focuses on finding a possible structure f@). In particular, the structure af(I")
is guessed by solving (1.20), (1.21) for a set of appropiiatrpolating conditions
i and analyzing the corresponding solutioigl;). The result of such analysis is
a parametric functionj(I";k), wherek := [k; ko ... ki1]T € K c R is a vector of
real parameters used for its “tuning”. The first step alsorrest an initial proposal for
k. Subsequentl\ is refined in the second step as the solution of a new optimizat
problem.

1.2.1 Deuvising the structure ofj(I"; k)

The structure ofi(I") must be characterized by its simplicity. To this purposeyte
consider some typical planning cases where the solutiorraiflem (1.20), (1.21)
is known. Evidently, whemka = Kg, the optimal solution of (1.20), (1.21) is gained
when ‘é—';(u;ﬁ) ~ 0, i.e.,k(u;f) is kept as constant as possible along the curve or,
equivalently, the curve at the best approximates a cirafar In the same way, if
Ka # Kg, the optimal solution is characterized by a functiofu;}) which almost
linearly depends os, so that‘é—';(u;ﬁ) is almost constant and the curve at the best
approximates a clothoid. Bearing in mind this idea, a sehtdrpolating conditions
I';, compatible with arcs and clothoids, has been generatedigdgdes 1.1 and 1.2).
For each configuratioh; the optimal solutiom*(I";) has been found by using the
genetic-interval algorithm proposed in [14], [15]. As egfezl, when the interpolating
conditions are compatible with circular arcs, problem@},.21.21) converges toward
solutions withg—'; ~0, i.e.,r]3-splines almost perfectly emulate circular arcs, while,
when clothoids are emulated, it converges toward constdues of‘é—'g. Moreover, in
the case of circular arcs, owing to the symmetry charatiesisf such curveka =
Kg, Ka = Kg = 0), the minimizers show the following relationshipgi ~ n», N3z ~
—n4, andns ~ ng. Minimizersn*(I;), i=1,2,...,12, corresponding to circular arcs, are
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Table 1.1: Interpolating conditiol§ compatible with circular arcs

Xa YA XB Y8 Br B8  Ka KB Ka Ks

N 0 O 14142 05858 0 m/4 1/2 /2 0 O

Nr, 0 0O 3535 14645 0 m/4 1/5 5 0 O

Nl 0 0 53033 2197 O0m4 1/75 1/75 0 O

r, o 0 70711 29289 O m4 1/10 12/10 0O O

s 0 O 10.6066 43934 O0m4 1/15 1/15 0 O

Nle 0 O 141421 58579 O0m4 1/20 120 O O

rr 0 0 20000 20000 O m2 1/2 /2 0 O

Nls 0 O 50000 5.0000 O0m?2 1/5 5 0 O

e o0 0O 75000 75000 Om?2 1/75 1/75 0 O

Nlo O O 10.0000 10.0000 O Tm/?2 1/10 1/10 0 O

N 0 0O 15.0000 15.0000 Om/2 1/15 1/15 0 O

N 0 O 20.0000 20.0000 Om2 1/20 1/20 0 O

Table 1.2: Interpolating conditiorls compatible with clothoids

Xa YA X8 Y8 6a 68 Ka Ks Ka KB
Nz 0 0 29511 0.7832 Om/4 0 1/2 1.5915e-1 1.5915e-1
N4 0 0 73776 19582 O0m/4 0 1/5 2.5465e-2 2.5465e-2
Ns 0 0 11.0664 29373 O0m/4 0 1/75 1.1318e-2 1.1318e-2
Ne O O 147552 39165 O0Om/4 0O 1/10 6.3662e-3 6.3662e-3
M7 0 0 221327 58747 O0m/4 0 1/15 2.8294e-3 2.8294e-3
Ng O 0 295104 7.8329 O0Om/4 0 1/20 1.5915e-3 1.5915e-3
Mg 0 0O 49107 27091 Om/2 0 1/2 7.9577e-2 7.9577e-2
Mo 0 0 122769 6.7727 0m/2 0 1/5 1.2732e-2 1.2732e-2
N1 0 0 184152 10.1590 0Om/2 0 1/75 5.6588e-3 5.6588e-3
Nl 0O 0 245538 13.5454 O0Om/2 0 1/10 3.1831e-3 3.1831e-3
N3 0 0O 36.8305 20.3181 Om/2 0 1/15 1.4147e-3 1.4147e-3
M4 0 0 49.1075 27.0909 Om/2 0 1/20 7.9577e-4 7.9577e-4
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reported in Table 1.3.

Table 1.3: Minimizers*(I;) for problem (1.20)—(1.21) when interpolating condi-

tions are congruent with circular arcs

N1,N2 N3, —Na4 Ns,Ne6 ?j—'é*
N 1.1881e+00 2.3650e+00 -5.7853e+00 2.1210e-05
M, 3.6537e+00 1.3173e+00 -1.0960e+00 4.2403e-06
N3 5.6959e+00 1.0188e+00 -3.7426e+00 1.5579e-07
M4 7.6425e+00 1.4546e+00 -9.3034e+00 5.5453e-07
s 1.1565e+01 1.2535e+00 -8.9196e+00 4.6852e-08
Ng 1.5467e+01 1.3156e+00 -1.0510e+01 2.2694e-08
M7 3.1334e+00 1.0140e-01 -8.4748e+00 2.9981e-05
g 7.5226e+00 2.0679e+00 -2.1859e+01 5.1968e-06
g 1.0618e+01 5.6298e+00 -1.5491e+01 8.2154e-07
Mo 1.5179e+01 1.6468e+00 -2.0441e+01 8.0685e-06
M1 2.2828e+01 2.3025e+00 -3.3042e+01 3.3372e-06
Mo 2.9739e+01 8.4987e+00 -6.3444e+01 9.1094e-07

In the case of clothoids$), andn, are no more equal, but they remain each other
close. The same happens fpr and —ng4, and forns andne. For example, for the
clothoid whose interpolating conditions are givenltyy the resulting minimizer is
N1 = 438944 n, = 44.8416n3 = 34.2107,n4 = —281348n5 = —2501721ng =
—2536511.

By scrutinizing optimal solutiong)*(I'j) it has been possible to identify some
correlations between them and the interpolating conditie@ported in Tables 1.1 and
1.2. Such information has been used to propose the follogtingture for(I';k)

N1 = ki [[pa—psl+ka [68—6a|+ks v/|Kal, (1.22)
N2 = ki |pa—psll+ka |88 — 64l +ks /|Ks|, (1.23)
Ns = Kkillpa—pell®+ks |88 —6al +ks v/[Kal +kr /[Kal,  (1.24)
Na = —(Ks||pa—psl°+ks |8 —6al+ks /e +kr v/Kg[), (1.25)
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Ns = ke ||pa—Psl®+ko v/[Bs —Ba] +kio [Ka| +kiz v/]Kal,  (1.26)
Ne = ks l|lpa—pPal>+ko /|88 — 64| +kio |Ke| + ki1 v/|Ks] , (1.27)

where||-|| indicates the Euclidean norm akd= [ky ks ... ki1]T € X c R is a vec-
tor of real parameters. Itis easy to verify that, when bouwndanditions are compati-
ble with circular arcs, (1.22)—(1.27) correctly retuyn=n», N3 = —na, andns = ng,
while different, but similar, values have to be expectechim ¢tase of clothoids. The
same selection rule proposed in [11, 12] can be obtained fta2?)—(1.27) by setting
k=k':=[10000000000,

An initial estimate fork has been found by means of a least square approach
which minimizes the differences betweagn(l';) andq(li;k), fori =1,2,...,24.
The obtained value d, indicated in the following ak”, is shown in Table 1.4.

1.2.2 Estimating the optimal k

Starting fromk”, it is possible to find a more “performing” value kf To this pur-
pose, let us introduce the following optimization problem

min{J(k)} , (1.28)
where ,
24 Tdk dk*
300 = 5 w | go(rik) | G o) (1.29
and Whereﬂ—i(ri;k) = MaXepy {\g—';[u;ﬁ(ri;k)ﬂ} is the maximum curvature

derivative obtained by means gfli;k), w; is the weight assigned to each inter-
polating condition;, while \%(ri)\ represents the maximum curvature derivatives
corresponding to the optimal solutiond(I;) of problem (1.20), (1.21). The same
interpolating condition$’; used for the first phase have been adopted (see Tables 1.1
and 1.2). Weightsv; are introduced to take into account the different order afjmia

tude of minimizem*(I';) (see the last column of Table 1.3). It is worth remembering
that | %(Fiﬂ is equal to zero when interpolating conditions are compmtiith cir-

cular arcs, while it is equal to the elements of the last colwiTable 1.2 in the case

of clothoids. Practically, the solution of (1.28), (1.29ngrates3-splines whose
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Table 1.4: Possible optimal parameterizations for (1.2227)

k/ k// k///
ki 1 0,986215955980423 0,9900370309156421
k- 0 0,04694051539639 0,2338305460827709
ks O 0,074863997949512  -0,2337321418102114
ka 0 0,017994903356811 0,03957912032871749
ks O 0,233918712355343 0,1008348340478730
ke O 0,674868034806584 1,505166060904769
kz O 6,17884077781871 0,5363811172337601
ke O -0,062562404082537 -0,5105585534956896
ke 0 -35,718866041005704 -4.340011523955019
kio O 65,80182824188454 -17,91610461019005
kiz O  54,58725230016439 -14,14677605082785

maximum curvature derivative is very close to the minimurhi@able for the con-
sidered interpolating conditions.

Problem (1.28), (1.29) has been solved with a standard @attion algorithm
whose starting point was set equaktb The algorithm has converged to solutioff
shown in Table 1.4, consequently improving the cost indexnf5.88589 down to
1.28337e-2.

The effectiveness df’, k”, andk” is discussed in the following with the help
of two performance indexes. In particular we define Mean 8glBeviation MSD)
the mean, evaluated over all the interpolating conditionsf the squared differences
between (I'j;k) and| %< ()|, that is

1o [dk

i ]2 : (1.30)

wherek = k’,k” k™, while n is the number of considered interpolating conditions
;. In the same way, we define Maximum Deviatidn) the following index
dk

MD = miax{d—s(ri;k)—

dk*
E(n)‘} , (131)
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i.e., the maximum difference, evaluated over a set of imlatjing conditiond™;, be-
tween the optimal cost indexes and those obtained by medas2@)—(1.27).

Fig. 1.1 shows some statistic results concerning circules.arhey have been
evaluated by considering the set of interpolating conadgiof Table 1.1. The pie dia-
gram shows the percentage of best solutions, from the pbinéw of the curvature
derivative, amonds’,k”, andk”’. In the 66,7% of casds” exhibits the smallest cost
index. The histogram in the same figure comparek”, andk” by means of (1.30)
and (1.31), assuming= 12 and|dd"s* (Fi)| = 0. Also in this case&”” represents the
best solution since thESDand theMD indexes are, respectively, one order and two

orders of magnitude smaller that those obtainedcfor

In the case of clothoids, the comparisons are shown in F2y.The pie diagram
evidences that best solutions are equally spread akiaggk”. Nevertheless, some
further conclusions can be drawn from the histogram. It leentevaluated by con-
sideringi = 13,...,24 andn = 12. Necessarily, term‘s‘ﬁ%(riﬂ depend on the inter-
polating conditiond"; (see the last column in Table 1.2). The histogram reveats tha
theMSDand theMD indexes ok are evidently better than thoseldf The reason
of this result is that wheR’ is characterized by the best cost indexe$,has worst
but similar performance indexes, while whiefi returns the best solutions they are
neatly better than those proposedkiy

Owing to the method used for selectiikg function (I';k”) generates curves
which very well approximate circular arcs and clothoidscdtld be interesting to
verify what happens in the case of generic interpolatingdit@mms. To this purpose
30 interpolating conditionk; have been randomly chosen belonging to the following
intervals: xg € [0,15,yg € [-5,5],08 € [-T/2,T1/2],Ka,Kg € [—0.4,0.4],Ka,Kp €
[—0.04,0.04]. Without any loss of generality, it has been supposed xkat xg =
B = 0 since, according to (1.22)—(1.27), termsare evaluated on the sole basis of
differencegpg — pa and6g — B.

For each value of ; an optimal solutiom*(I';) has been obtained by solving
(1.20), (1.21) with the genetic-interval algorithm. Theuking cost indexe%(l’i)\
have been compared with the performance ind%éﬁi ;k) evaluated fok’, k”, and
k. The pie diagram of Fig. 1.3 shows thdt can be considered the best solution
in the 83% of cases. Nevertheleksandk” have comparable performance indexes,
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Figure 1.1: A comparison between solutiddsk”, andk” in the case of interpolat-
ing conditions compatible with circular arcs. The pie dagrreports the percentage
of best solutions amonk’,k”, andk”, while the histogram compares their Mean
Squared DeviationMSD) and the Maximum DeviationMD). A logarithmic scale
has been adopted.

as can be deduced from the histogram in the same figure. Thidusion is also
confirmed byJ(k): for the three cases it is respectively equallté’) = 2,1596,
J(k") =2,6015, and)(k"") = 1,3943. Fig. 1.4 further proves this assertion by show-
ing a direct comparison, for 7 of the 30 analyzed cases, le#tiee maximum cur-
vature derivatives obtainable with the three proposed oustland those returned by
the genetic-interval algorithm. In any situation the bedtifons are those devised
by the genetic-interval algorithm, but the performanceekes ofk’, k”, andk” are
each other comparable and very close to those of the actaahimers.

Some conclusions can be drawn form the comparisons. Genérdlgenerates
the smallest curvature derivatives. Even wikéor k” are characterized by smaller
curvature derivatives, the performance indexek’6fare only slightly worse. In the
case of generic interpolating conditiok’s k”, andk” can be considered equivalent:



1.2. The heuristic rule 19
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4 43641713-‘()727717 6.63632E-00—

kH

kIN

Figure 1.2: A comparison between solutidiigk”, andk’ in the case of interpolating
conditions compatible with clothoids. The pie diagram mepthe percentage of best
solutions amond’,k”, andk”, while the histogram compares their Mean Squared
Deviation MSD) and the Maximum DeviationMD). A logarithmic scale has been
adopted.

this result proves that the method originally proposed In fi2] for the selection of
n represents a sufficiently good solution for problem (1.2021).

One final doubt is instilled by Fig. 1.4. It seems that, in taeecof generic inter-
polating conditions, the selection nfis not particular critical since the cost indexes
of k/, k”, andk”” are each other comparable and close to those of the globaialpt
solutions. This is not true, as can be evinced from the exargde proposed in the
next section where thg-parameters obtained from (1.22)—(1.27) &fidare slightly
perturbed, thus causing an immediate ris&.of
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Figure 1.3: A comparison between solutidkisk”, andk” in the case of generic
interpolating conditions. The pie diagram reports the @etage of best solutions
amongk’,k”, andk”’, while the histogram compares their Mean Squared Deviation
(MSD) and the Maximum DeviationMD). A logarithmic scale has been adopted.

1.3 An application case

The example case proposed in the following points out theénfte exerted by the
curvature derivative on the motion performances of a mablbet. Let us consider an
unicycle mobile robot which must move along a composite eyghanned by means
of n3-splines. The interpolating conditions used for the getimreof the n3-spline
paths are listed in Table 1.5. More in details, the intefmdaconditionsr o5, 27
andl ,g are compatible with a clothoid, a circular arc and a linegnsent respec-
tively, while interpolating condition§ ¢ andl™og are not compatible with any stan-
dard planning primitive in order to emulate a set of actuaaddbtained, e.g., from
a visual system. It can be immediately evinced from Tableglabthe interpolating
conditions of each patrtial curve, i.e., initial and finaldants, curvatures, and cur-
vature derivatives, are selected such to guarantee the&edgontinuity conditions.
Necessarily, the overall composite patiGscontinuous.
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Figure 1.4: A comparison between the performance indexgs,df ,k”, andk” for
seven generic sets of interpolating conditions. A lineafesbas been adopted.

Table 1.5: Interpolating conditioR; chosen for the example

XA YA X8 YB Ba 6 KA K Ka Kg

M5 0 0 410 166 O ®8 0 1/2 0.106 0.106
M 410 166 7.00 1000 188 0 1/2 -0.1 0.106 0
r; 7.00 10.00 14.07 707 0 -mw4 -01 -0.1 0 0
Mg 14.07 7.07 1540 5.00-1/4 -5m/8 -0.1 0 0 0
M 15.40 5.00 1578 4.08-51/8 —5m/8 0 0 0 0

In order to verify the relevance of designing curves with imiim curvature
derivative, three different scenarios have been considémethe first case, indicated
in the following as the nominal one, thg parameters are evaluated by means of
(1.22)—(1.27) and coefficients” shown in Table 1.4. In the second and in the third
scenarios, the perturbed cases, the previously evalupfgatameters are slightly
modified. More precisely)1 andn, have been increased and decreased respectively
by the 10% with respect to the nominal case. As a result, tHifeerent composite
curves satisfying the assigned interpolating conditicmgelbeen generated. It is pos-
sible to evince from Fig. 1.5 that the three curves have a sinjlar shape, but a
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:,[‘27

0 2 4 6 8 10 12 14 16
x (m)
Figure 1.5: The nominal path (continuous curve) compardt thie paths obtained
by increasing (dashed line) or decreasing (dash-dottedifinandn, by the 10%.

comparison between Fig. 1.6 and Fig. 1.7, which rep@mdk for the nominal case
and one of the two modified cases, highlights how the smallgzations introduced
in n1 andnz produce evident changes in the curvature and in the cuevdgnivative.

It is worth noticing from Fig. 1.6, the evidently better emtibn of a clothoid and of a
circular arc obtained in the nominal case: differently fritra perturbed scenario, the
curvature derivative is almost constant. As expeated,generally higher in the per-
turbed case. The situation worsens especially in the caBegpthus demonstrating
how the selection aff can be very critical also when generic interpolating caadg
are considered.

To better point out the differences between the three coitgposrves, they have
been tracked by an unicycle-like mobile robot driven actmly to the control strat-
egy proposed in [10]. The robot model used for the simulatiakes into account the
vehicle dynamics and the existence of sliding effects betweheels and ground. To
this purpose, the wheels traction model originally propdsd16] has been adopted.
The vehicle moves at a constant longitudinal velocity, tthesshape of the accel-
eration profile is similar to the curvature shape, while thek jprofile mimics the
curvature derivative profile. Fig. 1.8 shows the lateraksmm@ation and the lateral jerk
acting on the vehicle during its movement along the nomimdth pThe detail in the
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Figure 1.6: The curvature and its derivative for the nomicede, expressed with
respect to curvilinear coordinase

same figure reveals how the lateral skidding phenomenonmaasaa every time lat-
eral accelerations and jerks are sufficiently high. As esfy asserted, lateral jerk
is directly correlated to the curvature derivative and,ssmuently, the nominal case
is characterized by smaller lateral solicitations, beingl@most) optimal solution
for problem (1.20), (1.21). On the contrary, Fig. 1.9 resdhht ifn; andn, are in-
creased, the lateral skidding phenomenon can more eagigaapwing to the higher
lateral stresses acting on the vehicle. The situation doesnprove whem; andn,
are decreased with respect to the optimal values, as carirfmdvrom Fig. 1.10.
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Figure 1.7: The curvature and its derivative obtained byeasingn; andns,, ex-
pressed with respect to curvilinear coordinate
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Figure 1.8: The lateral acceleration and jerk along the nahturve, expressed with
respect to the time.



1.3. An application case 25

& ace.(ms?) o
¢ iy S

—_—
T

&jerk (ms?)s
< Y S

[\

=)

10 20 30 40 50 60
(s)

Figure 1.9: The lateral acceleration and jerk along theewhtained by increasing
n1 andn. by the 10%, expressed with respect to the time.
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Figure 1.10: The lateral acceleration and jerk along theecabtained by decreasing
n1 andn. by the 10%, expressed with respect to the time.






CHAPTER 2

Online trajectory scaling for robotic manipulators subject to

torque and velocity constraints

In the middle of the journey of my life,
| found myself in a dark wood, for | had lost the right path.
Eventually | would find the right path,
but in the most unlikely place.
Dante

otion control of industrial manipulators requires the gatien of appro-
priate reference signals in order to improve the systenopadnces in
terms of precision and time efficiency.

In robotics, great attention has been devoted to designitidgs able to mini-
mize the time required to complete an assigned task. Thdrhgfit of this require-
ment is crucial in order to increase the production ratedigtrial applications which
are often limited by the robot performances rather than thegss constraints. Un-



28 Chapter 2. Online trajectory scaling: torque and velociy constraints

fortunately, traveling time minimization leads to an inoent of the mechanical so-
licitations. Moreover, the actuators dynamic limits casilgabe exceeded, causing
a degeneration of the control performances. For this reas@mimportant to take
into account robots dynamic and kinematic constraintsnduthe trajectory plan-
ning phase. In the last decades, several methods have b@gosed; they can be
roughly divided into two groups: offline and online plannévkethods of the former
group devise the optimal trajectory as the outcome of oftiomputations and can
ulteriorly be subdivided into two different approachesthe first one, constrained
optimization algorithms are used, either determining timt trajectory as a whole,
see [17, 18, 19], or by using the path-velocity paradigm D,22]. In the second
one, a scaling factor is introduced to offline guaranteeéhsibility for a given robot
trajectory. Main results for nonredundant manipulatorslmafound in [23], while in
[24] the method is extended to robots used in cooperatives t@sd in [25] manipula-
tors with elastic joints have been considered. The main baak of these algorithms
is represented by the need of a perfect knowledge of the rabdel, a requirement
which is often not realistic. Moreover, when minimum-tinmajéctory are planned,
there is always at least one joint working at its torque kminy external distur-
bances or robot unmodelled dynamics cannot be compensgttt lwontroller so
that tracking is lost.

To overcome these limitations, nominal trajectories apcslly online modi-
fied by means of appositely devised algorithms. In case afrrdaint manipulators,
the path tracking problem under kinematic and/or dynamitstraints is commonly
solved by taking advantage of the redundancy [26, 27, 28, &&] nonredundant
manipulators the feasibility of a given trajectory is oh&d by online scaling the
velocity profile used to move along an assigned path. In [Bi] inethod has been
adopted to account for joint velocity limits, while accelgéons bounds are consid-
ered in [31]. Some two-level control algorithms have beesppsed in [32, 33, 34]
which take into account torque limits. They consist in areinloop, based on stan-
dard feedback controllers, and in an outer loop, which skbwven the robot reference
velocity when torque saturations are reached.

Previously cited methods have a common denominator: thardimconstraints
are online converted into kinematics bounds on the velqaitfile used for the mo-
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tion along the assigned path. In a broader sense, the noneilagity profile is some-
how filtered in order to generate an output signal which falftie assigned bounds.
A similar problem has been investigated in the past, dealitigthe optimal filtering
of rough reference signals for electrical axes [35, 36].

The goal of this chapter is to illustrate an online trajegttvacking control for
robotic manipulators subject to torque and velocity caists. Most of the follow-
ing results have been presented in [37]. The chapter canughlsodivided in two
parts. In the first one, it will be shown how to implement a fegak control scheme
able to track at best a given path despite the presence ofrdgrend kinematic
constraints. To this purpose, a trajectory filter is reqlifEne used filter is then ex-
tensively analyzed and improved version of [36] is presetinte

The new control scheme introduces several novelties witheet to similar ap-
proaches [32, 33, 34]. First of all, not only torque consiiaare considered, but also
the existence of explicit limits on the maximum joint velkbes is taken into account.
Secondly, even if the path tracking is still the main targethe controller, now any
effort is spent in order to respect the time law assignediemhovement along the
curve.

The chapter is organized as follows. The robotic problermosed in 82.1. In the
same section, it is shown how joint torque and velocity aasts can be converted
into equivalent kinematic constraints. Such constrairgsiaed to scale the trajectory
by means of a dynamic filter: the design and the characteisti a new discrete-
time filter are discussed in §82.2, while a detailed analysithe filter convergence
properties is reported in Section 2.5. Comparisons bettreenew filter and the one
proposed in [32] are made in §2.3, where some practical imgteation issues are
also discussed. The usefulness of the approach is inviestiga82.4 by means of an
example concerning a cartesian manipulator.

2.1 Online trajectory scaling for robotic manipulators

The problem here investigated is similar to that descrilmef82], where an online
trajectory scaling filter has been proposed to account fiot l@rque constraints.
To this purpose a two-level control scheme was designedhé\ptimary level, a
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standard feedback controller was adopted, tuned for thahaoes rejection and good
transient performances. At the secondary level, a dynaitec Was used to modify
the nominal, and potentially rough, trajectory in ordendffili the manipulator torque
constraints and track, at the best, a given path.

In our research, the same two-level approach is assumedir§hievel is repre-
sented by a standard computed torque controller, while alrfiter is used for the
optimal trajectory scaling.

Some preliminary definitions can be useful for the discusside robot trajec-
tory is defined according to the so-called path-velocityotggosition [20]. For this
reason, the path to be followed is described in the jointepgomeans of a vectorial
function (x) defined as follows

I:[0,x;] — R"

2.1
X — Qgq:=l(x). 1)

wherex ¢ R* is the scalar which parametrizes the curve, whiteIN is the number
of the robot independent joints. Without any loss of gerigrahe path is assumed in
the joint space. In fact, it is always possible to convertsk fgpace path into a joint
space one by means of an appropriate use of the manipulatida matrixJ(q).

In the same way, a monotonically increasing time-law, usechbve the end
effector along™ (x), is defined

x:[0,t;] — [0, X¢]

t — X4 :=X(t)
wheret; is the total traveling time. Evidently, the overall rob@jéctory is obtained
by combining (2.1) and (2.2j4(t) := T (x(t)).

Consider now a serial link rigid-body manipulator. Its geslieed forces can be
evaluated by means of the classical inverse dynamics equat that for each joint
k=1,2,...,nit follows that

(2.2)

k= J;hkj(Q) dj + J;i;cu'k(Q) Gi G + ok(a) + f(a, ) , (2.3)

where

1 /ohg; ohy Oh >
Cin — = -1 2.4
k=2 ( 0q; 0q; 00k (2.4)
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are the so called Christoffel symbols of the first order. Bfirdeg the generalized
force vector ag :=[11 12 - -- ,Tn]T, and introducing the new terms

n

o (d,q) = _Zlcijk(q)Qi : (2.5)

equation (2.3) can be rewritten in the well known matrix fdBa]

T=H(9)g+C(q,9)d+9(q) +f(q,q) . (2.6)

AsusualH(q) e R™"is the symmetric and positive definite inertia mat@Xg,q) €
R™" js the matrix of centripetal and Coriolis terngsz R" is the vector of the gravity
forces, and(q,q) € R" describes the friction effects. The manipulator is subject
dynamic and kinematic constraints. More precisely, maxinagmissible torques are
bounded, so that it holds

<<t k=12...,n, (2.7)

wheret, andTy represent the lower and upper bounds onkttie joint torque. Anal-
ogously, maximum joint velocities are bounded, i.e.,

_qkﬁ(:«IkSﬁm k:172a"'7n7 (28)

Wheregk and i‘qk represent the lower and upper bounds on kil joint velocity.
Owing to (2.7) and (2.8) the following tracking problem candefined.

Problem 3 Given a manipulator described by (2.6) and a desired trajpci(2.1),
(2.2), design a control law to achieve the best possiblekirar subject to torque
constraints (2.7) and joint velocity constraints (2.8).

The control scheme proposed to deal with Problem 3 is shovagure 2.1. As
early anticipated, it is based on a computed torque coatrdllhe controller output
is saturated to account for (2.7), while the robot dynamasiieen modified in order
to introduce the effects of (2.8). If an improper traject@wsed to drive the torque
controller, saturations will cause a drastic degeneraiidhe tracking performances
as proved in 82.4. For this reason, the trajectory contrallethe basis of the current
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Figure 2.1: Proposed trajectory control scheme

state of motion and considering (2.7) and (2.8), dynamjicallaluates equivalent
acceleration and velocity bounds which must be fulfilled ioyetlaw (2.2). Such
bounds are used by the nonlinear filter described in §2.2aie sny given nominal,
but possibly unfeasible, reference signd).

In the following it will be shown how (2.7) and (2.8) can be gerted into equiv-
alent constraints fox andx. By using the chain differentiation rule, it is possible to
evaluate the trajectory time derivatives as

G = (XX, (2.9)
g = [ (X)C+T (X%, (2.10)

Superscript indicates a differentiation with respectXpe.g.,F(x)/ = dz(;‘) , While, as
usual, dots indicate time derivatives, exgt) = 2. Due to (2.1), (2.9), and (2.10)
it is always possible to compute the torque required to teagken path by means of

(2.6)

T = b1 (X)X+ ba(X,X) (2.11)
where
bi(X) = HT (X)) (X, (2.12)
ba(x,X) = H(T (X)) (X% +C(F(x),T (X)) (X)%
H(T (%), (X)%) +9(T (%)) . (2.13)
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Let us defindoy (x) := [by.1(X),012(X), ..., b1 n(X)]T and, in a similar wayhz(x, X) :=
[b2.1(%,X),b2.2(X,X),...,b2n(%X)]T. Due to (2.11), constraints (2.7) can be rewritten
as follows

T <bpi(X)X+bi(x,x) <Tj, i=12...,n. (2.14)

In the same way, by using equation (2.9) inequality (2.8pbex
g <MOx<q, i=12...n. (2.15)

Given two torque bound vectors= [1; T, --- T,]T andT:=[T1 T2 --- Ty]" and two
velocity bound vector§ :=[q, @, ... 4] andq:= [0, T, ... G,|", it is possible to
define theadmissible regior{AR) [21] as the set of points in thg, X)-plane where
(2.15) is satisfied and where there exists at least one waldch fulfills (2.14). It
is worth noting that the AR does not depend on time law (2.2nversely, it only
depends on the path (2.1) and on the robot dynamics (2.6).

Atime law x(t) assigned to move along the path is feasible, and the ovetst r
trajectory is feasible, if and only if all point&(t),x(t)) belong to the AR for any
t € [0,tf]. Independently from the adopted controller, trajectoryoit any time a
non-feasible velocity profile is used.

In case of online evaluation of the admissible region, mesadistic bounds ox
andxX'which consider also the output of the feedback controlleraquired (see also
[32]). For example, if a computed torque controller is cdesiéd, the output torque
is evaluated as follows:

(9, bla, Ga) = H(da)Gg+ C(da, Ga)da + f(da, Ga) +9(da) + kpe+ky e (2.16)

wherek, ky € (R*)" are the controller gain vectors aad= q — qq, €:= ¢ — (g are,
respectively, the trajectory tracking error and its ddiwea Equation (2.16) can be
synthetically rewritten as

T(X. X%, 0,8) = b1 (X)X +ba(x, %9, ) (2.17)
whereb(x) is defined according to (2.12), while

ba(x,%,0,4) == ba(x,X) + kje+kye, (2.18)
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with ba(x,%,0,0) = [021(%%,0,8),022(%,%,0,9),...,b2n(x,%q,6)]T andb,(x,X)
equal to (2.13).

Owing to (2.12) and (2.18), given the current status of mmofiox), and torque
boundst, Tk, for each actuated joint the acceleration upper bapyrachd lower bound
Yy are obtained by rearranging (2.14). In particular, it hdlasg

T . B .
Mok, if by >0 S, it buc>0
Bc=q B2k ifbyy <0 andu=§ T ifp, <0
®,  ifby=0 —o0, if by =0

Since boundgy andyx must be simultaneously fulfilledk = 1,2...,n, any feasible
acceleratiorx iust belongs to the randld —, U *] where

ut:= k_rrl1in {a}, U = max {U}. (2.19)

As long adU™ > U~ current statéx, x) lies inside the AR.

In a similar way, an online strategy to evaluate bounds onisglble velocityx
can be defined. First of all, since negative velocities albiegpath are not allowed, it
has been assigned = 0. Instead, the upper bound can be evaluated, due to (2.15),
by means of the following relation

r%(x), if M (x) >0

=<{ X jir

Pk 7 if M (x) <0
w, ifM(x)=0

Velocity x is feasible only if it lies in the intervgk—, x] where

Xt = kjrfinn{pk} , X :=0. (2.20)

1111

2.2 Nonlinear bounded-dynamics filter

The dynamic system shown in Fig. 2.2 has been successfudlyinghe past to gen-
erate smooth set-points for motion control systems, asrtegpan [35, 36]. In the
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following, a new nonlinear filter, based on a similar scheimdevised to solve Prob-
lem 3. It is able to automatically online modify a given scalajectory to satisfy
limits onx—,x",U~, andU ™ which derive from (2.19) and (2.20). Since (2.19) does
not guarantee symmetric bounds on the acceleration, it biakaen possible to di-
rectly use the filter proposed in [36], but it has been necgseaompletely redesign
the control law which drives the double integrator chain.

Let us consider the following design problem

Problem 4 Design a nonlinear discrete-time filter whose output x tedtzit best” a
given reference signal r by fulfilling the following requinents:

1) the first and second time derivatives of x must be bounded:
X~ <x< X, U <x<ut, (2.21)
wherex ,x" e R,UT e Rt andU e R".
2) bounds (2.21) can be time-varying and can also changenduransients;

3) if (2.21) is not satisfied owing to the filter initial conidits or to a sudden
change of the bound¥,must be forced in a single step within the given limits,
while x must reach the assigned bounds in minimum time;

4) when a reference signal r satisfying (2.21) is applied ttacking condition
X =r is reached in minimum time and without overshoot;

5) when a discontinuous reference signal is applied (or #ference signal has
time derivatives larger than the bound values), the traghkis lost. As soon
as the reference signal newly satisfies (2.21), trackingisewved in minimum
time;

6) the time derivativeg andX of the bounded output must be available for the
generation of feedforward actions.

Problem 4 is an optimal minimum-time tracking problem sabje bounded dy-
namic signals. As early anticipated, its optimal solutisrbased on a chain of two
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utu- xt x
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Figure 2.2: The optimal bounded-dynamics trajectory teack

integrators like that shown in Fig. 2.2, whose dynamic €quds

EIREHREE
Xt 1 01 X T

whereT is the system sampling timéx, X) is the internal state, whileis the control
command of the integrator chain. Subsckpndicates the sample number, so that
represents the command signal at titjpe: kT.

The integrators are driven by an algebraic discrete-timdimear controllerC
designed by means of variable structure control technif@®sIn order to meet the
requirements imposed by Problem 4, the following contred Gais proposed

oo U safox) ifox>0 (2.23)
© T —utsatol) ifok<0 '

Ok =% — %, (2.24)
wherez and'z( are evaluated by means of the following expressions

. xt —¥
z k

= - TTERR (2.25)
zZt = —[Z"] ['z*—%} , (2.26)
ro= ol (2.27)

z = [-77] [_Z_T]’ (2.28)
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uru-] it Xideog
[a = R : (2.29)
U- ut] if —+§_0
1k, %
% TO( T2 (2.30)
zm ifz<z"
Y=< & ifzr<z<z (2.31)
z fz>z
1+,/1+8
me = Int %W] , (2.32)
Fom — Y M L ogn) (2.33)
me 2 ’
LN if {(zk O&i<a()or(a<<0& i _'Zk)}
g0=4 Tl L |+|[3 T o] (2.34)
Yk my — Ykl ) @ -
+ +— otherwise
T Bl ( 2 nk) B
and wherery is the sampled reference signgl,is the corresponding discrete-time
derivative,yk := xx — ri is the filter tracking erroryy := xx — fk is the filter velocity

error. Function[-] provides the upper integer part of its argument, while-sa#tu-
rates its argument té&r1. Signalsry andry are assumed to be known. Moreovgris
supposed to be piece-wise constant.

The filter behavior is summarized in the following with thelphef Figs. 2.3
and 2.4. The interested reader can find the demonstratiothe dilter convergence
properties in Section 2.5.

The aim of controlleiC is to force the system statg,y) toward the origin of
the phase plane since this implies, according to the defimdfy andy, that a per-
fect tracking ofr is reached. This result must be achieved in minimum time and b
satisfying, if possible, the given constraints on the maximvelocity and accelera-
tion. To this purpose, any point in thg,y)-plane is transformed into an equivalent
one in the(z 2)-space by means of (2.25)—(2.34). It is possible to verifjt $uch
mapping is bijective and the origin of the two spaces coegidAs a consequence,
tracking is achieved if controlleC is able to force the state,z) and, in turn,(y,y)
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Figure 2.3: They(y) phase plane.

toward the origin. The two constar#s andzZ~ represent the transformed values in
the (z,z)-plane of velocity constraints™ andx™. Analogously,y™ andy~ represent
the transformed values in tl{g y)-plane of the same constraints. Since the filter sta-
bility requireszt € RT andZz™ € R~ (see Appendix 2.5), the following condition
must necessarily hold

X~ <P <X, (2.35)

From a practical point of view, control law (2.23)—(2.34gates a sliding surface
in the phase plane, whose equation, due to (2.24), is clgasdy by (2.33). The slid-
ing surface has been planned such that it monotonicallyedses whem € 2,77 ],
while it becomes constant and equaEte zrif z< z~ orz=z if z>z . Sliding
surfaceZ is surrounded by a boundary layer (BL): if the filter state u$sade such
BL, the command signal is=U* oru= U~ otherwiseu lies in the rangéu —,U *].

In this way, being«= u, the constraint on the maximum acceleration is autométical
fulfilled.

Fig. 2.3 shows some system trajectories in(§)-plane by considering differ-
ent starting conditions, while Fig. 2.4 shows the samedtaj&s in the transformed
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Figure 2.4: TheZ 2) phase plane.

domain. From the two figures it is possible to deduce that tiginoof the (z 2)-
plane is reached in two steps: the system state is first dtoxeardZ, then it slides
along such surface by pointing to the origin. When outsi@eBh (regionR;), tran-
sients are obtained by applying the maximum command signalBL is reached
with certainty and in minimum time, as demonstrated in ®&ac#.5.2. Control lavC
guarantees that the BL cannot be crossed: as soon as the Sfate reaches region
Ry, with a single step it is forced to the sliding surface andniht slides toward the
origin with command signall = O (see Section 2.5.3). Finallyz,z) enters region
Rz and, again with a single step, it is forced to the frontiertwf BL: the origin is
reached by applying the maximum command signal and with diubzd behavior
(see Appendix 2.5.4). Apart from the two single-step tramis fromR; to R, and
from R; to R3, the command signal is always= {U~,0,U "}, i.e., the controller has
a bang-zero-bang behavior.

From Figs. 2.3 and 2.4 it can be evinced that if the consti@inthe maximum
velocity is violated, e.g.z ¢ [z ,z"] for a sudden change of the given bounds, the
system is forced within the new bounds by applying the marmnuontrol action,
i.e., in minimum time as required by point 3) of Problem 4.
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2.3 Comparison with the Dahl-Nielsen filter and
applicative issues

Several details diversify the approach proposed in [32) tie one here devised. The
first is particularly clear since in [32] explicit bounds dretjoint velocities were not
considered. Another one is less evident but very importaj82] the main emphasis
was posed on an accurate path tracking. The time law asswnétefmotion along
the path was defined through a functiom), i.e., by associating a desired velocity
to each point along the path. An accurate path tracking catbieved by means of
that method, but any time-delay caused by saturations td&ecovered: as long
as saturations cease, the system automatically assumeltiaty planned for the
current path position, so that time-delays accumulategatba trajectory, reducing
the robot productivity. The filter proposed in this work as&s a time law directly
defined in the time domain according to (2.2). Two advantatgscend from this
choice. The first is that reference sigmél) can be generated in a natural way by
means of standard planning methods. The second is that tayatcumulated due
to saturations is extinguished as soon as dynamic conditioth make it possible:
efficiency is preserved and, at the same time, a good patkingpis achieved.

Some remarks can be useful in order to adopt the filter forah@pplications.
The first issue to be pointed-out is the same already higielsgin [32]. WhenU *
approaches) —, filter state(x,x) is clearly moving toward the boundary of the AR.
This is clearly a dangerous situation since the limitedrefsavailable dynamics —
remember that & [U ~,U "] — makes it difficult to move away from the boundary of
the AR, so that tracking can easily be lost because torqustreonts are violated.
In [32] the problem was solved by means of a dynamic filter ueestale reference
trajectoryr(t) on the basis of the tracking error. Owing to the charactesisif the
filter here proposed, several solutions are possible, gllesh based on an appropriate
reduction ofx™. For example, in the next section the valuexofobtained by means
of (2.20) is replaced b"f where

(2.36)

i x* if mn{U",-U"}>U
Kxtmin{U*,—-U~} if min{U",-U"} <U
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Table 2.1: Robot link inertial parameters

Link Mass Center of gravity Inertia Friction

a m(Kg)x(m)ym) z(m) Ix(Kg.m?) lyy(Kg.n?) 1.{Kg.m?) B(N.s/rad)

d 2390 0 0 0.090 2171 2.171 0.358 1.5e-3

d, 388 0 0 0.048 0.336 0.336 0.026 2.8e-3

If dynamic boundsU* and —U~ are sufficiently large, velocity bouns" ‘is not
scaled, otherwise it is reduced in order to fo(gex) toward the AR. ConstarK is
chosen such tha¢ min{U ", -U~} < 1, whileU represents the activation threshold
of the scaling method.

The convergence properties of the filter are valid until thpdthesis (2.35) is
fulfilled. This condition cannot be guaranteed a priori sikt andx~ are continu-
ously modified. The solution to this problem is straightfard; since it is sufficient
to forcer between the assigned bounds: velocity tracking is lostiHaufilter remains
stable, so that the nominal referende) is newly gained as soon ageturns inside
the interval[x— ,x"].

2.4 Simulation results

In order to show the effectiveness of the filter when appledhe path tracking
problem, a two-link planar robot has been considered. Th@pukator dynamic pa-
rameters are defined according to Table 2.1.

The manipulator path is an ellipsoid represented by meaasaofve in the joint
space parametrized with respect to ar@jle [0, 211, i.e., ['(8) := [[1(6) I'2(8)]",
where

r(@) := 0.4(1—cog9))
{ M2(8) = 0.8sin(0)

The trajectory is completely defined once time-kg®y = 64(t) is assigned. Func-

tion B4(t) has been chosen such that it lies within the nominal AR, luheasame
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time, it is too demanding with respect to the robot velocipstraints

St2, 0<t<2
(t—1), 2<t<6 . (2.37)
(t+4), 6<t<8

r(t)=06q(t) :=

olq wig

Correspondindy (t) can be obtained straightforward.

Simulations are carried out by considering joint velosited torques constrained
between the following boundsg;| < 0.65 st and|ti| < 15 N,i = 1,2. The feed-
back controller is a standard computed torque controlléh v@edback gains equal
tokp = [200 200" andk, = [606QT.

Figure 2.5 shows what happens if (2.37) is directly applethe robot torque
controller. In particular, Figures 2.5b-2.5¢ highlighathvhen ~ 2.5 rad, joint ve-
locity g, reaches the maximum admissible value, so that trajectackitrg is lost.
After a few time alsor, saturates and the situation worsens. The generated path is
shown in Figure 2.5a compared with the planned one: the marierror is equal to
Emax= MaXc(o 2y {||€]|} = 0.1619 m.

With the use of the proposed filter the situation neatly impso Figs. 2.6¢ and
2.6d show that wheq, saturatest, decreases owing to the filter. As soongaexits
from the saturation conditiorg; increases until it saturates: during this phase the
system is trying to eliminate the time-delay accumulateth wespect tdy(t) due
to the trajectory scaling. This conclusion can also be ednftom Fig. 2.7b which
compares reference sigriiy(t) with the actuaB(t): the time instant when tracking
is lost is clearly shown, as well as the moment when tracldngeivly gained.

Figs. 2.6a and 2.6b compare currét) and6(t) with the bounddJ+ U~ x*,
andx—, obtained by means of (2.19) and (2.20). The asymmetty'ofJ ~ is clearly
shown and justifies the use of the proposed filter. Since albtcaints are always
satisfied, a very accurate path tracking is achieved. Fig. hows that path tracking
error reduces of several order of magnitude with respedteé@tevious case: in the
worst situation it is close to.816e-4 m. A further analysis of Figs. 2.6¢ and 2.6d
highlight another filter feature: until reference sigalt) lies inside the AR the
filter has a bypass behavior, while it starts working whenrsdibns are touched. As
early mentioned, when the system saturates the trackifg(bf is temporarily lost,
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Figure 2.5: Tracking performances of a standard torqueraitert due to joint veloc-
ity and torque saturations: (a) reference robot path (dhbhe) compared with the
actual robot path (solid line); (b) joint torques(solid line) andrt, (dashed line); (c)
joint velocitiesq; (solid line) andg, (dashed line).

but the system immediately starts trying to hungéggt) in minimum time, as can
be noted by the bang-bang behavior shown in Figs. 2.6c amtd @il 64(t) is not
reached there is always one active torque or velocity caimstr
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§ (rads™)

O (rads?)

T(N)

0 (rad)

Figure 2.6: Simulation results using the nonlinear trajgcscaling filter: (a) longi-
tudinal velocityx (solid line), online evaluated velocity bound (dotted line) and
nominal AR (dashed line); (b) longitudinal acceleratio(sdlid line) and online ac-
celeration boundb * andU ~ (dotted lines); (c) joint torques,; (solid line) andt,
(dashed line); (d) joint velocitieg; (solid line) andg, (dashed line).
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. e(rad)

1(s)

Figure 2.7: Simulation results using the nonlinear trggcscaling filter: (a) path
tracking errorse; (solid line) ande, (dashed line); (b) comparison betweih) (solid
line) andBy(t) (dashed line).

2.5 Stability proofs

In the following, the stability of the proposed filter is peal; Simultaneously, some
relevant properties of the same filter are highlighted. Tiseu$sion reported here-
after will analyze a system evolution starting from a pdintz) located in the left
plane of the(z z)-space, i.e. such that< 0. An analogous discussion holds when
z> 0: the corresponding demonstrations are omitted for ceneiss.

2.5.1 General properties

Itis easy to verify that, when< 0, (2.29) returnso p] := [U~ U *], so that equations
(2.30)—(2.34) simplify as follows

R S O (S "
7 TU(T+2>, (2.38)
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7 if zt
- "< (2.39)
7z, ifz- <z <0
me:— Int [“7 V;—SVK} , (2.40)
s Yo mg—1
o= 5 S9Nz , (2.41)
Y : < Vi ->
L if ([~ >7%
o TU- TU- —
A= Yk n m—1 w\U +U- i Yk <% (2.42)
TUT 2 M U+t TU-

The following two properties have general validity and viaé used in the last
part of the section to prove the system stability.

Property 1 For any point(z,z) lying inside the BL the filter command signal is

given by _
uk:=—¥+<ﬁ—m‘—_1>u—. (2.43)
Proof. Potentially, two different control laws could apply insitihee BL due to (2.42).
Let us analyze the switching condition which appears inZRahd suppose that

Ve oo o»

S LI 2.44
o= = X (2.44)

According to (2.42) it immediately follows tha = —TS’% = 7, so that, due to
(2.24), itis possible to conclude that, when (2.44) holds,donsidered point is lying
on the sliding surface. Practically, (2.42) define two al&tive mappings that can be
used depending on the position of the considered point weispect to the sliding
surface.

Now hypothesize tha%% < Zk and, equivalently, thady < 0. Since(z, %) is

located inside the BL but below the sliding surface, it isgiloie to write
Ug = —U+O'k = —U+('Zk—.7k) .

Equation (2.43) is easily obtained after few algebraic ipalations by means of
(2.41) and (2.42).
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Similarly, when— - > 7 or, equivalently, wheroy > 0, the control law be-
comes

w=Uox=U" (x—%).
Also in this case, (2.43) is immediately obtained by condide(2.41) and (2.42).

Property 2 Given any point(z,z) lying within the BL, controller C generates a
new point such that

Zos1 =t % (2.45)

Moreover, the following condition holds

sgN(z) = sgn(zc1) - (2.46)

Proof. Beingry piece-wise constant, and assuming that
_ Me+1— Tk
T )
the discrete-time evolution (2.22) is converted into anieent one in the(y,y)-
plane defined as follows

RO
Yi+1 01 Yk T

By applying command signal (2.43), system (2.47) evolvabéry,y)-space as fol-
lows

M

: (W m-1 -
Ykt1 = <mk 5 >TU (2.48)
T. T?2/w m—1\,  _
Yirs = Y+ EYk‘i‘ > <ﬂ - T) u (2.49)
By considering (2.38), (2.48), and (2.49), it is suddenlggble to write
I A A A ' (AU S T 3
Akt = TU(T * 2)‘ TU<T+2>+ 7 m %%0

or, newly due to (2.38),

mg (Mg — 1) — 2yk

. (2.51)

4ey1 =4+
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From (2.40) it descends that, whan< 0, the following inequality is verified

Z <y < —nmg+1, (2.52)
so that (2.51) implies
(mg—1)(2—my)
< . .
Z1 < > (2.53)

Due to definition (2.40) we have thai € IN\0. As a consequence, it is possible
to deduce form (2.53) that,, < 0, thus (2.46) holds.

Equation (2.45) immediately descends from (2.50) by canrsid (2.38) and
(2.41). Property 2 practically asserts that any point witihie BL cannot abandon
the left planez < 0. Properties 1 and 2 generically apply to any point withim Bb..

2.5.2 Behavior inside regiorRk1l

Proposition 1 Given any starting pointz z) lying inside region R, the BL which
surrounds sliding surfacé is reached in minimum time and in a finite number of
steps.

Proof. The proof is straightforward since from (2.23) and (2.24)dscends that
above the sliding surfaag = U —, while belowuy = U *. Due to (2.47), it is possible
to conclude thay monotonically decreases aba@while it monotonically increases
below Z owing to the shape of the sliding surface regied or, alternatively, re-
gion R3 are certainly reached after a finite number of steps (sed-is 2.3).

2.5.3 Behavior inside regiorkR2

Proposition 2 Given any point(z,z) lying within the BL and withz< z*, con-
troller C generates a command signal such that the systelwes/as follows

10 z
Aot + 2. (2.54)
Zt1

Z
Z

00 z

Proof. Sincez < z", due to (2.39) we can writg = z", so that (2.40) and (2.41)
become constant and can be rewritten as follows

l-l-\/l—SZJr}
2

m' = Int { , (2.55)
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: zZm mt-1
= —— . 2.56
% =t (2.56)
Due to (2.48) and (2.56) it is possible to write
: L _
Yoo M1 20 (2.57)

S TU- 2 m*
It was early anticipated that the sliding surface has besigded such that = 7
whenz < z*, so that from (2.57) it descends

ki1
TU-

— 7. (2.58)

Owing to the shape of the sliding surface (see also Fig. &.%) possible to assert
that, in any cas&.1 < z". Thus, from (2.58) it follows

Y L
—FoE 2 Fa (2.59)
Equation (2.59) indicates that, 1 must be evaluated according to (2.42) and, conse-
quently, bearing in mind (2.58), we finally obtain, as dasire

. __yk+l et
Zil = TU- =7 . (2.60)

The expression fag, 1 is obtained straightforward by means of (2.45) and taking
into account thak, = z+.

Remark 2 Equation (2.54), implies that when the system state enteyshe BL and
z< z', z is forced to the sliding surface” with a single step and there it remains.
Moreover, beingz™ > 0, coordinate z increases, i.e., the state slides to the right
Necessarily, after a finite number of steps it reaches reg&n

2.5.4 Behavior inside regiork3

It is clear that, after a finite number of steps, the systerohesthe BL of the region
z" < z< 0 directly fromR1 or, alternatively, fronR2. The following discussion is
devoted to demonstrate that the system state cannot abdreBh and it must move
toward the origin of th€z, z)-space.

Due to (2.39), we can assunge= z whenz" <z< 0.
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Property 3 Assume that at step k system st@gz) is lying within the BL, with
zt <z < 0and it is characterized by pnThe new statéz. 1,%.1) generated by
controller C satisfies the following equality

M =m—1.

Proof. It is possible to rearrange (2.51) as follows

z 1
= -l —=+=]. 2.61
201 =(m-1) (2 +3) 261
It is worth noting that (2.40) induces a partition along #hexis. In particular, owing

 Z

A\

Ss ’ S4 ' S; S SN

Figure 2.8: Phase-plane in tfe z)-plane: details in the vicinity of the origin. Circled
numbers indicate the corresponding valuenf

to (2.40), associated with amy € IN\0 there is an intervelh, in z defined as follows
(see also Fig. 2.8)
Sni= {z:—w<z§—m} . (2.62)
2 2
Now hypothesize that currentis contained irfy,, i.e.,z € Sy, . According to (2.62)
it is possible to write

(M Dmg <zk<_mk(m<—1) .

: < . (2.63)
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By taking into account (2.61) it is possible rewrite (2.68)allows

(Me+1)my Zy1r 1 m(me — 1)
et <<mk—l_§>mk§_72 , (2.64)

or, equivalently, as

-1 -2 -1
_% < Z1<— (M—2)(m— 1) (2.65)
Now define
Mg =mg—1 (2.66)
so that (2.65) can be posed into the form
1 -1
- (m<+l‘|‘2 )m<+1 < Zk+1 S _ n1(+1(n-;(+1 ) ) (267)

By comparing (2.67) with (2.62) it is immediately possibte ¢onclude that
Z1 € Sn,,» Wheremy, 1 is defined by (2.66).

Property 4 Given any point(z,z) lying within the BL, with Z < z < 0, the new
point (z.1,Z+1) generated by controller C is located on the upper frontiethef BL.

Proof. Due toProperties 2and3, it is possible to assert that < z.1 < 0, so that
the position of the sliding surface correspondingztp; can be certainly written,
according to (2.41), as follows

L Zp Mg —1
At = _m:rl+ +2 ,
B _rrikilfrrnkT_’
or, due to (2.61),
Zi1= —% + T_?’ . (2.68)

Bearing in mind (2.48), it is possible to assert that

Vet % me—1

TU- " m, 5 (2.69)
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By comparing (2.68) with (2.69) it is possible to concludattfy,1 must be eval-
uated by means of (2.42) since the new point is located ablwsliding surface.
Consequently
. ze m—1
=4+ —" 2.70
Zey1 me + > ( )

The position of the new point with respect to the sliding scefis

Ok+1 = Zt1 —.ik+1 =1, (2.71)

i.e., it exactly lies on the upper frontier of the BL.
The previous properties are used in the following to proesstiability of the filter
controller.

Proposition 3 Given any starting pointz, z) lying within the BL, with 7 < z <
0, controller C forces the system trajectory toward the aorigif the (z z)-plane in
minimum time and with a deadbeat dynamics.

Proof. According to (2.61) and (2.70), the system evolution onlgatels on the
currentz, andmy. Owing to Property 3 decreases at each step until it reaches the
valuem = 1. When it happens, owing to (2.61) and (2.70) we haug = 0 and
Z1 = —Z. Itis easy to verify by means of (2.40) that ; will be still equal to one,
so that at the next step (2.61) and (2.70) return = 0 andz, » = O: the origin of the
(z,z)-plane is reached with a deadbeat behavior. The system ckeave the origin
during the next sampling times. It is important to note tllak to Property 4, once
the system reaches the BL it is forced in a single step towsdrontier of the BL
itself. The same Property 4 makes it possible to assert thiatgithe subsequent steps
the system does not abandon such frontier, so that the eohlatvard the origin is
obtained by applying the maximum control command= U —, i.e., in minimum
time.



CHAPTER 3

Online trajectory scaling for robotic manipulators subject to
generalized forces constraints

If everything seems under control,
you're just not going fast enough.
Mario Andretti

he online path tracking control for robotic manipulatorjsat to velocity

and torque constraints has been devised in the previoussthapere a non-

linear control is used to push toward the origin in minimume the tracking
error and its first order derivative. In this chapter the mes geometrical ideas are
extended to take into account also for torque derivativesttaimts. Indeed, it is well
known that high torques derivatives cause high mechanioa¢ses and solicit the
manipulators unmodelled dynamics, thus decreasing theatien effectiveness: real
actuators can only generate limited torque variationshabgath tracking is lost with
certainty every time torque derivatives exceed the giveitdi
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In the first part of the chapter the same controller previppsbposed is used at
the purpose. Since the controller is of order two, only tergerivatives and torque
constraints are online managed. Therefore, no restret@wa imposed on the robot
joint velocities, assuming they are fulfilled by an offlindiofization algorithm. Part
of the obtained results have been presented in [40].

Finally, the control problem of a chain of three integramintroduced in order
to simultaneously account for torque, torque derivative @locities constraints.

3.1 Problem formulation

As for the control problem considered in the previous chatite solution here pro-
posed is based on the so called path-velocity decompo$i@jn a robot trajectory
is obtained by first planning a path to be followed and, thgrgdmerating a velocity
profile to move along such path. Paths can be indifferentiyimpéd in the task space
or in the joint space. For this reason and without any losseokgality, let us define
a parametric curve in the joint space by means of a vectotifumE (x) and a mono-
tonically increasing time law(t) according to definition (2.1) and (2.2) respectively.

Consider a serial link rigid-body manipulator, whose stadddynamic is de-
scribed in (2.6) subject to dynamic and kinematic constsaiMore precisely, max-
imum admissible torques are bounded, so that it is stillipesso write inequalities
(2.7). Analogously, maximum joint torque-derivatives boeinded, i.e

ikgtkg-ﬂ@ k:1727"'an7 (31)

wheret, andty represent the lower and upper bounds onkiftie joint torque deriva-
tive.

In order to verify the feasibility of the trajectory with mgesct to (3.1), an analyti-
cal representation dfis required. It can be obtained differentiating (2.6) witkpect

to time, obtaining for each robot joikt=1,2,...,n
1 oh
e — z ohgj(q) .

n n
&4 9a a4+ z (@) G+ Z Zi
n .
2 q; +
z ,ZLCIJK ) G dj Z an

=1

|QJ+Z an QJ+

(3.2)

=}
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By defining

. . N Ahy; )
h(a,q) = I(;:J(iq) G,
i=
. nan aCijk(C]). .
dki(q, — i
kj(d,q) 2“; 20 a G

ogk(q) | 9fk(q,q)

bkj(q,q) = a0, + o
. 9 fi(q, ¢
&;j(a,q) ka(g] a) ,

equation (3.2) is synthetically rewritten as follows
n . . . n DR n . .
W o= > h(a,a) b+ ) h(@) dj+ 5 dij(a,8)q;+
=1 =1 =1

n n n
2% «j(@,a)di+ ) bej(aq,9) a5+ ) &j(d,4)q; - (3.3)
=1 =1 =1
Finally, the following matrix form can be obtained from (3.3

t=H(0,8)d+H(q) 4 +D(q,8)4+2C(q,§)d+B(0.a)§+E(Q,8)d. (3.4)
The first two terms represent the component of the geneddiaee derivative which
are due to the system inertia. In the same way, the secondetwrs tare due to the
Coriolis and centripetal components, while the last tweréd the gravity and fric-
tion effects. Owing to (2.7) and (3.1) the following tracgiproblem can be defined

Problem 5 Given a manipulator described by (2.6) and a desired trajpci(2.1),
(2.2), design a control law to achieve the best possiblekirer compatibly with
torque constraints (2.7) and torque derivative constraifg.1).

The following question immediately arises: given a trajegy := I (x(t)), is it
possible to verify its feasibility with respect to (2.7) af&l1)?
By taking into account the chain differentiation rule, tha@ectory time deriva-

tives till the third order are
g = [ (X4 (X%, (3.6)
Qg = [ (X)5C+3 (X)5k+T (X)X . (3.7)



56 Chapter 3. Online trajectory scaling: generalized forceconstraints

dr(x)

where superscriptindicates a differentiation with respect er.g.,F(x)/ = g

while, as usual, dots indicate time derivatives, &g, = dg—(tt)

Due to (3.5)—(3.7), equations (2.6) and (3.4) can be expdeissfunction ofx and
its derivatives

T(X,X,X) = bi(X)X+ba(x,X) (3.8)

TXRKX) = (X)X +Ca(X X, X) (3.9)

whereby (X) := [by1 b2 -+ byn]T € R"andby(x,X) := [bp1 b2 -+ bpp]T € R are
defined according to (2.12) and (2.13) respectively, while

aX) = HI X)X (3.10)
(% %,X) = H(T(X),T (X)%) [ (X)5C+T (XK +
H(F()) [T ()% + 30 (X)%K] + D(F(X), T (X)%) T (X)X +

/

M ()% + T ()% 4+ B(T(X), T (X)) T (X)X +
M (%) +T (X)X (3.11)

beingcy(X) :=[C11 C12 -+ C1n]’ € RMandcy(X,X,X) :=[C21 Co2 -+ Con]T € RM.

By means of (3.8), (3.9), constraints (2.7) and (3.1) can seduo check the
feasibility of a given trajectory: for each joikt=1,2,. .. nthe following inequalities
must be satisfied

T < by k(X)X + b k(x,X) < Tk, (3.12)

T < k(X)X + Co(X %, X) < Tic- (3.13)

Assignedt, andTy, it is possible to verify, for any paix, X, if there exists at least
one valuex'which fulfills (2.14): in this way a region in the plan& X), where at
least one feasible solution exists, can be found (see,thayarea delimited by the
continuous line in Fig. 3.1). Analogously, assigr'g;dand%k, it is possible to verify,
for any tripletx, x, andX; if there exists at least one valté which fulfills (3.13):

in this way it is possible to find a volum&, an admissible region AR, in the space
(x,x,X) where a feasible solution is defined (see, e.g., the voluetieniled by the
two surfaces in Fig. 3.1).
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i 3 ;s 0 05

Figure 3.1: An example of the AR corresponding to the manipulator proposed in
Section 3.6

Definition 1 Given a curvd (x) and a time law &), the resulting trajectory is fea-
sible if and only if triplet(x(t), x(t),X(t)) belongs taZ for any te [0, t;].

As already remarked in Chapter 2, independently from thet@diocontroller, tra-
jectory tracking is lost any time a non-feasible trajectisrplanned. This can mainly
happen for two reasons. In the first scenario the trajectoptanned by optimizing
a performance index. For example, it is very common to plane tbptimal trajecto-
ries which minimize the robot traveling time. The resultingjectory has bang-bang
characteristics, that is, there is always at least one fjobtworking at its dynamic
limits. This corresponds to a poifi(t), x(t),X(t)) which is constantly moving along
the boundary surfaces of regioh. Due to model uncertainties or external distur-
bances, the point could abandon the feasible area, so #p@ttory tracking is lost.
Lost of tracking can also arise when the trajectory is pnogned by an operator.
Normally, in this case dynamic constraints are not consileturing the planning,
thus the resulting trajectory could be unfeasible.

When path tracking is a priority, online trajectory scalaigorithms are able to
overcome these issues. A sketch of the proposed contraégyras given in Fig. 3.2.
The manipulator is driven by a torque controller whose ougignals are saturated
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Figure 3.2: Proposed trajectory control scheme

both in amplitude and slew rate. Any standard torque cdetralan be used at the
purpose since it can be parametrized with respect to a scallae x by means of

(3.5)—(3.7). In the following sections, two of the most useddback controller are
considered: the Feedforward Controller with Position aetbdity feedback (FCPV)
and the Inverse Dynamics Controller (IDC). The same torqudroller evaluates,

depending on the current status of motion, appropriate d®an the longitudinal ac-
celeration and jerk in order to fulfill the dynamic consttaion the maximum torque
and torque derivative. The velocity scaling filter modifiee teference trajectory in
order to satisfy such bounds.

3.2 FCPV controller parametrization

In this section, the parametrization with respect to théasealuex is obtained for a
feedforward controller with position and velocity feedkaln Chapter 2, the standard
formulation of the controller has been recalled in (2.18)ilavits torque parametriza-
tion has been already presented in (2.17).

Itis worth recalling that the two vectobs (x) :=[by1 by -+ byn]T andb,(x,X) :=
[b21 by -+ by T are evaluated at each iteration of the control algorithmhenba-
sis of the reference position along the path) and the tracking erroe. Typically,
an efficient iterative Newton-Euler algorithm [41] is usedthis purpose. Vectors
b1(x) andby(x, X) are used for the online evaluation of the admissible bounds®
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longitudinal acceleration according to the technique psaal in [32], which yield to
condition (2.19).

In this chapter the control strategy is improved by consmiethe boundedness
of the torque derivatives. By means of (3.5)—(3.7) its paaim form is given by

:[(Xv X> ).(.7 quvq) = C]_(X) .XI—I_EZ(Xv ).(7 X) (314)
wherec; (X) is defined according to (3.10), while
C2(X,X,%,G,8) = Ca(x,X,X) + kpe+ky &. (3.15)

with cz(x, X, X) defined by (3.11).

In order to avoid huge online computations, the two tecais) :=[C11 C12 -+~ C1n]T €
R" andC;(x,X,X) 1= [C21 C22 -+ C2n]" € R"are evaluated by means of the extended
iterative Newton-Euler algorithm recently proposed in][4&hich returns the ma-
nipulator generalized forces. The additional computaiidurden needed for their
evaluation is comparable with the one requiredtfgix) andb,(x, X, d,q): the result-
ing overall procedure is therefore suitable to be used enlin

3.3 IDC controller parametrization

In this section, the parametrization with respect to théasoaluex is obtained for
an inverse dynamic controller whose equation, accordifd8j is given as follows

T=H(q)dq+C(q,a)4+9(q) +f(q,0) + kpe+ky e. (3.16)

As previously,e ;= gqq — g andée:= gq — { respectively represent the tracking errors
and their first derivatives whil&, ¢ R" andk, € R" are the gain vectors of the
feedback action. Differently from the FCPV controller @),1the sole dependence
on the desired trajectorig, is related to the inertial effects; the other terms depend
on the manipulator current status of motigng. A detailed analysis, regarding the
converge properties of the controller (3.16), can be foumn@83].

The controller equation can be reparametrized by means@fi(8the form

T(U, U,U,q,Q) = bl(u1q)u+62(u7u1qvq) ) (317)
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where, this time,

buua) = H(QT (W), (3.18)
Bo(u,U;0,8) = H(Q)T (WER+C(q,8)d+0(q) +F(q,a) + K] e+ k] 3.19)

Analogously, differentiating (3.16) with respect to timedaby using (3.6) and
(3.7), the following parametric representation of the targlerivative can be found

T = Cl(u,q)u+62(u,u,u,q,q,q), (320)
where
c(ug) = H@f(), (3.21)
Co(U,0,06:0,0,8) = H(q,a)[f (WP +f (u)d +H(q) [ (o + 3F (u)ud]
+D(9,9)q+2C(q,9)d +B(9,9)q
+E(q,0)q+kje+kyé. (3.22)

Termcy (u; q) is already known since it coincides with (3.18), while thaleation
of ¢2(u,u,U;q,q,q) is not straightforward. Equation (3.22) reveals it is polesto
compute,(u, U, Ui; q,§, §) only if the derivative of the inertia matrix, i.eH(q,q), is
available. To this purpose, a method for the online evajuabifH(q,q) is proposed.
Such method is general and therefore can be also used irriecedifferent from the
one here considered.

3.3.1 Evaluation of the inertia matrix derivative

The proposed solution evaluates the coefficiertt o, q) with a two step algorithm.
In the first step, termsy;j(q,q) of the Coriolis/centripetal matri(q,q) are com-
puted, then the second step devilég$q,c’1) of H (g,9).

Let us indicate the unit vectors of a standard orthonormaelase; € R", | =
1,2,...,n: only the j-th component of; is equal to one while the other terms are
null. In the following, friction and gravity coefficients ealways set equal to zero,
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so that (2.3) and (3.2) simplify as follows

Tk = z hej(q) dj + z Zlcljk )4 q;, (3.23)

:[k = zhququ+zhkl qj—i-deJqqu+ZZCkJQQQJ(324)

As a first step, the Newton-Euler algorithm is invokedimes with§ =0, q =
g, =1,2,...,n. From (3.23) it can be immediately evinced that, under ticeseli-
tions, the recursive algorithm returns all the Christoffginbols which have the same
first two indexes, i.e.,

Ykj i= Tkj = Cjjk () - (3.25)

Subsequently, the inverse dynamics is newly evaluated &ith0, q = ej +
e;i,j=212,....,n;i # j. This time its output is

Yiik := Tijk = Cjjk (A) + Cjik (01) + Gijk (A) + Cik () - (3.26)
Sincecjik () = ¢ijk(q), and remembering that terngy (q) = ykj have already been
computed, rearranging equation (3.26) it holds that

Cik(q) = Yijk (a) _yka(Q) —Yki(a) '

Once all Christoffel symbols;jjk(q) have been evaluated, element§(q,q) of
matrix C(q,q) are computed by means of (2.5).

(3.27)

The second step of the procedure is based on the use of theledt®&ewton-
Euler algorithm [42]. If we assum@ =0, § = €j;j = 1,2,...,n, it is possible to
evince from (3.24) that the algorithm returns

Wi (d,8) == Tk = hij(a,8) + 20kj(0, ) Z dkj(d,9)d; - (3.28)
Analogously, by assuming = 0, § = 0, from (3.24) it is possible to evince that
n

Wij (a1, Q) Z dkj(9,4)q (3.29)

By rearranging (3.28) and considering (3.29), we finallyagbthe components of
matrixH(q,q)

th(q7q) = Wk](qaq) _Wkl(qaq) - ZCkJ(q,Q) . (330)
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3.4 Online bounds evaluation

To satisfy condition (3.1), independently from the adoptedtroller, it is necessary
to impose
T <oX+6;<T, i=12...,n. (3.31)

n
Evidently, X is feasible ifX € ([3i , yi], with
i—1

ST S e >0
Vi = Lg_lch" if i <0 andd= %, if ¢ <0 (3.32)
00, if Cj = 0 —00, if Ci = 0

or, equivalently, ifX € [S™,S*] where

S*::iir?inn{w}, S“::i_rrfaxn{éi}. (3.33)

As for condition (2.19), also in this ca& > S only if triplet (x,x,X) is feasible,
otherwise there does not exist any solution which fulfills torque derivative con-
straints.

It is worth remarking again th&8", S, U™, andU ~ are evaluated by simulta-
neously considering the manipulator dynamics and the fsedbontroller actions.
This means that feasible volunteis online reshaped to account for any deed of the
feedback controller.

Moreover, the described version of the filter does not mamalpeity constraints,
so that they are indirectly considered during the plannimasp by designing velocity
profiles compatible with the maximum admissible joint véies.

3.5 Online trajectory scaling

Bounds on longitudinal jerk (3.33) and acceleration (2.4 used to online scale
the robot trajectory. To this purpose, the trajectory scgfilter shown in Fig. 3.3 has
been developed. The filter behavior is the same of the onesx&dy described in

Chapter 2. Practically, the filter outpx(t) exactly coincides withx(t) only if the
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Figure 3.3: Block diagram of the nonlinear filter used for titegectory scaling.

assigned bounds are fulfilled, i.e.xif € [U~,U*] and Xy € [S™,S"], while tracking
is voluntarily lost every time such bounds are violated.His tase a new velocity
profile X, which satisfies the given constraints, is generated. Tmadic filter is
designed such that robustly converges in minimum time towaxd as soon asqy
newly fulfills the dynamic constraints.

The output of the variable-structure controller is evaddahccording to the dis-
crete time law presented in Section 2.2, where all the direvgignals related t®
and its transformed values in tkgplane are augmented of one order. In this way, the
filter is used to regulate the tracking error on jerk and aredion, while the scalar
feedbackx is obtained as the outcome of the chain of the three disonédgrators
depicted in Figure 3.3 whose state-space representatexjua to

Xt 1 X 1T DT % L
Xern | =A% [ +D%=10 1 T || % |+ | 5 | %, (334)
Kct1 e 0 0 1][% T

whereT is the sampling time and subscriptepresents the current data sample.

3.6 Simulation results on a planar PP robot

The trajectory controller has been evaluated considehiegame two link planar ma-
nipulator introduced in Section 2.4, whose dynamic paramseire defined according
to Table 2.1, moved along an assigned ellipsoid path paramétin the joint space.



64 Chapter 3. Online trajectory scaling: generalized forceconstraints

The following nominal velocity profile has been assumed

—Kl(x—a)2+K2, 0<x<a
4a, a<x<b
Xd(X) = 2a, b<x<2b (3.35)
—K3(x—c)?+Ky, 2b<x<c
3a, otherwise,

wherea=05,b=18,c= 39 andK; = 7.6, K, = 2, K3 =556 andK, = 1.5.
The corresponding nominal acceleration can easily be ctedpay considering the
differentiation chain rule

) = Fa _ P (3.36)
Clearly X4(x) is too demanding with respect to the dynamic constrainteéd, at
x = b, an infinite acceleration is required, so that such profildc&only be tracked
if an infinite torque is available.

The torque controller used for the evaluation is the FCP\Qsehgains ar&p =
[200 200" andk, = [60 60" respectively. The path tracking performance has been
firstly analyzed by assuming a perfect knowledge of the rebotlel and, subse-
quently, considering a perturbed system. In both casegudésrand torque deriva-
tives have been constrained between the following boupigls< 30 N and |ty| <
350Nst k=1,2.

3.6.1 Perfect knowledge of the manipulator model

In the first example the manipulator model is supposed to beptaiely known, so
that control law (2.17) is implemented. The control impnosats due to the time
scaling filter are highlighted by considering three différecenarios:

Casel - the filter is disabled and reference velocity (3.35) anckbaration (3.36) are
directly used to drive the manipulator controller (dottieads);

Case2 - the time scaling filter is activated but only to account tmrque constraints
(2.7) (dashed lines), thus mimicking [32] where jerk boungse not consid-
ered;
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Figure 3.4: Exact model knowledge: (a) actual referencecvgs; (b) and (c) track-
ing errors for the two joints. Dotted lines refer@asel, dashed lines refer iGase
2, while continuous lines refer ©Gase3.

Case3 - the filter is fully activated to simultaneously fulfill @.and (3.1) (continuous

lines).

Since (3.35) and (3.36) are not feasible, i.e., the nommagdtory does not always
belong to region4, path tracking is evidently lost when the scaling strategpot
used. This conclusion is immediately confirmed by Fig. 3.beke the robot path is
plotted using a dotted line. As expected, tracking erroastitrally reduce if the time
scaling filter is activated. More precisely, from Fig. 3.4r0es detected foCase2
are almost one order of magnitude smaller than those obtdoreCasel. Fig. 3.4
also demonstrates that, when the proposed filter is usedtwmacfor (2.7) and (3.1)
(Case3), maximum tracking errors reduce of almost two orders ofmitade with
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Figure 3.5: Exact model knowledge: dotted line refer€#&sel, dashed line t&€ase

2, while continuous line refers tGase3. The reference path is perfectly shadowed
by the path obtained by means of the time scaling filter.

respect toCasel, yielding to emax = Maxe(o2r{[A(X) — f(X)[|} = 6.012-10~% m
whereq(x) = (aq1,0p) is the actual path followed by the manipulator wHi(®) is the
desired path. Pattegx) obtained for the three cases are shown in Fig. 3.5.

Fig. 3.6 specifically refers t€ase3. More precisely, Fig. 3.6a and Fig. 3.6b
respectively show the real time evaluated bounds and’X (dotted lines) compared
with the actual manipulator longitudinal accelerationsd grks (continuous lines):
constraints are evidently active in several points aloegotith. Finally, Fig. 3.6¢ and
3.6d, respectively show the controller output torques amglie derivatives: dynamic
constraints are always fulfilled despite any interferendb® feedback controller.

3.6.2 Approximate knowledge of the manipulator model

The behavior of the control scheme has also been verified whina partial and
wrong knowledge of the robot model is available. The follogvcontroller, based on
an insufficient dynamics knowledge, is assumed

!

T(X,%,%,9,6) = H(T ()M ()5 +T (x)x] + kpe+kJe (3.37)

whereH (-) denotes an estimated inertia matrix obtained by perturthi@goefficients
of nominalH (-) by the 5%. In practice, the robot is considered as a pureiaheyts-
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Figure 3.6: Simulation results when the time scaling filkeused: (a) longitudinal
acceleration (continuous line) and acceleration bounaolitgd lines); (b) longitudinal
jerk (continuous line) and jerk bounds (dotted lines); @hf 1 torque (continuous
line), joint 2 torque (dashed line); (d) joint 1 torque deative (continuous line), joint
2 torque derivative (dashed line).

tem and its nonlinear dynamics are neglected. The use dfithjglified robot model
is justified by the fact that the identification of the wholemmalator parameters, es-
pecially for systems with many degree of freedom, can beguitemanding task. On
the contrary, the inertia matrix can be obtained with pcattiecursive algorithms,
such as the one proposed in [38].
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3
x (rad)

Figure 3.7: Velocity reference signaj (dashed line) compared with the filter output
u (solid line).

For the example herein considered, the maximum trackingr emly slightly
increases with respect ©ase3, i.e.,emax= 6.144- 10~ m. As early asserted, the
filter constantly forces the system inside current regidoy scaling the trajectory. As
a consequence, tracking tolerance does not depend on ésgibehbut it is mainly due
to the performances of the inner controller (3.37). TragKivlerance considerations
could be performed by extending the techniques proposetBin |

3.7 Simulation results on a planar RP robot

In order to test the behavior of the control scheme even isgmee of non-negligible
Coriolis and centrifugal effects, a different manipulab@as been simulated. More-
over, in order to remark the possibility of using differemtque controllers within the
same framework, the IDC parametrization described in 8e&i3 has been adopted.

The chosen robot is a RP planar manipulator characterizetidogynamic pa-
rameters reported in Table 3.1. The path to be tracked isligseeparametrized as
follows

f(u) = [ gi ] =

The following tuning parameters have been selected fordhgaller:k , = [500 4007,
ky = [10 60". The velocity reference is shown in Fig. 3.7 by means of aethine
and defined as in the previous section. Once again the refesignal is chosen such

Atan2(0.8sinx, 0.4 cox)

, xel0,2m. 3.38
V/0.42co@x + 0.82sir? x 10,2 (3.38)
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Table 3.1: Robot inertial parameters

Link Mass Center of gravity Inertia Friction

a m(Kg)x(m) y(m) z(m) Ix(Kg.m?) lyy(Kg.n?) 1.{Kg.m?) B(N.s/rad)

60 2390 0 010 O 2.521 1.671 1.358 1.5e-3

d, 38 0 -030 O 0.336 0.336 0.026 2.8e-3

to be unfeasible with respect to the robot dynamic congsdirat are supposed active
on both joints. In particular, the following limits have leesed for the torques and
the torque derivativess, 12 € [—13,13), 11 € [—200,200, andt; € [—150,150.

10p

X (rad s?)

¥ (rad s?)

Figure 3.8: Velocity and acceleration bounds online evaltlia

Fig. 3.8 is useful to understand the system behavior. Dakhes correspond
to upper an lower bounds onand X evaluated by means of (2.19) and (3.33): the
time scaling system generates an output signahose first and second derivatives
fulfill the imposed constraints. A comparison between thegioal x4 andx is shown
in Fig. 3.7. The feasibility of the generated profile is prnou®y Fig. 3.10: actuat
andT always satisfy the given constraints. It is relevant to riba every time the
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Figure 3.9: Paths generated by adopting the filter (soli€l) land without the filter
(dashed line). The manipulator is clockwise moving stgrfiom the red point.

constraints ort andt are touched, the velocity tracking is lost in order to mamta
correct path tracking.

The overall accuracy of the controller is verified by measyithe path tracking
error defined as the Euclidean distance, expressed in fumofix, between the ma-
nipulator tool frame and the reference path. Fig. 3.11 coawpthe errors detected
with and without the filter: the maximum error without thediltis equal to 3.770e-
2 m, while it decreases to 6.946e-4 m when the filter is used.

The relevance of the constraints on the generalized forgeatiees are high-
lighted in Fig. 3.9: when the filter is not used, it is suffidiém reduce the bounds on
1, t0 160 Nms'! to obtain a complete tracking lost.

3.8 Minimum time tracking problem for a chain of three
integrators with bounded input

In the path tracking problems analyzed so far, it has alwagnlused the stabiliza-
tion filter devised in Chapter 2. However, when dealing wktk bnline trajectory
scaling of manipulators subject to generalized forces ahalcities constraints, it is
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Figure 3.10: Generalized forces and their derivativesHerttvo joints

interesting to study the stabilization problem of a consé&d discrete set of three
integrators.

This problem has been already extensively studied in thérmwus time case,
also for a chain of arbitrary order with saturated input [A¢here the solution is
found on the basis of the Pontryagin Maximum Principle. Acdite time solution
has been recently proposed in [45], where only the boundsdoithe control input
is considered. By defining the normalized tracking error igsderivatives as
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3
x (rad)

Figure 3.11: The path tracking error without (dashed ling} with (solid line) the
velocity scaling filter.

wherer, r andr are, respectively, the reference input and its derivatmémrex, X,
X are the system state space variables, as depicted in Figyyrar@l wherdJ is the
input constraint, the following problem has been solved.

Problem 6 Design the nonlinear static function & ux(yk) such that, starting from
any initial conditionyo = [yo, Yo, Vo], System

Y1 = Ayk + bu,

with A andb defined according to (3.34), is controlled to the origin i tminimum
time compatible with the constraini| < 1, being y the normalized control action.

The problem solution is investigated for the equivalentrfolation obtained by
applying a state space bijective transformation in ordegliminate any dependen-
cies of the discrete system from the sampling tim& he new state space variables,
at time instantk, are indicated with the vecta = [sz,zz,k,z&k]T. By using the
transformatiore, = Tyy, where

1 T
1 Tl?
0O OT

the following equivalent system is obtained

41 = A_Zk + Buk, (3.39)
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with
11 1 1
A=|0 1 1|,b=]1
0 0 1 1

According to [45], the following definitions holds.

Definition 2 Let B, and B, denote the points of the state spagefrom which it
is possible to reach the origin in a number k of sampling pasiavhen the constant
normalized inputs w= —1 and y = 1, respectively, are applied.

Definition 3 Let B, and B, denote the points of the state space from which it is
possible to reach the pointﬁ% and Bo respectively, in h sampling periods by using,
respectively, the constant inputg+ —1 and y = 1.

For example, the set of poinB;{k is obtained by inverting the system (3.39) and
solving it with control input equal tax = 1 and initial conditiorzo = By ;. It's closed
form expression is given by

B, = A'Bio—Sh oA b=A"B  —B =

k(k-1)(k—2) |, k(k-Dh , h(h—-1)k  h(h-1)(h—2)
( ) )+(2 +(2)_ ) (3.40)

h(h—1 k(k—1
= % — hk— %

k—h

whereh,k > 0. In a similar way it is possible to devise the set of poBﬁﬁ.

It is worth noting that the point8;/,, B\, . ,B, ,, andB ; _,, withh >0 and
k > 1, define a parallelogram in the state space. Denote thiigdagram by using
the symboIPKk. The union of all the parallelograms clearly describe asmgffrom
which it is possible to reach a point belonging:@< in h steps, by applying the max-
imum positive controbi, = 1. Denote this surface with the symhmj. Analogous
considerations apply to definition of the parallelograyg and the surfacey .

The discrete time control la® which solves Problem 6, as proved in [45], is
given by

C: u:=-—saloyg) (3.41)
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_ 2h+k—1 2
Ok ‘= Z3k+ h(h+ K 22’k+h(h—|—k)zl’k+ (3.42)
2h% + k3 +3h%k—3hk—3h2+h—k
+ eh(h 1 K) L (3:43)

where _
(hokn) = (hk 1) if (zk 22x) € Iihfk,
Y (h,k,=1) if (zk,22k) € Py

and whereﬁhi’k is the projection of the parallelograRy;, on the plangz, ).

Equationoy is obtained computing the distance, along the compongmtf the
system statey from the middle of the boundary layer identified orae andoy are
known. The integer parametensk andn are completely determined given the state
Z. To this purpose the following iterative search has beedeémpnted.

3.8.1 Algorithm for computing h,k,n

The algorithm is mainly subdivided into two different stefiwe first one determines
the value of, i.e. if the projection of the current poir{ belongs tP+ or P~. Then,
the second step iteratively searches the polyégninside which the current point is
located.

In practice, as depicted in Figure 3.12, the algorithm mdliesoperating point
z along the sliding surface represented by a solid blu lineedh iteration of the
algorithm, the value of the parameters kept constant to zero, while the other inte-
ger parametek is increased. The coupld,k) is then used in (3.40) to compute the
new operating point. The sliding along the surface consnuetil a sign change in
the first component of is detected, represented in Figure 3.12 by two solid red line
Let us indicate witlz, andz, the system point before and after the stop condition, re-
spectively. The value af is then determined as the sign of the cross product between
the displacement vectde, — z,) and the error vector between the current operative
point z and the input datay.

Once the sign of] has been computed, the second stage of the algorithm is ex-
ecuted. In particular, the couple of valugsk), identifying the parallelogranﬁnk
inside whichz is located, are determined by the following computations.
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Figure 3.12: Example of the iterative search for thealue in the ¢, z,)-plane

Assigned a value dfi, which identifies in thdz, z,)-plane one of the parabolas
depicted in Figure 3.12, the algorithm searches with a b@eaenethod the value
of k which minimizes the distance between the input paigdnd the one identified
by the triplet(h,k,n). A boolean flag is also returned to indicate if the desiredpoi
Z is located above or bottom with respect to the base of thegpaolydentified by
the current values df andk. Based on this information, an upper and lower bound
couple of values(ﬁ, E) and (h,k), are stored. Then, a new candidate valué o
chosen within the previous range, according to a bisectiethad. The algorithm
iterates until the distance between the upper and lowerdaourh, i.e. (ﬁ— h), is
less or equal to one. Figure 3.13 illustrates the descrilbecegure: green lines are
the error vectors computed for the different points ingzded by the algorithm, the
red dot is the input poirg while the red polygor, is the one computed using the
returned valuegh,k,n).

The solution (3.41)-(3.42) introduced by [45], stabilizbe integrator chain by
considering the presence of a single constraint, namelgrieeon the control input.
However, as already remarked throughout this chapter,dardp use this nonlinear
filter in the context of the trajectory scaling problem fobeotic manipulators, it is
necessary to account also for acceleration and velocitstints, i.e., with reference
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Figure 3.13: Example of the iterative search for the valdeth) in the @, z)-
plane

to Figure 3.3, considering also the boundednessanidX. For this reason, the author
is currently involved in extending the previously descdlpeethod in order to initially
account for acceleration constraints. Even if not yet cetghy formalized from a
mathematical point of view, good and promising results Hae&n already achieved,
which will be part of next publications.



cHAPTER 4

A minimum-time feed-forward control of a flexible joint

He who controls the present, controls the past.
He who controls the past, controls the future.
George Orwell

n many applications, such as robotic manipulators, digkedneads, or point-

ing systems, sophisticated control algorithms are reduivemake optimal use

of the maximum torque available for rapid maneuvers, [48].[Wnfortunately,
any minimum time performance is usually achieved by maximgizhe actuators dy-
namic efforts possibly leading to undesirable results endhse of standard feedback
controllers. Indeed, due to saturations, the system behewuld be characterized by
overshoots and oscillations, as extensively remarkedédrmthvious chapters. These
effects are even more relevant for robotic manipulatorsvaéiga significant elastic
coupling between joints, like those designed to share thieikspace with human
beings. In such cases the use of elastic joints increasasyshem safety by reducing
the arm stiffness. In fact, as stated in [48], by decouplmg dctuators inertia from
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the inertia of the links, it is possible to reduce the en@@fir impact force such to
limit potential danger to the operator. In recent literatarconsiderable attention has
been given to the control of robot with flexible joints, seeifstance [49, 50, 51], or
[52] for a survey.

A major drawback of manipulators with a significant elastaugling is that
the output reacts slowly to the input, thus degrading theipudator performances.
Hence, it is interesting to consider the minimum-time conproblem, that is to
find the control input that allows performing a desired testest transition for the
end-effector, by minimizing at the same time the robot tiiagetime. This makes it
possible to improve the resulting control performancegigeshe elastic coupling.

However, for such kind of robots, any sudden torque changamglicit require-
ment of minimum-time motions, can excite the oscillatorynamics. It is therefore
important to introduce, together with the usual input caists considered in the
robotic literature, also output constraints. In this cleajat time-optimal solution for
an electrically driven flexible joint arm is proposed. Exjilibounds on the motor
feeding voltage are considered but, at the same time, a z@mshwot solution is
required.

The minimum-time transition is obtained by discretizing tbontinuous-time
model of the flexible joint and formulating an equivalentadéte-time optimization
problem solved by means of linear programming techniqueseNbdrecisely, upper
and lower bounds on the input voltage, as well as those orubatershoot and
undershoot, are expressed by linear inequalities on avact@epresenting the in-
put voltages at sampling times. The optimization methodcbes the input vector
u such that the end-effector performs a rest-to-rest tiansih a number of steps
less or equal than an initial guesswhile fulfilling the input and output constraints.
Hence, the minimum-time problem is reformulated as a fdagiltest for a linear
programming (LP) problem and the minimum number of stepsired to complete
the given rest-to-rest transition can be found through gl&irbisection algorithm.
Since the sampling tim€& is fixed, minimizing the number of steps implies achiev-
ing the minimum-time solution which fulfills the given coraints.

The use of linear programming techniques for solving minimime problems
for linear discrete-time systems, subject to bounded B)pl#tes back to Zadeh [53].
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Subsequently, many contributions have appeared focusinvgibous improvements.
For example a faster algorithm is proposed in [54]. Work [a&lsents a more general
linear programming algorithm for solving optimal contratoplems for linear sys-
tems under generic constraints. In [56] a feasibility tegresented to improve the al-
gorithm speed. For what concerns time-optimal control fotimuous time systems,
a related result, under different hypotheses, is presant¢s/]. It applies a com-
parison principle to a time-optimal control problem for asd of state-constrained
second-order systems.

The chapter is organized as follows. In §4.1 the dynamic nafdeflexible joint
is devised. It will be used for the synthesis and the valigtatf the proposed control
technique. In 84.2 the control problem is proposed and disalis obtained in the
subsequent section by means of a linear programming digaridn experimental
test case is discussed in 84.4.

Notation: Given a sequence(k) : Z — R, U(z) = Z{u(k)} represents itZ-
transform, ||u(k)|| = max{|u(k)| : k € Z} is the infinity norm ofu(k). Forx € R,
|x| = max{i € Z|i < x} is the floor ofxand % € R"= (1,1,...,1)T. Given a matrix
M € R™"|IM ]2 = max{||AX]| : x € R" with ||x|| = 1} is the 2-norm.

4.1 Flexible joint model

The minimum-time control problem is solved for a single fldeijoint device pro-
duced by Quanser Consulting. Fig. 4.1 shows the top vieweottmsidered system:
a rigid arm is connected, through a flexible joint, to a rogtibody”, which is ac-
tuated by a dc servo motor. Both the body and the arm can ratatend the vertical
axis“O” of Fig. 4.1. The elastic coupling between the body and theismwbtained
by means of two springs whose stiffnesKisand whose unstretched lengtHds

The control technique proposed in §4.3 is based on the kuigelef the system
model. For this reason, an accurate nonlinear model, magdy for simulation pur-
poses, is proposed in the following. The linearized versibthe same model, to be
used for the controller synthesis, is then devised.

Spring forced; andf, cover an important role in the system dynamics. In order to
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Body

Figure 4.1: Flexible joint experiment: Top view.

evaluate their amplitude, let us assign a reference frathelibse origin is located in
“O” and integral with the body. Moreover, let us assign a furtreme {2}, located
in “O” but integral with the arm, and indicate By the joint angle between the two
frames. Angled, is counterclockwise positive. In the same way, let us irtdidey 6,
the counterclockwise positive joint angle between the bivdse {1} and a given
stationary frame.

The three pointsA” , “B” , and“C” shown in Fig. 4.1 can be described with
respect to frame {1} by means of three vectges:= [—dn h|T, pp := [dm 0|7, and
pc = [~RsinB; Rcosdy]" wheredn, h, andR are the geometrical dimensions re-
ported in the same figure.

The spring force norms, i.efy := ||f1|| and f, := ||f2||, depend on the spring
lengthsl; andl, according to equations

fi = Ke(li—lo), (4.1)
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fa = Ke(lz—lo), (4.2)

wherel; andl, can be evaluated as follows

l1 = [|pc—Ppall

= /R 02+ 1% — 2R(dnsinG, +hcosty) | 4.3)
l2 = [lpc— Pyl

= /R 02+ 1?4 2R(dnsinG; — hcoshy) . (4.4)

Forces acting on poirfitC” can be described with respect to frame {2} leading to
f]_x . f]_COS((X) . —Ke(ll— |0) COiG)
fi, | | fisin(@) | | —Ke(ly—lo)sin(a)

fo | _ | facosB) | _ | Ke(l2—lo)cos(B)

fa, f2sin(B) —Ke(l2—lo) sin(B)
wherea, 3 € R™ are the two auxiliary angles shown in Fig. 4.1 which can béueva
ated by means of the following equations

Rcog6z) —h|
On—Rsin®,)| 2’

. RCOS(ez) —h
B(62) = arCtan{dm+R—sin(ez)} +6,.

and

a(B2) = arctan[

Elastic forces induce an elastic nonlinear torque in thetaahcan be expressed
as

Te(62) = [~ f1,(82) — 2 (62)] R. (4.5)
Itis worth noting that components, and f,, do not generate any torque with respect
to“O” .
It is now possible to propose the dynamic equation of thalragim described
with respect td'O”

Joad(B2 4+ 81) = [— 1, (82) — f2,(62)] R— B2 (4.6)
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Figure 4.2: Inertia and gears ratio chain view from motooreatxis

whereJpaqg is the arm inertia evaluated with respect@’ , while Bléq is the friction
coefficient associated to angular veloc@ly. Practically, arm dynamics takes into
account torques which are due to inertia, friction and it

Itis similarly possible to devise the dynamic equation &f‘thody”. It is made of
a chain of inertial loads and reduction gears driven by a pagmt magnet dc motor
according to the scheme shown in Fig. 4.2. More precisedymbtor, characterized
by an inertialy, is connected through a chain of reduction gears to the ostyaft.
Each reduction gear is characterized by a reduction r&a@®egks, ki, and an inertia,
see e.gJi20,J72, and Jps. The first reduction gear is characterized by an efficiency
coefficientng, while the the body inertia i& ;. Output anglé; is measured through
a potentiometer coupled to the output shaft by means of awgeiah has reduction
ratiok = 1.

The system is affected by torques which are due to inertiidn and elasticity,
yielding to

JogBr = 10— B — [ 1,(82) — f2,(62)] R+ B2 . (4.7)

Wherngq is the equivalent inertia of the system composed by motduyaton gears,
and “body”, 1° is the motor torque reflected through the gears ratios, V\Bﬁ&ds
the friction coefficient associated to angular velodty All quantities in (4.7) are
referred to the output shaft of the system. For the systemgf4=2 the equivalent
inertia can be expressed as

ng = [Jmkf,kfng + Joak? + J20+ 2372+ Jrg] -
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The dynamics of a dc motor is given by the following equatjgh8]

{._% =  —Rmi — knG@mn =+ Vin; (4.8)

Tm = kmla

wherety, is the torque at the output shaft of the dc motgy,is the armature induc-
tance,wn, is the motor angular velocit¥, is the motor electric constariR, is the
motor winding resistance, an, is the motor feeding voltage.

Due to (4.8), the motor electrical pole is equal to

Ii& ~1.-10* radst?

m

which is negligible with respect to the mechanical pole étual rads*. Therefore
(4.8) can be approximated as follows

Vin —
T~ ke <$> '
Hence, according to Fig. 4.2, the output torgdean be expressed as
ol — e, gng
m g'lm Rm in Rm .
wheren, is the motor efficiency.
Bearing in mind (4.9), (4.7) can be rewritten as follows
I B1 = —GO1 + B5 P2 — [ 1, (82) — f2,(62)] R+ HVin (4.10)
where
KgkPkangnm o
G = R, + Beq (4.11)
kgki KmnNgNm
H - 4.12
R, (4.12)

Equations (4.6) and (4.10) represent the complete nomlidyg@amic model of the
flexible joint and are used to simulate the system behaviear.the synthesis of
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the control technique proposed in §4.3, an equivalent lineadel is devised. Elas-
tic torqueTe is the sole nonlinear term which appears in (4.6) and (411@an be
linearized inB, = 0 leading tote ~ —Kgiif 1 62, where

. __dre(62)| _ 2Rd2k
Sift=""de, =07 (R—h)2+dZ

is the stiffness constant. Consequently, (4.6) and (4.40)e rewritten as

Jobr = —GB1+Bggf+ Katir B2+ Hvin, (4.13)
Joad(B2+81) = —B'éqéz — Kstif 02 . (4.14)

The output of the system is given by the angle formed by theeffedtor with
respect to the stationery frame. Henge; 81+ 65, i.e, the sum of the angle between
the body and the stationary frame and the angle formed byrthendgth respect to
the body. Finally, it is possible to rewrite (4.13) and (4,lidto a state-space form

X = Ax+bvpj,
y = CXx+dvp

by assuming := [x1XaXsX4] T = [816,016,] and defining

[0 0 1 0 1 0
0 0 0 1 0
A= Kstif G BIe'q 5 b:= H
0 X 3 %, %,
0 Kstif  (Joad+35g) G Bbg(Jioad+%) _H
LY T e BT el %
c::[l 10 o], d:=0 (4.15)

The corresponding discrete-time system is obtained frofrbjdy the zero-order
hold equivalence, yielding to

{ Xn+1 = AoXn+boVin (4.16)

Ynr1 = CoXny1+doVin,

whereA = €T, bp = [, €hdt, Co = C, do = d andT is the sampling period.
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4.2 Problem formulation

In this section, the minimum-time feedforward control gesb is stated for scalar
discrete-time systems in a general case and then for théispexse of the flexible
joint presented in § 4.1.

4.2.1 General formulation

A linear discrete-time systeiry is described by the proper scalar transfer function

_b@) _ bwZ"+bm1Z™ - +bo
az) @' tan 12+ tag

(4.17)

a(z), b(z) are coprimey is stable, and its static gald(1) # 0. The system input
and output sequences are denotedifky andy(k) respectivelyk € Z.

The behaviortBy of systeny is the set of all input-output paifsi(-),y(-)), where
u(-),y(+) : Z — R, satisfying the difference equation:

any(k+n) +an-1y(k+n—1)+---+aoy(k) =
bmu(k+m) + bm_qu(k+m—1) +-- -+ bou(k). (4.18)

The set of input-output equilibrium points &f is £ := {(u,y) € R2:y= H(1)u}
and the setXs C By of all rest-to-rest constrained transitions frqi®0) € £ to
(R Yr) €  is defined as follows.

Definition 4 Given the parameter set= {Uc,Yc,ys }, where Y = [ug ,uf] and ¥ =

Ve ,ya ] are the constraint intervals for the input and output regpety and y is the
final rest value of the outpufk; is the set of all pairgu(-),y(-)) € B4 for which there
exists k € N such that:

Vi
— =2 VYk> .
u(k) 0 Vk<O0, ukk) A vk > Kp (4.19)
uk) € UeVkeZ, (4.20)
y(k) = 0Vvk<O0, y(k) =ys Vk>Kks, (4.21)
yk) € Y. VKkeZ. (4.22)
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The minimum-time feedforward constrained control probliemdiscrete-time sys-
tems consists in finding the optimal input sequenté), k =0,1,...,k; — 1 for
which the pair(u(-),y*(:)) € %s is a minimizer for the optimization problem:

G =, min__ Ki(e).y0)). (4.23)
where
K (U(-),y(-)) := min{ks € N : u(k) = % y(K) = yr Yk >k} .

is the rest-to-rest transition time associated to f&i), y(-)).

4.2.2 An approximated solution to the continuous time prolbém using
discretization

Given a continuous systehi(s), a time-optimal constrained control problem can be
converted into the previously defined discrete-time oneufh the following proce-
dure:

« find the discretized systeht(z) using a zero-order equivalence, with sampling
periodT, by applying relatiorH (z) = (1— Tl)Z{ﬂsS)} ;

» find the time-optimal input sequencé(k) such that (4.23) is satisfied,

« transform the discrete sequenggk) into the continuous functioni(t) by
using a zero-order hold, that is the signal is kept constaiwtdéen one sampling
time and the next one;

« apply the input functionu(t) to the continuous-time system.

Fig. 4.3 gives a representation of the signals involved édilscretization. Due to
the procedure given before, the control found with this rétls optimal only with
respect to the class of input functions which are constamiach sampling period.
Hence, the resulting transition time is higher than the mium one achievable with
continuous time input functions.
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u* (k) ol Ug(t) HS Ye(t) y* (k)

Figure 4.3: Zero-order hold equivalence

Moreover note thay*(k) fulfills for certainty the prescribed constraints, so that
the outputy(t) of the continuous system satisfies the following condition

Ye(KT) € Ye,Vke Z

while it is not guaranteed thgt(t) € Y; if the timet is not multiple of the sampling
periodT. In other word, the output may exceed the prescribed boueatigden two
consecutive sampling times. Obviously, the maximum cairgss violation ofy.(t) is
strictly related to the choice of the sampling periadn § 4.3.1 a bound on maximum
violation is found and, in turn, considerations on the cha€T are presented.

4.2.3 Problem formulation for the flexible joint system

Consider the system obtained by discretizing the rotanjlflexoint system intro-
duced in 84.1. The problem to be solved is the following one.

Problem 7 (Minimum time control problem for the flexible join t) Consider the discrete-
time system (4.16) and intervalg & [u_, ul] of admissible values for the input volt-

age v, and ¥ = [y;, y¢] of admissible values for the output angle-¥; + 6,, where

y; and y represent maximum undershoot and overshoot specificatiamg the in-

put sequence®k) that minimizes the time required for the rest-to-rest tiios of

the output ¥(k) from the initial angle0 to the desired final anglery while satisfying

the input and output constraints

u*(k) € Ug, y* (K) € Y, ¥k > 0.
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4.3 Problem resolution

In this section a general method is proposed for the solatidhe rest-to-rest control
problem for scalar systems with bounded input and outpubémext section it will
be applied to the linearized flexible-joint system.

The following theorem proposes a feasibility condition the existence of a
solution of the constrained rest to rest transition problemich is equivalent to the
non-emptiness of sty defined in Definition 4.

Theorem 1 SetXks is not empty if

Yt
{0, AL

with the convention thag; = 0if H (s) has a pole inl.

}C(ug,ud) and {0,ys} C (Yo,Y), (4.24)

Proof.. see Appendix 4.5.
The following proposition allows to convert the time-opéihproblem into a LP-
problem.

Proposition 4 The setk; of all rest-to-rest constrained transitions is not emptrifi
only if there exist k € N and a vectomu € R* for which the following LP problem is
feasible:

Ve ‘L <Hu< yg 1y (4.25)
Uc - 1kf Su< U(J:r ’ 1kf (4.26)
— u
H@ -

whereH e Rk <k — (hy ;) is defined by fy := h(i — j) andH e R™ & +" — (i, j)
byhi.j = h(i + ki — j)

Proof (Necessity) Assume that there exists a veattor which equations (4.25)—
(4.27) are satisfied. Define the input sequence

0ifk<0
u(k) = { u(k)if0 < k< ki (4.28)

y .
o if k> ke
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which satisfies Properties (4.19) and (4.20) of DefinitiolTHe output is given by
y(k) = iz ou(k—1i)h(i), whereh(k) is the impulse response of the discrete system.
Settingy € R = (y1,¥2,...,¥k )" :¥i = y(i) andy € R": i = y(ks +i), itis

and, by virtue of (4.25)y(k) satisfies Property (4.22) of Definition ¥k < k¢. Finally
y(K) =ys, Yk > ki because of Lemma 1 (see Appendix 4.5).

(Sufficiency) Assume that for a givdn, the setks is not empty, therefore it contains
at least a paifu(k),y(k)). If u andy are defined as above, due to (4.20) and (4.22) it
follows that

Ug - L, <u<ug -1
Yo L <Y<Yl s

moreover, being(k) = 3;"gh(k—i)u(i),

1
~<|‘~<
| I
I
| —— |
I
Il—
o
| I
|
1
A<
=
=7 g
H
>S5
| I

therefore equations (4.25)—(4.27) are satisfied.

By virtue of Proposition 1, the minimum-timg and an associated optimal feed-
forward inputu* (k), k= 0,1,...k; — 1 can be determined by means of a sequence of
LP feasibility tests, defined by (4.25)-(4.27)), througl imple bisection algorithm
reported below. In this algorithraPP(s H(z),ks,u) denotes a linear programming
procedure that solves problem (4.25)-(4.27): if the pnable feasible it returns a
Boolean true value along with a solution
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Algorithm 1: Compute the minimum-time feedforward control with inpata
output constraints for discrete-time systems

input : H(z) ands

output: ki andu*(k), k=0,1,... ki —1

begin
Ki «— 1,

| — O;
while ~ LPP(s,H(z),ks,u) do
| — kf;
L ks «—— 2k
h «—— Ks;
while h—1 > 1do
ke e— |2
if ~LPP(s k¢,u) then
| | — kf;

else
B h «— k¢

i—h
u*(k) «—u
end

Note that parameter set= {U¢, Y, Yt} (see Definition 4) contains the input and
output constraints and the desired final output value.

4.3.1 Choice of the sampling period

The choice of sampling periodl is critical for the proposed algorithm, since larger
values ofT allow a faster computation but less accurate results. Themmus time
input signaluc(t) is obtained, from the optimal discrete-time sequeancg), through

a zero-order hold, that is the signal is kept constant betveee sampling time and
the next one:

Uc(t) = u*(k) , wherek = {maxi|iT <t}.

Let y.(t) be the system output aryd(k) the corresponding sampled signal. The
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proposed approach guarantees tfiék) satisfies the prescribed constraints, that is
Ye(KT) € Ye,Vk € Z .

It is worth noting that there is not any certainty tha(t) € Y for t kT, since the op-
timization algorithm only checks the constraints at thelang times. The following
proposition shows that the maximum excursion of the cootiisutime signab(t)
from the prescribed constraints is bounded by a term that o8 as the sampling
time T approaches to 0.

Proposition 5 Consider the continuous-time scalar system

X = Ax+bu
y=Cx,

where A is a nonsingular matrix and let ¥ [y;, y{| be two nonempty intervals.
If u(t) is constant inkT, (k+ 1)T|, Vk € Z, and ¥kT) € Y., Vt = KT, then for any
integer l€ Z, | > 2 the following inequality is satisfied

| Ti . .
max{y(t) -y, Ye —¥(0)} < (HCII(eIAIT —1-|AIT) —_Z;—!(IICHIIAH' - HCA'II>

-(max|x(KT)|| + HBHIIAH’lrngXIIU(kT)H) :
(4.29)

Proof. see Appendix 4.6.

Remark 3 Proposition 5 gives a set of estimates for the maximum ocgtmatraints
violation maxcr{y(t) — y&, Yz —y(t)}. The estimates depend on the integer param-
eter | and become more accurate as | increases and the sampdeTt decreases.
Choosing = 2, for instance, the following bound is obtained
A AT T 2_IcA?
max(y(t) —ye, Yo YO} < (ICIE™ =1 [|AIT) = - (ICIHIAI"~ ICAT)
(max||x(KT)|[ + B[ Al max||u(kT)[) .
(4.30)
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Note that the proposed approach guarantees the discretyatein reaches the
desired equilibrium at the final samplg, but this does not necessarily imply that
also the underlying continuous-time system reaches thiéilggun. The following
proposition shows that this requirement is fulfilled if atriesion on sampling time
T is imposed.

Proposition 6 Let be given a continuous-time syst&mwith transfer function

a4t ag

)

where n>m, T > 0, to € R. Consider an input-output pafu(t), y(t)) € B such that

Yi
= — >
U(t) H(O)v vt _t07
y(to+KT) =ys, fork=0,...,n—1, (4.31)

and for which the distinct rootsp ..., p of the characteristic polynomial"st
an_1S" 1+ ...+ ap satisfy

pi—pr;«ékz?nj,Vi,r:l,...,I,VkeZ—{O}, (4.32)
then the following condition is satisfied
y(t) =ys, t>1to.
Proof. see Appendix 4.7.

Remark 4 Condition (4.32) is satisfied if

21

T<m&ﬁﬂE§W:LMJ, (4.33)

that is the sampling time is less thzir divided by the largest imaginary part among
the system poles.

In conclusions the sampling time must be chosen sufficiently small such that
condition (4.33) is satisfied and bound (4.29) is sufficieathall.
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4.4 Simulation and experimental results

In this section the control method proposed in §4.3 is agptie¢he case of the flexible
joint model derived in 84.1.

Simulation are executed on a P4 3.0Ghz computer within Mattagramming
environment. The freely available library GPLK (GNU Linearogramming Kit)
[59] is used as linear programming solver and interfacet Wiatlab through [60].
Experimental results are obtained by interfacing the flexiint device with Matlab
through the Quanser Q4 PCI data acquisition board.

Electrical data Gears parameters Viscous frictions

Rm km Nm kg kl ng ng qu
26 7.6710%° 06914 5 0.9 14.9910°% 11.42103

Inertias

N J120 J72 Jo4 Jra Jioad

0.38610°% 0.44010°% 5.27410® 0.19510° 2.1010° 11.0310°3

Table 4.1: Flexible joint parameters

By substituting the flexible joint parameters defined in €all in state-space
model (4.15), the following numerical representation fa plant is obtained

0 0 1 0 0
A |0 O 0 Lol ] O
0 3799 -5665 2956 93.74
0 —5129 5665 —3.99 9374
C::[l 10 o], d:=0. (4.34)

Two different cases have been considered. In the first otpyubconstraints have
been imposed only on the end-effector angle. According edfléxible joint model
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in 84.1, this imply to set a limit on the sum of the rotation kengf the body9;, plus
the displacemen®, induced by the joint elasticity, i.et = 81 + 6,. In the second
case, additional constraints on the joint displacen@2nbave been added. In fact,
limiting the angle induced by the joint flexibility betweeetarm and the rotating
body, allows keep bounded the torsion moment on the joietfjtsvhich in turn,
implies reducing the reflected joint solicitation torque.

4.4.1 Control without constraints on6,

Arest-to-rest transition from= 0 toy =y = 11/4 is considered. The flexible joint is
driven with an amplifier whose maximum bipolar voltage is&da+5V. Therefore,
the input constraint i§u(t)||, <5, so thall. = [-5,+5|. A strong requirement has
been set on the output function: a maximum df% overshoot and undershoot is
allowed ony, so thatY, = [-7.8539-10~* /4 4 7.8539 10~4]. First of all note that
condition (4.24) of Theorem 1 is satisfied. In fact, sinceftbrible joint discretized
transfer function has two poles in= 1, condition (4.24) reduces to

Ne

) Ye -

{0} €U,

This mean that sekg is nonempty.

Condition (4.33) must be satisfied in order to ensure thatctirinuous-time
system reaches the equilibrium with the same transient ¢iftiee discretized one.
This implies thafT < 0.57s. In all the simulation examples, the sampling time has
been chosen equal b = 0.001s. Simulation results, obtained with the algorithm
described in 84.3, are shown in Figs. 4.4 and 4.5.

Fig. 4.4 highlights the bang-bang control input which makgsossible to ob-
tain a rest-to-rest transition time gjf= 0.305s. Fig. 4.5 plots a comparison between
the ideal simulated output and the real behavior of the flexiint. The real out-
put shows a small overshoot and undershoot: this is due tertal mismatching
between the real plant and the flexible joint model deviseghia..

The maximum error on the output constraints for the contilstime system,
obtained with (4.29) for a sampling tinie = 0.001s, is given by maxg{y(t) —
yd, Yo —Yy(t)} <0.00113rad.
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Vin (V)

-1 -0.5 0 0.5 1 1.5 2
Time (s)

Figure 4.4: Optimal input signal devised with the proposgpraach.

The herein proposed approach has been compared with tisenped in [61] and
[62], where a time-optimal control is found by means of dymaimversion based on
the so called “transition polynomials” (see [61]). For btgwe recall here only the
general expression of this type of interpolating polyndaihat allows an arbitrarily
smooth transition between two constant output values {gncise 0 andi/4):

0 if t<O.
SO e
Yt =14 G ZE(ZOi!(kf(i)!(lgkfiJrl)T|t2k7|+1 if 0<t<r,
/4 if t>1

wherey is the desired output functiork is the relative order of the plant transfer
function andr is the minimum transition time. In this case the plant tranffinction,
from (4.34), is equal to:

H(g) — 96975+ 1.247. 10t
~ 4606453 + 571552 + 753%

thus the relative order is= 3.

Results obtained by applying that planning method are showsigs. 4.6 and
4.7. Comparing Fig. 4.6 and Fig. 4.4, it is clearly visiblattithe approach based
on “transition polynomials” allows to generate smoothgincontrol. However, the
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0.8}

0.7} i
0.6 i
05} i
04} g

y (rad)

03} i
0.2} i
0.1} i

-1 -0.5 0 0.5 1 1.5 2
Time (s)

Figure 4.5: Expected system output y (dashed line) and medglant output (solid
line)

output function presents a slightly oscillatory behaviarising an increase of the real
transition time with respect to the simulated one, which egsal tot; = 0.360 s.
Hence, the two methods are both suitable for the constraioetlol of the considered
flexible joint. However, when the application requires capianeuvers, the proposed
bang-bang control allows to perform the required outputsitéon in a smaller time.

4.4.2 Control with constraints on6,

The minimum-time control law used in the previous simulasiaand experiments
does not take care of the solicitation torque induced to dirg py the deflection
angle 8,: the only constraint that has been imposed is related to nideefector

position, i.e. the sum d; + 6,.

On a real flexible-joint robot it can be interesting to deasime-optimal transition
control also constraining the maximum admissible dispteart between the link
position and the joint position, thus reducing the mechearsolicitation on the joint
itself.

Thus, under the same constraints used in previous sectiimjtaon 6, angle has
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S = N W h~ W
T
1

Vin (V)

-1 -0.5 0 0.5 1 1.5 2
Time (s)

Figure 4.6: Optimal transition polynomial input signal

0.8
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0.5F

04}
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03F

021

0.1+

-1 -0.5 0 0.5 1 1.5 2
Time (s)

Figure 4.7: Expected system output y (dashed line) and medglant output (solid
line)
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-1 -0.5 0 0.5 1 1.5 2
Time (s)

Figure 4.8: The time-optimal control with angle limit 8a

been added such th&s € [-511/180,511/18(0.

Simulated and experimental results are reported in Figgsadd 4.9. In particular
in Fig. 4.10 is reported the time-waveform of the relativeptticement between the
arm and the rotating body. As it is shown, tBg angle is constantly saturated to
the imposed constraint value, and this is the reason why pkiemal control is no
longer a bang-bang function. Clearly the optimal transitione increases: in this
caset; = 0.59s.

4.4.3 Computational complexity

In this section, some considerations are given for what @mmthe computational
complexity of the time-optimal algorithm. In particulafile 4.2 shows the compu-
tational time required by the proposed approach to devisdithe-optimal control

sequence. Symbd6 has been used to represent the overall rest-to-rest immsit
while T indicates, as always, the sample time required by the dizati®on phase. As
it can be seen, performances strongly depend on the usedirsguinpe: by reducing

T, which means sampling the continuous-time system with ghenifrequency, the
dimension of the resulting LP problem increases, thus ngushn increment of the
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0.8
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0.5¢
0.41
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Figure 4.9: Expected system output y (dashed line) and medglant output (solid
line)

total computational time. Considering the computatiomahplexity, Karmarkar has
shown in [63] that a linear programming problem can be sobyetheans of an algo-
rithm with running time proportional ta3°, wheren is the number of inequalities.
In our case this would means that each feasibility test woedgiire a time propor-
tional ton°, wherens is the total number of samples. The complexity of the bisec-
tion search, with respect to the minimum number of samptegivien byO(logns),
therefore the total complexity of the proposed algorithngiien by O(lognsn®).
In our tests the dual simplex method has been used. It is welivk (see [64]) that
the simplex method complexity is theoretically expondntidh respect tan, due to
the existence of special worst cases, but, in practice,ahetexity is almost linear
with respect tan. This would mean that the “practical” complexity of the pospd
algorithm isO(logngns). In any case, it is important to keep the number of samples
(which is inversely proportional to the sampling timgas small as possible.
Generally the time required by the algorithm to obtain thino@l control has an
order of magnitude of a few seconds and can be further imgrid\tee algorithm is
directly coded in C/C++. Since the algorithm performanaespredictable, once the
sampling time is set, the proposed approach can be used at-éme context.
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Figure 4.108, angle
4.5 Proof of Theorem 1
The following lemma will be used in the proof.
Lemma 1 Consider system (4.17) and be the paitk),y(k)) € By. If

y(i+N)=ys fori=0,...,n—1
u(i+N)= 2= fori>0,

then
y(i) = yr.¥i > N. (4.35)

Proof of the lemm&onsider the input-output p&iuy(k),y2(k)) = (u(k) - %,y(k) — yf) .
Sinceuy(k) = 0,Vk > N, therefore, fok > N, y»(k) satisfies the following difference
equation

any2(k+n) = —an_1y(K+n—1) —ay_2y2(K+Nn—2) —--- —agy2(K)
Y2(N)=y2(N+1)=---=y»(N+n-1)=0,

which has solutiory»(k) = 0, Yk > N. Consequently, (4.35) follow§]
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AB (rad) T(s) Computation time (s) Transition tintg(s)
1.10°3 7.943.1¢° 3.05-101
/4 1-10°2 1.023-10° 3.10-10°1
5.10°2 6.854-10°1 4.00-10°1
1.10°3 9.275-1¢° 3.88-1071
/2 1-102 6.882-10°1 3.90-10°1
5.10°2 8.906-10°1 5.00-101

Table 4.2: Algorithm Perfomances

Proof of the theorenDefine a continuous functiok{t) which has the following
properties:

I(t)=0if t<O
I(t):wfl) if t>1
0<I(t) < 25 vtel0,1]

Imposeuy (k) = I(%) and letUy (z) be the corresponding-transform. Moreover,
beYn(2) = Un(2)H (2) andyn (k) = 27 Yn(2)})-
First of all it is proved that

lim[IH (L) iy (k) — (K)o = O (4.36)

N—-+o0

Indeed,
H(1) Un(2) = (2) =H(1) Un(2) —H(2) Un(2) = (H(1) —H(2)) Un(2) -

BeingH (1) — H(2)|,=1 = 0, functionH (1) — H(z) has a zero irz = 1. Hence,
H(1) —H(z) = (z— 1)H'(2), whereH’(z) has the same poles &b(z). Therefore
(H(1) —H(2))Un(2) = H'(2)(z— 1)Un(2) and

Jm D) k) =W (Rl < i [127HH @2 (o (k1) = uK) o =0,
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in fact
Jim o (k1) — u(k)l =0

because functioh(t) is uniformly continuous and z~1{H’(2)}||; is finite because
H’(z) is stable.

Equation (4.36) shows that & approaches infinity, the outpyt, (k) becomes
equal to inputuy (k) multiplied by the static gaitd (1) and, fork > N, the differ-
enceyn (k) — yt tends to zero. In the following a correcting teyg (k) is intro-
duced such thayn (k) + yn(K) = yi, Yk > N. Define the error vectoey € R" =

(en0,8N 1, Enn-1)" @S
eni =YN(N+i)—ys, i=0,....,n—1,
letM € R™N = (m ;) be such that
mj=h(j—i), i=1...,n,andj=1,...,N,

whereh(k) = 2~1{H(2)} denotes the system impulse responseuget (U o,Un 1, --,Unn-1)"
as
LTN = —M+Q\| )
whereM* = MY{(M'M )~ is the pseudo-inverse ®.
Define the correcting input vectog as

LTN(N—Fk):UN’kifO <k< n—1,
0 otherwise

and letyy (k) be the corresponding output. Consider as inpu(k) + uy(k), the cor-
responding output igy (K) + yn(k). The following conditions are satisfied:

yn(K) +Yn(K) = i, VK>N, (4.37)
N“ﬂlw lun(K)|lo = O, (4.38)
N“jloo IWw(K)|w = O. (4.39)

If fact (4.37) follows from the fact that
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andyn (k) + yn(K) =y, Vk > N as a consequence of Lemma 1. Conditions (4.38)
and (4.39) follows from the following inequalities

i Un 0 < + [ 0 —
G < M fim e =0,
[ YA w0 < + i 0 —
i[5 < 1002, fim e =0,

being limy_.« [|€n[/» = O by (4.36).
Therefore

. — Yi _
|\|||an max{uN (k) +un(k) — A’ —un(K) — un(K),
yn (K) +Yn(K) =y, —yn(K) —yn(k) } =0
and, because of (4.24), for sufficiently large the following property holds
max{u (k) + tn (K) — ug , —un (k) — i (K) — ug

_ N (4.40)
yn(K) +Yn(K) — Y, —yn(K) —yn(K) —y; } <O,

therefore all properties (4.19)-(4.22) are verified. Intf@ke19) is verified by con-
struction, (4.21) comes from (4.37) afl20), (4.22) follow from (4.40).0

4.6 Proof of Proposition 5
For anyk € Z andt € [0, 1], set
e(1) =y(kKT+1T) — [ty((k+1)T) + (1 —1)y(kT)] , (4.41)

and note thae(0) = e(1) = 0. Sincey(KT+1T) = Ce*Tx(kT)+C J3T e*"Bu(kT)dh
equation (4.41) becomes

T T
e(1) = C(eMT — 1 — (AT —1))x(KT)+C </O eAhdh—T/O eAhdh> Bu(kT),
(4.42)
It is known that

/OXeAhdh: (@ —AL
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therefore (4.42) can be rewritten as follows
e(1) = C(MT — 1 —1(e*T — 1)) (X(KT) + A~1Bu(kT)) . (4.43)

Definez(t) = C(eATT —1 —1(eAT —1)). Itis easily verifed thaz(0) = 0 and32(0) = 0.
Consequently(t) can be expanded as follows

CiATT'

i.e. the two first element of the series are missing. Equétiotl) can be manipulated

(4.44)

leading to
Z \CAT HT' Z \CA TIHHICII <& ATI
. 4 i!
=i . (4.45)
=C(eAIT—1—A|T) - _;(IICHIIAH' ICA' H)
i=

Finally, substituting (4.45) in (4.43) and using the fadttmaxcr{y(t) — y¢, ¥z —
y(t)} < maxcg |e(t)|) we obtain the thesi€]

4.7 Proof of Proposition 6

Definey=y—ys andu=u— ( o then the following differential equation is satisfied
vt > tor
D"(t) + aq_1D"y(t) +... +agy(t) = 0. (4.46)
Indicate withp;, i = 1,...,| the multiplicities respectively associated to any root
pi, then, vt > tg the solution of (4.46) can be expressed in the following form
yo= % 3 G
i=1..1j=0,..pi— (4 47)
()t —to—T)-(t—to—(j - )T)epi(t—to—jT)
TI(j—1)! ’

whereC; j are suitable constants. Due to (4.47), (4.31) can be wrsciollows

0=VC, (4.48)
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whereV =[V1,Va,...,V|] and

1 0 0 ... O
e’p 1 0 ... 0
Vi = ;
ePi-UTA (o —1)ePi-LTR wz(ﬁ—l)e(pi—lﬁn 1
T
C = (C1707 C1717 R Cl7p1—17 C2707 R C|7p| —1)

V is thegeneralized Vandermonde matéird, as stated in [658et(V) = [1<i< < (ePT —
ePiT)PiPi Because of (4.32)etV # 0, so that from (4.48) it follows tha€ = 0, and
thereforey(t) = 0, vt > to. O






CHAPTER D

Minimum-time feedforward control based on convexity

What is now proved was once only imagined.
William Blake

n the previous chapter the optimal control problem has beled by discretiz-

ing the linear or linearized dynamic of the considered systeonverting the

original constrained problem into a set of feasibility $est an equivalent linear
programming formulation. The proposed approach allowsmplfy the search of
the optimal minimum-time solution for a constrained restdst transition but, as
previously remarked, it has two major drawbacks: it is destgonly to deal with
linear systems and, due to the discretization step, theehaithe sampling time is
critical in order to fulfill given constraints between twagaling instant.

For these reasons efforts have been spent in order to defimmputational al-
gorithm able to solve the minimum-time problem with a puredential method.
Moreover the original goal has been to consider a wider @asynamic systems,
also nonlinear, satisfying some necessary conditionshfoatgorithm convergence.
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In the general case the solution of minimum time problemstwaformulated
using the Pontryagin’s Maximum Principle (PMP) for whichger some hypothesis,
every optimal solution can be generated with the knowledgevo parameters: the
transition timet*, and the final costatey, which is the normal vector to the boundary
of the set reachable at timé at the final state. Generally the analytical solution of
PMP is quite hard to find unless the system is of low order, timariant and linear.

Such problems may be solved numerically, and a number ofdiptienal bang-
bang control algorithms have been proposed in the litegauch as the shooting
method or other iterative procedures. The shooting metbptrhe optimal control
was originally proposed in [66] for a class of simple systdorswhich an initial
good guess of the costate values were possible. In genegadhboting method has
shown an high convergence sensitivity to the costate lirguess. Other proposed
approaches make use of geometrical considerations. licydart for the scope of
this chapter, one can recall those introduced in [67] an{l [B& geometric ideas at
the basis of the approach described in the following arelaimi

The proposed algorithm, based on PMP, is in fact able to fiadight values of
t* andq that guarantee to reach the final statethrough a geometric method that
makes use of the convexity of the system reachable sets.|gdwtlam is based on a
differential equation that determines a functiqi) which is a vector that converges
to the final statex;. For everyA, x(A) belongs to the boundary of the set reachable
from the initial statexg in a time that grows witl. The error function, defined as the
norm of the distance between the statg) and the final state; is monotonically
decreasing. A proof of convergence is presented.

The chapter is organized as follows. In 85.1 the control lgrolds proposed and
the solution is obtained in the subsequent section. In 8mBesonsiderations about
numerical issues are presented; then in 85.4 some simmsdadi@ discussed.

Notation: For any two vectors,w € R", <v, w >= S, vw; denotes the scalar
product. Giverv € R", V = ﬁ denotes the unit vector having the same direction as
v. Given a setd C R", 04 denotes the boundary of and 1(A4) denotes its internal
part. Given a differential manifolé/ € R", T,(“M') denotes the tangent spacefaf

atx. The setS' ¢ R™! = {x € R™1: ||x| = 1} is the unit ball ofR™+1,
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5.1 Preliminaries

Consider a time independent non linear system of the foligfdrm

x= f(x,u) (5.1)
X(0) =xo '

wherex € R", u(t) € R™ It is assumed that the input functiaiit) satisfies the fol-
lowing condition

u(t) e U,vt >0,

whereU C R™ is an arbitrary convex set. The notatigq(t) denotes the solution
of (5.1) for a given input functiomi(t).

Thetime-optimal problentonsists in minimizing the time needed for a transition
from an initial statexg to a final statexs

min{t*[x,(t") =x¢} ,u(t) €U, ¥t > 0.

5.1.1 Characterization of the optimal solution

One of the most important tools for optimal control is the fPgagin’s Maximum
Principle (PMP), which gives a necessary condition for roptity. In the case of
minimum-time problem it can be formulated as follows.

Theorem 2 (PMP) If u*(t) is an admissible control for system (5.1) that is a solution
of the time-optimal problem with final timg, then there exists a Lipschitz function

q(t) € R", q(t) # 0, vt € [0,t”]
such that, almost everywhere {iht*],

<q, f(x,u*) >=maxey <q, f(x,u) >,
qT (t) = _QT%Jx:xu*(t) )
<q, f(x,u*)>=1.

(5.2)
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FunctionH (x,q,u) =< g, f(x,u) > is called Hamiltonian and its value is constantly
1 along the time-optimal solution.
In the case of linear systems Equation (5.1) takes the form

X = Ax+bu
X(0) =Xo

and the costate equation reduces as follows

g=-A'qg
<q, f(x,u") >=maxey <q, Bu> .

The reachable sey,(t) represents the states that can be reached atttistarting
from the initial conditionxg.

Definition 5 The reachable set of system (5.1) is
Ay (1) = {xu(B)[ue L*([0,t],U)} .

Remark 5 If state ¥ € R" is reached in minimum timé& from the initial state ¥,
then it must be
Xf € 04y, (%),

that is % belongs to the boundary of the set accessible frgin time t*.

5.1.2 Characterization of convexity

A subset( of R" is strictly convex when the internal part of the segmentij@rany
couple of points of” belongs to its interior.

Definition 6 A setC € R" is strictly convexif Yx,y € C, x+A(y—Xx) € I(C), VA €
(0,1).

A vectorw is said to be normal to a convex subgeft a pointx, wherex € C, if
w does not make an acute angle with any line segmeqgtwith x as endpoint, i.e
< X—y, w>>0 for everyy € C. The set of all vectorsy normal toC in x is called
the normal cone t@ atXx, as reported in Definition 2, chapter 5 of [69].
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Definition 7 The normal cone at & C where( is a convex subset &", is given by

Ne(x) ={peR" < p,x—y>>0,¥ye C}. (5.3)

Proposition 7 If Cis a closed, bounded and strictly convex subs@athen for any
q € S* 1 there exist one and only ones®" such that gz N ().

Proof.Givenq € S'~! define the family of hyperplanes normalgand parameterized
byA eR
H(N) =Ag+{X <x, q>=0}.

Because of the boundednessthe following maximum is well-defined
A =max{A > 0|#(\) N C # 0}

moreoverH (A) N C contains only one vectog € R". In fact if there existedy, x; €
H(N)N C, with x; # X, then, beingH (A) N C € dC a convex set,

X1+A(Xe—x1) € HAA)NC VA € [0, 1]
subsetC cannot be strictly convex because the segment connegtiagdx, belongs
to its boundary. By the Proposition 7, the mapping
T(a) =x, if g€ Nc(x) (5.4)

is well defined. Mapping (q) associates to every possible normal vecioy € S™*
the vectorx which lies on the boundary of manifold such thatq belongs to the
normal cone of” atx.

Proposition 8 For any g, g € S"! mapping T satisfies the following property

<T(d) —T(d), d2— G >=>0. (5.5)
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Proof. By the definition ofT, g2 € N-(T(02)), therefore it satisfies

<Oz, T(q2) —T(q1) >>0, (5.6)

which comes from Definition 7, setting= T (g2) andy = T(q; ). In the same way it
is
<, T(q2) - T(aq) ><0, (5.7)
by subtracting (5.7) to (5.6) the thesis follows.
The shape operators a linear operator that is associated to the derivativhef t
normal vector to a differential manifold with respect to thasition on the surface
and is defined as follows.

Definition 8 Consider a n- 1 dimensional differentiable manifol@d/, embedded in
R", represented by the image of the differentiable functiond- R"1 — R", i.e.

M=M(Q),

let A(x) € S1 be the normal unit vector té/ at x € M, then theshape operator
associated toM is the mappings : TuiM — TyM, such that
di(x+Av)

an , (5.8)

Sx(Vv) = —

where ve TyM.

The shape operator is related to the curvature of traj@gaefined on a manifold as
follows: lety(t) € M be a smooth arc-length parametrized curve suchyi@at= x
andy=v, then

<Y, AX) >=<V, Sv> .

The shape operator defines a quadratic ferm Syv > that represents the component
of the curvature of(t) normal to the manifold\/ .

Proposition 9 Given a convex subsetC R", let xc d¢C and ge S** be such that
x=T(q), where T is the mapping defined in (5.4), andjgt/) be the shape operator
defined on x. Then if T is differentiable in q itis

dT(a)

_¢1
dq SX (V)
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Proof. By (5.4)

T(q) =X, if g€ Ng(x).
Assumeg = q(x), if T is differentiable ing then

dTdg_,
dgdx

From the definition of shape operator in (5.8), it followsttha

dT

_szl

dq

Proposition 10 Given a closed, bounded and strictly convex manifgld R", if
mapping T defined in (5.4) is differentiable then

dT(q)

dqg
dT(a)
d

q

Proof. Givenq € S, andV € T,S"!
S™1 such that

that is is positive semi-definite.

Iimi—>°°qi
lIMi_oV
, _ G—q it
whereV;, = Tl then it is
<V, Iy o jim <y, T@ ZT@
dq i—e0 g —al

Since (5.5) holds, the thesis follows.

>0

and letg; be a succession of values in

= q
= V7
-9 T(@&)-T(9)
=< ,
lag—al” [la—al

A consequence of this result is the following property (s&@)( chapter 7 of

[70]).

Proposition 11 If C is a closed, bounded and strictly convex subsébfthen on
its boundary the shape operator is positive semi-definige, i

<V, &(X)V >>0,VxedC,W e T,"0C.

(5.9)
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5.1.3 Problem formulation

Definition 9 Given an initial state x€ R", thefinal costate mapping: : R" x R —
R", is given by
yi (g, t) = x(t),

where Xt) is the solution at time t of the augmented system (5.1) + (i) initial
state X0) = xp and final costate condition(t) = Q.
Theinitial costate mapping; : R" x R — R", is given by

Yi(Qo,t) = X(t),

where Xt) is the solution at time t of the augmented system (5.1) + (Gif) initial
condition X0) = Xp and initial costate condition @) = do.

The only difference between functiogsandy; lies on the fact that the boundary
condition on the costate is given on the initial and, redpelst the final state. The
relations between the two functions is given by followingmusition.

Proposition 12 Let@(t) € R™" be the solution of system

. \T
o= — 21X Ixexe (1) @,
®0) =1,

where ¢ is given by (5.2), thenitis

Y (®(0), T) =Vi(Go, T).

The general problem considered in this chapter is the fatigw

Problem 8 (Shooting problem)aiven a nonlinear system of the form (5.1) and a
final state x, find a initial costate gand a time T such that

X1 =VYi(do, T)
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5.2 Main result

The basic geometric idea of the proposed algorithm is degict Fig. 5.1. Given a
final costateq; and a final time, consider the final state = ys(g;,t). Remark that
01 represents the normal vectonatto the set of states reachable in timé@he error

vector is defined as= x; — x; and it is decomposed as follows

en=<e gi>;er=e—<e g >dy,

whereey is the error component parallel tp ander is parallel to the tangent space
to the boundary of the reachable ggf(t) atx.
If . is varied by the small quanti®g; it follows that the final state varies by

6Xl = Siléqb

which satisfies< dx;, 8q; >> 0, because of the convexity of the reachable set.
Therefore ifdq; is proportional to the tangential error, id); = Ker, the tangen-
tial error is reduced. On the other hand the normal error earetduced by increasing
the final tima by a term proportional to the normal error itself, explaitiie fact that
the state derivativé (x, u*) is always directed outwards with respect to the reachable
set, as a consequence of the third equation of (5.2).
A key technical fact is that the error vector will always bside a cone with axis
g and semi-aperture arcsifil — B2, wherep is a tuning parameter close to 1.
The following theorem is the main contribution of this pajed present and
algorithm for solving Problem 8.

Theorem 3 Letf be a time greater than the optimal time aind let K,B, a, M, X be
positive real constants that satisfy the properties

0 i g, f(xu* 5.10
<x<xer[1q:)r(1f){<q, (x,u*) >}, (5.10)
B—x"W1I-P2>M>0 (5.11)
2 _ n2
1-P <a<i (5.12)

B B(1—-BM) "
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f(xlv M*) A

Figure 5.1: A schematic representation of the control tegen

Consider system (5.2), with the associated final state mapgi= ys(q,t). and
define the error function age,t) = x; — S(01,t). Consider the following differential
system

X —Ka=pd= g

A <t Q> (5.13)
9 —K(e-<e 61> 0a),
then if the reachable set8,,(t) are convex for all t> 0 and if
< &0), .(0) >>B, (5.14)
then
< é(t), Gu(t) >>p,vt>0. (5.15)
moreover it is
AIim e(A)=0. (5.16)
Proof. Equation (5.15) is equivalent to
<e > —Plef=0,vt>0,
deriving the above expression, it follows that
d<e G >—ple A - A
> Bl =<ée G >+<efG>-PB<eé>, (5.17)

dA
where the dot denotes the derivatives with respest to
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Rewrite the first of the three terms in (5.17) taking into acdd5.13)
<& G>=-Ka<e G >|e|=—-Ka<@ G > e
The second term in (5.17) is given by
<e G >=<e K(e— <e G >G)>=K|e/>(1- <& G >?),

and the third one by

Ka< f,é><e q>
<f,f]1>
+K<é- <& G>G, Sl(e-<e G >a)>)

—B<g é>=p(

lefl+

whereS1 is the inverse shape operator computedpwhich lies on the boundary
of the reachable sety, (t1). Being the border of the reachable set convex, m&isx
negative definite by Proposition 11. Moreover

<f,e>=<@, f><G,e>+<f—<@G, f>G,e>

and equation (5.17) can be bounded as follows

d< €, Ql > _BHeH
dA

evaluating this expression fer & ¢; >= 3 it follows that

>Kle?(1- <& §>2—a<@é G >+Pa< f,é><é q>)

d<e G > —ple|

o > K|lel*(1—B* —ap+Ba(B—x 'v1-p?).
Applying (5.11) and (5.12) it follows that

d<e G > —Ble|
dA
therefore (5.15) must hold.
Consider now the equation for the normal ertoe, §; >, it is % <e g >=<
é 41> + < e, G1 >, which corresponds to the first two terms of (5.17) and ioio8
that

> K|[el|*(1— % —aB+BaM) >0 if [ >0,

d X X X
o <8t >=-—Ka<e G > [el|+K[e[*[1- <e G >7 <

<—|lef*<& G >K[(1-P*) —ap)] < —|e®*<e G >Kc< — <e G >3Ke.
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where property (5.12) had been applied and0 is a positive constant. Therefore by
the comparison lemma
lim <e g >=0,

A—00

and, being, by (5.15),|le]| < || < e, 61 > ||1/1+B?, (5.16) follows.

Remark 6 Theorem 3 represents a procedure that can be used for theutatign
of the time-optimal control for systems whose reachabkeaet convex. The convex-
ity is crucial because allows the inverse of the shape operd{ to be semidefinite
positive. The property of convexity is enjoyed by variousl kif systems, for exam-
ple linear time-varying systems, some bilinear systemg fnlinear systems with
small inputs [72].

Remark 7 Conditions (5.11), (5.12) can always be satisfied for sonhgevaf 3, o
and K provided that the value g¢f in (5.10) is found. Doing this may be difficult,
because it requires an a priori estimate of a reachable sataining the final state,
Xs. In practice, if the algorithm does not converge, the tegroan be reduced (making
B closer tol) until convergence is achieved.

5.3 Numerical implementation

The approach devised in §85.2 has been numerically implerdeat reported in Al-
gorithms 2 and 3.

The input parameters are the followinl§:€ R is a gain constantys is the
final statege represent the error tolerance amdp are the parameters appearing in
Theorem 3. Moreovep(q,t) € R™" is the solution of

{ o) = - @)
@®0) =I

where f is the system functionx € R" is the state-vector and* is found with
(5.2). The algorithm is a direct application of Theorem 3.phrticular Equation
(5.13) is solved using the initial staté0) = 0 andqgp(0) = g1(0) = x4, such that
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< &0), g1(0) >=1, and (5.14) holds. The algorithm ends when the norm of the er

ror between the final statg and the current statg(qgp,t*) is less than the tolerance
Ee.

Algorithm 2 : Compute the minimum-time feedforward control
input : X¢, €, a, B, K
output: g; andt*
begin
to=0;
— X1—Xp .
% = Pyl
repeat
(%a %) — G(q07t);dA
Go «— Go+®(go, t) 1 G

dA
te—t+ 3

until e> &g ;
g1 <— ©(Qo,t)0o;
t* =t;

u*(t) «— sgna.B);
end

Remark 8 The Euler algorithm is used here only for simplicity, but &md of dif-
ferential equation solver can be adopted, i.e. Runge-Kuitthod.

Algorithm 3: G(q,t): Compute the derivative of time t and the initial costate g
input :ty, qo ande
output: & and 4%
begin

X1 < Y1(do,t);

e— |xt —xalf;

Compute(do,t);

dt <e Gi>

o T Ka <f, 0> ”e
dg

o K(e—<e G >qu);

end
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5.4 Simulation and experimental results

Three different types of systems have been used to evalmteotrectness and the
convergence of the proposed approach. Simulations havegeztormed in Matlab,
while experimental results have been obtained using th&dfirreal-time extension.

First of all the algorithm has been tested with a dummy probla double order
integrator system. Then simulations and experimentaltsisave been carried on the
linearized model of a flexible joint device, and finally thgaithm has been tested
on a non-linear system, without any modification.

5.4.1 Double order integrator

01 0
0 1] -9 .

The reachable sefp(1) = vi(S', 1) is shown in Fig. 5.2: the set is convex, with
two non-differentiable points respectivelysn= [-2.5, 5" andx = [2.5,5].

It is given byx = Ax+ Bu, where

Figure 5.2: The reachable settat= 1 s for the double order integrator

The control law allowing to reach the final state= [1, 0] has been computed
with the input constrainfju(t)||,, < 1. Simulation results are shown in Fig. 5.3. As

o
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Timels]

(a) Bang-bang input control

(b) System output

Figure 5.3: Simulation of a double order integrator subjednput constraint for a
transition to final state = [1 0]T.
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expected the input control is a standard bang-bang sigmghd first half of the
optimal transition the system accelerates at the maximterarad then it decelerates,
always at the maximum admissible rate.

5.4.2 Flexible joint system

To further validate the effectiveness of the proposed &lgor a mechanical simula-
tor of a flexible joint has been used. It's mathematical migldéscribed in Chapter 4
and published in [73]. The system state space modeH#\Xx+ Bu, where

0 0 1 0 0
0 0 0 1 0
A — B =
0 3799 -56.65 2956 9374
0 -5129 5665 —-3.99 —93.74

Time-optimal feedforward contrali*(t) has been found by means of the al-
gorithm described in §5.3, to get a rest-to-rest transifiom xo = [0,0,0,0]" to
x¢ = [11/4,0,0,0]" with the input constrainfu(t)||,, < 5 Volts.

The optimal transition is performed ifi = 0.31 s and the related control sig-
nal is reported in Fig. 5.4. Fig. 5.4(b) shows the comparisetween the simulated
plant output and the real one. Since the proposed approachdsm tested on the
linearized model of the flexible joint, the behavior diffece is mainly due to friction
and other neglected system non-linearities. As validatibthe correctness of the
devised solution, this result has been successfully comapaith the one obtained by
the algorithm described in [73].

5.4.3 Massonacart

Consider now the mechanical system made of a rivhen a linear cart subject to an
external forceu. The state space vector is given oy [x;, Xo|, wherex; is the cart
position andx; is its linear velocity. The control problem is to devise ahded input
uin order to move the cart in minimum-time from an initial &&§ = [X10, X20] to &
desired final stat&; = [X11, X21].
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Figure 5.4: Experimental results of the control technigppliad to the linearized
model of a rotary flexible joint subject to input constraiat & rest-to-rest transition

to final statex; = [11/4,0,0,0]".
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Figure 5.5: A schematic representation of the mass on ayster.
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-01 -0.05 0 0.05 0.1 0.15

(b) The reachable setgt=1s

Figure 5.6: Static friction and reachable set for a mass @rta c
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In order to remark the ability of the proposed algorithm taldgso with non-
linear systems, static and dynamic frictions are taken awimount in the modeling
phase. Since the augmented system (5.2) has to be diffgvkntthe static frictiorg

defined as
s —Ks otherwise

has been approximated, see Fig. 5.6(a), with the function
2
Ts= Ksarctar(nxz)ﬁ,

which depends on the parametgrthe higher is its value, the more accurate is
the similarity with the friction heaviside function.
The system model is then equal to:

X1 = X
%o = —Kux, —arctarfox)2Ke U

whereKy is the dynamic friction constanks is the static friction and! is the mass.
Fig. 5.6(b) shows the reachable s&{(1) = y;(S',1) which is, as expected, con-

vex. The Time-optimal feedforward controf(t) has been obtained with the algo-

rithm described in §5.3, to get a rest-to-rest transitiamfry = [0, O] to xs = [1, 0],

satisfying the input constraint given fjy(t)||,, < 1. Simulation parameters akg =

0.7,Ky=1,a = 100 andM = 1. The optimal transition is performed th= 4.1279

s and the related control and output signals are reportei)ir(3-7).
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Bang-bang input control
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Figure 5.7: Results of the control technique applied to thelinear model of a mass
on a cart for a rest-to-rest transition to final state= [1,0]".



Conclusion and Future Work

he goal of this thesis was to develop new efficient strateigiethe optimal

planning of mechatronic systems and, more in details, tplgemalyze the

problem of optimal path generation and online path trackinghis section,
we discuss to what extent these research goals have beeng@isteed.

In Chapter 1, an effective solution to the optimal path plagmproblem for mo-
bile robots has been described. To this purpose, it has bssthaipower planning
primitive, calledn3-splines, which allows to generate paths with a third ord=s-g
metric continuity. The shape of thg-splines can be modeled to fulfill a given opti-
mality criterion by acting on a vectay of freely tunable parameters. The selection of
n represents a key point for the generation of optimal pathsoag choice can easily
introduce undesired vehicle solicitations. In particpifenas been shown how, by act-
ing onn, it is possible to generate curves with minimum curvatumédéve with the
purpose of minimizing the vehicle lateral jerk. In order toia the execution of huge
online optimizations, an heuristic method has been prapfusehe optimal selection
of n. When interpolating conditions are compatible with ciecuhrcs and clothoids,
the devised expressions generate curves which at the betatersuch primitives.
In the case of generic interpolating conditions, the maximawrvature derivative is
very close to the actual achievable minimum. To show thengtimpact of the lat-
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eral solicitations on the motion performances, a test casedon a unicycle-like
mobile robot has been simulated also considering the dradbrces generated at the
interface between the wheels and the ground. Results havenghat later skidding
phenomena can be drastically reduced when the proposetindas used.

In Chapters 2 and 3, the problem of the trajectory scalingcéorstrained path
tracking of robotic manipulators has been studied. In paldr, it has pointed out,
and proved by simulations, that it is essential to desigrirobechemes able to on-
line shape any given desired input trajectory in order tfilfubbot kinematic and
dynamic constraints, thus allowing a good path trackings Taquirement is not
only important when trajectories are planned by an opetatbit is still fundamen-
tal when offline optimization algorithms are used in the plag phase to design
minimum-time trajectories.

More in details, in Chapter 2 the problem originally propbbg Dahl and Nielsen
has been improved by also considering explicit constraintthe manipulator joint
velocities and torques. To this purpose, a newly devisettatis-time filter has been
used to online scale any nominal trajectory, which couldnieasible. The proposed
control scheme requires minor adaptations of standardpukors controllers, since
the desired result is obtained by simply inserting the newerflbetween a reference
signal and the controller itself. Simulation results destmate that path tracking per-
formances neatly improves and, simultaneously, also tleeig reference signal is
followed at best, compatibly with the manipulator consttsi

The same strategy, in Chapter 3, has been improved to actmumianipulator
high-order dynamic constraints, namely torque and torquatives. This analysis,
using the same filter structure devised in Chapter 2, hasreghjto use an efficient
algorithm for the evaluation of the high order manipulatgnamics and, for the
controller parametrization, an algorithm for the efficientine evaluation of the robot
mass matrix derivative has been devised.

Simulation results have proved that, in both cases, a gabdia&king is achieved
even when reference trajectories are not physically fé&asitne algorithms have also
been tested in presence of model uncertainties and alsoifny o different ma-
nipulator standard torque controllers.

Finally, in the last part of the thesis, corresponding tofitéis 4 and 5, the design
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of algorithms for the constrained minimum-time control oftblinear and nonlinear
systems has been studied. Differently from the previoushaus, where the path-
velocity paradigm has been used, in these chapters the dima pfoposed algorithms
is to generate the optimal trajectory controls as a wholargthe system model.

Initially, the problem has been solved by using a discrétmamethod which
converts the minimum-time problem for linear systems ingehof feasibility tests
solvable by standard linear programming methods. The itbestapproach has been
successfully applied to the control of a flexible joint devi€ven if its model is
clearly nonlinear, very good results have been achievedsinguhe proposed feed-
forward method by linearizing the system around its equiililp point. A comparison
with an inversion-based feedforward control has confirnedeffectiveness of the
new approach. Moreover, it applies to any stable lineartptanthat it is foreseeable
an extension of the technique to the more challenging cdssstems with unstable
zero-dynamics like, for example, flexible links [74]. Netverless, general nonlinear
systems cannot be managed and, moreover, the samplingdsumas a critical role
in the fulfillments of the system output constraints. Foistheeasons, a new way to
obtain the optimal solution has been investigated.

In Chapter 5 an algorithm able to devise the minimum-timerobfor nonlinear
systems has been described. The approach proposes a deomvatiant in time-
optimal control for an input constrained transition basedh® convexity of the sys-
tem reachable sets. Therefore, it is useful for those syst@hose reachable sets
are convex, such as linear systems, weakly nonlinear sgsd@cha class of bilinear
systems. The described method is based on the solution ohésted differential
eguations: the inner one computing the initial state mappimd the outer one com-
puting the movement in the state parametrization in ordeedace both the normal
and the tangential error vector. A proof of convergence legnlevised and exper-
imental results have been presented for three differemtgl&Among them also the
system model of the flexible joint has been used as a benchi@add results have
been obtained from the proposed method, whose main nogalgpresented by the
complete differential approach.
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Recommendations for future works

The answers to the research problems treated by this thangisléd to more ques-
tions, and hence several directions for future researgbatticular, for what concerns
the path generation for mobile or industrial robots, it cldog interesting improve the
mathematical definition of the3-splines by adding a third dimension, thus allowing
to plan 3D paths while maintaining all the good features ef ¢arrent primitives.
Moreover, the proposed approach has been tested uniqusignifation; hence, it
could be interesting having a test bed with a real robot ireotd directly measure
the path tracking improvements due to the reduction of tteedhvehicle skidding. In
the same way it could be also possible to measure the tyre sinesses and therefore
experimentally validate the model devised in [75].

For what concern the online strategies for the path tracgimplem, an interest-
ing enhancement of the current methods is certainly to eoatthe research on the
three stage integrator filter in order to simultaneously déth velocities, torque and
torque derivative constraints. Moreover, we have so fanddfihe robot trajectory
in the joint space. Even if from a theoretical point of viewstalways possible to
convert a task space path into a joint space one, from a pahgint on view this
poses some difficulties inside the considered framewonleqtires to evaluate the
high order derivative of the manipulator jacobian matriieh is still an open re-
search issue. Another improvement, as for the previous ase test the proposed
control scheme with a newly bought six degree of freedomstréal robot.

Finally, for what concern the time optimal control algonthan interesting im-
provement is to speed up the convergence by solving someriuaiaroblems high-
lighted during the conducted simulations.
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