

<u>Figura 1.</u>

Dente molare permanente, composto da : smalto, dentina e polpa dentale.

<u>Figura 2.</u>

Vari tipi di lesioni cariose.

<u>Figura 3.</u>

- A. restauro con l'amalgama.
- B. restauro con resina composita.

Figura 4.

Cronologia dello sviluppo del composito e la tecnica di polimerizzazione . (Stephen C. Bayne 2005)

<u>Figura 5.</u>

Siringhe di materiali compositi disponibili in commercio.

<u>Figura 6.</u>

Formule strutturali di monomeri (DMAEMA, HPMA, HEMA, TEGDMA e Bis-GMA).

<u>Figura 7.</u>

Lo spettro elettromagnetico e la distribuzione di energia tra le varie lunghezze d'onda.

Lo spettro può essere suddiviso in diverse regioni: onde radio, raggi X, raggi gamma, radiazione ultravioletta, ecc.

<u>Figura 8 .</u>

L'agente legante: metacrilossi-propil-trimetossi-silano.

<u>Figura 9.</u>

Legame tra riempitivo, matrice e rete silanica.

<u>Figura 10.</u>

Lampade per fotopolimerizzazione.

<u>Figura 11.</u>

Le caratteristiche spettrali di una lampada alogena (a) e una al plasma (b).

<u>Figura 12.</u>

Profondità di polimerizzazione in rapporto all'intensità luminosa.

La luce di polimerizzazione penetra nel composito in modo efficace fino a 2 mm .

<u>Figura 13.</u>

Micro infiltrazione tra il restauro e il tessuto dentale a causa della contrazione da polimerizzazione.

Material	Name	Molec.	Use
		Weight	
Bis Glycidyl Ether of Bis Phenol A	BGE-BPA	340.45	Precursor
Bis Glycidyl Methacrylate	Bis-GMA	512.65	Major oligomer
Bis Phenol A	BPA	228.31	Precursor
Camphoroquinone	CAMP	166.24	Photo-absorber
Ethoxylated Bis Phenol A Dimethacrylate	E-BPA	452.59	Precursor
Glycidyl Methacrylate	GMA	142.17	Precursor
1,6-Hexane diol Dimethacrylate	HDDM	286.36	Monomer
N,N Dimethylaminoethyl Methacrylate	DMAEM	352.10	Accelerator
Tri Ethylene Glycol Dimethacrylate	TEGDMA	286.36	Diluent
Urethane Dimethacrylate	UDMA	498.69	Major oligomer
N.N Dihydroxyethyl-p-toluidine	DHEpT	420.59	Accelerator

Tabella 1.

Componenti resinosi di compositi.

Sample	Manufacturer	Polymerization
Exi 119 [®] , compomer	3M (USA)	photopolymerization
Dyract®, compomer	Dentsply (Germany)	photopolymerization
Venus®, composite	Kulzer,(Germany)	photopolymerization
<i>Trauband</i> ®, bond	3M (USA)	photopolymerization
Herculite®, composite	Kerr (Italy)	photopolymerization
Enamel®, composite	Enamel (Italy)	photopolymerization
Bis-GMA, base	3M (USA)	based resin

<u>Tabella 2.</u>

I materiali utilizzati .

® = Trade Mark

<u>Figura 14.</u>

Preparazione dei campioni a forma di disco (6 mm di diametro, 1 mm di spessore e 15 mg in peso).

<u>Figura 15.</u>

Un campione durante l'irraggiamento con lampada alogena di 3M (450 mW/cm²).

<u>Figura 16.</u>

Dischi di composito immersi in acqua per indurre l'assorbimento di acqua e il conseguente rilascio.

(Invecchiamento per una settimana).

<u>Figura 17.</u>

Microscopio Confocale a Fluorescenza (MCF).

<u>Figura 18.</u>

Apparecchio a scansione di fascio di luce laser per misurare la contrazione da polimerizzazione.

Figura 19.

La visione diretta dei pozzetti dopo la macroreazione di cell-line L929 fibroblasti esposti al composito *Venus*.

L'effetto citotossico è evidente ed è inversamente proporzionale al tempo di irraggiamento con luce visibile a 1, 5, 10, 20 e 40 secondi.

<u>Figura 20.</u>

Cellule di fibroblasti di topo L-929 ottenute da linee cellulari stabilizzate. Si noti la perfetta morfologia del corpo cellulare e la proliferazione.

1. Exi 119 compomero

2. Transbond

3. Venus composito

4. Hurculite composito

Figura 21.

Le reazioni di aree di lisi delle cellule dopo il contatto con i materiali preparati.

A. no reazione, cellule vive.

B. Reazione di lisi (reazione cellulare).

Microscopio ottico Pentacom (110-120x).

B

A

3. Bis-GMA monomero

<u>Figura 22.</u>

Modificazioni morfologiche al microscopio.

<u>Figura 23.</u>

Porosità nel compomero Dyract, dopo la rimozione meccanica della superficie (~20 μ m). Si notano le bolle vuote d'acqua.

<u>Figura 24.</u>

Porosità nel composito Venus .

Frecce gialle indicano porosità piena d'aria.

Frecce blu indicano porosità con acqua.

<u>Figura 25.</u>

Microfissure (microcracks) nel compomero Exi 119 dopo una settimana di immersione in acqua.

<u>Figura 26.</u>

Citotossicità misurata in VLC composito Venus quando ha mostrato porosità piena d'acqua.

- A 10 sec esposizione, 5 campioni;
- **B** 40 sec esposizione, 5 campioni;
- K controllo.

■A ■B ■K

<u>Figura 27.</u>

Citotossicità misurata in VLC compomero Dyract quando ha mostrato porosità piena d'aria.

- A 10 sec esposizione, 5 campioni;
- **B** 40 sec esposizione, 5 campioni;
- K controllo.

Materials	Contraction 1, %length ± SD, 40s irradiation	Contraction 2, %length ± SD, 10 s irradiation	Contr. 1- Contr. 2,
Venus	1.01 ± 0.13	0.79 ± 0.12	0.22
Enamel	1.10 ± 0.09	0.90 ± 0.08	0.19
Herculite	0.98 ± 0.21	0.79 ± 0.20	0.22
Dyract	1.20 ± 0.12	0.97 ± 0.09	0.23
Exi119	1.19 ± 0.18	0.95 ± 0.09	0.23
Transbond LR	1.31 ± 0.20	1.10 ± 0.22	0.21

<u>Tabella 3.</u>

La misurazione della variazione dimensionale lineare dei campioni, i numeri sono medie di 5 campioni \pm SD (Deviazione Standard) e eseguita 24 ore dopo irraggiamento.

<u>Figura 28.</u>

Temperatura in funzione del tempo di irraggiamento di un composito Venus (15 mg in peso, 1 mm di spessore) irraggiato con luce alogena (450 mW/cm^2).