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Summary

In questo lavoro sono stati sviluppati modelli teorici nell’ambito dell’approccio spin

Hamiltoniana al fine di studiare le dinamiche di spin coerente e incoerente in varie

classi di molecole magnetiche. Questi sistemi sono formati da un core di ioni magneti-

ci, tipicamente ioni di metalli di transizione, circondato da ligandi organici. I ligandi

organici impediscono un’interazione effettiva tra i cores, mentre all’interno di un core

i diversi spin sono fortemente accoppiati tra loro da interazioni di superscambio. In

particolare, nella classe dei cosiddetti nanomagneti molecolari l’interazione tra gli ioni

è cos̀ı forte, che a bassa temperatura ciascuna molecola si comporta come una parti-

cella magnetica a spin totale fissato in presenza di un potenziale effettivo. In questi

sistemi, la dinamica coerente, caratterizzata da scale di tempo brevi, è coinvolta in

vari fenomeni quantistici di interesse fondamentale (come il tunneling della magnetiz-

zazione). La dinamica incoerente, che implica scale di tempo più lunghe, ricopre un

ruolo fondamentale dal momento che rappresenta l’ostacolo principale per le potenziali

applicazioni tecnologiche delle molecole magnetiche come memorie ad alta densità o

come bit quantistici. Nel presente lavoro, la dinamica coerente è stata studiata diret-

tamente mediante l’analisi e l’interpretazione di misure di scattering anelastico di neu-

troni, e, indirettamente, attraverso l’analisi di misure di bulk (come magnetizzazione

e calore specifico ad alti campi). In questo modo è stato inoltre possibile studiare

le interazioni microscopiche alla base delle dinamiche di spin descritte all’interno di

Hamiltoniane di spin microscopiche. I relativi parametri sono stati determinati dal

confronto tra teoria ed esperimenti quali scattering anelastico di neutroni, suscettività

magnetica, calore specifico e magnetizzazione. In particolare, sono stati determinati i

parametri microscopici (dello scambio, dei campi cristallini, dell’interazione dipolare)

dell’Hamiltoniana microscopica della molecola denominata Cr8Zn. Trattandosi di un

anello aperto il Cr8Zn rappresenta un sistema modello per lo studio delle conseguenze

della rottura della simmetria ad anello. Conseguenze di tale rottura si trovano non

solo nel diagramma dei livelli energetici, ma anche nella struttura degli autostati e si

riflettono in particolare nelle misure di scattering anelastico di neutroni in funzione

del momento trasferito. Inoltre, mediante l’analisi di misure macroscopiche sono state

determinate le Hamiltoniane microscopiche di anelli antiferromagnetici come il Cr7Ni,

il Cr8Cd e il Cr8Ni. Quest’ultimo in particolare, essendo un sistema magneticamente



2 Summary

frustrato, ha permesso di investigare a fondo le conseguenze della frustrazione magnet-

ica nella dinamica quantistica. Per quanto riguarda la dinamica di rilassamento, vari

tipi di molecole magnetiche sono stati presi in considerazione: i ben noti nanomagneti

Mn12 e Fe8, la molecola icosidodecaedrica Fe30, il sistema antiferromagnetico V12 e il

noto anello antiferromagnetico Cr7Ni. Nel caso dei nanomagneti si è mostrato come

raffreddando il campione e applicando un campo magnetico sufficientemente grande si

può velocizzare la dinamica di rilassamento della magnetizzazione, facendo cos̀ı venire

meno la nota legge di Arrhenius. Per il Fe30, il V12 e il Cr7Ni l’analisi della dinamica

di rilassamento è supportata da misure NMR. Si è provato come nei primi due casi

le misure NMR restituiscono direttamente informazioni sulla dinamica di rilassamento

della magnetizzazione. Per l’anello eterometallico Cr7Ni, invece, misure di NMR di

1/T1 restituiscono informazioni sulla dinamica di osservabili molecolari non diretta-

mente riconducibili alla magnetizzazione. In tutti e tre i casi l’analisi delle dinamiche

di spin conduce a un ottimo accordo tra le misure NMR e le relative predizioni teoriche.

Il modello sviluppato per lo studio delle dinamiche di spin, dunque, coglie gli aspetti

fondamentali alla base dei fenomeni di rilassamento.



Chapter 1

Introduction

Molecular Magnetism is an interdisciplinary area in Condensed Matter Research which

brings together Chemists and Physicists to the major challenge of investigating the

magnetic properties of matter. Magnetic molecules have been intensively studied so

far because of their potential technological applications and for the possibility they

offer to investigate fundamental properties of matter at the nanoscopic scale. These

systems contain a core of magnetic ions (typically 3d transition metal ions) surrounded

by organic ligands. Molecules are embedded in a crystal structure with the organic lig-

ands preventing interaction among the cores. On the other hand, the magnetic ions

within a core are usually strongly coupled through superexchange interactions. Since

the interaction between clusters is negligible, effects related to a single molecule can be

probed by means of bulk techniques. An intensively studied class of magnetic molecules

is constituted by the so called single molecule magnets (shortly, SMMs) or molecular

nanomagnets [1, 2, 3]. These systems are characterized by a slow relaxation of magne-

tization at low T and give rise to magnetic hysteresis. This is one condition for storing

information in a molecule. Therefore, since a SMM represents an isolated magnetic

entity, it might be considered as the smallest practical unit for magnetic memories.

This would increadibly increase the amount of information storable with respect to

current devices. There are other classes of molecules (antiferromagnetic rings, grids,

mesoscopic molecules . . . ) for which the envisaged technological applications cover the

fields of quantum computation and magnetorefrigeration. In order to have a deeper un-

derstanding of fundamental features and a major control on technological aspects, the

spin dynamics constitutes the key point. Both from a theoretical and an experimental

point of view, the spin dynamics is characterized by two distinct regimes: coherent

and incoherent. At short times it is the coherent spin dynamics which gives rise to

3



4 1. Introduction

quantum effects in magnetic molecules, such as the quantum tunneling of magnetiza-

tion. Furthermore, the ability to control this dynamics turns out to be crucial to carry

out logic gates for quantum computing. On the other hand, the incoherent part of

spin dynamics involves longer times, tipically of the order of 10−6 s ore more at low

temperature. The understanding of relaxation mechanisms is fundamental since relax-

ation and more generally decoherence constitute a major obstacle to the technological

applications of magnetic molecules in the fields of high density memory storage and

quantum computation.

This thesis is organized as follows. In the next sections, a brief introduction on molecu-

lar nanomagnets will be given, with particular attention to the relaxation mechanisms

which characterize the dynamics of magnetization in the prototype of these systems,

the so called Mn12 [1]. Chapter 2 will focus on the spin Hamiltonian approach here

followed to theoretically describe magnetic molecules. The typical microscopic inter-

actions in magnetic molecules will be taken into account, and a general expression of

the molecular spin Hamiltonian will be given in terms of tensor operators [4, 5, 6, 2].

Chapter 3 will be devoted to the experimental techniques most of the theoretical re-

sults refer to, i.e. inelastic neutron scattering (INS) and nuclear magnetic resonance

(NMR). Chapters 4, 5, 6 will summarize the main results of this thesis on the static

and dynamic magnetic properties of these materials [7, 8, 9, 10, 11]. The coherent part

of spin dynamics has been directly investigated through analysis of inelastic neutron

scattering (INS) data, and indirectly through analysis of macroscopic measurements

such as magnetization and specific heat. In Chapter 4, the microscopic spin hamilto-

nian of Cr8Zn compound has been determined by comparing the experimental cross

sections with theoretical predictions. The nature of elementary excitations in open spin

segments has been thus clarified and is apparent in experimental data. Macroscopic

magnetization measurements at high fields carried out for the parent Cr8Cd compound

corroborate the results obtained from neutron spectroscopy. This proves that the spin

hamiltonian approach gives a good description of incoherent spin dynamics even for

spin multiplets not accessible to the INS technique. The same holds for the case of

Cr7Ni, a cluster which has been shown to be a good candidate for quantum computing.

In Chapter 5 magnetization measurements on Cr7Ni confirm the picture derived in ex-

isting interpretation of INS data. Besides, in this chapter macroscopic measurements

on another heterometallic ring named Cr8Ni have been analyzed. This compound is

magnetically frustrated and has offered the unique opportunity of investigating the

effects of frustration on quantum dynamics. As regards relaxation phenomena, several
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molecules have been taken into account in Chapter 6: the Mn12 and Fe8 nanomagnets,

the Fe30 icosidodecaedron, the V12 antiferromagnetic cluster containing ions with spin

1/2 and the already mentioned Cr7Ni heterometallic ring. The incoherent dynamics on

nanomagnets has been intensively studied in recent years, but non completely under-

stood. Fe30 represents a mesoscopic molecule of great fundamental interest. V12 shows

an anomalous behaviour in NMR data. At last, the study of the relaxation dynamics in

Cr7Ni is crucial for the envisaged application of the molecule as a qubit. In all studied

clusters, there is a good agreement between available data and calculations and thus

the theory captures the main features of relaxation phenomena.

Finally, in Chapter 7 general conclusions will be given with particular consideration on

future perspectives and developments of the here presented research activity.

1.1 Magnetic Molecules

A magnetic molecule is a system containing a finite number of magnetic centers (transi-

tion metal ions, rare-earth ions, organic radicals) which are ferro- or antiferro- magneti-

cally coupled through superexchange pathways [2,6]. Shells of organic ligands sorround

each cluster preventing effective inter-cluster interactions. Thus, each molecule can be

considered as an isolated magnetic entity. A nanomagnet can be defined as a system

that shows slow relaxation of the magnetization of purely molecular origin. Under the

so called blocking temperature [2, 12] a magnetic cluster behaves as a nanomagnet giv-

ing rise to magnetic hysteresis of purely molecular origin. This is the reason for which

these systems have also been named single molecule magnets. A SMM has dimensions

small enough to show fascinating quantum effects such as the quantum tunneling of

magnetization (or QTM). This phenomenon is the magnetic analogue of the tunneling

of an α particle in a radioactive nucleus. The magnetic moment is aligned along the

easy-axis, and changes its orientation by tunneling through the energy barrier. In re-

cent years there has been an enormous progress in chemical techniques to synthetize

new compounds with all envisaged properties: number of interacting spins, type of

metallic centers, amount and kind of anisotropy, and so on.

Beyond information storage, magnetic molecules have been thought as building blocks

for quantum computing. For instance, a system with an S = 1/2 ground state can

be regarded as a qubit, or quantum bit, the quantum analogue of the classic bit, and

used to implement algorithms of quantum computation. One of the best candidates

for this purpose has been proved to be the heterometallic ring known as Cr7Ni [13],
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High-frequency EPR spectra of a molecular nanomagnet:
Understanding quantum tunneling of the magnetization

Anne Laure Barra
Laboratoire des Champs Magnetiques Intenses, CNRS, Boite Postale 166, Grenoble Cedex 9, France

Dante Gatteschi and Roberta Sessoli
Department of Chemistry, University of Florence, Via Maragliano 75, 0144 Firenze, Italy

~Received 31 January 1997!

EPR spectra have been recorded in very high fields up to 25 T, and at high frequency up to 525 GHz, on a
polycrystalline sample of@Mn12O12~CH3COO!16~H2O!4#•2CH3COOH•4H2O ~Mn12ac!, a molecular cluster
behaving like a nanomagnet. The simulation of the spectra has provided an accurate determination of the
parameters of the spin HamiltonianH5mBH•g•S1D@Sz

221/3S(S11)#1B4
0O4

01B4
4O4

4, where O4
0535Sz

4

230S(S11)Sz
2125Sz

226S(S11)13S2(S11)2 and O4
451/2(S1

4 1S2
4 ): D520.46(2)cm21,

B4
0522.2(2)31025 cm21, andB4

4564(1)31025 cm21. The presence of the fourth-order term in the total
spin justifies the irregularities in the spacing of the jumps, recently observed in the hysteresis loop of Mn12ac
and attributed to acceleration of the relaxation of the magnetization due to quantum tunneling between degen-
erateM states of the groundS510 multiplet of the cluster. The term in (S1

4 1S2
4 ) is responsible for the

transverse magnetic anisotropy and plays a crucial role in the mechanism of quantum tunneling. The high-
frequency-EPR spectra have shown its presence and quantified it.@S0163-1829~97!08237-4#

I. INTRODUCTION

Quantum tunneling of the magnetization~QTM! is one of
the candidates to test the possibility of observing quantum
effects in macroscopic~or perhaps more appropriately meso-
scopic! objects.1,2 The interest for this kind of problem is
certainly a theoretical one, aimed at understanding the limits
of validity of quantum mechanics, but in principle also a
practical one. In fact small magnetic particles are used to
store information and it would be desirable to have a knowl-
edge of the lower limit of the size which can be achieved.
The requisite for storing information is that the magnetiza-
tion is either up or down, but if tunneling occurs, the stored
information is lost. Therefore the limit size for observing
QTM should be known.3

Many attempts were made to produce even smaller
magnets,4,5 but most efforts were plagued by the impossibil-
ity of obtaining ensembles of identical nanoparticles which
could be kept well separated from each other in order to
minimize interactions which would hamper the observation
of QTM. Techniques of molecular chemistry on the other
hand suggested a different approach, using large molecular
clusters as single nanomagnets.6 Surprisingly enough it was
found that nanomagnetic properties can be observed in rela-
tively small clusters, comprising only eight metal ions.7

The main advantage that molecular clusters have com-
pared to other systems, like small magnetic particles either of
metals or of oxides, or even ferritin, is that they are abso-
lutely monodisperse, their structure is perfectly known from
x-ray techniques, they can be well separated one from the
other by dissolving them in appropriate solvents and polymer
films.8,9

The most accurately investigated system so far is
@Mn12O12~CH3COO!16~H2O!4#•2CH3COOH•4H2O, Mn12ac,
which has the structure shown in Fig. 1. It comprises an

external ring of eight manganese~III ! ions (S52) and an
internal tetrahedron of four manganese~IV ! ions (S53/2).
The cluster has a crystal imposedS4 symmetry.10 It has a
groundS510 state, which can be loosely described setting
all the manganese~III ! spins up (S5832516) and all the
manganese~IV ! spins down (S52433/2526). The
ground multiplet is split by the tetragonal symmetry to leave
theM5610 components lying lowest.11 At low temperature
these are the only populated levels.

Mn12ac is a molecular cluster for which slow relaxation
of the magnetization was detected at low temperature,11

similar to the blocking temperature of superparamagnets. In
fact, the relaxation time was found to follow a thermally
activated behavior down to 2 K, according to the equation
t5t0exp(A/kT), with a pre-exponential factort052.1
31027 s, and an energy barrierA/k561 K.12 In this range
of temperature the cluster behaves like a single-molecule

FIG. 1. Sketch of the structure of the magnetic core of the clus-
ter. The arrows show the spin structure of the groundS510 state.

PHYSICAL REVIEW B 1 OCTOBER 1997-IVOLUME 56, NUMBER 13

560163-1829/97/56~13!/8192~7!/$10.00 8192 © 1997 The American Physical Society

Figure 1: Structure of the Mn12 cluster. The outer ring is formed by eight ions Mn(III)
with four unpaired electrons and spin 2, whilst the inner four ions Mn(IV) have three
unpaired electrons and thus spin 3/2. Arrows indicate the configuration of the ground
state of the molecule, a multiplet S = 10.

which shows an effective S = 1/2 ground state well separated by excited levels. It

has also been demonstrated how magnetic molecules can be used as magnetocaloric

refrigerants at low temperature. It is the case of another Chromium-based magnetic

ring named Cr7Cd [14]. Both Cr7Ni and Cr7Cd were derived by the well known Cr8

compound, a fact which demonstrates the possibility of tuning the properties of mag-

netic molecules by a chemical substitution of magnetic centers. We will see in the next

chapters how this possibility will turn out to be extremely useful in order to evaluate

the consequences of the various types of breaking of ring symmetry.

1.2 The archetipal nanomagnet: Mn12

In the early nineties, it was discovered that the dodecanuclear compound [Mn12O12(CH

3COO)16(H2O)4], shortly Mn12 [15], shows a slow relaxation behaviour of magnetization

at low temperature. It has been theoretically and experimentally demonstrated that

the time characterizing the thermally activated relaxation process in the interval 2-15

K follows an Arrhenius law:

τ = τ0exp(
∆

kBT
) (1)
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left and right well, giving rise to a so-called tunnel splitting,DT

(Figure 1b). One of the two coupled levels is of lower energy
than the degenerate levels, while the other is of higher energy,
exactly like a pair of bonding±antibonding levels in elemen-
tary MO theory. The possibility of tunneling is related to the
relative energies of the tunnel splitting and of the barrier. The
smaller the ratio between the two the smaller the possibility of
observing tunneling.

So far we have considered the system of the particle in the
two wells as completely separated from the environment. This
is clearly an approximation, because the interaction with the

environment can be minimized, but not
completely eliminated. If the particle is
localized in a metastable state (Fig-
ure 2), it can tunnel out of the metasta-
ble state. No energy is involved if the
particle is isolated from the environ-
ment, whereas coupling to the environ-
ment means that the particle loses
energy with the tunneling (as shown by
the arrows in Figure 2). The interactions
with the environment will tend to local-

ize the particles, because the interactions will make one well
more ™attractive∫ than the other (that is, reduce the energy of
one of the wells). In the case of strong coupling with the
environment, which means that this interaction is much larger
than the tunnel splitting, the particle will stay localized in one
of the two wells, and will not tunnel. For intermediate
coupling the particle can tunnel, but jumping incoherently
from one well to the other. This means that one particle will
tunnel, and localize for some time in the other well, and then
tunnel again, but in an irregular way. The third case is that of
weak coupling when the tunnel splitting is large compared to
the interaction with the environment, and the particle
oscillates coherently between the two minima. The conditions
for observing coherent tunneling are severe. Evidence for
coherent tunneling is the observation of energy absorption at
a frequency corresponding to the tunnel splitting. In the
above experiment of calyx[4]arene a peak was observed in the
proton-spin lattice-relaxation rate at a field corresponding to
the tunneling frequency of 35 MHz.[25]

In the above discussion we did not take into account the
origin of the interaction between the two wavefunctions. It is
apparent that in the description we have made some implicit
assumptions: 1) that an unperturbed Hamiltonian, h0, gives
the initial description with the two equivalent wells, 2) a
perturbation Hamiltonian, h1, is added which couples the
two separate states and removes the degeneration, 3) a
Hamiltonian describing the interaction with the environment,
h2, is needed [Eq. (1)].

h ¼ h0 þh1 þh2 ð1Þ

The actual form of the three relevant Hamiltonians will
depend on the nature of the system taken into consideration.
In this article we will be focussing on magnetic systems,
therefore we will limit the description to such systems.

3. Magnetic Relaxation in Systems with Large Spin

Let us consider a system with a well defined ground spin
state, characterized by a large value of S (for example Mn12ac
with S¼ 10). The unperturbed Hamiltonian includes the
effect of an external magnetic field parallel to the unique axis
of the cluster and of its axial splitting as a result of crystal-field
effects. At this level of approximation only the second-order
crystal-field effects will be included. Therefore, for the
discussion we wish to develop,[26] the h0 Hamiltonian can
be written as Equation (2) where D is a negative constant for
the system of interest and Hz is the magnetic field strength in
the z direction. D is one of the parameters of the so-called
Zero Field Splitting (ZFS) because it removes the degeneracy
of the S multiplet.

h0 ¼ D ½S2
z�SðSþ 1Þ=3� þ g�B Hz Sz ð2Þ

The energies of the spin levels corresponding to h0 are in
fact easy to calculate as given by Equation (3), where �S�
MS� S.

EðMSÞ ¼ D ðM2
S�110=3Þ þ g�B MS Hz ð3Þ

The energy levels can be plotted as shown in Figure 3a.
When no external field is applied all the levels are degenerate
pairs, except MS¼ 0. Since D is negative the MS¼	 S levels
will lie lowest. In Figure 3 the states with positive MS are
plotted in one potential well, and those with negative MS in
the other. This formalism is an extension of that commonly
used for superparamagnets (see below).[27] A system like this
is characterized by magnetic anisotropy along the ™easy axis∫,
which means that the magnetization is preferentially oriented
parallel to the z axis.

Figure 2. Tunneling
from a metastable
state.

Figure 3. Energy levels for a spin state S with easy axis magnetic aniso-
tropy. The þ M levels are localized in the left well and the �M levels
in the right well. a) In zero field the two wells are equally populated;
b) the application of a magnetic field selectively populates the right
well; c) after removing the field the return to equilibrium occurs
through a series of steps.

Single-Molecule Magnets
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Figure 2: Level diagram within the ground multiplet S = 10 of Mn12 as inferred from
Eq. (2). Levels with M > 0 and with M < 0 are localized in the left and in the right
potential hole respectively. (a): At zero magnetic field the two groups of levels are
equally populated. (b): The application of a magnetic field selectively populates the
right hand hole. (c): After the removal of the magnetic field the system returns back
to equilibrium through multi-step Orbach processes.

with τ0=2.1×10−7 and ∆
kB

=61 K [16, 17, 18]. It can be argued that at 2 K it takes

several months for the magnetization to relax back to equilibrium. This behaviour

results from thermally activated multi-step Orbach processes as shown in Fig. 2. At

low temperature, i.e. T < 2 K, measurements of the relaxation time τ shows that the

Arrhenius law is not satisfied and τ tends to a finite value when T → 0. This has

been interpreted as a QTM involving the two lowest levels. This phenomenology can

be well understood by analyzing the interactions which govern the low T behaviour

of the spin dynamics of the Mn12 molecule. In order to give a complete theoretical

description of Mn12 one should explore the complete Hilbert spin space spanned by

the twelve spins: the eight outer Mn(III) ions with spin sa=2, and the four inner

Mn(IV) ions with spin sb=3/2. The computation of the number of spin levels would

give (2sa + 1)8 × (2sb + 1)4 = 108. As a result, an exact spin Hamiltonian approach is

unfeasible even though modern computing machines are exploited. For many purposes,

it is sufficient to describe the spin dynamics of the molecule at low T , by observing that

the antiferromagnetic (AFM) exchange interactions among the eight Mn(III) and the

four Mn(IV) ions lead to a S = 10 ground multiplet. Fig. 1 represents the arragement

of the twelve ions in the ground state of the molecule: the Mn(III) ions have their spins

pointing in the upward direction, while the other Mn(IV) ions point downward [1,19].
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At low T the Mn12 cluster can be well described within the ground S = 10 multiplet

by an unperturbed Hamiltonian which includes the effects of the crystal field up to

second order:

H0 = D[S2
z − S(S + 1)/3] + gµBHzSz, (2)

where the second term represents the coupling with a magnetic field Hz, taken along

the z direction, which is the easy axis of magnetic anisotropy, g ≈ 2 and µB is the Bohr

magneton. The level diagram can be easily obtained from the above hamiltonian, and

the levels

E(MS) = D(M2
S − 110/3) + gµBHzMS (3)

with Hz = 0 are shown in Fig. 2(a). In absence of an applied magnetic field, levels with

MS = ±S constitute the degenerate ground doublet. Besides, levels with MS > 0 and

MS < are supposed to be in the left and in the right side of the double well potential

respectively. Though the above hamiltonian contains only the axial part of 2nd order

crystalline anisotropy, some aspects of the thermally activated relaxation mechanisms

in the temperature range 2-15 K can be well understood. Let us suppose to prepare the

system in a magnetized state [see Fig. 2(b)] by the application of a magnetic field along

the z-axis. If T is low and Hz applied on the z-axis strong enough, only the MS = −10

state is populated. Thus the cluster magnetization reaches the saturation value. At the

removal of the field, the molecule will be out of thermodynamic equilibrium: in fact, at

zero field the two ground MS = ±S states are degenerate and as a consequence should

be equally populated. The system returns back to equilibrium thanks to the coupling

of the spins with other degrees of freedom. At T > 1 K the most important source

which causes relaxation processes is constituted by phonons [20,21]. The spin phonon

interaction has its main origin in a perturbation of the crystal fields induced by lattice

vibrations. The effects of such a perturbation are experienced by each magnetic ion and

can be taken into account in terms of a spin-phonon hamiltonian, whose leading terms

are second order spin operators. Therefore, transitions between |MS > and |MS± 1 >,

|MS ± 2 > are allowed. For the sake of simplicity, at this level only transitions with

selection rule |∆M | = |MS −M ′
S| = 1 will be considered. As a consequence, a spin flip

may occure from, say, MS = −10 to MS = −9, if the molecule absorbs a quantum of

energy corresponding to the energy difference E(MS = −9)−E(MS = −10). In order

to relax back to equilibrium, i.e. a spin-flip between |MS >= −10 and |MS >= 10,

consecutive transitions from adiacent levels have to be performed [see Fig. 2(c)]. This is
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Figure 3: Relaxation time τ of magnetization in the Mn12 cluster as a function of mag-
netic field applied along the easy axis. At given fields τ shows sharp minima and the
system undergoes a faster relaxation mechanism: the quantum tunneling of magnetiza-
tion. Measurements were made at T = 5 K [17].

the phonon-induced mechanism which takes place through multi-step Orbach processes.

Another relaxation mechanism has been found in Mn12 which is a clear manifestation

of the quantum mechanical nature of this spin system and, in general, of SMMs: the so

called quantum tunneling of magnetization (QTM). Fig. 3 shows the relaxation time τ

as a function of magnetic field applied along z, the easy axis of magnetization. It can

be observed that τ increaseas up to H = 1.5 KOe, where it reaches a maximum, then

it decreases again showing minima at H = 4.5 KOe and H = 8.5 KOe. This behaviour

was completely unexpected: in fact, in traditional superparamagnets the relaxation

time diminishes in a monotonic way when H increases since the magnetic anisotropy

barrier progressively reduces. The QTM novel phenomenon can be understood if in

the Hamiltonian (2) further crystal field terms allowed by the tetragonal symmetry of

the cluster 1 are taken into account:

HS=10 =
D

3
O0

2 +B0
4O

0
4 +B4

4O
4
4. (4)

The above hamiltonian contains CF contributions up to fourth order. In particular, the

last term represents a weak transverse anisotropy and removes the degeneracy between

1The here reported microscopic parameters were determined by means of inelastic neutron scat-

tering experiments: D=-0.457 cm−1, B0
4=-2.33×10−5 cm−1, B4

4 = ±3× 10−5 cm−1 [22].
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Figure 4: Hysteresis loop measured on a Mn12 monocrystal at T=2.1 K. At anticrossing
fields the hysteresis shows sharp steps due to the QTM between the couples of quasi-
degenerate levels. In correspondence of each anticrossing the relaxation of magnetization
becomes faster and a steps occurs.

levels MS = ±10, MS = ±6 and MS = ±2 thus allowing the tunneling of magnetization

to manifest. The occurrence of clear minima in τ at particular magnetic fields in Fig.

3 can be explained if the Zeeman term HZeeman = gµBHz is added in Eq. (4). At

given magnetic fields, a couple of levels becomes quasi-degenerate and a so called

anti-crossing takes place. In correspondence with these anticrossing fields the system

is subjected to a faster relaxation since the involved levels allow a thermally assisted

quantum tunneling. This explaines the behaviour shown in Fig. 3. Consequences of the

thermal assisted QTM phenomenon are directly seen in magnetization measurements.

In Fig. 4 an hysteresis loop measured at T =2.1 K on a Mn12 monocrystal is shown.

In correspondence of an anticrossing field a thermally assisted QTM occurs between

the quasi degenerate pair of levels. The magnetization has not to overcome the overall

double-well potential to relax back to equilibrium, indeed tunnels it and the relaxation

process becomes faster. This is the origin of the steps in the hysteresis loop, which it

is worth to rembember is an effect of purely molecular origin.

1.3 Beyond the Mn12 nanomagnet

There are several reasons behind the great efforts researchers devote to the synthesis of

new types of magnetic molecules and to the investigation of their magnetic properties.

Some of these reasons are the potential technological applications envisaged in the fields

of information storage, quantum computation and magnetorefrigeration [2, 16, 23]. In

order to have molecules which are suitable to be used as high-density memories, a high

blocking temperature TB is needed [2,12], at least higher than the helium melting point.
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In fact, the height of the barrier potential stabilizes the sample magnetization against

thermal disorder. Therefore, a large U is required to have a high TB: for this purpose

a molecule with a high spin ground state is needed together with a large Ising-type

anisotropy. The magnetic molecule with the highest energy barrier observed so far is

the Mn6 cluster, with U ≈ 86.4 K. Nonetheless, it is insufficient for technological ap-

plications. In fact, since the τ0 in the prefactor of Eq. (1) is very small, magnetization

blocking only occurs below about 4.5 K [24]. Since in conventional SMMs the energy

barrier seems difficult to be significantly increased, other compounds have been taken

into account. In particular, the new family of lanthanide single molecule magnets has

gained great attention [25,26,27,28,29].

As regards the field of quantum computation, one of the best candidates to be used as

a qubit has been proved to be the Cr7Ni compound [13]. This is a Chromium-based

heterometallic ring, in which magnetic centers are antiferromagnetically coupled [30].

This molecule was obtained from the well-know homometallic ring Cr8 by substitution

of a Cr3+ ion (s=3/2) with a Ni2+ ion (s=1). While in Cr8 the compensation of anti-

ferromagnetic interactions leads to a singlet S = 0 ground state, in Cr7Ni the ground

Kramers doublet S = 1/2 accounts for the presence of a Ni2+ ion. In Ref. [13] it has

been demonstrated that at low T Cr7Ni well behaves as an effective two level system.

In fact, the S-mixing between the ground state doublet |S = 1/2 > and higher levels

|S > 1/2 > (<1%) is low enough that transitions between |S = 1/2 > and |S > 1/2 >

induced by transverse field required in qubit manipulation are negligible.

The last of the above mentioned technological applications of magnetic molecules lies

in the field of magnetorefrigeration [31]. Recent results demonstrate that the magne-

tocaloric effect can be exploited in a Chromium based cluster named Cr7Cd at tem-

peratures T < 2 K [14].
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Chapter 2

Theoretical description of molecular

magnets

In order to give a theoretical description of magnetic clusters we exploit the irreducible

tensor operator (ITO) technique.

2.1 The spin Hamiltonian

A magnetic molecule formed by a number N of magnetic ions can be described in terms

of the following spin Hamiltonian:

H = H0 +HCF +HDIP , (5)

where H0 is the isotropic Heisenbgerg-Dirac interaction, HCF represents the local

crystal fields while HDIP contains both the dipolar intracluster interaction and the

anisotropic exchange. In general, other terms may compare in Eq. (5), such as the

antisymmetric, biquadratic and anisotropic exchange as we will see in the next section.

Here Eq. (5) gathers the usually leading interactions in the spin Hamiltonian of a

magnetic molecule. The three contributions of Eq. (5) can be written as:

H0 =
∑
i>j

Ji,jsi · sj (6)

HCF =
∑
i

∑
k,q

bqk(i)O
q
k(si) (7)

HDIP =
∑
i>j

si ·Dij · sj, (8)

where si is the spin operator of the ion on i-th site, Jij are the isotropic exchange

integrals, and Dij is the second order dipolar tensor, usually evaluated within the

13



14 2. Theoretical description of molecular magnets

point dipole approximation [32]. The second term represents the local crystal fields

(CFs), with Oq
k(si) Stevens operator equivalents for the i-th ion [6, 33, 34], and bqk(i)

CF parameters. Here k = 2, 4 for d electrons and k = 2, 4, 6 for f electrons [6], while

q = −k, . . . , k. The total dimensions of the Hamiltonian matrix is:

D =
N∏
i=1

(2si + 1). (9)

Depending on the values of N and si D can be very large. For instance, D = 24 = 16

for V12, but this value is enormous for Fe30 for which D = 630, of the order of the

Avogadro’s number. In order to represent the interactions of Eq. (5), it is natural the

choice of the product states

|s1m1〉 |s2m2〉 · · · |sNmN〉

as basis functions. Nonetheless, H0 is often the dominant term in Eq. (5). Thus

a better choice of the basis states is constituted by the eigenstates of the total spin

S =
∑

i si. Besides, an appropriate coupling schemes is to be chosen. For a cluster

with N magnetic ions with spins S1, S2, . . . , SN a successive coupling scheme leads to

the following basis vectors:∣∣∣s1s2(S̃2)s3(S̃3)...sN−1(S̃N−1)sNSM
〉

=
∣∣∣(S̃)SM

〉
(10)

where (S̃) represents the complete set of intermediate spin quantum numbers S̃k, with

k = 1, . . . , N − 1. Here the first intermediate spin S̃2 = S12 is given by the coupling of

s1 with s2. Then S̃2 is coupled to s3 to have S̃3 = S123 and so on. For a system with

N ions N − 1 is the number of required intermediate spins to specify each possible

spin state. Different choices can be made as regards the coupling scheme. Anyway,

all coupling schemes are equivalent, since the corresponding representative vectors are

connected to each other by a given unitary transformation. It is wise to remark that

it is much more convenient to choose a coupling scheme which reflects the symmetries

of the molecular system. The eigenstates |v〉 of H will be given by linear combinations

of the basis states
∣∣∣(S̃)SM

〉
:

|v〉 =
∑

(S̃)SM

〈
(S̃)SM

∣∣∣v〉 ∣∣∣(S̃)SM
〉
, (11)

where the coefficients
〈

(S̃)SM
∣∣∣v〉 can be evaluated once the spin-Hamiltonian of the

system has been diagonalized. The irreducible tensor operator (ITO) technique allows
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to exploit the total spin symmetry of the cluster and to simplify both analytical and

numerical calculations [32, 35]. Since each term of Eq. (5) can be rewritten as a

combination of tensor operators T (k), the generalized spin-Hamiltonian of a magnetic

molecule is:

Hc =
∑

k1,k2,...,kN

∑
k̃2,...,k̃N

∑
kq

C(k)
q (k1, k2, k̃2, ..., kN−1, (k̃2), kN)×

× T (k)
q (k1, k2, k̃2, ..., kN−1, (k̃N−1), kN) (12)

where −k ≤ q ≤ k, T
(k)
q (k1, k2, k̃2, ..., kN−1, (k̃N−1), kN) is the q-th component of the

ITO of rank k, which can be decomposed in terms of ITO’s Skiqi (i) ≡ Skiqi defined in the

subspace of each single spin (ki=0,1, . . . , 2si):

T (k)
q (k1, k2, k̃2, ..., kN−1, (k̃N−1), kN) =
{{

...
{
Sk1 ⊗ Sk2}k̃2 ⊗ Sk3}k̃3 ...}k̃N−1

⊗ SkN

k

q

. (13)

In the above expression the symbol ⊗ denotes the tensor product and k̃2 = k12, k̃3 =

k123, . . .. Besides, by expoliting the Wigner decomposition the values the intermediate

rank k̃2 assumes are:

k̃2 = k1 + k2, k1 + k2 − 1, . . . , |k1 − k2| ,

and so on for the other intermediate ranks k̃i. At this point, if the HamiltonianHc of the

spin system is known, the eigenvalue problem has to be solved in order to calculate all

physical observables we are interested in. Therefore, the matrix elements of operators

T
(k)
q have to be calculated within the basis states. By exploiting the Wigner-Eckart

theorem [5] we have:〈
(S̃ ′)S ′M ′

∣∣∣T (k)
q (k1, k2, k̃2, ..., kN−1, (k̃N−1), kN)

∣∣∣(S̃)SM
〉

=

= (−1)S
′−M ′

〈
(S̃ ′)S ′

∣∣∣∣T k∣∣∣∣ (S̃)S
〉( S ′ k S

−M ′ q M

)
(14)

where

(
S ′ k S

−M ′ q M

)
is a 3-j symbol and

〈
(S̃ ′)S ′

∣∣∣∣T k∣∣∣∣ (S̃)S
〉

is the reduced matrix

element between the two states. Finally, by means of successive decoupling procedures,

this reduced matrix element can be expressed in terms of single spin reduced matrix

elements and 9-j coefficients:〈
(S̃ ′)S ′

∣∣∣∣∣∣T (k)(k1, k2, k̃2, ..., kN−1, (k̃N−1), kN)
∣∣∣∣∣∣ (S̃)S

〉
=
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〈
SN
∣∣∣∣SkN ∣∣∣∣SN〉N−1∏

1

√
(2ki+1 + 1)(2S̃i+1 + 1)(2S̃ ′i+1 + 1) +

〈
Si||Ski ||Si

〉
k̃i ki+1 k̃i+1

S̃ ′i S ′i+1 S̃ ′i+1

S̃i Si+1 S̃i+1

 , (15)

where the

{
...
...
...

}
are the 9-j symbols. For k = 0, 1, 2 the single spin reduced matrix

elements are:〈
S
∣∣∣∣S(0)

∣∣∣∣S〉 =
√

(2S + 1)δS,S′ (16)〈
S
∣∣∣∣S(1)

∣∣∣∣S〉 =
√
S(S + 1)(2S + 1)δS,S′ (17)

〈
S
∣∣∣∣S(2)

∣∣∣∣S〉 =
1√
6

√
(2S + 3)(2S + 1)(S + 1)S(2S − 1)δS,S′ (18)

2.2 Spin Hamiltonian: Main Contributions

After the generalized spin-Hamiltonian formalism has been introduced, it is necessary

to focus on the main physical interactions which determine the spin-Hamiltonian and

to rewrite them in terms of the ITO’s.

First of all, the exchange part of the spin-Hamiltonian is to be introduced:

HEX = H0 +HBQ +HAS +HAN . (19)

The first term H0 is the Heisenberg-Dirac Hamiltonian, which represents the isotropic

exchange interaction, HBQ is the biquadratic exchange Hamiltonian, HAS is the an-

tisymmetric exchange Hamiltonian, and, finally, HAN representes the anisotropic ex-

change interaction. Convetionally, they can be expressed as follows [1, 6]:

H0 =
∑
i>j

Ji,jsi · sj (20)

HBQ =
∑
i>j

ji,j(si · sj)2 (21)

HAS =
∑
i>j

Gi,j · [si × sj] (22)

HAN =
∑
i>j

∑
α=x,y,z

Jαi,js
α
i s

α
j , (23)

where Ji,j e Jαi,j are the parameters of the isotropic and anisotropic exchange interac-

tions respectively, ji,j are the coefficients of the biquadratic exchange interaction, and,
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finally, Gi,j = −Gj,i is the vector of the antisymmetric exchange. For the sake of sim-

plicity, further low symmetry terms in the anisotropic exchange and more complicated

terms between three or more spin centers in the biquadratic exchange interaction have

been neglected [35]. The magnetic dipole-dipole interaction can be taken into account

within the above exchange contributions [1]. In fact, both terms contain the same

dependence on spin operators and differ only as regards the coefficients Jαij.

The terms of the spin-Hamiltonian above can be written in terms of the ITO’s. By

exploiting the properties of the angular momentum, the following relations can be

found:

sx(i) =
S

(1)
−1(i)− S(1)

1 (i)√
2

sy(i) = i
S

(1)
−1(i) + S

(1)
1 (i)√

2

sz(i) = S
(1)
0 , (24)

where the S
(1)
q , q = 0, 1, 2, are the first rank irreducible tensors acting in the spin-spaces

of individual ions. By means of the above relations and of the Wigner decomposition

we have [35]:

H0 = −
√

3
∑
i>j

Ji,jT
(0)
0 (11|ij) (25)

where T
(0)
0 (kikj|i, j) describes the isotropic exchange interaction between a couple of

spins, and can be obtained from T (k)(k1, k2, k̃2, ..., kN−1, (k̃N−1), kN) by substituting the

corresponding values of ki and kj, and by imposing kl=0 ∀ 6= i, j. Furthermore, the

following expressions can be obtained:

HBQ = −
∑
i>j

ji,j[
√

5T (0)(22|ij) +

√
3

2
T (0)(11|ij)] (26)

HAS = −i
√

2
∑
i>j

∑
q

(−1)qG
(1)
q,ijT

(1)
−q (11|ij) (27)

where

G
(1)
q,ij =

{
∓(Gx,ij±iGy,ij)√

2
if q = ±1

Gz,ij if q = 0

and:

HAN =
∑
i>j

Jai,jT
(0)(11|ij)+

∑
i,j

Jui,j[T
(2)
2 (11|ij)+T (2)

−2 (11|ij)]+
∑
i,j

Jvi,jT
(2)
0 (11|ij)(28)
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where the parameters of anisotropic exchange are given by

Jai,j = − 1√
3

(Jxi,j + Jyi,j + Jzi,j)

Jui,j =
1√
2

(Jxi,j − Jyi,j)

Jvi,j =
1√
6

(2Jzi,j − Jxi,j − Jyi,j),

and in the biquadratic term a costant term has been neglected.

As it can be seen in Eqs. (26), (28), both the biquadratic and the anisotropic Hamil-

tonians contain a scalar rank-0 contribution, i.e. T (0)(11|ij). This two terms can be

incorporated in the isotropic exchange Hamiltonian by defining the effective isotropic

parameters as J̃i,j = Ji,j + 1
3
(Jxi,j + Jyi,j + Jzi,j), thus having

H0 = −
√

3
∑
i>j

J̃i,jT
(0)
0 (11|ij). (29)

As a result, the biquadratic and anisotropic Hamiltonians become:

HBQ = −
√

5
∑
i>j

ji,jT
(0)(22|ij) (30)

HAN =
1√
2

∑
i>j

Jui,j[T
(2)
2 (11|ij) + T

(2)
−2 (11|ij)] +

∑
i,j

Jvi,jT
(2)
0 (11|ij). (31)

In order to complete the description of the spin system, contributions to the spin

Hamiltonian due to local crystal fields (CFs) are to be taken into account [6, 33, 34].

By exploiting the same procedure, also the local CFs can be written in terms of the

ITO’s. The Hamiltonian describing the interaction of the magnetic ions with their CFs

can be written as:

HCF =
∑
i

∑
k,q

bqk(i)O
q
k(si) (32)

with Oq
k(si) Stevens operator equivalents for the i-th ions and bqk(i) CF parameters [6].

For transition metal ions k = 2 or 4 (larger values are forbidden for d electrons [6]),

and q = −k, . . . , k. The Stevens operator equivalents acting on site j can be expressed

in terms of ITO’s with all ki’s equal to zero apart from kj. As an example, the widely

used second order Hamiltonian

HCF =
∑
i

di(s
2
z(i)−

si(si + 1)

3
) +

∑
i

ei(s
2
x(i)− s2

y(i), (33)
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in terms of single site ITO’s can be rewritten as:

HCF =
∑
i

di

√
2

3
T

(2)
0 (i) +

∑
i

ei(T
(2)
2 (i) + T

(2)
−2 (i)). (34)

The two terms of the above equation are the axial and rhombic part of crystal field

anisotropy. The T
(k)
q (i) operators describe the single ion crystalline anisotropy and can

be obtained from T (k)(k1, k2, k̃2, ..., kN−1, (k̃N−1), kN) by imposing ki=k and kl=0 ∀l 6=i.

Besides, it is worth to remark that from Eq. (14) the expression for the matrix element

of a generic rank-k tensor operator is:〈
(S̃ ′)S ′M ′

∣∣∣T (k)
q (k1, k2, k̃2, ..., kN−1, (k̃N−1), kN)

∣∣∣ (S̃)SM
〉
∝
(

S ′ k S

−M ′ q M

)
.

Therefore, from the definition of 3-j symbols and exploiting the properties of the an-

gular momenta addition rules through Clebsh-Gordan coefficients [5, 36,37], we have:〈
(S̃ ′)S ′M ′

∣∣∣T (k)
q (k1, k2, k̃2, ..., kN−1, (k̃N−1), kN)

∣∣∣ (S̃)SM
〉
6= 0

if and only if |S − k| ≤ S ′ ≤ S + k

and M ′ −M = q.

Both the Heisenberg-Dirac and biquadratic exchange are isotropic interactions. In fact,

the corresponding Hamiltonians can be described by rank-0 tensor operators and thus

have non zero matrix elements only with states with the same total spin quantum

number S (∆S = 0 selection rule) and the same total spin projection M (∆M = 0

selection rule). The repesentative matrix can be decomposed into blocks depending

only on the value of S and M . Differently, all anisotropic terms are described by rank-

2 tensor operators which have non zero matrix elements between state with different

total spin S (∆S = 0,±1,±2 selection rule). Therefore, their corresponding matrices

can not be decomposed into blocks depending only on the value of the total spin S in

account of the S-mixing between spin states with different values of S [38]. The single

ion anisotropy can be written in terms of rank-2 single site ITO’s. Nevertheless, if the

rhombic term of crystal field anisotropy can be neglected, then the representative ma-

trix of CF interaction results to be composed of blocks depending only on the value of

the total spin projection M . This reflects the selection rules ∆S = 0,±1,±2, ∆M = 0.

Finally, the antisymmetric exchange term is the sum of ITO’s of rank k = 1, and its

matrix elements are non zero only if ∆S = 0,±1.

The dimension of the matrices to be diagonalized for these systems increases dramat-

ically by increasing the number of spin centers. In the next two sections two possible

methods to solve this problem are described. Both methods take advantage from the
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Figure 5: The full Hamiltonian matrix representing all the magnetic interactions. Diag-
onal blocks correspond to both isotropic and anisotropic terms with ∆S = 0 selection
rule within a given spin multiplet. The non diagonal blocks correspond to anisotropic
interactions with ∆S = ±1,±2 selection rules.

obervation that in most magnetic molecules the Heisenberg-Dirac isotropic exchange

is the dominant interaction.

2.3 Spin Hamiltonian: a perturbative approach

In the previous section we have seen how to describe a magnetic cluster with a matrix

representing the different magnetic interactions. However, this kind of procedure is

not always possible. In fact, when the number of magnetic ions increases, the system

representative matrix can become too large for the eigenvalue problem to be solved

exactly. As an example, the cluster named Cr8Ni is composed by eigth ions Cr3+ with

spin s = 3/2 and one Ni2+ ion with spin s = 1. The Hilbert spin space associated

to the molecule has dimension D = 196608, beyond the computational power of most

machines. In order to diagonalize the full matrix of this system, one should exploit

alghoritms of parallel computing. Nevertheless, this would be quite unuseful since the

information contained in the most of experimental data involves only levels thermally

occupied at very low temperatures. Indeed, a perturbative approach can be applied

since in magnetic molecules the isotropic exchange is almost always the dominant

interaction. As a result, the problem can be solved by a two step procedure and this
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was done in Cr8 compound for the first time [39]. Initially, only the Heisenberg-Dirac

Hamiltonian H0 is considered. The eigenvalues and eigenvectors of the cluster are thus

determined: the energy spectrum consists of several spin multiplets separated by the

isotropic exchange. The eigenvectors of the isotropic exchange in terms of the basis

vectors are:

|SM〉 =
∑
S̃

〈
(S̃)SM

∣∣∣SM〉 ∣∣∣(S̃)SM
〉

=
∑
S̃

cS,(S̃)

∣∣∣(S̃)SM
〉
. (35)

It follows from the above expression that the generic matrix element (14) is:

〈S ′M ′|T (k)(k1, k2, k̃2, ..., kN−1, (k̃N−1), kN) |SM〉 =

(−1)S
′−M ′

∑
(S̃′),(S̃)

cS′,(S̃′)cS,(S̃)

〈
(S̃ ′)S ′

∣∣∣∣T k∣∣∣∣ (S̃)S
〉( S ′ k S

−M ′ q M

)
. (36)

In order to reduce the dimension of the system representative matrix, a cut in the

energy diagram of H0 can be performed: only eigenvectors of H0 with corresponding

eigenvalues with energy up to the decided cut-energy value are to be retained. Within

this reduced spin subspace all magnetic interactions can be evaluated. In fact, by

means of Eqs. (35) and (36) it is straightforward to calculate the matrix elements of

anisotropic interactions between any of the eigenvectors of isotropic exchange. Finally,

the second step of this procedure is to diagonalize the here determined complete spin

Hamiltonian with all the anisotropic terms within the above-mentioned reduced spin

subspace. The only approximation of this method consists in neglecting the S-mixing

between levels of the reduced spin subspace and the other levels. This approximation

can be always checked to produce an error smaller than the experimental error by a

little increase of the reduced spin subspace dimension.

2.4 Strong exchange limit

When the Heisenberg-Dirac H0 Hamiltonian is so much large that all other interactions

can be treated as a perturbation of the isotropic exchange the strong exchange limit is

achieved. This approximation has been intensively used, for instance, to develop the

theory of quantum tunneling of magnetization [1] and to interpret inelastic neutron

scattering experiments [40, 41].

The eigenvalues of H0 are (2S + 1)-fold degenerate and the energy separation between

adjacent levels depends on the exchange integrals Jij [see Eqs. (6) and (25)]. As a
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result, the mixing between states of different S manifolds due to anisotropic interac-

tions is expected to be small. This allows to work within a single spin multiplet S.

The approximation consists in neglecting the matrix elements like 〈αSM |H|α′S ′M ′〉,
where the |αSM〉 are the eigenvectors of H0. Within this assumption, the complete

hamiltonian H is replaced with an effective Hamiltonian HS written in the S manifold

in terms of the total spin operator S. For instance, up to second order:

HS = S ·D · S =

q=2∑
q=−2

Bq
2O

q
2, (37)

where Oq
k are the Stevens operator equivalents 1 defined in the total spin space of

S manifold with Bq
k the corresponding parameters. In a reference frame where the

traceless D tensor is diagonal, HS reduces to B0
2O

0
2 + B2

2O
2
2, and with the common

D and E parameters defined as D = 3B0
2 and E = B2

2 . The strong exchange limit

approximation holds since within the subspace of the S manifold the matrix elements

of the full Hamiltonian H and the effective Hamiltonian HS are proportional. For this

purpose, let us focus on Eqs. (35), (36). If Eq. (36) is evaluated within a given state

|SM〉 eigenvector of H0 the generic matrix element reads as follows:

〈SM ′|T (k)(k1, k2, k̃2, ..., kN−1, (k̃N−1), kN) |SM〉 =

(−1)S−M
′ ∑

(S̃′),(S̃)

cS,(S̃′)cS,(S̃)

〈
(S̃ ′)S

∣∣∣∣T k∣∣∣∣ (S̃)S
〉( S k S

−M ′ q M

)
. (38)

In the above equation, the second member is the product of three contributions in which

the 3-j element depends on the quantum number M , while the sum is constant within

the chosen spin multiplet S. Furthermore, the reduce matrix elements in the sum are

the only terms which depend on the decomposition of |SM〉 in terms of
∣∣∣(S̃)SM

〉
and

on T
(k)
q in terms of single site operators. Information on the coupling schemes and on

intermediate spins is contained only in reduced matrix elements. Besides, it has to be

reminded that Stevens operator equivalents Oq
k can be expressed as linear combinations

of tensor operators Õq
k(S, Sz, S±) which are diagonal in the total spin S, with k > 0 and

q > 0 [42,43]. Within the considered spin multiplet, and exploiting the Wigner-Eckart

theorem, the following equation can be found:

〈SM ′| Õq
k(S, Sz, S±) |SM〉 = (−1)S−M

′
〈
S
∣∣∣∣∣∣Õk

∣∣∣∣∣∣S〉( S k S

−M ′ q M

)
. (39)

1As regards the definition of Stevens operator equivalents we refer to Refs. [6, 33,34].
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As can be easily seen, the two left sided members in Eqs. (36) and (39) are proportional

with a coefficient Γ given by:

Γ(k, S) =

∑
(S̃′),(S̃) c(S̃′)c(S̃)

〈
(S̃ ′)S

∣∣∣∣T (k)
∣∣∣∣ (S̃)S

〉
〈
S
∣∣∣∣∣∣Õk

∣∣∣∣∣∣S〉 . (40)

Γ(k, S) depends only on the rank k of the considered tensor operator and on total spin

S, but it is constant inside a S multiplet [38,43].



24 2. Theoretical description of molecular magnets



Chapter 3

Spin dynamics in magnetic

molecules: experimental techniques

The evolution of molecular observables can be reversible or irreversible in time. The

former case occurs at short times: in this frequecy window inelastic neutron scattering

(INS) technique constitutes a powerful tool in order to probe molecular dynamics. The

latter case occurs at longer times when the coupling of the spins to other degrees of

freedom causes decoherence of molecular observables and relaxation phenomena. This

type of spin dynamics is probed by magnetic resonance techniques such as NMR or AC

susceptibility or, at longer times, by magnetization measurements. In this chapter, a

brief description of the INS and NMR techniques will follow.

3.1 Inelastic Neutron Scattering

Inelastic neutron scattering technique constitutes a very powerful tool for the aim of ob-

taining invaluable information about the structure, atomic motion and magnetic prop-

erties (magnetic order, phase transition, magnetic excitations) of materials. In fact, the

magnetic moment of the neutron couples to those the unpaired electrons of magnetic

materials, thus providing information about the magnetic properties. Furthermore, the

neutron energy E = h2/mnλ
2 = ~2k/2mn, where k = 2π/λ, is comparable to many

excitation energies in condensed matter. The inelastic interaction of neutrons with the

sample gives direct access to these excitation energies as well as to the structure of the

eigenfunctions of the spin Hamiltonian representative of the magnetic system. In order

to experimentally probe such excitation energies, neutron wavelengths between 1 and

10 Å are commonly used. During the scattering process, neutrons with initial energies

25



26 3. Spin dynamics in magnetic molecules: experimental techniques

Figure 6: Typical time scales of spin dynamics in molecular nanomagnets. At short
enough times, the spin dynamics evolves through Schrödinger equations and is time
reversible. In this time window, high frequency techniques such as inelastic neutron
scattering probe the spin dynamics. Differently, on longer timescales the system ir-
reversibly evolves through master equations: decoherence and relaxation phenomena
occur. This quasi-elastic part of spin dynamics is probed by low-frequency techniques
such as NMR.

Properties of the neutron particle

neutron mass mn=1.67×10−24g

spin 1/2

electric charge qn=-0.4×10−21e

magnetic moment µn=1.91304275(45)µN

Table 1: The neutron mass mn implies that its wave-length λ = h/2mnv (where the
neutron velovity v varies in the range 200-3000 ms−1) is of the order of interatomic
distances in liquids and solids: structural and dynamics properties of materials can
be probed by neutrons. Neutrons have no electric charge and thus highly penetrate
materials, and because of their magnetic moments they can couple to magnetic nu-
clei and unpaired electrons in a sample. As regards the latter case, neutron energy
E = ~2/2mnλ

2 is of the order of typical low-energy magnetic excitations in molecular
nanomagnets: inelastic neutron scattering can give direct access to these excitations.
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Ei and momentum ki are scattered by the sample. After the scattering process, neu-

trons with final energy Ef and final momentum kf will be collected by detectors. The

energy and momentum conservation laws impose the following definitions:

~ω = Ef − E0 = (~2/2mn)(k2
f − k2

0) (41)

and

Q = kf − k0, (42)

where λ0 and λf are the initial and final neutron wavelengths. In an inelastic neutron

scattering experiment, the general expression for the double differential neutron cross-

section is:

∂σ

∂Ω∂ω
=
kf
k0

b2S(Q, ω) (43)

where k0 and kf are the moduli of the initial and final neutron wave-vectors, b is

the scattering length and S(Q, ω) is the scattering function, i.e. the time and space

Fourier transform of the time-dependent spin-spin correlation function. In a time of

flight spectrometer, the energy of the detected neutrons can be determined by their

time of arrival, provided that the distance between the neutrons and the detectors is

known. The spectrometers based on a time of flight (tof ) technique can be set in a

direct geometry or inverse geometry configuration. In a direct geometry spectrometer

(see Fig. 7), the energy and wave-vector k0 of incident neutrons can be selected by

a monochromator. The energy and wave-vector kf of scattered neutrons is evaluated

by time of flight technique. In an inverse geometry spectrometer, the incident neutron

beam is polychromatic and the energy E0 is determined by time of flight. After being

scattered by the target sample, the neutrons reach the time-resolved detectors and

the final energy Ef can be measured by means of a crystal. In a direct geometry

configuration, once the incident wave-length has been fixed, the allowed transferred

momenta are given by:

Q2 = k2
0 + k2

f − 2k0kfcos(2θ), (44)

or

~2Q2/2mn = E0 + Ef − 2(E0Ef )
1/2cos(2θ), (45)

where 2θ is the angle between the initial and final wave-vector (see Fig. 7). Finally,

naming ~ω the energy transfer from the neutrons to the target sample (~ω > 0 energy

gain and ~ω < 0 energy loss for the sample), the above equation becomes:

~2Q2/2mn = E0 + Ef − 2(E0(E0 − ~ω))1/2cos(2θ). (46)
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Figure 7: Representation of the experimental set up for a time of flight (tof ) direct
geometry spectrometer. The incident neutron beam coming from a reactor is poly-
chromatic. A monochromator selects the desired neutron wave-length λ0, therefore the
energy E0 and the wavevector k0. After being scattered by the sample, neutrons are
collected by time-resolved detectors. The final energy Ef is determined by the time of
arrival of the scattered neutrons. At the end, the final wave-vector kf can be determined
by the scattering angle 2θ and the Q = kf − k0.

The trajectories defined in (Q,ω) space are recorded by time-resolved detectors, and

constitute the so called dynamic region with the scattering angle 2θ assuming all the

allowed values. In the particular case of magnetic scattering, the expression for the

magnetic scattering cross-section is basically derived from first-order perturbation the-

ory by using the Fermi’s Golden rule with the assumption that the interaction of

neutrons with unpaired electrons can be treated as a perturbation. In the case of a

monoatomic system with spin-only moments, the partial differential cross-section for

nonpolarized neutrons derived in Ref. [44] is:

d2σ

dΩdE
= (γr0)2 · (kf

k0

) ·
[

1

2
gF (Q)

]2

· exp(−2W (Q))×∑
α,β

(δα,β − (Qα ·Qβ)/Q2) · Sα,β(Q, ω), (47)

where γ = −1.913 is the gyromagnetic ratio, r0 = 2.818 × 10−15 m is the classical

radius of the electron, g is the Landé g factor, and F (Q) is the magnetic form factor of

the ion, which falls rapidly with Q. Furthermore, e−2W (Q) is the Debye-Waller factor,

which is usually neglected when dealing with magnetic scattering, since it is a slowly

varying function of the scattering vector Q. The factor (δα,β − (Qα ·Qβ)/Q2) implies

that only the components of the magnetic moment perpendicular to the vawe-vector

Q can couple to the neutron, being α, β = x, y, z. Sα,β(Q, ω) is the so called scattering

function. It is defined as the space and time Fourier transform of the time-dependent

spin-spin correlation function. In the Schrödinger notation the scattering function is
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given by:

Sα,β(Q, ω) =
∑
i,j

exp(iQ · (Ri −Rj))×∑
n,m

pn 〈n |s̃αi |m〉
〈
m
∣∣s̃βj ∣∣n〉 δ(~ω − Em + En), (48)

where s̃αi is the α component of the spin operator on site i at position Ri, |n〉 is the

initial state with energy En, |m〉 is the final state with energy Em, pn = e−βEn

Z
is the

Boltzman factor with Z the partition function. Finally, ~ω is the energy transfer be-

tween the neutrons and the spin system during the scattering process. It wise to remark

that the scattering function contains all information about the magnetic strucure and

spin dynamics. Its determination and knowledge is the main goal of any inelastic neu-

tron scattering study. Eq. (47) can be extended to a number Nm of magnetic ions per

unit cell. Besides, by exploiting the irreducible tensor operator technique, the partial

differential cross-section for magnetic scattering by ions with spin-only moments can

be averaged with respect to the possible orientations of the scattering vector Q [30,45]:

δ2σ

δΩδω
=

A

Nm

kf
k0

e−2W
∑
n,m

e−βEn

Z
Inm(Q)δ(~− Em + En) (49)

where A=0.29 barn, Nm is the number of magnetic ions. The function Inm(Q) is defined

in terms of local spin matrices, magnetic form factors of metal ions F (Q), and 0th, 2th

order spherical Bessel functions j0(RijQ), j2(RijQ), where Rij = Ri−Rj is the vector

defining the relative positions of ions i and j in the molecule [30,45]:

Inm(Q) =
∑
i,j

F ∗i (Q)Fj(Q)×
{2

3
[j0(QRij) + C2

0j2(QRij)]s̃zi s̃zj +

2

3

[
j0(QRij)− 1

2
C2

0j2(QRij)
]
(s̃xi s̃xj + s̃yi s̃yj) +

1

2
j2(QRij)[C

2
2(s̃xi s̃xj − s̃yi s̃yj) + C2

−2(s̃xi s̃yj + s̃yi s̃xj)] +

j2(QRij)[C
2
1(s̃zi s̃xj + s̃xi s̃zj) + C2

−1(s̃xi s̃yj + s̃yi s̃zj)]
}
, (50)

where

C2
0 =

1

2

[
3

(
Rijz

Rij

)2

− 1

]

C2
2 =

R2
ijx −R2

ijy

R2
ij

C2
−2 = 2

RijxRijy

R2
ij
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C2
1 =

RijxRijz

R2
ij

C2
−1 =

RijyRijz

R2
ij

,

and

s̃αi s̃βj = 〈n |sαi|m〉
〈
m
∣∣sβj ∣∣n〉 ,

with α, β = x, y, z.

Eq. (49) thus represents the partial differential neutron cross-section for unpolarized

neutrons in the case of a powder sample with spin-only moments, and has been pre-

sented in Refs. [30, 45] for the first time. Eqs. (49) and (50) allow to gather very

precise information about the energies of magnetic excitations in a magnetic molecule

and the structure of spin eigenfunctions of the corresponding spin Hamiltonian. The

former can be inferred by the magnetic peaks positions in the measured inelastic neu-

tron cross sections. Moreover, detailed information about the latter can be obtained

by the measured intensities under the inelastic peaks and their Q dependence.

3.2 Nuclear Magnetic Resonance

Nuclear moments are much smaller than electronic moments, being µB
µN
∼ 103, where

µB and µN are the Bohr and nuclear magnetons respectively. In fact, if the two-level

system given by a single proton with I = 1
2

is taken into account, the two states

mI = +1
2

and mI = −1
2

are separated by an energy ∆E = gNµNB, with gN the proton

gyromagnetic ratio, which is tiny. For a proton in a typical laboratory magnetic field

B0 ≈ 1T the splitting between mI = +1
2

and mI = −1
2

would be ≈ 10−7 eV, which is

equivalent to a temperature ≈ 1 mK. Therefore at room temperature and at magnetic

fields of the order of 1T, the nuclei will show only a minute tendency to line up with

the applied magnetic field on average, in account of the thermal randomizing energy,

much greater than the alignment energy. As a result, any effect due to the magnetism

of the nuclei requires a resonance technique such as NMR to be detected. One of the

basic concepts underlying the NMR technique follows from the observation that the

application of a magnetic field B to a magnetic moment can induce precession of that

magnetic moment at an angular frequency given by |γB| where γ is the gyromagnetic

ratio. The energy of a magnetic moment M in a magnetic field B is given by

E = −M ·B, (51)
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and it is minimized when the moment is aligned with the magnetic field. Besides, B

will exert a magnetic torque on the magnetic moment M:

G = M×B. (52)

If the magnetic moment were not associated with any angular momentum, the torque

G will tend to turn the magnetic moment towards the magnetic field, as in the case of

the electric dipole [31]. However, since magnetic moments are associated with angular

momentum -see the Einstein-de Haas or the Barnett effects- and because torque is equal

to the rate of change of angular momentum, the previous equation can be rewritten as:

dM

dt
= γM×B. (53)

As a consequence, in close analogy with the spinning of a gyroscope or a spinning

top, the magnetic field causes the moment M to precess around B with frequency

|γB|, without changing the length of M vector. A system of magnetic moments in a

magnetic field can thus absorbe energy at this frequency and a resonant absorption of

energy from an electromagnetic wave tuned to the correct frequency may be observed

[31, 33, 46]. In order to perform a NMR measurement, nuclei with non-zero nuclear

spin, i.e. I 6= 0, are needed: 1H (proton), 2H (deuteron) and 13C are commonly used.

In a generic NMR experiment, a sample is placed inside a coil between the poles of

a magnet which produces a uniform static magnetic field B0 along the z direction.

The energy E of the magnetic nucleus in presence of B0 field is E = −M · B0 =

−gNMNmIB0, and this correspond to a ladder of equally spaced 2I + 1 levels with

mutual separation of gNMNmIB0. To excite transitions between adjacent pairs of levels

with a radiofrequency (RF) field one needs a field B1 applied orthogonally to B0, along

the x direction, for instance. This leads to a perturbation to the system proportional

to B1Ix, and consequently the matrix element of the perturbation is proportional to

〈m′I |Ix|mI〉. Therefore the selection rule imposed by this perturbation is ∆mI = ±1:

only transitions between adjacent levels may occur. Besides, naming ∆E the energy

difference between a pair of adjacent levels, the system will undergo a transition if

~ω = ∆E. For a deeper understanding of this process, let us consider a two-level spin

system with - and + the lower and the higher level respectively. The probability per

unit time of a transition between + and - is

|〈+|Ix|−〉|2 = |〈−|Ix|+〉|2, (54)

and is independent of whether the transition is from the lower to the upper level or vice

versa, and occurs at a rate W which is proportional to the size of the RF power used to
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excite transitions. If N−(t) is the number of spins in the lower level at a time t, WN−(t)

will be the spins excited per unit time to the higher level. A similar consideration can

be done for the spins in the higher level thus having

dN+(t)

dt
= WN−(t)−WN+(t) (55)

dN−(t)

dt
= WN+(t)−WN−(t). (56)

By defining n(t) = N+(t) − N−(t), the solution of the two equations above can be

written as:

n(t) = n(0)e−2Wt, (57)

which means that an initial difference in population tends exponentially towards zero

in account of a stimulated electromagnetic transition. At a time t the energy of the

system is:

E(t) = N−E− +N+(E− + ~ω), (58)

and the rate of absorption is:

dE

dt
= −W~ωn(t), (59)

and will tend to zero with a time constant of 1/2W , as the populations ot the upper

and lower levels become progressively equalized. This implies that it is necessary to

have a population difference for the system to absorb energy. After the absorption of

energy, polarization may change. Nevertheless, since nuclear spins interact with the

thermal motion and excitations of the sample, the polarization of the spin system will

return back to the equilibrium value following a Boltzmann distribution:(
N+

N−

)
0

= e−~ω/kBT . (60)

By summaryzing, after the stimulated electromagnetic transitions has been switched

off the system polarization will recover the equilibrium value in a time T1. This T1 is

called spin-lattice relaxation time and measures the time constant of the interaction of

the nuclei with the environment [31, 33, 46]. As a result, the polarization would tend

to the Boltzmann distribution as

n(t) = n0(1− e−t/T1). (61)
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By putting together the relaxation process and the stimulated RF transitions, one

obtains

d

dt
n(t) = −2Wn(t) +

n0 − n(t)

T1

. (62)

The equation above has a stationary solution when dn(t)/dt = 0. This leads to

n(t) =
n0

1 + 2WT1

(63)

and

dE

dt
= n(t)~ωW = n0~ω

W

1 + 2WT1

. (64)

From Eq. (64) it follows that the rate of absorption is proportional to W , but for large

perturbing RF fields becomes proportional to 1/T1 and independent of the precise value

of W : this is known as saturation.

Let us focus on the relaxation process that can be monitored in a typical NMR expe-

rience. The weak polarization of nuclear spins produced by an applied magnetic field

B0 -e.g. along z-axis- is destroied by the RF excitations. Once the RF field is switched

off, the weak interactions of the nuclei with the surroundings will force the nuclear

magnetization to the equilibrium value with a time constant T1. As a consequence, we

expect that

dMz

dt
=
M0 −Mz

T1

. (65)

This T1 relaxation must involve interactions with the lattice energy must be exchanged

with it. In fact, a change of Mz implies that the nuclear magnetization M changes

with respect to the applied field, and thus relaxing a spin along the z-direction requires

an exchange of energy. As regards the in plane components of the magnetization Mx

and My, they should be zero, but if they are not they will relax to zero in a time T2

such that:

dMx

dt
= −Mx

T2

,
dMy

dt
= −My

T2

. (66)

T2 is the spin-spin relaxation time and causes differences in precession frequency due

to interactions of the observed spin with the spins of its neighbours. It can also be due

to inhomogeneities of the applied magnetic field B [31, 33, 46]. The change of Mx or

My has no energetic consequences since B is along Mz.



34 3. Spin dynamics in magnetic molecules: experimental techniques

The applied magnetic field also causes spin precession, so that the equations for Mx,

My and Mz are

dMx

dt
= γ(M×B)x − Mx

T2

(67)

dMy

dt
= γ(M×B)y − My

T2

(68)

dMz

dt
= γ(M×B)z − M0 −Mz

T1

, (69)

which are known as the Bloch equations.

For the purpose of experimentally determining T2 the following technique can be used.

In thermal equilibrium with B1 switched off, there is a weak magnetization parallel to z.

A short pulse of RF signal of duration τ , with the frequency ω/2π set to the resonance

frequency of the spins, i.e. ~ω = ∆E, forces the spins to rotate by an angle γB1τ , where

B1 is the amplitude of the RF signal. This angle can be properly varied by changing

τ , the duration of the pulse. In particular, if τ = π/2γB1 a 90◦ pulse is produced,

which means that the weak magnetization parallel to the static B0 field in thermal

equilibrium with B1 switched off is rotated such as to lie in xy plane. Depending

on the amplitude and duration of the pulse, the magnetization precesses for a short

period and rotates into xy plane. Being B1 switched off, the magnetization precesses

around B0 at a frequecy γB0, producing an oscillation which is damped in account

of T2 relaxation processes (spin-spin relaxation). The oscillation relaxes thus allowing

to measure the T2 by exploiting the spin echo technique. Firstly, the application of a

90◦ pulse tips the spins in xy plane. Because of the steady field B0 along z-axis, the

spins start to precess in xy plane at different rates in account of the inhomogeneities

in the magnetic field. This involves the spins to dephase with respect to each other. A

subsequent 180◦ pulse follows at a time t = τ along the x-axis. This implies that the

spins will come back together at a time τ producing a spin echo signal. In this way

the problem that the magnetic field is inhomogeneus and the spread in fields due to

the chemical shift are removed. Indeed, the spin-spin relaxation mechanism can not

be refocused and this causes the echo signal to be reduced in amplitude by an amount

which depends on τ . The NMR intensity of the echo signal follows I(2τ) = I(0)e−2τ/T2

and a measurement of T2 is possible. In an analogous way T1 can be measured. This

time a 180◦ pulse is applied first. As a result, the magnetization is rotated along ẑ to

along −ẑ. It then relaxes back to ẑ with a time constant T1. The magnetization as a

function of time τ after the 180◦ pulse is

M(τ) = M0(τ)ẑ = M0(1− 2e−τ/T1)ẑ. (70)
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After a time τ from the 180◦ pulse, a 90◦ pulse is applied: this rotates the magnetization

on the xy plane where it now begins to a free indution decay with initial amplitude

Mz(τ). Thus T1 can be determined by measuring the initial amplitude Mz(τ) as a

function of the time delay between the 180◦ pulse and the 90◦ pulse.

3.2.1 Perturbative treatment of the hyperfine dipolar

interaction between nuclear and electronic spins

The spin dynamics in magnetic molecules can be probed by NMR. In fact, there exists a

link between the electronic spin fluctuations and the measured longitudinal spin-lattice

relaxation rate 1/T1 as derived by Moriya [47]. By treating the hyperfine dipolar

interaction between the electronic and nuclear spins as a perturbation, we have the

unperturbed hamiltonian given by

H0 = He +HN (71)

where He is the molecular hamiltonian, while HN is the hamiltonian of the nuclei with

non-zero magnetic moment which are used as a probe for NMR measurements:

HN = −
∑
i

~ωLIζi , (72)

where i index runs over all the nuclei which can be probed at ωL angular Larmor

frequency. Besides, ζ-axis defines the direction of the local magnetic field at the nucleus.

The perturbation is given by

H ′ = γeγN~2
∑
i,l

r−3
il I ·

(
1− 3

ril · ril
r2
il

)
· δSi, (73)

where γe and γN are the gyromagnetic ratios of electrons and the probed nuclei, ril

is the vector which defines the relative position of the i electron with respect to the

l nucleus, and finally δSi = Si − 〈Si〉. Within this theoretical framework and up to

the first order in perturbation theory, the probabilities of transitions of a nuclear spin

and thus the nuclear spin relaxation rate 1/T1 can be evaluated in terms of spin-spin

correlation functions. By summaryzing, exploiting the Moriya formula [47], the NMR

1/T1 can be evaluated in absolute units using as inputs the positions of the magnetic

ions and of the probed nuclei in the magnetic molecule:

1

T1

=
∑
i,j=1,N

q,q′=x,y,z

αqq
′

ij

(
S
sqi ,s

q′
j

(ωL) + S
sqi ,s

q′
j

(−ωL)
)
, (74)
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where the αqq
′

ij are geometric coefficients of the hyperfine dipolar interaction between

magnetic ions and nuclei probed by NMR, while the S
sqi ,s

q′
j

(ωL) are the Fourier trans-

forms of the cross correlation functions calculated at the Larmor angular frequency

ωL = γNB:

S
sqi ,s

q′
j

(ωL) =
1

2π~

∫ ∞
−∞

dteiωLt
〈
sqi (t)[s

q′

j ]+
〉

(75)

An expression for the S
sqi ,s

q′
j

(ωL) functions will be given in Chapter 6 (see also Appendix

A).



Chapter 4

Neutron spectroscopy and

magnetization study of two spin

segments: Cr8Zn and Cr8Cd

compounds

In this chapter results of INS cross sections on Cr8Zn and magnetization measurements

on Cr8Cd will be interpreted. The two compounds have not exactly the same chemical

structure. Nonetheless they can be regarded as magnetically equivalent. In fact, both

clusters were derived by insertion of a non-magnetic ion (Zn2+ or Cd2+) in the ring-

shaped structure of the well-known Cr8 compound. The presence of the non magnetic

ion prevents the exchange interaction between a couple of spins, thus causing a breaking

of the ring symmetry. On the one hand, qualitative differences can be found in the

energy level diagrams as inferred in magnetization measurements by the different set of

level crossing fields from the open and the close version of the ring. On the other hand,

it is the internal structure of the spin eigenstates, probed through the dependence of

the neutron cross-section on the wave vector transfer, which allows to distinguish the

close Cr8 ring from the two derived spin segments at the microscopic level.

37
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Cr

Zn

O
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Figure 8: The structure of a Cr8Zn molecule. The hydrogen atoms have been omitted
for clarity.

4.1 Rotational band picture in rings and spin seg-

ments

A great variety of magnetic clusters have been synthesized in recent years. Of particular

interest both for fundamental physics and for technological applications are antiferro-

magnetic (AF) ring-shaped clusters, formed by a set ofN transition metal ions arranged

in an almost cyclic planar structure. The possibility to chemically substitute metal ions

in the cyclic structure allows to control microscopic exchange interactions and, as a

consequence, the energy and spin wave functions of the low-lying states [30]. The Cr8Zn

cluster was derived by inserting a non magnetic Zn2+ ion in the ring-shaped structure

of the well-known Cr8 compound. This lowers the ideal ring symmetry by preventing

exchange interaction between two of the spins. As a result, the Cr8Zn molecule can be

regarded as a finite spin segment and thus a model system for investigating magnetic

properties and finite-size effects in the one-dimensional AF Heisenberg model.

Even-membered homonuclear AF rings present common features in the energy spec-

trum: due to the compensation of the N spins they have a singlet S = 0 ground state,

whereas low-lying excited levels are arranged into rotational bands, with the lowest one

(the L-band) approximately following the so-called Landé rule E(S) = 2JS(S + 1)/N

with J the exchange constant and S the total spin of the state [1,48,49]. If an external
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magnetic field H is applied to the molecule, the spin ground state will sequentially

change from S = 0 to S = 1, 2, 3, ..., 12 as H increases, but each of these states will

always belong to the L-band. The second set of levels belongs to the so-called E-

bands, which are also parabolic with respect to S but shifted to higher energies. In

closed homometallic rings states can be classified according to the quantum number

k = 2πj/N (j = 0, ..., N − 1) of the cyclic shift operator T , whose eigenvalues are eik.

While the L-band states have wavevector k = 0 or π, for E-band states k = 2πj/N

with j 6= 0, N/2. The concept of rotational band has also been exploited to rationalize

the low-temperature behavior of the complex Fe30 molecule, where three sublattices

can be identified in its icosidodecahedron structure [10,50,51].

The energies of L-band states in the opened Cr8 ring have already been investigated

by macroscopic measurements on Cr8Cd [7,52]. Magnetization and heat capacity mea-

surements showed deviations from the Landé rule, with a resulting different set of level

crossing fields [7]. While these measurements provided information on the energy of

the lowest (Landé) rotational band, the internal structure of eigenstates could not be

directly probed. In addition, the higher-energy E-band states could not be directly

accessed. In this paper, we exploit inelastic neutron scattering (INS) to probe the

lowest-lying eigenstates of Cr8Zn and we quantitatively analyze how the opening of the

ring changes the structure of these eigenfunctions with respect to the closed version of

the ring. In particular, we experimentally and theoretically show how the occurrence

of disjoint quantum fluctuations of the total spin length of the two sublattices removes

the sharp separation of the low-lying states in two distinct rotational bands.

4.2 Theory

The microscopic picture of the heteronuclear open-ring Cr8Zn is based on the following

spin Hamiltonian:

H = J
7∑
i=1

s(i) · s(i+ 1) +
8∑
i=1

di
[
s2
z(i)− si(si + 1)/3

]
+

∑
i>j

Dij [2sz(i)sz(j)− sx(i)sx(j)− sy(i)sy(j)]

+
8∑
i=1

ei
[
s2
x(i)− s2

y(i)
]− µB 8∑

i=1

giH · s(i), (76)
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(a)

(b)

(c)

(d)

Figure 9: (a): Energy difference between two adjacent levels of the L-band for Cr8 and
Cr8Zn. A deviation from the Landé rule can be seen for the open ring Cr8Zn. (b):
modulus of the scalar product between L-band states for the closed Cr8 and the open
Cr8Zn rings. (c): weight of the Landé component (i.e., with Sodd = Seven = 6) in the
L-band states of Cr8 and Cr8Zn. (d): weight of the component with Sodd = Seven in
the L-band states of Cr8 and Cr8Zn. This represents the probability of finding the same
length for the total-spin of the two sublattices.
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Cr8Zn Cr8

+ |LS=0〉 = 0.947 |LS=0〉+ ..

- |LS=1〉 = 0.821 |LS=1〉 − 0.243 |E1
S=1〉 − 0.242 |E4

S=1〉+ ..

- |E1
S=1〉 = 0.517 |LS=1〉+ 0.537 |E1

S=1〉+ 0.286 |E4
S=1〉+ ..

+ |E2
S=1〉 = 0.468 |E2

S=1〉+ 0.689 |E3
S=1〉 − 0.318 |E5

S=1〉+ ..

- |E3
S=1〉 = 0.108 |LS=1〉 − 0.535 |E1

S=1〉+ 0.684 |E4
S=1〉+ ..

+ |E4
S=1〉 = 0.778 |E2

S=1〉 − 0.372 |E3
S=1〉+ ..

+ |E5
S=1〉 = 0.12 |E2

S=1〉+ 0.276 |E3
S=1〉+ 0.843 |E5

S=1〉+ ..

- |E6
S=1〉 = 0.356 |E1

S=1〉 − 0.77 |E6
S=1〉+ ..

Table 2: Lowest-lying L- and E-like eigenstates of Cr8Zn (left) in terms of eigenvectors
of Cr8 (right), see also Fig. 10. The states are classified according to their parity with
respect to the C2 symmetry operation (given in the first column). The degenerate (k,
−k) E-band states of Cr8 here have been combined in symmetric and antisymmetric
superpositions having definite parity. Only dominant components on L and E states are
shown. In Cr8Zn, several S = 1 states have a non zero scalar product with the lowest
S = 1 multiplet of Cr8, and thus acquire a Landé-type contribution.

where s(i) is the spin operator of the the ith ion in the molecule (s(i)=3/2 for Cr3+

ions, and s(i)=0 for the non magnetic Zn2+ ion). Here we assume that the Zn2+ ion

is in site i = 9. In the first term of the above equation, J represents the strength

of the isotropic Heisenberg nearest neighbour exchange interaction. The second and

third terms describe the axial anisotropic interactions (with the z axis perpendicular

to the plane of the ring), i.e., local crystal-fields (CFs) and the axial part of the dipolar

interaction. Dij is calculated in the point dipole approximation. The fourth term ac-

counts for small non-axial anisotropy. While the actual local CFs may be much more

complex than assumed in Eq. (76), experimental data are nowhere near sufficient to

fix more than two CF parameters. The last term represents the Zeeman coupling with

an external field H. We use the expression given in Ref. [30] in order to simulate the

powder neutron scattering data.

Since isotropic exchange (Hiso) is the dominant interaction in (76), the energy spec-

trum is composed of total-spin multiplets split by local crystal fields. The mixing

between different spin multiplets due to anisotropic interactions (S mixing) is small

and does not affect the following discussion. As mentioned above, it is well known that

in closed bipartite AF rings the lowest-lying multiplets are arranged in two bands (L

and E) which can be approximately described by the effective three-rotor Hamiltonian

Hrot = J ′Sodd · Seven (77)
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Figure 10: Energy of the low-lying triplet eigenstates of Hiso for Cr8 and Cr8Zn. For
the latter, the labelling of states as L or E refers to the dominant component in the
state.

with N the number of sites, Sodd,even the total spin of the two sublattices and J ′ = 4J
N

.

The eigenvectors of (2) have the form |αSoddSevenSM〉, where α denotes additional

quantum number specifying the internal structure of each sublattice. The correspond-

ing eigenvalues are 2J/N(S(S + 1) − Seven(Seven + 1) − Sodd(Sodd + 1)). L-band mul-

tiplets are nondegenerate, have k = 0 or π and correspond to Seven = Sodd = Ns/2,

whereas E-band states correspond to |Seven − Sodd| = 1 and Seven + Sodd = (Ns − 1).

The multiplet degeneracy is N − 2 and k 6= 0, π. The actual exchange hamiltonian

Hiso = Hrot + ∆H, where ∆H only connects states having the same value of k. Hence

L- and E-band states do not mix in closed rings. To a very large extent, the effect of

∆H in L-band states is to add smaller components having Sodd = Seven < Ns/2, i.e.,

∆H induces joint quantum fluctuations of the total spin length of the two sublattices

(see Fig. 9). A similar situation of joint fluctuations occurs for E-band states, where

the leading corrections have Seven + Sodd < (Ns− 1), but still |Sodd − Seven| = 1. The

E-band degeneracy (N − 2) is partially lifted into (N − 2)/2 pairs of multiplets, each

pair being characterized by a given value of |k|.
If the ring is magnetically opened, the rotational bands picture (with J ′ = 4(N−1)J

N2 )

breaks down (see Fig. 9). In fact, since the shift operator does not commute with

Hiso anymore the wavevector quantum number is meaningless and only the parity with
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respect to the remaining in-plane C2 symmetry can be specified. Of course, this im-

plies that the degeneracy of the k, −k pairs in the E-band is removed. The resulting

eigenstates therefore contain symmetric and antisymmetric combinations of the pre-

viously degenerate k and −k states (called standing spin waves in [53]). However,

the standing-spin-wave component is minoritary in most of the actual eigenstates (see

Table I). Indeed, states having different value of |k| are strongly mixed. In particular,

∆H directly mixes L-band states (k = 0, π) with E-band states having the same S

and the same parity. The resulting states contain both components with Seven = Sodd

and components Seven 6= Sodd. Hence, in open rings quantum fluctuations of the total

spin of the two sublattices do not occur jointly, not even at zero or low temperature.

An exception is given by the ground S = 0 and the ferromagnetic S = 12 states, which

remain very close to those of the closed ring. Indeed, if S = 0 or S = 12 there are no

E-band states because necessarily Seven = Sodd.

The previous picture can be directly demonstrated by INS experiments. In fact, a

mixing of L- and E-band states has characteristic consequences in the momentum-

transfer dependence of the INS intensities and in the effective anisotropy and in the

energy of the lowest-lying S = 1 states. These aspects will be discussed below, where

the labelling of states as L or E is still used for simplicity and refers to the dominant

component in the state.

4.3 Inelastic neutron scattering experiments

The INS experiments were performed using the time-of flight Disk Chopper Spectrom-

eter at the NIST Centre for Neutron Research, Gaithersburg, MD (USA) [54]. For the

INS experiment, 3.8 g of partially deuterated [H2NisPr2][Cr8ZnF9{O2CC(CD3)3}18] mi-

crocrystalline samples (abbreviated Cr8Zn) has been prepared according to a slightly

modified literature procedure reported in [55] for [H2NisPr2][Cr8ZnF9{O2CC(CD3)3}18]

by dissolving chromium(III) fluoride trihydrate in a mixture of trimethyl-d9 -acetic acid

and diisopropylamine followed by addition an excess of the basic zinc carbonate. The

preparation of trimethyl-d9 -acetic acid starting from acetone-d6 was adapted from

standard methods [56]. Cr8Zn-d was crystallized from toluene and then dried in vacuo.

All procedures were performed under dried nitrogen atmosphere and all used solvents

were anhydrous. Elemental analysis and the electrospray mass spectrometry confirmed

the chemical compositions of this compound. The sample was packed into a hollow
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aluminum cylinder (20 mm diameter and 0.7 mm sample thickness) and was inserted

into a standard ILL cryostat to cool down to a base temperature of 1.5 K. Measure-

ments were performed at different temperatures, ranging from 1.5 K to 15 K. The

instrument was operated in the “low resolution” mode [54] and measurements were

performed using four different incident neutron wavelengths, i.e. 3.8, 4.5, 6 and 7 Å.

Measurements on an empty Al can were used for the background subtraction and a

vanadium sample was used for detector calibration. The spectra were integrated over

the whole detector bank. The transition from the S=0 ground state to the first S=1

excited state in the Landé band was probed with an incident wavelength of 7 Å (42

µeV full width at half maximum (FWHM) energy resolution at the elastic peak). At a

base temperature of 1.5 K we observed two sharp transitions at about 0.2 and 0.3 meV

energy transfer [Fig. 11(a)], a much lower energy than what was observed on the Cr8

parent compound, where the equivalent transitions were observed at 0.7 and 0.9 meV

respectively [39]. Higher energy transitions to the E-band could be observed using a

lower incident wavelength λ = 3.8 Å (giving a FWHM 220 µeV at the elastic peak),

as shown in Fig. 11(b).

The microscopic parameters of the spin Hamiltonian Eq. (76) have been varied in

order to obtain the best fit of the calculated INS cross section to the neutron data.

In the fitting procedure a Gaussian line shape is associated with each allowed tran-

sition, with the full width at half maximum fixed to the instrumental resolution and

the area proportional to the calculated transition strength. Figure 11 shows the INS

spectra collected at λ = 7 Å and λ = 3.8 Å. The solid lines represent the calculated

INS intensity with parameters J = 1.32 meV, d = −0.028 meV, |e| = 0.003 meV 1.

In order to improve the fit a small next-nearest-neighbour exchange interaction has

to be introduced, with exchange integral Jnnn = −0.01 meV. Alternatively, a set of

slightly bond-dependent nearest-neighbour exchange constants can be assumed. The

resulting simulations reproduce the experimental data very well. The uniaxial CF pa-

rameter obtained for Cr8Zn is d = −0.028 meV, very close to the one reported for Cr8

(d = −0.029 meV) [39]. The two peaks emerging in Fig. 11(a) at 0.2 meV and 0.3 meV

correspond to the transition from the ground state |LS=0〉 to the first-excited |LS=1〉
multiplet, split by the single ion uniaxial CF terms. The in-plane anisotropy has been

1The axial dipole-dipole interaction has similar effects as the single ion axial anisotropy. Therefore,

a very good agreement between calculated and measured INS spectra is once again obtained if the d

parameter is suitably rescaled to the value of d=-0.036 meV, and understood as to include both the

CF and the dipolar contributions.
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(a)

(b)

Figure 11: Cr8Zn INS spectra at low energy collected with λ=7 Å at T = 1.5 K
(squares) and T = 7 K (circles) in panel (a) and with λ=3.8 Å at T=1.5 K (squares),
T=7 K (circles) and T = 12 K (triangles) in panel (b). Solid lines represent calculated
spectra with INS cross section obtained in Ref. [30] and from eigenvalues and eigenvec-
tors of Eq. (76) with the following set of parameters: J = 1.32 meV, Jnnn = −0.01
meV, d = −0.028 meV, |e| = 0.003 meV, where Jnnn is the the parameter of next near-
est neighbours exchange interaction. The error bars in all the figures represent standard
deviations in the measurement.
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taken into account in order to reproduce the correct intensity of the second peak in Fig.

11(a) which involves two otherwise degenerate transitions |LS=0〉 → |LS=1,M = ±1〉.
By reducing the incident wavelength it is possible to observe transitions involving

higher-lying excited spin multiplets. In Fig. 11(b), the first peak in the spectrum

at T = 1.5 K originates from the thermally-activated transition between the Landé

states |LS=1〉 and |LS=2〉, while the other peaks are due to transitions from the ground

state |LS=0〉 to the excited
∣∣E1,2

S=1

〉
and

∣∣E3,4
S=1

〉
states. At higher temperatures, two fur-

ther peaks emerge in the spectrum, corresponding to transitions between the L states

|LS=2〉, |LS=3〉 and between |LS=1〉 and the lowest E-type S = 2 multiplet. We have

performed further measurements at intermediate wavelengths that are once again very

well reproduced by theoretical simulations.

4.4 Discussion

Closed rings are characterized by the presence of a hierarchy of overall INS transition

strengths: in decreasing order L → L (LL), L → E (LE) and L →quasi-continuum

(LQC). The above-discussed breakdown of the band picture in the open AF ring Cr8Zn

does not unambiguously show up in integrated INS intensities. However, it becomes

apparent by inspecting the dependence of the INS intensity I(Q) on the scattering

wave vector Q, a quantity which more selectively senses the internal structure of eigen-

functions. The behavior of I(Q) can be understood by expressing the eigenstates of

the Cr8Zn isotropic exchange Hamiltonian in terms of those of Cr8 (see Table 2), and

by taking into account that for the latter molecule inter-band INS transitions are less

intense than intra-band ones. The first-excited S = 1 state of Cr8Zn (|LS=1〉 in Fig.

10) has a dominant contribution from the Landé-band |LS=1〉 state of Cr8. Therefore,

for the transition between the ground |LS=0〉 state and |LS=1〉, I(Q) is similar to that of

the corresponding transition of Cr8 (reported in [39,49]). A remarkable difference with

respect to Cr8 is expected for the unresolved transitions between the ground |LS=0〉
state and states |E1

S=1〉 and |E2
S=1〉. In fact, in the open ring |E1

S=1〉 acquires a large

component of the Landé |LS=1〉 state of Cr8. Since a LL transition has much more INS

intensity than an LE or an LQC transition, most of the scattering for the unresolved

|LS=0〉 → |E1
S=1〉 , |E2

S=1〉 transitions is produced by the Landé component in |E1
S=1〉.

Thus, I(Q) for these transitions should be close to I(Q) for the |LS=0〉 → |LS=1〉 transi-

tion. This picture is confirmed by the agreement between calculated and experimental

I(Q) in Fig. 12(a): the shape of I(Q) is similar for energy transfers around 0.25 and
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2 meV. This proves the presence of the Landé-type contribution (Sodd = Seven) to the

lowest E-state of Cr8Zn (see Table 2). Since all remaining E states contain at most a

small fraction of the |LS=1〉 state of Cr8, I(Q) for the corresponding |LS=0〉 → |ES=1〉
transitions is markedly different and recalls that of the |LS=0〉 → |ES=1〉 transitions of

Cr8 [Fig. 12(b)].

Another consequence of the breakdown of the band picture is the decrease of the

effective axial anisotropy of the |LS=1〉 multiplet for Cr8Zn with respect to Cr8. As we

have stressed above, the microscopic axial CF parameter d is almost the same in Cr8

and Cr8Zn. However, the way such anisotropy terms project onto the |LS=1〉 multiplet

to split it into a singlet M = 0 state and a quasi-doublet M = ±1 depends on the in-

ternal structure of the multiplet. Indeed, the presence of sizeable E components in the

|LS=1〉 multiplet of Cr8Zn almost halves its effective anisotropy. The reason is that for

the E-states of Cr8, each of the eight local CF terms yields much smaller contributions

to the effective anisotropy than for L-states of the same S. This effective-anisotropy

reduction is directly evidenced by the energy difference between the two peaks at 0.2

and 0.3 meV in Fig. 11(a), which is half the difference observed in Cr8 [39].

The lowering of the gap between |LS=0〉 and |LS=1〉 in Cr8Zn [Figs. 10 and 11(a)]

with respect to Cr8 [39] again reflects the presence of E-components in |LS=1〉, i.e.,

the appearance of disjoint quantum fluctuations of the total spins of the two sublat-

tices. In fact, the ground-state energy in the open ring is nearly (N − 1)/N times

the ground-state energy of the closed ring as the associated wavefunctions |LS=0〉 al-

most coincide (Table I). On the other hand, |LS=1〉 in the open ring can be writ-

ten as |LS=1〉 = ca |a〉 + cb |b〉, where |a〉 and |b〉 are two orthogonal states char-

acterized respectively by having Sodd = Seven and Sodd 6= Seven. By considering

only the Heisenberg isotropic exchange, the energy E(LS=1) = 〈LS=1|HHeis |LS=1〉 =

c2
a 〈a|HHeis |a〉 + c2

b 〈b|HHeis |b〉 + cacb[〈a|HHeis |b〉 + 〈b|HHeis |a〉]. For Cr8Zn the gap

is E(LS=1) − E(LS=0) ≈ 0.21J [Figs. 10 and 11(a)], much smaller than the gap of

≈ 0.56J of Cr8. The origin of this decrease can be understood by forcing to zero the

contribution of the configurations with Sodd 6= Seven, i.e., imposing ca = 1 and cb = 0.

The resulting gap becomes ≈ 0.59J , even larger than in Cr8. This shows that the

decrease of the gap is not due to a change in the Landé-type (Sodd = Seven) component

|a〉, but rather to the presence of the E-type (Sodd 6= Seven) contributions.
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(a)

(b)

Figure 12: INS spectra as a function of the scattering vector amplitude Q obtained with
incident wavelength λ=7 and 3.8 Å and sample temperature T = 1.5 K. Calculations
are represented by continuous lines.
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Topological effects on magnetic properties were revealed by an experimental and theoretical investigation on
two Cr-based ring-shaped nanomagnets Cr8 and Cr8Cd as model systems for “closed” and “open” antiferro-
magnetic rings, respectively. The detailed structures of the low-lying energy levels in terms of the total spin
were established directly by high-field magnetization measurements up to 57 T. All the differences observed in
the magnetization curve of the two systems can be interpreted by the different topology of the magnetic
coupling scheme whereby the experimental observations are well reproduced by theoretical calculations.
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The recent progress in synthesizing molecular nanomag-
nets gives us the opportunity to investigate magnetic proper-
ties of systems composed of a small number of magnetically
coupled spins with different topology.1 Molecular nanomag-
nets are formed by a small number of transition metal ions
with spins embedded in an organic shell so that the magnetic
interaction between neighboring molecules is very small.
Therefore one can investigate the magnetic properties of an
isolated molecular nanomagnet even if powder or bulk
samples are used for the measurements.

The antiferromagnetic �AF� ring-shaped system is a par-
ticularly interesting subgroup of molecular nanomagnets
with a finite number of magnetic ions lying on an almost
coplanar ring. Due to the finite-size effect, AF rings have a
discrete energy spectrum. The energies of the lowest-lying
excited states for the total spin ST can be approximately
given by so-called Lande rule E�ST�= �2J /N�ST�ST+1�,
where J is antiferromagnetic exchange coupling constant and
N is the number of magnetic ions in the ring.2 The applica-
tion of external magnetic field lifts the magnetic degeneracy
of each ST state, resulting in successive ground-state level
crossings.

One of the best characterized AF ring nanomagnets is
�Cr8F8�O2CC�CH3�3�16�0.25C6H14 �abbreviated as Cr8�3

whose ground state is a spin singlet ST=0 state due to AF
interaction �JCr−Cr�16.9 K� between nearest-neighbor Cr3+

�s=3 /2� spins.4 The magnetic interaction between spins is
connected to form a “closed” ring as schematically shown in
the top part of Fig. 1. On the other hand, owing to
recent great success in synthesizing so-called heterometallic
AF ring nanomagnets,5 it becomes possible to change
the topology of magnetic interaction of spins in AF
ring-shaped nanomagnets. One of the examples is
�Me2CH�2NH2�Cr8CdF9�O2CC�CH3�3�18� �abbreviated as
Cr8Cd�6 where a Cd2+ �s=0� ion is added to the eight Cr3+

ions of Cr8. Since the Cd2+ ion has s=0, AF magnetic inter-
action between nearest-neighbor Cr3+ spins is disconnected

by the Cd2+ �s=0� ion as illustrated in the top of Fig. 1,
whereby the system can be regarded as an “open” ring. AF
interaction between the Cr3+ spins for Cr8Cd is reported to
be JCr−Cr=14.8 K from specific heat and magnetic suscepti-
bility measurements.7

Both nanomagnets are composed of eight Cr3+ spins with
the only difference in the boundary conditions �see top of
Fig. 1�, thus making these nanomagnets ideal model systems
to study how the magnetic properties are affected by chang-
ing the topology of magnetic coupling. In this Brief Report,
we report a comprehensive study of the magnetic properties
of the “open” ring �Cr8Cd� and “closed” ring �Cr8� revealed
by high-field magnetization measurements at very low tem-
peratures. The observed magnetization processes are well re-
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FIG. 1. �Color online� �Top� Schematic views of Cr8 �closed
ring� and Cr8Cd �open ring�. �Bottom� Temperature dependence of
magnetic susceptibility of Cr8 �open circles� at H=1.28 T and
Cr8Cd �closed squares� at H=1.0 T. The inset shows the T depen-
dence of � for Cr8Cd in low-temperature region.
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Figure 13: (Top) schematic views of Cr8 (closed ring) and Cr8Cd (open ring). (Bottom)
Temperature dependence of magnetic susceptibility of Cr8 (open circles) at H=1.28 T
and Cr8Cd (closed squares) at H=1.0 T. The inset shows the T dependence of χ for
Cr8Cd in low-temperature region.

4.5 Magnetization study of Cr8Cd

In this section, a comprehensive study of the magnetic properties of the “open” ring

Cr8Cd and “closed” ring Cr8 revealed by high-field magnetization measurements at

very low temperatures is reported. The observed magnetization processes are well

reproduced by theoretical calculations and the differences in the two systems can be

explained entirely by the different topology of the magnetic interactions. The polycrys-

talline samples of (Me2CH2)NH2[Cr8CdF9(O2C C(CH3)3]18 and [Cr8F8(O2CC(CH3)3)16]

0.25C6H14 were prepared as described in Refs. [55] and [57] respectively. The tempera-

ture dependence of the magnetic susceptibility was measured in a temperature range of

T=1.8-300 K using a superconducting quantum interference device (SQUID) magne-

tometer (Quantum Design MPMS-7T). The magnetization curve was measured using

a pulsed magnet up to 57 T and at a temperature below 1 K utilizing 3He-4He dilution

refrigerator at the ISSP of the University of Tokyo. The duration of the pulsed mag-

netic field is about 6 ms. The temperature dependence of the magnetic susceptibility
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for Cr8Cd is shown in the bottom part of Fig. 13, together with the one of Cr8 for

comparison. The T dependence of Cr8 agrees with the one reported previously [57].

The broad maximum around 40 K is due to the antiferromagnetic interactions between

the Cr3+ spins. The χ tends to zero at low temperatures, reflecting the spin singlet

ground state. At high temperature, above ∼100 K, where each Cr3+ spin fluctuates in-

dependently, the susceptibility of both rings coincides with each other very well. With

decreasing T , χ for Cr8Cd starts to deviate from that of Cr8 below ∼70 K and keeps

increasing down to 2 K with a shoulder around ∼40 K. The χ in the open ring seems

to display a maximum around 2 K as shown in the inset of Fig. 13. Figures 14(a) and

14(b) show the magnetization (M) curves for Cr8Cd (T=0.5 K) and Cr8 (T=0.15 K)

respectively, for increasing magnetic field. In both systems, a clear step-wise increase

in magnetization is observed. At low magnetic field, M is observed to be zero for both

systems. This is a direct evidence of a singlet ground state for the “open” ring Cr8Cd

as well as for the “closed” ring Cr8. Thus the χ of Cr8Cd is expected to decrease below

2 K and will go to zero at low temperatures due to the singlet ground state. The

M rapidly increases step by step with plateaus of ∼2 µB, ∼4 µB, ∼6µB, . . ., at the

transition fields Hn (n = 1, 2, 3, . . .). The Hn’s were determined by the peak positions

of dM/dH curves which are shown by orange lines in Figs. 14(a) and 14(b) for Cr8Cd

(T=0.5 K) and Cr8 (T=0.15 K) respectively. The magnetization curves are nearly the

same with no evident hysteresis for the up and down magnetic-field processes. On the

other hand, we observed butterfly-type hysteresis in magnetization curves for both sys-

tems for increasing and decreasing magnetic field at T=1.3 K. The hysteresis behavior

of the magnetization for Cr8 is shown in Fig. 15, as an example. The observation

of the hysteresis behavior of the magnetization originates from nonequilibrium condi-

tions because of the use of a pulsed magnetic field with a few milliseconds duration.

Similar hysteresis of the magnetization curve measured utilizing a pulsed magnet have

been observed for several magnetic nanomagnets [58, 59, 60] and discussed in terms of

phonon bottle-neck effects and/or magnetic Föehn effects [61,62]. It is also interesting

to point out in Fig. 14(b) the small increase in M for Cr8 around the middle point in

each plateau. This originates from level crossings at excited energy levels. The detailed

analysis of the hysteresis behavior observed at T =1.3 K and magnetization jump due

to the excited energy level crossings will be reported elsewhere [9]. The most striking

difference between closed ring and open ring is found in the transition fields. The first

level crossing field from S=0 to S=1 is ∼7.3 T for Cr8 and 2.3 T for Cr8Cd. The differ-

ence cannot be explained by a small difference of the exchange coupling constants. In
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produced by theoretical calculations and the differences in
the two systems can be explained entirely by the different
topology of the magnetic interactions.

The polycrystalline samples of �Cr8F8�O2CC�CH3�3�16�
0.25C6H14 and �Me2CH�2NH2�Cr8CdF9�O2CC�CH3�3�18�
were prepared as described in Refs. 3 and 6, respectively.
The temperature dependence of the magnetic susceptibility
��� was measured in a temperature range of T=1.8–300 K
using a superconducting quantum interference device
�SQUID� magnetometer �Quantum Design MPMS-7T�. The
magnetization curve was measured using a pulsed magnet up
to 57 T and at a temperature below 1 K utilizing 3He− 4He
dilution refrigerator at the ISSP of the University of Tokyo.
The duration of the pulsed magnetic field is about 6 ms.

The temperature dependence of the magnetic susceptibil-
ity � for Cr8Cd is shown in the bottom part of Fig. 1, to-
gether with the one of Cr8 for comparison. The T depen-
dence of Cr8 agrees with the one reported previously.3 The
broad maximum around 40 K is due to antiferromagnetic
interaction between the Cr3+ spins. The � tends to zero at low
temperatures, reflecting the spin singlet ground state. At high
temperature, above �100 K, where each Cr3+ spin fluctuates
independently, the susceptibility of both rings coincides with
each other very well. With decreasing T, � for Cr8Cd starts
to deviate from that of Cr8 below �70 K and keeps increas-
ing down to 2 K with a shoulder around �40 K. The � in
the open ring seems to display a maximum around 2 K as
shown in the inset of Fig. 1.

Figures 2�a� and 2�b� show the magnetization �M� curves
for Cr8Cd �T=0.5 K� and Cr8 �T=0.15 K�, respectively, for
increasing magnetic field. In both systems, a clear step-wise
increase in magnetization is observed. At low magnetic field,
M is observed to be zero for both systems. This is a direct
evidence of a singlet ground state for “open” ring Cr8Cd as
well as “closed” ring Cr8. Thus the � of Cr8Cd is expected
to decrease below 2 K and will go to zero at low tempera-
tures due to the singlet ground state. The M rapidly increases
step by step with plateaus of �2 �B, �4�B, �6�B, . . ., at
the transition fields Hn �n=1,2 ,3 , . . .�. The Hn’s were deter-
mined by the peak positions of dM /dH curves which are
shown by orange lines in Figs. 2�a� and 2�b� for Cr8Cd
�T=0.5 K� and Cr8 �T=0.15 K�, respectively. The magne-
tization curves are nearly the same with no evident hysteresis
for the up and down magnetic-field process. On the other
hand, we observed butterfly-type hysteresis in magnetization
curves for both systems for increasing and decreasing mag-
netic field at T=1.3 K. The hysteresis behavior of the mag-
netization for Cr8 is shown in Fig. 3, as an example. The
observation of the hysteresis behavior of the magnetization
originates from nonequilibrium conditions because of the use
of a pulsed magnetic field with a few milliseconds duration.
Similar hysteresis of the magnetization curve measured uti-
lizing a pulsed magnet have been observed for several mag-
netic nanomagnets8–10 and discussed in terms of phonon
bottle-neck effects and/or magnetic Föehn effects.11 It is also
interesting to point out in Fig. 2�b� the small increase in M
for Cr8 around the middle point in each plateau. This origi-
nates from level crossings at excited energy levels. The de-
tailed analysis of the hysteresis behavior observed at T
=1.3 K and magnetization jump due to the excited energy
level crossings will be reported elsewhere.12

The most striking difference between closed ring and
open ring is found in the transition fields. The first level
crossing field from ST=0 to ST=1 is �7.3 T for Cr8 and 2.3
T for Cr8Cd. The difference cannot be explained by a small
difference of the exchange coupling constants. In addition,
the separation of magnetic fields between the level crossing
fields defined as �Hn=Hn−Hn−1 �where H0 is zero� is also
different as shown in Fig. 4. �Hn for Cr8 slightly decreases

FIG. 2. �Color online� �a� Magnetization curve of Cr8Cd mea-
sured at T=0.5 K. The red �dark gray� line shows the theoretical
calculated result for T=0.5 K with the set of parameters: JCr−Cr

=15.2 K, dCr=−0.3 K, and gCr=1.98. The orange �gray� line
shows the experimental dM /dH curve. �b� Magnetization curve for
Cr8 at T=0.15 K. The red �dark gray� line is the theoretical calcu-
lated result for T=0.1 K and parameters: JCr−Cr=16.9 K dCr=
−0.3 K, and gCr=1.98. The orange �gray� line shows the experi-
mental dM /dH curve.

FIG. 3. �Color online� Magnetization curves at T=1.3 K for
Cr8. The orange �gray� and black lines are for increasing and de-
creasing field, respectively.
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Figure 14: (a) Magnetization curve of Cr8Cd measured at T=0.5 K. The red line shows
the theoretical calculated result for T=0.5 K with the set of parameters: JCr−Cr =15.2
K, dCr=-0.3 K, and gCr=1.98. The orange line shows the experimental dM/dH curve.
(b) Magnetization curve for Cr8 at T=0.15 K. The red line is the theoretical calculated
result for T=0.1 K and parameters: JCr−Cr=16.9 K dCr= -0.3 K, and gCr=1.98. The
orange line shows the experimental dM/dH curve.
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produced by theoretical calculations and the differences in
the two systems can be explained entirely by the different
topology of the magnetic interactions.

The polycrystalline samples of �Cr8F8�O2CC�CH3�3�16�
0.25C6H14 and �Me2CH�2NH2�Cr8CdF9�O2CC�CH3�3�18�
were prepared as described in Refs. 3 and 6, respectively.
The temperature dependence of the magnetic susceptibility
��� was measured in a temperature range of T=1.8–300 K
using a superconducting quantum interference device
�SQUID� magnetometer �Quantum Design MPMS-7T�. The
magnetization curve was measured using a pulsed magnet up
to 57 T and at a temperature below 1 K utilizing 3He− 4He
dilution refrigerator at the ISSP of the University of Tokyo.
The duration of the pulsed magnetic field is about 6 ms.

The temperature dependence of the magnetic susceptibil-
ity � for Cr8Cd is shown in the bottom part of Fig. 1, to-
gether with the one of Cr8 for comparison. The T depen-
dence of Cr8 agrees with the one reported previously.3 The
broad maximum around 40 K is due to antiferromagnetic
interaction between the Cr3+ spins. The � tends to zero at low
temperatures, reflecting the spin singlet ground state. At high
temperature, above �100 K, where each Cr3+ spin fluctuates
independently, the susceptibility of both rings coincides with
each other very well. With decreasing T, � for Cr8Cd starts
to deviate from that of Cr8 below �70 K and keeps increas-
ing down to 2 K with a shoulder around �40 K. The � in
the open ring seems to display a maximum around 2 K as
shown in the inset of Fig. 1.

Figures 2�a� and 2�b� show the magnetization �M� curves
for Cr8Cd �T=0.5 K� and Cr8 �T=0.15 K�, respectively, for
increasing magnetic field. In both systems, a clear step-wise
increase in magnetization is observed. At low magnetic field,
M is observed to be zero for both systems. This is a direct
evidence of a singlet ground state for “open” ring Cr8Cd as
well as “closed” ring Cr8. Thus the � of Cr8Cd is expected
to decrease below 2 K and will go to zero at low tempera-
tures due to the singlet ground state. The M rapidly increases
step by step with plateaus of �2 �B, �4�B, �6�B, . . ., at
the transition fields Hn �n=1,2 ,3 , . . .�. The Hn’s were deter-
mined by the peak positions of dM /dH curves which are
shown by orange lines in Figs. 2�a� and 2�b� for Cr8Cd
�T=0.5 K� and Cr8 �T=0.15 K�, respectively. The magne-
tization curves are nearly the same with no evident hysteresis
for the up and down magnetic-field process. On the other
hand, we observed butterfly-type hysteresis in magnetization
curves for both systems for increasing and decreasing mag-
netic field at T=1.3 K. The hysteresis behavior of the mag-
netization for Cr8 is shown in Fig. 3, as an example. The
observation of the hysteresis behavior of the magnetization
originates from nonequilibrium conditions because of the use
of a pulsed magnetic field with a few milliseconds duration.
Similar hysteresis of the magnetization curve measured uti-
lizing a pulsed magnet have been observed for several mag-
netic nanomagnets8–10 and discussed in terms of phonon
bottle-neck effects and/or magnetic Föehn effects.11 It is also
interesting to point out in Fig. 2�b� the small increase in M
for Cr8 around the middle point in each plateau. This origi-
nates from level crossings at excited energy levels. The de-
tailed analysis of the hysteresis behavior observed at T
=1.3 K and magnetization jump due to the excited energy
level crossings will be reported elsewhere.12

The most striking difference between closed ring and
open ring is found in the transition fields. The first level
crossing field from ST=0 to ST=1 is �7.3 T for Cr8 and 2.3
T for Cr8Cd. The difference cannot be explained by a small
difference of the exchange coupling constants. In addition,
the separation of magnetic fields between the level crossing
fields defined as �Hn=Hn−Hn−1 �where H0 is zero� is also
different as shown in Fig. 4. �Hn for Cr8 slightly decreases

FIG. 2. �Color online� �a� Magnetization curve of Cr8Cd mea-
sured at T=0.5 K. The red �dark gray� line shows the theoretical
calculated result for T=0.5 K with the set of parameters: JCr−Cr

=15.2 K, dCr=−0.3 K, and gCr=1.98. The orange �gray� line
shows the experimental dM /dH curve. �b� Magnetization curve for
Cr8 at T=0.15 K. The red �dark gray� line is the theoretical calcu-
lated result for T=0.1 K and parameters: JCr−Cr=16.9 K dCr=
−0.3 K, and gCr=1.98. The orange �gray� line shows the experi-
mental dM /dH curve.

FIG. 3. �Color online� Magnetization curves at T=1.3 K for
Cr8. The orange �gray� and black lines are for increasing and de-
creasing field, respectively.
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Figure 15: Magnetization curves at T=1.3 K for Cr8. The orange and black lines are
for increasing and decreasing field respectively.

addition, the separation of magnetic fields between the level crossing fields defined as

∆Hn = Hn−Hn−1 (where H0 is zero) is also different as shown in Fig. 16. ∆Hn for Cr8

slightly decreases from 7.3 T for n=1 to ∼6.6 T with increasing n. On the contrary,

for Cr8Cd, ∆Hn initially increases from 2.3 T (n=1) to 7.2 T (n=3) then decreases

to 5.4 T (n=5). Another interesting feature expected from the topological effects is

the magnetic moment redistributions in the magnetic ground state. In a closed ring,

the excitation energy does not depend on the position so that one can expect uniform

spin moment distributions in the magnetic ground state. In other words, the excited

magnon (so-called triplon) delocalizes in the ring. On the other hand, in the case of

the open ring, as the excitation energy depends on the position, the spins at the edge

position would be polarized easier than in other positions. This can be regarded as a

localization of the magnons at the edge position. Thus the magnetic moments depend

on the position in the open ring system. To make the above idea more quantitative,

we have carried out theoretical calculations for the Cr-based ring system where each

magnetic ion has s=3/2. The starting spin Hamiltonian describing the AF ring-shaped

clusters is

H = J

i=1∑
m−1

si · si+1 + J ′s8 · s1 +
m∑
i=1

dCr

[
s2
z(i)−

1

3
si(si + 1)

]

−gCrµB
m∑
i=1

H · si (78)



4.5. Magnetization study of Cr8Cd 53

from 7.3 T for n=1 to �6.6 T with increasing n. On the
contrary, for Cr8Cd, �Hn initially increases from 2.3 T
�n=1� to 7.2 T �n=3� then decreases to 5.4 T �n=5�.

One can give a simple qualitative explanation for the dif-
ference of level crossing fields for the closed and open ring
nanomagnets. Let us consider an ideal even-numbered AF
ring nanomagnet where each magnetic ion has s=1 /2 for
simplicity. In a closed ring, all spins are coupled to nearest-
neighbor spins with AF exchange J, with an antiferromag-
netic spin structure for ST=0 ground state as illustrated in
Fig. 1. In order to flip one of the spins to create the ST=1
state, one needs an excitation energy corresponding to such
as 2J because each spin is coupled to two spins at either side.
On the other hand, in the case of an open ring, the excitation
energy depends on the position. When the spin at the edge
position is flipped in ST=1 state, the excitation energy could
be considered as only J because the flipped spin is coupled to
only a spin at one side. The simple model explains qualita-
tively the experimental observation that the first excitation
energy in Cr8Cd is smaller than the one in Cr8 and gives a
pictorial view of the edge topological effects.

Another interesting feature expected from the topological
effects is the spin moment redistributions in the magnetic
ground state. In a closed ring, the excitation energy does not
depend on the position so that one can expect uniform spin
moment distributions in magnetic ground state. In other
words, the excited magnon �so-called triplon� delocalizes in
the ring. On the other hand, in the case of the open ring, as
the excitation energy depends on the position, spins at the
edge position would be polarized easier than in other posi-
tions. This can be regarded as a localization of the magnons
at the edge position. Thus spin moments depend on the po-
sition in the open ring system.

To make the above idea more quantitative, we have
carried out theoretical calculations for the Cr-based ring
system where each magnetic ion has s=3 /2. The starting
spin Hamiltonian describing the AF ring-shaped clusters
is

H = �
i=1

m−1

Jsi · si+1 + J�s8 · s1 + �
i=1

m

dCr�sz
2 −

1

3
s�s + 1��

− gCr�B�
i=1

m

H · si, �1�

where m is the number of magnetic ions �spin�. The first and
second terms are the isotropic nearest-neighbor Heisenberg
interaction. J� is equal to J for Cr8 while J� is assumed to be
zero for Cr8Cd because the Cd ions have no spin moment.
We also assume that the small next-nearest-neighbor interac-
tion is neglected. The third term describes local crystal field
�dCr represents a uniaxial anisotropy� and the fourth term
represents the Zeeman interaction �gCr is g-factor for the Cr3+

ions�.
The Hamiltonian is diagonalized by following a perturba-

tive procedure described in Refs. 4 and 13. Calculated eigen-
states and eigenvalues have been used to evaluate the
magnetic-field dependence of the thermal averaged magneti-
zation and the local spin moments. Since we used polycrys-
talline samples, powder-averaged magnetizations are calcu-
lated. With a set of parameters of JCr−Cr=16.9 K, dCr
=−0.3 K and gCr=1.98, the magnetization curve for the Cr8
is well reproduced by the calculations �see, Fig. 2�b��. The n
dependence of �Hn is also well reproduced by the theory as
seen in Fig. 4. The theoretical estimate of �Hn is done by
determining Hn from the peak positions of dM /dH for the
calculated powder-averaged M. The experimental results for
Cr8Cd are also well reproduced by the calculations with the
set of parameters: JCr−Cr=15.2 K, dCr=−0.3 K, and gCr
=1.98, as shown by the red line in Fig. 2�a�. The value of
dCr=−0.3 K is in good agreement with a previously reported
value.7 Interestingly, the peculiar behavior of �Hn in Cr8Cd
is almost perfectly reproduced by the calculations as shown
by orange open circles in Fig. 4.

As expected, a large difference of distributions for spin
moment on different Cr sites in the closed and open nano-
magnets is evidenced by the theoretical calculation. In the
case of the closed ring Cr8, the spin moment on the Cr ions
is zero in ST=0 ground state below first level crossing field
of �7.3 T. Above the crossing field, the Cr ions have a
uniform local spin moment of 1 /4 �B for each spin in the
ST=1 state, as shown by the dotted line in Fig. 5. This can be
interpreted as a consequence of the delocalized traveling
triplon with S=1. On the contrary, the breaking of the ring
symmetry in the open ring Cr8Cd leads to redistributions of
spin moments with a staggered spin structure as a conse-
quence of the localized triplon on the edge site. Site depen-
dence of spin moments on Cr ions is shown by solid lines in
the figure. Cr ions near the Cd ions possess the largest spin
moment, while the spin moment on Cr ions decreases with
increasing distance from the Cd ions. Note that spins in
Cr8Cd align not uniformly �ferromagnetically� as in Cr8 but
staggeringly �antiferromagnetically�. These results indicate
that the microscopic spin structure in the magnetic ground
states is different in the two systems, although the macro-
scopic total spin moment is the same. To confirm the spin
moment distribution from the experimental point of view, a

FIG. 4. �Color online� �Hn as a function of n. The closed and
open symbols show experimental and theoretical results, respec-
tively. The experimental data are taken from the experimental re-
sults shown in Fig. 2.
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Figure 16: ∆Hn as a function of n. The closed and open symbols show experimental
and theoretical results respectively. The experimental data are taken from the experi-
mental results shown in Fig. 14.

where m is the number of magnetic ions. The first and second terms are the isotropic

nearest-neighbor Heisenberg interaction. J ′ is equal to J for Cr8 while J is assumed

to be zero for Cr8Cd because the Cd ions have no magnetic moment. We also as-

sume that the small next-nearest-neighbour interaction is neglected. The third term

describes local crystal fields (dCr represents a uniaxial anisotropy) and the fourth term

represents the Zeeman interaction (gCr is g-factor for the Cr3+ ions). The Hamiltonian

is diagonalized by following a perturbative procedure described in Refs. [39, 63, 64].

Calculated eigenstates and eigenvalues have been used to evaluate the magnetic-field

dependence of the thermal averaged magnetization and the local magnetic moments.

Since we used polycrystalline samples, calculations are powder-averaged. With a set

of parameters of JCr−Cr=16.9 K, dCr =-0.3 K and gCr=1.98, the magnetization curve

for the Cr8 is well reproduced by the calculations [see Fig. 14(b)]. The n dependence

of ∆Hn is also well reproduced by the theory as seen in Fig. 16. The theoretical

estimate of ∆Hn is done by determining Hn from the peak positions of dM/dH for

the calculated powder-averaged M . The experimental results for Cr8Cd are also well

reproduced by the calculations with the set of parameters: JCr−Cr=15.2 K, dCr=-0.3

K, and gCr =1.98, as shown by the red line in Fig. 14(a). Interestingly, the peculiar

behavior of ∆Hn in Cr8Cd is almost perfectly reproduced by the calculations as shown

by orange open circles in Fig. 16. As expected, a large difference of distributions for



54 4. Neutron spectroscopy and magnetization study of Cr8Zn and Cr8Cd

the magnetic moments on different Cr sites in the closed and open nanomagnets is ev-

idenced by the theoretical calculation. In the case of the closed ring Cr8, the magnetic

moment on the Cr ions is zero in S=0 ground state below the first level crossing field

of ∼7.3 T. Above the crossing field, the Cr ions have a uniform local magnetic moment

of 1/4 µB for each ion in the S=1 state, as shown by the dotted line in Fig. 17. This

can be interpreted as a consequence of the delocalized traveling triplon with S=1. On

the contrary, the breaking of the ring symmetry in the open ring Cr8Cd leads to redis-

tributions of magnetic moments with a staggered spin structure as a consequence of

the localized triplon on the edge sites. The site dependence of the magnetic moments

on Cr ions is shown by solid lines in the figure. Cr ions near the Cd ions possess

the largest magnetic moment, while the magnetic moment on Cr ions decreases with

increasing distance from the Cd ions. Note that spins in Cr8Cd align not uniformly

(ferromagnetically) as in Cr8 but staggeringly (antiferromagnetically). These results

indicate that the microscopic spin structure in the magnetic ground states is different

in the two systems, although the macroscopic total magnetic moment is the same. To

confirm the spin moment distribution from the experimental point of view, a nuclear

magnetic resonance (NMR) measurement is one of the most powerful tools. For ex-

ample, local magnetic moment for each Cr ion has been revealed by 53Cr-NMR in an

odd numbered “open” ring nanomagnet Cr7Cd [65]. The 53Cr-NMR measurements for

Cr8 and Cr8Cd are currently in progress. In conclusion, the magnetic properties of two

different antiferromagnetic ring-shaped nanomagnets Cr8 and Cr8Cd have been inves-

tigated experimentally and theoretically. Different magnetic couplings in the “closed”

ring Cr8 and “open” ring Cr8Cd nanomagnets give us opportunities to investigate the

role on magnetic properties of spin topology. The spin singlet ground state and several

excited levels in Cr8Cd as well as in Cr8 are probed directly from high-field magneti-

zation measurements below 57 T using a nondestructive pulse magnet in conjunction

with a dilution fridge. The energy level structures for quantum total spin states for

both systems are directly determined by observation of very clear step-wise increase

in the magnetizations. The striking difference of energy structure for the total quan-

tum spin states in the two systems is well understood in terms of topology (in other

words, different periodic boundary conditions) and was well reproduced by theoretical

calculations based on a spin Hamiltonian including single-ion anisotropy contributions.
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Figure 17: Magnetic-field dependence of thermal averaged local magnetic moments for
Cr8 (dotted line) and Cr8Cd (solid lines) for T=0.5 K calculated from Eq. (78). The
numbering of Cr sites for Cr8Cd is shown in the inset.

4.6 Conclusions

We have investigated the consequences of the breaking of the ring symmetry in Cr8Zn

and Cr8Cd spin segments taking the closed Cr8 ring as reference. Firstly inelastic

neutron scattering experiments have been performed in the spin segment Cr8Zn. This

has allowed to determine the set of isotropic exchange and CF interactions parame-

ters necessary to describe the magnetic excitations with energy below about 4 meV

by comparing the experimental cross sections with theoretical predictions. The most

relevant effect of the ring opening has been found in the structure of eigenstates of the

Heisenberg isotropic exchange interaction: the appearance of disjoint quantum fluctu-

ations of the total spin length of the two sublattices causes the usual classification of

low-lying states into distinct rotational bands to fail. These fluctuations show up in

the measured INS intensity as a function of the scattering wave vector Q, and produce

the large decrease of the effective anisotropy with respect to the closed ring. Another

consequence is the decrease of the gap between ground- and first-excited multiplets.

We have then focused on this last point by analysis of magnetization measurements

on Cr8Cd (open ring) and Cr8 compounds. In both clusters the magnetization M as

a function of applied magnetic field shows a clear staircase structure. By determining

the peak positions of dM/dH it is possible to demonstrate that Cr8Cd shows a more
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prominent deviation from Landé rule with respect to Cr8 due to the ring opening.



Chapter 5

Macroscopic measurements in

Cr7Ni and Cr8Ni heterometallic

rings

In this chapter attention will be focused on two heterometallic compounds named Cr7Ni

and Cr8Ni derived from the well-known Cr8 ring. One Ni2+ ion (s=1) replaces a Cr3+

ion (s=3/2) to have Cr7Ni, whilst it is inserted in the ring-shaped structure of the

eigth chromiums in order to have a Cr8Ni cluster. Due to the dominant antiferromag-

netic (AF) exchange interactions and the even number of magnetic ions Cr7Ni shows a

Kramers doublet S = 1/2 ground state. This is one of the reasons for which Cr7Ni has

been considered to be suitable in the field of quantum computation [13]. As regards

Cr8Ni compound, it represents the first example of AF ring with an odd number of

magnetic ions, with the exception of spin triangles [9, 66]. Contrary to what occurs

in odd-membered rings with half integer spins this cluster has a non magnetic S = 0

ground state. Nevertheless, Cr8Ni is a frustrated spin systems since all AF interactions

can not be simultaneously satisfied [67]. Magnetization measurements on both com-

pounds allow to demonstrate how the spin Hamiltonian approach proves to be suitable

even at very high fields, exploring spin multiplets no accessible to other experimental

techniques (e.g. inelastic neutron scattering).

57
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Figure 18: View of the structure of a Cr7Ni molecule. Green spheres represent the Cr3+

ions, while the yellow one represents the Ni2+ ion.

5.1 The Cr7Ni heterometallic ring

The magnetic molecule has been theoretically analyzed within a spin Hamiltonian

approach, with the Hamiltonian given by:

H =
∑
i>j

Jijs(i) · s(j) +
∑
i

di
[
s2
z(i)− si(si + 1)/3

]
+
∑
i>j

s(i) ·Dij · s(j)− µB
∑
i

giH · s(i), (79)

where s(i) is the spin operator of the the ith ion in the molecule (s(i)=3/2 for Cr3+

ions, and s(i)=1 for the Ni2+ ion). The first term of the above equation is the dom-

inant nearest neighbour Heisenberg exchange interaction. The second and the third

terms describe the uniaxial local crystal fields and anisotropic intracluster spin-spin

interactions respectively (with the z axis assumed perpendicular to the plane of the

ring). The last term represents the Zeeman coupling with an external field H. The

parameters of the above Hamiltonian were determined by inelastic neutron scattering

(INS) experiments [30, 68]. In order to corroborate the microscopic description of the

Cr7Ni from INS data, a detailed study of high field magnetization is very powerful.

In fact, with high pulsed fields up to almost 60 T, spin multiplets not accessible to a

standard INS experiment can be explored. In Fig. 19(a) the magnetization curve as a

function of the magnetic field H is reported. A clear staircase structure with plateaus

at ≈ 1µB, ≈ 3µB and odd multiples of µB reflects the change in the ground state due

to the external field at the level anticrossing fields Hn. An hysteresis of the measured

magnetization curves has been observed. The effect arises from the non-equilibrium
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Figure 19: Magnetization curve of Cr7Ni (top) and derivative dM/dH (bottom) at
T=1.3K. Red and black lines represent the down and up experimental magnetic field
processes respectively. The dashed blue lines represent the theoretical calculation medi-
ated on powders with the following set of parameters: JCr−Cr=16.9 K, JCr−Ni=19.6
K, dCr=-0.3 K, dNi=-4 K, gCr=1.98, gNi=2.2.

condition due to the high pulsed magnetic field with a few millisecond duration [7] and

has been discussed in terms of phonon bottle-neck and magnetic Foehn effects [61].

There is a very good agreement between the measured and calculated magnetization

curves. This is clearly visible in Fig. 19(b) where the positions of the main peaks of the

calculated and measured dM/dH matches correctly. The smaller peaks in the experi-

mental dM/dH are due to level anticrossings between excited energy levels. The effects

are caused by the non-equilibrium exeperimental conditions and are not included in

equilibrium calculations reported in Fig. 19 [7]. These results confirm that the micro-

scopic picture derived from INS experiments [30, 68] perfectly holds even at very high

applied magnetic fields.

5.2 The Cr8Ni heterometallic ring

In Chapter 4 the magnetic properties of AF even numbered rings have been shown in

order to clarify the effect of the breaking of the ring symmetry. For this purpose the



60 5. Macroscopic measurements in Cr7Ni and Cr8Ni

Figure 20: Schematic view of Cr8Ni compound.

well-known Cr8 ring and the spin segments Cr8Zn, Cr8Cd have been taken into account,

where Zn2+ and Cd2+ are two non magnetic ions. If the ion inserted in the ring-shape

structure is magnetic, an AF ring with an odd number N of magnetic ions is obtained.

In the case of odd-membered AF rings, magnetic properties are expected to be changed

drastically due to the spin frustration effects. The simplest AF ring with N odd is a sys-

tem with three spins s=1/2 antiferromagnetically coupled: within this regard V15 [69]

and Cu3 [70] molecular magnets are good examples. In these frustrated triangular AF

spin systems the ground state is a magnetic S = 1/2 [69]. Other odd-membered AF

rings with N >3 have been more difficult to synthesize. Quite recently a new family

of odd-membered AF rings with N=9 has been created with the synthesis of a het-

erometallic Cr-based ring-shaped AF magnet (C6H11)2NH2[Cr8NiF9(O2CC(CH3)3)18]

(in short, Cr8Ni) by Winpenny and co-workers [66,71,72]. The Cr8Ni is the first odd-

membered AF ring with N >3. The cluster shows spin frustration effects because

all antiferromagnetic interactions can not be simultaneously satisfied. For this reason,

Cr8Ni molecule can be regarded as a magnetic analogue of the Möbius strip [66,71]. Due

to the odd number of spins it is impossible to align all nearest neighbour spins antipar-

allel to each other. The region where the spins are not antiparallel can be considered

as a knot of the Möbius strip. The precursor of Cr8Ni is a well known even membered

AF ring [Cr8F8(O2CC(CH3)3)16]0.25C6H14 (in short, Cr8) whose ground state is spin

singlet S=0 state due to AF interaction (JCr−Cr ≈16.9 K) between nearest neighbor

Cr3+ (s=3/2) spins [39]. The Cr8Ni is basically obtained by inserting a Ni2+ (s=1) ion

into the Cr8 ring. The metal ions are bridged by one fluoride and two (CH3)3CCO2

radicals [66, 71]. The antiferromagnetic interactions between Cr3+ ions and between

Cr3+ and Ni2+ ions are reported to be JCr−Cr=16 K and JCr−Ni=70 K respectively.
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Figure 21: Measured (scatters) and calculated (line) temperature dependence of mag-
netic susceptibility chi in Cr8Ni. The fall of χ at T ≈0 strongly support the occurence
of a non magnetic ground state. Experimental data are taken from Ref. [66].

These values were obtained by a fit of the temperature dependence of the magnetic

susceptibility χ which shows two peaks around 2K and 25K (see Fig. 21) [66,71]. From

the fitting of the magnetic susceptibility in the temperature range T =1.6-300 K it is

also inferred that the ground state is a singlet S = 0 and that the first excited state is

a S = 1 at 3.7 K from the ground state. This fit was based on a spin Hamiltonian with

only the isotropic Heisenberg exchange term. The presence of a singlet ground state in

this frustrated ring is quite interesting and requires more direct experimental evidence.

In order to obtain more information on the ground state of the Cr8Ni system from an

experimental point of view, it is important to investigate the magnetic properties at

low temperature, i.e. well below the lowest energy gap temperature. However, there

are no experimental studies of magnetic properties on this cluster at low temperatures

below 1 K up to now. The magnetization and NMR experiments performed on Cr8Ni

clearly show evidence of a spin singlet ground state and allows to establish the energy

separation of the low-lying quantum magnetic states. The experimental results are in

good agreement with predictions from theoretical calculations. Interestingly, the width

of the steps in the field-dependence of the magnetization and the lack of sharp minima

in the field-dependence of the specific heat show that sizeable Dzyaloshinski-Moriya

(DM) interactions are present and lead to anticrossings between states of different to-

tal spin.

Fig. 22(a) shows the magnetization curves for Cr8Ni at T=0.1 K for increasing (de-

creasing) magnetic fields: a clear step-wise increase (decrease) of magnetization is

observed. The magnetization curves are nearly the same with no striking hysteresis
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Figure 22: Magnetization curve of Cr8Ni measured at T=0.1 K. Blue line shows the
theoretical calculated results for T=0.1 K with the following parameters: JCr−Cr=14.7
K, JCr −Ni=85 K, dCr=-0.42 K and dNi=-4.9 K. (b) dM/dH curve at T=0.1 K.
Blue line shows the theoretical calculated results for T=0.1 K.

for the up and down magnetic process at this temperature. The magnetization rapidly

increases step by step with plateaus at ≈ 2µB, ≈ 4µB, ≈ 6µB, ≈ 8µB, ≈ 10µB between

the transition fields Hn (n=1,2,...). The Hn is determined by the peak positions of

dM/dH curves [see Fig. 22(a)] to be 2.81, 12.8, 18.3, 23.5, and 28.5T, for n=1, 2,

3, 4, and 5, respectively. Line width (δH) defined at half amplitude for each peak in

dM/dH is estimated to be 3.07, 1.61, 1.69, 2.15, and 2.06 T for n=1, 2, 3, 4, and 5,

respectively. These values are larger than an expected thermal width 0.26 T for T=0.1

K estimated from an equation of δH = 3.53kBT/gµB with an assumption of g ≈ 2. As

discussed below, the broadening is also too large to be attributed merely to the distri-

bution of level crossing fields Hn in the powder sample, and it is thus an indication of

the presence of level anticrossing effects. If the ground state of system were magnetic,

one should observe Brillouin function-like increase for the initial magnetization. The

observed convex downward magnetization curve clearly proves a nonmagnetic ground
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Figure 23: H-dependence of ∆H. Closed and open symbols show experimental and
theoretical results respectively.

state. Thus the Hn are the level crossing fields between the S=0 ground state and the

first excited S=1 for n=1, between S=1 and S=2 for n=2 and so on. The difference

between adiacent level crossing fields defined as ∆H = Hn −Hn−1 (where H0 is zero)

as a function of n is shown in Fig. 23. The n-dependence of ∆H for Cr8Ni does not

follows the Landé’s rule which predicts that ∆H is independent of n. Fig. 24 shows

the H-dependence of the specific heat Ctotal at T=0.5 K while the inset shows the

temperature dependence of the specific heat Ctotal under zero magnetic field. The mea-

sured specific heat is the sum of a magnetic contribution and a lattice contribution, i.e.

Ctotal = Cmag +Clattice. However, as we will discuss later, the observed specific heat at

T=0.5 K can be considered mainly due to the magnetic contributions Cmag. A single

broad peak is observed around the first level crossing H1=2.82 T. At the second level

crossing, one can resolve two peaks at 12.1 and 13.7 T with a small dip around 13.0 T.

In presence of a level crossing one should indeed observe two peaks with a dip in the

middle. This is due to a Schottky-type anomaly as it was observed in even membered

AF rings Fe6 [73] and Cr8 [63]. The two-level Schottky model predicts

Cs = (∆(H)/kBT )2 × exp(∆(H)/kBT )/(1 + exp(∆(H)/kBT ))2

a behavior which yields a maximum when ∆(H) ≈2.5 kBT . Near a level crossing

field, the energy separation ∆(H) between two lowest-lying states can be expressed

approximately as ∆(H) ≈ gµB|Hn − H| and thus two maxima are expected at |H −
Hn|=2.5 kBT/gµB with a dip at Hn where ∆(H) is smallest. In presence of a pure level

crossing the dip between the two Schottky-like peaks should go down to zero since at

level crossing ∆(H)=0 while in presence of a level repulsion (level anticrossing) the dip
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Figure 24: H-dependence of the specific heat at T=0.5 K. Solid line is theoretical
calculated results for T=0.5K. The inset shows temperature dependence of specific heat
measured under zero magnetic field. Red and broken lines in the inset show calculated
Ctotal and Clattice, respectively. Clattice is calculated from the Eq. (82) with this set of
parameters: r=343, ΘD=180 K and d=0.27

can be much less pronounced and it gives a measure of the gap at the anticrossing [63].

As shown in Fig. 24 a small dip superimposed on a broad maximum is observed only

at the second level crossing. The broadening of the peaks cannot be ascribed to the

distribution of the level crossing fields in a powder sample as will be demonstrated

below in the discussion of the broadening of the magnetization steps. Thus one can

conclude that at both the first and second level crossing a sizeable gap exists between

the two crossing levels (level anticrossing).

The spin singlet ground state in Cr8Ni is also revealed by proton NMR spectrum

measurements at H=0.2 T. We observed a single narrow line of 1H-NMR as shown in

the inset of Fig. 25. The full width at half amplitude (FWHA) decreases from ≈62

kHz (≈15 Oe) at T=1 K on lowering temperature and becomes almost independent of

T (≈42 kHz (≈10 Oe)) below ≈0.6 K as shown in Fig. 25. The FWHA≈10 Oe can

be explained by nuclear-nuclear dipolar interactions. In fact the nuclear dipolar field

between two protons is of the order of γn~/r3 ≈8.3 Oe when one assumes an internuclear

distance r = 1.5 Å (γn is the gyro magnetic ratio of a proton). Thus we may conclude

there is no magnetic broadening in the spectrum due to the Cr and/or Ni spin moments.

This is consistent with a total spin S=0 ground state and also with a zero expectation
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Figure 25: Temperature dependence of full width of half amplitude (FWHA) of 1H-
NMR spectra in Cr8Ni (closed circles) at H=0.2 and Cr8Cd (closed squares) at H=0.19
T. The inset shows a typical 1H-NMR spectrum in Cr8Ni at T=0.1K

value for the local spin component at each ion site. To check this conclusion, we have

measured the FWHA of 1H-NMR spectrum at nearly the same magnetic field H=0.19 T

in a similar odd membered Cr-based AF ring Me2NH2[Cr8CdF9(O2CCMe3)18] (in short,

Cr8Cd) which has a spin singlet ground state with a first excited spin triplet state at ∼3

K above the ground state [7,52]. As shown in Fig. 25, the FWHA for both compounds

coincide at low temperatures within our experimental uncertainty, indicating that the

FWHA of about 10 Oe originates from the nuclear dipolar interaction, which is the same

for isostructural Cr8Ni and Cr8Cd. We turn now to a quantitative comparison of the

experimental results with the theoretical calculations. The starting spin Hamiltonian

for the odd membered AF ring is

H = JCr−Ni(S8 · SNi + SNi · S1) + JCr−Cr

7∑
i=1

S(i) · S(j)

+dCr

8∑
i=1

[
S2
z (i)− SCr(SCr + 1)/3

]
+ dNi

[
S2
z,Ni − SNi(SNi + 1)/3

]
−gCrµB

8∑
i=1

H · Si − gNiµBH · SNi, (80)

where i labels the eight Cr ions (spins). The first and second terms describe the

dominant isotropic Heisenberg interaction. Here we assume two differente exchange

costants, one between Cr and Ni spins (JCr−Ni) and another between Cr spins (JCr−Cr).

The third and fourth terms describe local crystal fields, where dCr and dNi represent

the uniaxial single ion anisotropy for Cr and Ni ions, respectively. Finally, the fifth

and sixth terms represent the Zeeman interactions. The two exchange parameters



66 5. Macroscopic measurements in Cr7Ni and Cr8Ni

have been determined to be JCr−Cr=14.7 K and JCr−Ni=85 K by fitting magnetization

and susceptibility data. Reasonable values of dCr an dNi turn out to produce tiny

effects in the powder properties. Hence we assume dCr=-0.42 K as in the parent Cr8Zn

compound [8] and the same ratio of dCr to dNi as in Cr7Ni [68], yielding dNi =-4.9 K.

The Hamiltonian is diagonalized by following the procedure described in Ref. [39]. The

calculated eigenstates and eigenvalues have been used to evaluate the H-dependence

of the thermal averaged magnetization and specific heat (Cmag) as well as the T -

dependence of χ and Cmag. Since we used polycrystalline samples, all calculated results

are powder averaged so that they can be directly compared with the experimental

observations. By using gCr=1.98 and gNi=2.2, the T -dependence of χ (see the solid

line in the Fig. 21) and the positions of the observed values of Hn are well reproduced

[see Fig. 23(c)]. The n dependence of ∆H is also well reproduced by the theory as

shown in Fig. 23. On the other hand, the width of the calculated peaks is much smaller

than the experimental results as shown in Fig. 22(b). The origin of the broadening

of the magnetization steps is likely to be the same as the origin of the broadening

of the specific heat peaks and is discussed after the presentation of the specific heat

results. The temperature dependence of the calculated specific heat C is shown by a

line in the inset of Fig. 24. The temperature dependence of the calculated specific heat

Ctotal(= Cmag + Clattice) is shown by a red solid line in the inset of Fig. 24. Cmag was

calculated from the following equation [39]:

Cmag
Rβ2

∑
iE

2
i exp(−βEi)

∑
i exp(−βEi)− [Eiexp(−βEi)]

[
∑

i exp(−βEi)]
, (81)

where Ei are the eigenvalues obtained from Eq. (80), and β = (kBT )−1. The lattice

contribution to C has been estimated from a phenomenological model [74];

Clattice/R = 234rT 3/(ΘD + δT 2)3 (82)

where r is the number of atoms per molecule, and ΘD and δ are parameters. For Cr8Ni,

we used a set of parameters: r=343, ∆D=180 K and δ =0.27 whose values are very

similar to those reported for the isostructural AF ring Cr8Cd [52]. The broken line in

the inset shows the calculated Clattice. The specific heat at low temperatures (below 1

K) is dominated by the magnetic contribution (Cmag). The result is in good agreement

with the experimental data as in the inset of Fig. 24. It should be noted that we did

not use any scaling factors to fit the experimental data by the calculation. On the

other hand the calculated Cmag at T=0.5 K as a function of H, shown by a dashed line
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in Fig. 24, is not in good agreement with the experiments. The problem is the remark-

able broadening of the peak in the experimental specific heat at level crossings, which

should have the same origin as the broadening in the magnetization steps [see Fig.

22(a)] and which is not reproduced by calculations based only on Eq. (80). We have

already introduced reasonable single-ion terms in the calculations, hence the broaden-

ing effects in the experiment cannot be simply attributed to a distribution of Hn due

to the random direction of crystal-field anisotropy axes in a powder sample. In prin-

ciple, a distribution of exchange parameters from molecule to molecule resulting from

disorder (J-strain) might produce a broadening. For instance, in Cr7Ni, a distribution

with standard deviation of the order of 2.5% was found [68]. However we find that an

unrealistically large value for the standard deviation has to be assumed to account for

the entity of the observed effects. In addition, the effect of J-strain on the minimum in

C at 2.7 T is much smaller than that on the minimum at 13 T, whereas in experimental

data the broadening is of the same entity in the two minima. On the other hand, if the

level crossings (LCs) are not true crossings but level anticrossings(ACs), Cmag does not

vanish at Hn because ∆(H) remains finite. By considering only the lowest multiplet

for each value of S, even-S and odd-S multiplets belong to different irreducible rep-

resentations of the ideal spin permutational symmetry of Eq. (80). Hence, crossings

can be turned into ACs only by including in the Hamiltonian terms which break this

symmetry (for instance site-dependent Cr crystal fields). However, this sort of sym-

metry lowering would not significantly affect the first crossing at 2.7 T. In fact, only

a DM interaction can directly mix the S=0 and S=1 multiplets because it is the only

term (beside the Zeeman term which does not break spin permutational symmetry)

which is described by rank-one complex tensor operators T 1
Q and because if K > 1〈

S = 0
∣∣TKQ ∣∣S = 1

〉
= 0. Hence, the absence of a minimum in C(H) at 2.7 T provides

strong evidence of the presence of DM interactions in the microscopic Hamiltonian.

The most likely sources of this interaction are the two Cr-Ni bonds because the inver-

sion symmetry is maximally broken and the exchange interaction is the strongest. In

addition, the orbital degrees of freedom which are besides the DM interaction are much

less quenched in Ni2+ than in Cr3+ ions. To investigate the effect of DM interactions,

we have made calculations assuming the simplest possible choice for their form:

HDM = D · (S8 × SNi) + D · (SNi × S1) (83)

where we assume the two DM vectors to be equal and parallel to the z axis. The actual

DM vectors are very likely to be different than in Eq. (83), but our aim is not to look
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Figure 26: Magnetic-field dependence of the low-lying energy levels of Cr8Ni without
(top) or with (bottom) DM interactions described by Eq. (83). The fields makes an
angle of 45 degrees with the z axis. For each value of H the ground-state energy has
been set to zero.

for a best fit of the data but merely to assess whether the DM interaction is a realistic

mechanism to explain the observed behavior or not. We assume for the modulus of

D the typical value D= 0.1 JCr−Ni. The resulting spectrum is compared with that

obtained for D=0 in Fig. 26. Sizeable ACs open up at Hn whose amplitude depends

on the angle between the applied field and the z axis. The effect on C is shown by

the continuous line in Fig. 24. The DM interactions remove the sharp minima at Hn

in agreement with the experimental results. In addition, the width of steps in the

calculated field-dependence of M is in very good agreement with experimental data

[see the blue line in Figs. 22(a) and 22(b)]. Having established the main interactions

appearing in the microscopic Hamiltonian we can study the properties of the resulting

ground state for H = 0. Since isotropic exchange is the dominant interaction we focus

on the ground state of the cluster Hamiltonian (80), neglecting crystal-field and DM

interactions which do not qualitatively affect the ground state properties. While clas-

sical calculations yield an infinite number of degenerate lowest-energy configurations,

quantum mechanically the ground state is an S=0 singlet in agreement with exper-
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Figure 27: Quantum and classic correlation functions nearest neighbours < Si ·Si−1 >
type in panel (a) (where i− 1 = 9 if i = 1) or < SNi · Si > type in panel (b).

imental observations. In order to investigate the structure of the ground state and,

in particular, how this is affected by frustration, we have used the following coupling

scheme |S18, S189, S27, S36, S2736, S45, S273645, S > [32] where Sijk . . . are quantum num-

bers for the modulus of Si+Sj +Sk + ·+ . . .. The Nickel ion is assumed to be in site 9.

We have found that the S=0 ground state (and the lowest multiplet for each value of S

up to S=11) is formed by states with S18=3, S189=2 for about the 95%. This indicates

that the Cr spins on sites 1 and 8 are practically locked antiparallel to the Ni spin and

parallel to each other.This originates from the much larger value of JCr−Ni=85 K with

respect to JCr−Cr=14.7 K. Thus these three spins behave as an effective spin-2 degree

of freedom antiferromagnetically coupled to the two neighboring Cr spins. To char-

acterize the magnetic alignment of the spins in the ground state, we have calculated

static zero-temperature two-site correlations 〈Si ·Sj〉 and the corresponding quantities

for the classical Hamiltonian corresponding to Eq. (80). For the latter the spins are

classical vectors of length
√
si(si + 1). We focus in particular on correlations of the

eight Cr spins with the Ni spin, shown in Fig. 27(a), and on nearest-neighbor corre-

lations shown in Fig. 27(b). Correlations < SNi · S1 > and < SNi · S8 > reflect the



70 5. Macroscopic measurements in Cr7Ni and Cr8Ni

Figure 28: This figure reports one of the degenerate configurations corresponding to
an S = 0 ground state calculated for the classical version of the model of Cr8Ni. The
blue cone represents the Nickel ion. Within this reference frame, the angle between spin
4, 5 (whose bond is opposite to the Nickel site) and the spin of the Ni ion along z is
≈78◦, while the angle between spin 4 and 5 is ≈156◦, being z the axis perpendicular
to the plane of the ring. Therefore the knot is delocalized in the eight Cr ions with the
sites 4 and 5 having the same z component. The classic picture of the ground state
holds most of the main features of the quantum S = 0 ground state obtained from
exact diagonalization of the isotropic Heisenberg term in Eq. (80).

above-mentioned locking of the three spins in an S = 2 state. The meaning of the

remaining < SNi · Si > correlations can be understood by inspecting the vector struc-

ture of the classical ground state (see Fig. 28), which shows a pattern of correlations

similar to that of the quantum ground state: classically, the spins are oriented in a

noncollinear fashion due to spin frustration. For instance, the Cr spins at sites 4 and

5 are almost lying in a plane perpendicular to the Ni spin which corresponds to nearly

vanishing correlations < SNi · S4 > and < SNi · S5 > as shown in Fig. 27(b). On

the other hand, quantum mechanically, the S=0 ground state approximately resonates

among the infinite classical configurations. Hence, local magnetic moments vanish at

low temperature due to quantum fluctuations, which is directly revealed by present

NMR measurements.

5.3 Conclusions

In this chapter we have carried out analysis of high field magnetization at low tem-

peratures in two heterometallic antiferromagnetic ring-shaped molecules Cr7Ni and

Cr8Ni. In both cases a clear step-wise increase of magnetization with increasing field

is observed. The very good agreement of high field magnetization measurements up to

almost 60 T with calculations shows the spin Hamiltonian approach to be suitable even
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Figure 29: (a) Schematic structure of the Cr8Ni cluster with the enumeration of bonds
and spin sites. (b) Scalar products Strimer · Si show how frustration is distributed in
magnetic sites from 1 to 7, being Strimer = S18 + S9. (c) Scalar product SNi · Si.
Assuming the Nickel spin in position 9 to be aligned along z-axis, SNi · Si reflects the
non uniform distribution of local moments in the ground S = 0 state. (d) Excitation
energy of the first excited state S = 1 with respect to the ground state S = 0 as a
function of the exchange bonds. It is straightforward to note that bonds 1 and 9 do not
cooperate to the first excitation. This occurs since JCr−Ni >> JCr−Cr and thus the
trimer is blocked in a Strimer = 1 state.
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at very high fields. In particular, in Cr7Ni these results confirm that the microscopic

picture derived from INS experiments [30,68] at zero field perfectly holds even for spin

multiplets not accessible to the INS tecnique. Besides, in Cr8Ni high field magneti-

zation together with specific heat measurements at low temperatures( below 1K) give

clear evidence for a spin singlet ground state at zero magnetic field in agreement with

theoretical calculations based on an Hamiltonian including Heisenberg, crystal field and

Dzyaloshinski-Moriya interactions. In particular, the field-dependence of the specific

heat and the widths of the magnetization steps provide strong evidence of the presence

of level anticrossings due to antisymmetric terms in the Hamiltonian. The proton NMR

measurements confirm the above results indicating that the local spin density is zero

in the ground state as a result of quantum fluctuations among frustrated local spins

configurations [9].



Chapter 6

Relaxation dynamics in magnetic

molecules

In the present chapter the theory of relaxation of molecular observables developed in

the following section and derived in Ref. [20] will be applied to several types of magnetic

molecules. The Mn12, Fe8 nanomagnets, the Fe30 icosidodecaedron, the V12 antiferro-

magnetic cluster containing ions with spin 1/2 and the Cr7Ni heterometallic ring will be

taken into account and investigated as regards their spin dynamics. Irrespective of the

different topology, local ions and microscopic interactions, all studied molecules show

similar relaxation mechanisms. In many cases we will show how the NMR technique

can provide useful information about the relaxation dynamics in magnetic molecules.

6.1 Decoherence and relaxation phenomena in mag-

netic molecules

The interaction of electronic spins with other degrees of freedom such as phonons causes

decoherence in the time evolution of molecular observables, thus leading to relaxation

dynamics. This is reflected in the irreversible evolution of the density matrix ρst(t),

evaluated in the basis of exact eigenstates of the cluster Hamiltonian [H |s〉| = Es |s〉].
Since we are interested in relaxation phenomena characterized by time scales much

longer than the free evolution periods of the system 2π~/(Es−Et), the evolution of the

diagonal matrix element ρss(t) = ps(t) can be decoupled from that of the off-diagonal

ones ρs 6=t(t) [secular approximation]. This allows a clear separation of quasi-elastic

(QE) and inelastic (IE) spectral contributions in frequency domain. The former can

73
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be detected by low-frequency experimental techniques such as AC suceptibility and

NMR, while the latter are determined by the lifetimes of the involved pair of levels and

can be probed by means of higher frequency techniques such as INS and electron spin

resonance (or ESR).

Exploiting the so called secular approximation, the populations of the molecular eigen-

states evolve, pt(t) through the well known rate master equations

ṗs(t) =
∑
t

Wstpt(t), (84)

where Wst, the st element of the rate matrix W, represents the probability per unit

time that a transition involving |s〉 and |t〉 levels occurs because of the interaction of

the system with the heat bath (Wss = −∑tWts). In the range of temperatures of

our interest, dechoerence and relaxation phenomena are caused by the interaction of

electronic spins with phonons. In magnetic molecules with local spin s > 1/2 the main

contributions to this coupling come from modulation of the local rank-2 crystal fields

(CFs)
∑

i

∑
q b(i)

q
2O

q
2(si), with Oq

2(si) Stevens operator equivalents for spin i and bq2(i)

CF parameters. This leads to the following spin-phonon coupling potential:

V =
∑
i=1,N

∑
Q=0,1,2

∑
k,σ

CQ(i,k, σ), TQ2 (si)(ckσ + c+
−kσ), (85)

where N is the number of ions in the cluster, CQ(i,k, σ) is the coupling constant

between the Q-type electric quadrupole on ion i and the phonon modes of wave vector k

and branch σ. Adopting a Debye model for phonons and choosing coupling coefficients

CQ(l,k) independent of l and Q we obtain the following transition rates Wst between

levels s and t (in first order perturbation theory):

Wst = γπ

∣∣∣∣∣〈t|∑
i=1,N

∑
Q=0,1,2

OQ
2 (si) |s〉

∣∣∣∣∣
2

∆3
stn(∆st) (86)

with n(x) = (eβ~x−1)−1, ∆st = (Es−Et)/~. In this simple model, γ is the unique free

parameter: it represents the spin-phonon coupling strength. Another possible choice

for the magnetoelastic coupling leads to the following expression:

Wmn = γπ2∆3
mnn(∆mn)

∑
i,j=1,N

q1,q2=x,y,z

〈m|Oq1,q2(si) |n〉

× 〈n|Oq1,q2(sj) |m〉 , (87)

where Oq1,q2(si) = (sq1,isq2,i + sq2,isq1,i)/2 are quadrupolar operators which give rise to

a spherically symmetric magnetoelastic (ME) coupling for the transition metal ions in
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a cluster with s > 1/2 and q1, q2 = x, y, z [75]. In Section 6.4 we will investigate the

relaxation dynamics in a molecule containing s = 1/2 ions. In this case, we recall that

phonons are assumed to cause the modulation of next neighbours anisotropic exchange,

since there are no local crystal field terms for ions with spin 1/2.

In order to understand the mechanisms which governs the spin dynamics in magnetic

molecules, the Fourier transform SA,B(ω) of the cross correlation function 〈∆A(t)∆B(0)〉,
where A and B are two generic molecular observables, has to be evaluated. First of

all, the fluctuation dissipation theorem allows to relate the imaginary part of the gen-

eralized susceptibility χ′′A,B(ω), the real part of the Laplace transform R̃′A,B(z) of the

relaxation function RA,B(t) and the SA,B(ω) together:

SA,B(ω) =
2kBTχ

′′
A,B(ω)

ω
= 2kBTR̃

′
A,B(ω) (88)

The relaxation function is defined as limε→0(〈A(t)〉−〈A〉eq)/ε, with a small perturbation

εB switched off at t = 0. Acting inside the well established framework developed

in [76,77], we are able to calculate the RA,B(t) by first-order perturbation theory. Being

H0 the unperturbed Hamiltonian of our spin system and |n〉 and E
(0)
n its eigenvectors

and eigenvalues respectively, at t < 0 we introduce the small perturbation εB (e.g. a

small magnetic field which couples with the observable B). As a result, retaining only

first-order terms in εB, at t = 0 the density matrix reads as follows:

ρ(t = 0) =
∑
n

e−βEñ

Z
|ñ〉 〈ñ|

=
∑
n

p(eq)
n |n〉 〈n|+ εp(eq)

n β(Bnn − 〈B〉) |n〉 〈n| −

−εp(eq)
n

∑
q 6=n

(
Bqn

E
(0)
n − E(0)

q

|q〉 〈n|+ Bnq
E

(0)
n − E(0)

q

|n〉 〈q|
)

(89)

where |ñ〉 and Eñ are respectively the eigenvectors and eigenvalues of the complete

Hamiltonian, p
(eq)
n = e−βE

(0)
n /Z0 is the nth diagonal density matrix element at equilib-

rium, being Z0 the partition function of the unperturbed spin system. According to

the theory presented in [77] for the irreversible evolution of the density matrix, the QE

and IE part of ρ(t) at times t > 0 can be determined separately:

ρnn(t) =
∑
m

νnm(t)ρ(t = 0)mm (90)

ρmn(t) = Γnm(t)ρmn(t = 0) (91)

where

ν(t) = eWt (92)
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is the propagator which gives the time evolution of the QE part of the density matrix,

while

Γnm(t) = ei∆nmte−t/τnm (93)

is the IE propagator of ρ. Here τnm = −1
2
(Γmm+Γnn) is the average of the the lifetimes

of levels n and m, and represents the time after which the phase coherence is lost [77].

Since we are interested in the QE part of spin dynamics, we calculate the evolutions

of molecular observables neglecting the off-diagonal terms of the density matrix. As a

result, we obtain:

RA,B(t) = limε→0

〈A(t)〉 − 〈A〉eq
ε

= β
∑
m,n

p(eq)
m

(
Bmm − 〈B〉eq

)
νnm(t)

(
Ann − 〈A〉eq

)
. (94)

Finally, we have to take the real part R̃′A,B(iω) of the Laplace transform of RA,B(t):

R̃′A,B(iω) = β
∑
m,n

p(eq)
m

(
Bmm − 〈B〉eq

)
×

×Re
{(

1

iω −W
)
nm

}(
Ann − 〈A〉eq

)
. (95)

If we consider Eqs. (88) and (95) it should be noted that the QE part of the Fourier

transform of the cross correlation function SA,B(ω) involves only the diagonal elements

of observables A,B [20, 21]. Thus, the Fourier transform for the QE part of a general

spin-spin correlation functions is:

SA,B(ω) =
∑
q,t

(Btt − 〈B〉eq)

× (Aqq − 〈A〉eq)Re
{
peqt

(
1

iω −W

)
qt

}
, (96)

where p
(eq)
t is the equilibrium population of the t-th level, Btt = 〈t|B|t〉 and W is the

so-called rate matrix. Furthermore, since we are mainly interested in the dynamics of

magnetization we take A = B = Sz and write Eq. (96) as:

SSz ,Sz(ω, T,B) =
∑
i=1,N

A(λi, T, B)
λi(T,B)

λi(T,B)2 + ω2
(97)

where λi(T,B) = 1/τ
(i)
QE are the eigenvalues of −W. As a consequence, the autocorre-

lation of magnetization is given by a sum of lorentzians centered at zero frequency and
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with width λi(T,B), and decays as a sum of exponentials with characteristic times τ
(i)
QE.

Here the A(λi, T, B) coefficients represent the weights of the N possible lorentzians, N

being the dimension of the Hilbert spin space of the molecule. Each τ
(i)
QE refers to a

particular spin-bath relaxation channel, given by the corresponding eigenstate |wi〉 of

W: the composition of |wi〉 in terms of the molecular eigenstates gives the complete re-

laxation path. Further information on the spin-bath dissipation channels is contained

in the N level lifetimes τ
(i)
life defined as τ

(i)
life = [−Wii]

−1 = [
∑

jWj←i]
−1: this is the

inverse of the sum of all transition rates between the considered i level and all other

ones according to the selection rules imposed by spin-bath interaction. The two sets of

τ
(i)
QE and τ

(i)
life times contain complementary information on the QE part of relaxation

dynamics.

The electronic dynamic properties of magnetic molecules can be probed by NMR. In

fact, the measured longitudinal relaxation rate 1/T1 is given by a linear combination

of local spin correlation functions through the Moriya formula [47]:

1

T1

=
∑

i,j=1,N

∑
q,q′=x,y,z

αqq
′

ij

(
S
sqi ,s

q′
j

(−ωL) + S
sqi ,s

q′
j

(ωL)
)

(98)

where N is the number of magnetic ions in the cluster, αqq
′

ij are the geometric coefficients

which depend on the positions of ions i and j and the probed nuclei, while S
sqi ,s

q′
j

(ωL)

is the Fourier transform of the cross correlation function calculated at the Larmor

frequency of hydrogen nucleus ωL = γB, being γ the proton gyromagnetic ratio and

B a magnetic field applied along z [see Eq. (97)]. Since far from level crossings

ωL << ∆mn = ~/(Em−En), with Em, En eigenvalues of the cluster Hamiltonian, only

the QE part of S
sqi ,s

q′
j

(ωL) contributes to 1/T1, i.e. that calculated by means of Eq.

(96). Furthermore, as long as anisotropy can be neglected, 〈t|sx(i)|t〉 = 〈t|sy(i)|t〉 = 0

since from Eq. (96) it follows that only α = β = z terms are non zero. In addition for

a magnetic ring 〈t|sz(i)|t〉 = 〈t|sz(j)|t〉 = 1/N〈t|Sz|t〉 where Sz is the z component of

the total spin operator S. Thus Eq. (98) reduces to:

1

T1

= GSSz ,Sz(ωL), (99)

where G is a geometric scale factor which accounts for the positions of hydrogens

probed by NMR. This results holds also in the case of nanomagnets with easy-axis

anisotropy, provided that the magnetic field is applied along the easy-axis direction. As

a consequence the NMR techinque constitutes a probe of the dynamics of magnetization

in most of magnetic molecules [20]. The results we will see in this chapter well reproduce
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Figure 30: Calculated frequency weights A(λ, T,B) of the magnetization autocor-
relation function vs 1/T . The y axis represents Log10(λ). The color maps
Log10[A(λ, T,B)/(χT )]. The spectrum have been normalized by χT , since χT de-
termines the size of equilibrium fluctuations. The red line in the spectrum represents
the dominant frequency in the spectrum and follows the Arrhenius law. The parameters
for Mn12 spin Hamiltonian were derived by inelastic neutron scattering experiments [22].

the experimental curves and indicate that the T -dependence of NMR 1/T1 may or may

not show any sharp peak. This can be understood noting that in agreement with

previous studied molecules [11, 10, 20] the frequency spectrum of a given molecule at

low T is dominated by a single lorentzian of characteristic frequency λ0. In fact, as

long as there is a λ0 with appreciable weight, from Eq. (97) it can be argued that only

when λ0 = ωL 1/T1(T ) should peak. Therefore, the NMR technique can probe the

characteristic times of the spin dynamics in magnetic molecules.

6.2 The Mn12 and Fe8 nanomagnets

In this section we will focus on a novel relaxation mechanism of magnetization peculiar

of well-known molecular nanomagnets such as Mn12 and Fe8. Mn12 contains eight

Mn3+ ions (s=2) and four Mn4+ ions (s=3/2) magnetically coupled in such a way

that at low T it behaves as an effective S = 10 state in presence of a strong double

well potential [1, 22]. In the Fe8 molecule the competing antiferromagnetic (AFM)

interactions among the eight Fe3+ centers (s=5/2) lead to a S = 10 ground state

[40, 41, 78]. As already mentioned in Chapter 1, Mn12 and Fe8 show slow relaxation
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dynamics at low T . The thermally activated mechanism of relaxation occurs through

multi-step Orbach processes. Let us perturbe the magnetic system, for instance by the

application of a magnetic field. When the magnetic field is removed the magnetization

has to overcome the overall energy barrier to relax back to equilibrium. The time of

this relaxation process follows the so called Arrhenius law:

τ = τ0exp(
∆

kBT
),

where ∆/kB is the height of the energy barrier for the reorientation of magnetization:

∆/kB ≈61 K for Mn12 [1] and ∆/kB ≈22 K for Fe8 [78]. At temperatures T > 1

K relaxation and decoherence phenomena are mainly due to the coupling of magnetic

spins with phonons [20,79]. In the previous section we have derived a general expression

for the quasi-elastic (QE) part of the spin-spin correlation function [see Eqs. (96), (97)].

As already demonstrated [11, 10, 20, 79] in most classes of magnetic molecules there

exists a quite wide range of temperatures and applied fields for which the magnetization

fluctuations spectrum [see Eq. (97)] is dominated by a single lorentzian, i.e. a single

time τQE characterizes the QE component of spin dynamics. In Fig. 30 a typical

spectrum of magnetization fluctuations for Mn12 is shown in which the single time

dynamics is apparent. In fact, the red line in the spectrum represents the frequency

λ0 = 1/τQE corresponding to the dominant lorentzian in Eq. (97). It is worth to

stress that the calculated time τQE corresponds to a relaxation time measured by

means of low frequency techniques such as AC susceptibility and NMR. On the other

hand, the relaxation time defined as maxi{τi = 1/λi} corresponds to a relaxation time

measured in a magnetization experiment. Nevertheless, as it can be seen in Fig. 31,

the here calculated τQE well reproduces the relaxation time experimentally probed by

a magnetization measurement only up to a given magnetic field H ′ ∼ 1.04 T. Beyond

H ′ the calculated τQE becomes orders of magnitude smaller than the corresponding

measured relaxation time: if an AC susceptibility experiment were feasible, it would

detect a relaxation time different from the one probed by a magnetization measurement

and thus a different relaxation mechanism. It is possible to understand this peculiar

behaviour in more detail by inspecting the dynamics of the Fe8 nanomagnet. The

microscopic parameters of the following spin Hamiltonian of Fe8 were determined by

inelastic neutron scattering experiments in Ref. [41]:

H = B2
0O

2
0 +B2

2O
2
2 +B4

0O
4
0 +B4

2O
4
2 +B4

4O
4
4, (100)

and in K unit are reported to be B2
0 = −9.75× 10−2, B2

2 = −4.66× 10−2, B4
0 = ×10−6,

B4
2 = 1.2× 10−7, B4

4 = 8.6× 10−6. By assuming a spherically symmetric ME coupling
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Figure 31: Relaxation time in the Mn12 cluster as a function of the field Hz applied
along z-axis, assumed to be the easy axis of anisotropy. An angle of θ = 1◦ defines
the direction of the magnetic field H with respect to z. Open scatters represents the
measured relaxation time as in Ref. [80]. Blue line represents the calculated relaxation
time as τQE = maxi{1/λi}, the longest time characterizing the dynamics of magneti-
zation in Mn12, i.e. the outcoming of a magnetization measurement. The red closed
scatters represent the calculated relaxation time of magnetization corresponding to the
dominant lorentzian in the spectrum of magnetization fluctuations [see Eq. (97)], i.e.
the outcoming of an AC susceptibility experiment. These times have been calculated by
taking the Hamiltonian contained in Ref. [80] and a spherically symmetric ME coupling
with a constant γ = 2× 10−10 THz−2.

with a constant γ = 0.9 × 10−9 THz−2, the relaxation time of magnetization can be

evaluated as shown in Fig. 32(b). The calculated τQE follow an Arrhenius law with an

energy barrier for the reversal of magnetization of ∼23 K, very close to the experimental

value inferred from AC susceptibility measurements reported in Ref. [78]. Interestingly,

with an applied field Hz = 1 T, for instance, the calculated magnetization relaxation

time abruptly decreases for T <3.5 K showing a strong deviation from the Arrhenius

law (see Fig. 33). This means that at T < 3.5 K another relaxation mechanism

becomes predominant. In fact, if the magnetic field along z is strong enough, the two

lowest levels can be those with 〈Sz〉 ∼= 10 and 〈Sz〉 ∼= 9 1. In addition, if temperature

is low enough that the lowest state of the other well, i.e. with 〈Sz〉 >∼= −10, is

not appreciably populated, the cluster magnetization relaxes through a direct process

involving the two lowest levels 〈Sz〉 ∼= 10 and 〈Sz〉 ∼= 9 instead of overcoming the

1In Fe8 cluster the projection M of the total spin S along the z-axis is not a good quantum number.

This is due to the presence of a strong in plane anisotropy term. Nonetheless, the molecule eigenstates

can be labelled by the expectation value of Sz operator.
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Figure 32: (a) Measured and calculated out-of-phase susceptibility as a function of T .
Experimental data are taken from Ref. [78]. From the peak positions of χ′′ at different
angular frequencies the T -dependence of the relaxation time τ of magnetization can be
inferred. (b) Calculated τ well reproduces the experimental values following an Arrhenius
law with τ0=1×10−7 s and ∆/kB=23.1 K.

overall energy barrier through multi-step Orbach processes. Therefore, the dominant

relaxation process occurs within the right well of the potential energy barrier and does

not follow the Arrhenius law. The occurence of this fast relaxation process depends on

both magnetic field and temperature, as it can be noted in Fig. 34. Besides, it is wise

to remark that the relaxation time gets faster also for fields Hz ∼0.4 T, ∼0.8 T, ∼1.3

T and ∼1.7 T. In fact, for instance levels 〈Sz〉 >∼= −10 and 〈Sz〉 >∼= 8 produce an

anticrossing at ∼ 0.4 T due to the presence of non-axial term in the cluster hamiltonian

[see Eq. (100)]. In correspondence of this anticrossing field, an efficient relaxation path

opens up for a quantum tunneling process between the quasi-degenerate levels. The

fast relaxation mechanism has not been detected up to date but a measurement of χ′′

as a function of the magnetic field applied along z at two different temperatures would
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Figure 33: Calculated τ as a function of T for Hz=20 mT [in panel (a)] and for
Hz=1 T [in panel (c)]. At T < 3.5 K for Hz = 1 T τ abruptly decreases: the cluster
magnetization relaxes mainly through a thermally activated intra-well mode. This occurs
through a direct relaxation process between the two lowest levels, < Sz >∼= 10 and
< Sz >∼= 9. Thus the Arrhenius law is broken. Levels of Fe8 with Hz = 20 mT [panel
(b)] and with Hz = 1 T [panel (d)]. Due to the presence of sizeable non axial terms
in Fe8 hamiltonian, the cluster eigenstates can not be labelled with M , since it is not a
good quantum number.
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Figure 34: Dominant relaxation time in the Fe8 molecule as a function of Hz (x-axis)
and 1/T (y-axis). The color maps Log10[τ(s)]. The fast relaxation process at low T
occurs for Hz >0.4 T. Moreover, at certain values of Hz a couple of quasi-degenerate
levels allows a QTM process: at these fields τ gets smaller (clear vertical paths at ∼0.4
T, ∼0.8 T, ∼1.3 T and ∼1.7 T.)

allow to detect the direct intra-well relaxation process. In fact, by calculating χ′′ vs

Hz at 2.5 and 5 K, it can be argued that the decrease of χ′′ calculated at T = 2.5 K vs

Hz, where the fast relaxation mechanism is dominant at Hz=1 T, is more prominent

than at T = 5 K, where the relaxation time again follows the Arrhenius law. This is

a direct consequence of the crossover between slow multi-step Orbach processes and a

fast intra-well direct process which occurs at T < 3.5 K for Hz = 1 T. In fact, due to the

latter relaxation mechanism the system is much closer to resonance at T = 5 K than at

T = 2.5 K [see Fig. 35(d)]. This causes χ′′ vs Hz to decrease more rapidly at T = 2.5

K with respect to T = 5 K. By summarizing, in a nanomagnet with a double well

potential the application of a strong enough magnetic field can speed up the relaxation

dynamics with decreasing the sample temperature, thus causing the breakdown of the

Arrhenius law.
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Figure 35: (a) and (c): Calculated frequency weights A(λ, T,B) of the magneti-
zation autocorrelation function vs Hz. The y axis is Log10(λ). The color maps
Log10[A(λ, T,B)/(χT )]. The spectra have been normalized by χT , since χT deter-
mines the size of equilibrium fluctuations. In each spectrum the red line is the dominant
frequency in the spectra. (b): Effects of the fast intra-well relaxation mechanism in
calculated SSzSz/(χT ) vs Hz at 2.5 and 5 K for a frequency of 1000 Hz. The decrease
of SSzSz/(χT ) vs Hz is more prominent at T = 2.5 K than at T = 5 K. This reflects
the presence of a fast relaxation mechanism which activates at T < 3.5 K if Hz = 1
T [see Fig. 33(c)]. (d): The effect of the fast relaxation process can be also seen in
calculated χ′′.
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6.3 The Fe30 mesoscopic molecule

In this section our attention will be focused on the relaxation dynamics of one of

the largest molecules synthetized so far known as Fe30. Recent synthetic strate-

gies [81, 82] have led to the preparation of this new kind of highly symmetric poly-

oxomolybdate compound that opens up the possibility for such giant paramagnetic

clusters, something that might not be straightforward using traditional bridging lig-

ands. Thus, thanks to its huge dimensions, Fe30 offers the possibility of investi-

gating the crossing from quantum to bulk cooperative behaviour. The compound

[Mo72Fe30O252(Mo2O7(H2O))2(Mo2O8H2(H2O))(CH3C OO)12(H2O)91]·150H2O, hereaf-

ter Mo72Fe30, is paradigmatic among these new keplerates. The 30 Fe3+ (s = 5/2) ions

in this material occupy the vertices of an icosidodecahedron embedded in a frame-

work of {(Mo)Mo5} groups that act as an effective superexchange pathway despite

the large nearest-neighbor Fe–Fe distance (6.4 Å) [83], leading to a relatively strong

antiferromagnetic coupling (J = 1.57 K [84]) and a ground state with net spin ST

= 0. The system behaves as a simple paramagnet down to about 20 K, where the

susceptibility departs from a simple Curie-Weiss law before reaching a plateau at 1

K. On first approximation, the magnetism of Mo72Fe30 can be qualitatively described

by a classical Heisenberg model [85, 86] that, based on the possibility of decomposing

the icosidodecahedron (composed by 20 corner-sharing triangles) into three sublattices,

argues that the system adopts the same ground state spin arrangement as the classi-

cal AFM triangle; that is, with nearest-neighbour spins at a relative angle of 120◦.

The model correctly predicts the quasi-linear field dependence of the magnetization

up to a critical field H c = 17.7 T, at which it saturates [84]. As an alternative, a

simplified quantum model based on a rotational band picture of the low-lying excita-

tion spectrum has been proposed. This also accounts for the overall low-T behavior

in this material. The concept of rotational bands (i.e. E ∝ S(S+1), where E is the

energy of each discrete level), noted experimentally to approximate the low energy

states of molecular ring structures with an even number of AFM-ly coupled Heisen-

berg spins [39,87,88,89], has been shown to apply to all finite Heisenberg systems with

AFM exchange, including non-bipartite, frustrated lattices such as the icosidodecahe-

dron [48]. Thus, by considering an effective Hamiltonian that accounts for the three

sublattices in Mo72Fe30, Schnack and co-workers derive an excitation spectrum whose

lower part is formed by a set of parallel rotational bands, with the gap between the

two lowest bands being 5J (∼8 K) [48,50]. Experimentally, the observed temperature
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and field dependences of the magnetization are also consistent with the existence of

the first quadratic band [50, 84]. Evidence for higher order bands has been provided

by a recent neutron scattering study, which shows a main mode centered at 0.6 meV

(∼8 K), interpreted as arising from transitions between the two lowest bands [51]. The

details of the spectrum, especially its field dependence at base T , are not, however,

entirely consistent with the model of Schnack and co-workers. Theoretical calculations

of the nuclear spin-lattice relaxation rate 1/T1 are performed within the framework

of the threesublattice quadratic-band model. We find that 1/T1 probes the decay of

the fluctuations of the total molecular magnetization produced by the magnetoelastic

coupling with the phonon heat bath. At low T , this decay is mainly determined by

a single type of relaxation process involving multi-step Orbach paths passing through

the first-excited rotational band. Therefore, these data provide further support for

the three-sublattice quadratic-band model and highlight the possibility of obtaining

the interband gap by studying the temperature behaviour of the experimental NMR

relaxation rates.

6.3.1 Nuclear magnetic resonance measurements

1H NMR measurements were performed on Mo72Fe30 powders in the temperature range

1.5≤ T ≤300 K at several magnetic field values using a standard Fourier-transform

pulse spectrometer. The 1H NMR spectrum consists of a single line with no peculiar

structure, the width being due to the nuclear dipolar interaction [90]. The data referring

to the temperature behaviour of its full width at half maximum are reported in Ref. [91].

The nuclear spin-lattice relaxation rate (NSLR, T−1
1 ) was measured from the recovery

of the nuclear magnetization obtained with a Hahn-echo sequence, following a series

of saturating radio-frequency pulses. As already reported in previous work on this

material [91, 92], this recovery deviates from a single exponential behavior due to the

number of different inequivalent protons in the molecule, each with its own relaxation

rate. The reported T−1
1 ’s are, therefore, average values, estimated from the initial

slope of the recovery curve following the common practice in these cases [93]. The

thermal evolution of the relaxation rates for B =1.18 and 2.75 T is presented in Fig.

36. Here, the solid lines represent the fits performed following the model presented

in the following paragraph. As for other molecular magnets [91, 94, 95], 1/T1(B, T ) is

characterized by a low-T maximum which shifts to higher T and reduces its intensity

with increasing magnetic field.
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Figure 36: 1/T1/(χT ) vs T curves for two different values of the applied magnetic field
B. The empty circles and squares are experimental data, while the solid and dashed
lines are calculations (see text).

6.3.2 Theoretical analysis and discussion

Each Fe30 magnetic molecule can be described by the spin Hamiltonian

H =
∑
i>j

Jijsi · sj +
∑
i

∑
k,q

bqk(i)O
q
k(si) +∑

i>j

si ·Dij · sj − gµBB · S (101)

where si are spin operators of the ith magnetic ion in the molecule. The first term is the

isotropic Heisenberg exchange interaction. The second term describe the interactions

with local crystal-fields (CFs), with Oq
k(si) Stevens operator equivalents for the i-th

ion [33] and bqk(i) CF parameters. The third term represents the dipolar anisotropic

intra-cluster spin-spin interactions. The last term is the Zeeman coupling with an

external field B (g = 1.974 [85]), with S the total spin. Unfortunately, the dimension

of the Hilbert space for Fe30 is huge (630) and precludes the numerical diagonalization

of H on any computer. Recently, an approximate three-sublattices model has been

proposed and exploited to analyze inelastic neutron scattering results [50, 51]. By

naming SA, SB and SC the total spin of the three sublattices, the low-energy spin

dynamics of Fe30 is approximately described by

Heff = J(SA · SB + SA · SC + SB · SC)/5− gµBB · S, (102)
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Figure 37: The two lowest bands of energy levels calculated in zero-field from the
three-sublattices model [50, 51].

where J = 1.55K is the nearest-neighbor exchange constant and S is the molecular

total spin. Eigenvalues of Heff can be analytically calculated

E(SA, SB, SC , S,M) = J(S(S + 1)− SA(SA + 1)

−SB(SB + 1)− SC(SC + 1))/10− gµBBM, (103)

with M the eigenvalue of the z component of the total spin. The system has a nonmag-

netic S = 0 ground state whereas the low-lying excited states form a set of parabolic ro-

tational bands (see Fig. 37). The lowest rotational band, for which SA = SB = SC = 25

is composed by 132651 levels, while the second rotational band, characterized by having

SA = 24, SB = SC = 25 and permutations thereof, contains 3441123 states. The eigen-

values in Eq. (103) are degenerate with respect to the intermediate quantum number

SAB = SA + SB. Further degeneracy arises because of the internal spin structure of

each giant spin SA, SB, SC when SA,B,C ≤ 24. As a result, the degeneracies for S ≤ 24

are D1 = d1(S)(2S + 1) for the lowest, and D2 = d2(S)(2S + 1) for the first excited

rotational band. Here d1(S) = 2S + 1 and d2(S) = 27(2S + 1) are the S-degeneracy

factors for the two lowest bands [51]. Since the Fe3+ ions are arranged on the vertices

of an icosidodecahedron, Fe30 offers the possibility to study the relaxation dynamics of

a highly frustrated system.

The low-frequency quasi-elastic (QE) spin dynamics of Fe30 is calculated as in Ref. [20].

The interaction with the phonon heat bath leads to the expression of Eq. (96) for the

Fourier transform of the time autocorrelation function for equilibrium fluctuations of

two generic observables A, B as derived in Section 6.1. The QE frequency-spectrum

is therefore a sum of n lorentzians centered at zero frequency whose widths λi are the
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eigenvalues of −W (n being the dimension of the molecule spin Hilbert space). As

noted in [20], these n τ
(i)
QE are different from the n level lifetimes τ

(s)
life.

The main contribution to the spin-phonon coupling potential V comes from the mod-

ulation of rank-2 intramolecular anisotropic interactions by elastic waves. On the one

hand, experimental information is by far insufficient to assess the specific form of V .

Moreover, even if V was known, it would be impossible to calculate the Wst matrix ele-

ments. In fact, transitions between spin levels induced by the spin-phonon interaction

can be divided into two groups: intra- and inter-band transitions. The former involve

states having the same sublattices total-spin quantum numbers (SA, SB, SC) while in

the latter the involved states differ for one total-spin quantum number at least. The

calculation of the matrix elements of V for inter-band transitions requires assumptions

on the structure of spin eigenstates which are beyond the simple approximate three

sublattices model. Indeed, this model does not provide information on the complex

composition of each eigenstate in terms of local spin states. In view of this, the most

unbiased choice is to assume v = |〈t|V |s〉|2 = 1 if the selection rules |∆S| = 0, 1, 2,

|∆SA| = 0, 1, 2, |∆SB| = 0, 1, 2, |∆SC | = 0, 1, 2, |∆SAB| = 0, 1, 2 and |∆M | = 0, 1, 2 are

satisfied, and v = 0 otherwise (SAB=SA+SB). This sort of approximation is analogous

to that used in [51] for the interpretation of neutron spectroscopy data. By adopting

a Debye model for phonons, this leads to

Wst = γπv∆3
stn(∆st), (104)

with

n(x) = (eβ~x − 1)−1,∆st = (Es − Et)/~. (105)

The free parameter γ describes the spin-phonon coupling strength, and is determined

by comparison with experimental data. Even within this approximation, calculating

the relaxation spectrum [Eq. (96)] by including all the states belonging to the two

lowest bands is unfeasible because of the huge dimension of the resulting Hilbert space

(3573774 states). Therefore, in order to calculate the relaxation dynamics of Fe30, we

have exploited two further approximations. First, we have limited our calculations to

low temperature, thus including levels with energy only up to 11.1 K (9.3 K) from the

(field dependent) ground state for B=1.18 T (=2.75 T), and higher-lying levels of the

two lowest bands connected to these by V . For each of these eigenstates of the second

band, there are eight further degenerate eigenstates having the same set of quantum

numbers (SA, SB, SC , SA,B, S,M). To further reduce the dimension of the spin Hilbert
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space, we have considered only one representative state (out of nine), and we have

multiplied interband transition probabilities by 9. We have checked that if both these

approximations are relaxed, results do not change qualitatively.

Important information on the relaxation dynamics of Fe30 can be obtained through

NMR measurements of the nuclear spin-lattice relaxation rate 1/T1 [20]. The latter is

given by a linear combination of the Fourier transforms of electronic spins correlation

functions evaluated at the Larmor frequency [47]. By considering only the Heisenberg

and Zeeman terms in the Hamiltonian [see Eq. (101)], Eq. (98) becomes:

1/T1 ∝
∑

i,j=1,N

αij(Sszi ,szj (ωL) + Sszi ,szj (−ωL)) +

βij(Ss+i ,s
−
j

(ωL) + Ss+i ,s
−
j

(−ωL) +

Ss−i ,s
+
j

(ωL) + Ss−i ,s
+
j

(−ωL)), (106)

and represents the spin lattice relaxation rate of a magnetic nucleus of Larmor fre-

quency ωL interacting with a molecule composed of N spins. Here αij and βij are

geometrical coefficients of the dipolar interaction between nuclear and electronic spins,

and SA,B(ω) is the Fourier-transform of the time correlation function. Since far from

level crossings ωL << ∆st, only the QE part of the SA,B in the above formula con-

tributes to 1/T1
2. Then, for Fe30 Eq. (96) implies that only zz terms are nonzero in

Eq. (106) because in the lack of anisotropy 〈s|s±i |s〉 = 〈t|s±i |t〉 = 0. Since far from level

crossings ωL � ∆st, only the QE part of the SA,B(ω) in the above formula contributes

to 1/T1. In addition, within the three sublattices model 〈s|si,z|s〉 ∝ 〈s|Sz|s〉. Therefore,

within the present model the nuclear spin-lattice relaxation rate is proportional to the

Fourier transform of the autocorrelation function of Sz,

1/T1 ∝ SSz ,Sz(ωL). (107)

Hence, in Fe30 a measure of 1/T1 allows to directly extract information on the decay of

the autocorrelation the molecular magnetization. Therefore, in the following we focus

on the spectrum of fluctuations of the molecular magnetization by Eq. (97). In general,

many different relaxation frequencies λi(T,B) can contribute to this spectrum:

SSz ,Sz(ω, T,B) =
∑
i=1,n

A(λi, T, B)
λi(T,B)

λi(T,B)2 + ω2
.

2Direct incoherent transitions between degenerate levels have been neglected due to the vanishing

phonon density of states.
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Figure 38: (a): Calculated frequency spectra A(λi, T, B) of the magnetization auto-
correlation SSz ,Sz(ω) as function of T . The color maps Log10A/χT and gives the
weight of each lorentzian to the spectrum of fluctuation of Sz. For each value of T ,
the ω-integrated weight equals the size of equilibrium fluctuations, proportional to χT .
The white dashed line represents the 1H Larmor angular frequency ωL, and the white
points are the characteristic frequency λ0(T ) extracted from experimental NMR data
[see panel (b)]. The graphic shows only the frequency weights larger than 3%. (b):
Calculated (red line) and measured (squares) relaxation time τmag0 for B = 1.18T . The
red line corresponds to the dominant frequency λ0 in panel (a). The T -dependence of
τmag0 follows an Arrhenius law with a gap ∆/kB ≈ 7.2K.
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Fig. 38(a) shows logarithmic intensity plots of the frequency weights A(λi, T, B) as

function of temperature T . The free parameter γ = 3 × 10−5 Thz−2 has been esti-

mated by fitting the position of the peaks observed in the T -dependence of 1/T1 (see

below). The precise value of γ does not change the spectra qualitatively, but merely

sets the frequency range. Surprisingly, a single lorentzian of characteristic frequency

λ0 dominates the relaxation spectrum of Sz for a fairly wide ranges of values of T and

B. By exploiting linear response theory, the dynamical structure can be approximately

rewritten as

SSz ,Sz(ω, T,B) ∝ χT
λ0(T,B)

λ0(T,B)2 + ω2
. (108)

The single dominating decay-time τ
(mag)
QE = λ−1

0 is different from the lifetime of any

thermally-populated level. Our calculations indicate that in the single-lorentzian regime

the decay of fluctuations of the molecular magnetization is mostly due to inter-band

Orbach-like processes. In particular, the dominant relaxation time τ
(mag)
QE follows at

low T an Arrhenius law τ ∝ exp(− ∆
kBT

) with ∆/kB ≈ 7.2K (for B = 1.18T ) [Fig.

38(b)], which is close to the energy gap between the two lowest energy bands. Direct

intra-band transitions do not appreciably affect the relaxation behavior due to the

small associated gaps.

Since there is only a single frequency with appreciable weight in the spectrum of fluc-

tuations, Eq. (107) implies (see Fig. 36) that 1/T1/(χT )(T ) displays a sharp peak at

the temperature T0 for which λ0(T0) = ωL, i.e. where the white dashed line intersects

the red one in Fig. 38(a). In spite of the unavoidable approximations made in the

calculation, the agreement between theoretical and experimental results in Figs. 6b

and 4 is very good and provides strong support to our picture of relaxation dynamics

in Fe30. In particular, a single thermally-activated Orbach process sets the decay of

Sz, just as found in AF rings, AF grids and high-anisotropy nanomagnets [20]. This

in spite of the very different spectrum of the highly frustrated Fe30 molecule.

In the mesoscopic molecule Fe30 we have found that in the intermediate temperature

regime (above 1K), the NMR relaxation rates show a unique dominating correlation

time characterized by a thermally activated behavior with an activation energy roughly

equivalent to the gap between the lowest rotational bands of this material. These re-

sults are consistent with our theoretical calculations, which show that a single interband

Orbach process dominates the low-E excitation spectrum in this regime.
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Figure 39: Schematic representation of the V12 cluster. The red and blue spheres are
the Vanadium ions in the two outer V4 squares and in the central V4 square respectively.

6.4 The antiferromagnetic cluster V12 containing

ions with spin 1/2

In this section, we consider the case of the so-called V12 molecule. This cluster contains

twelve Vanadium ions organized in three squares (see Fig. 39). It has been shown

that low-temperature (T <300 K) magnetic properties of this molecule are the result

of exchange interaction of the four central s = 1/2 Vanadium ions. The latter are

antiferromagnetically coupled [96,97], giving a S = 0 ground state. The remaining eight

Vanadium ions are so strongly antiferromagnetically coupled within each square that

the thermodynamic and magnetic properties of the cluster are explained in terms of the

only four inner ions up to room temperature. Here we calculate the electronic relaxation

dynamics of V12 which has been experimentally probed by NMR 1/T1 measurements

[97]. Being s = 1/2 ions unaffected by the crystal field and its modulation by phonons,

we assume the main contribution to the spin-phonon coupling to arise from modulation

of the two-ion anisotropic exchange interaction. As in the previous section, here we

investigate the molecular magnetization M through the approach presented in Section

6.1. In this case phonons are assumed to cause the modulation of nearest neighbours

anisotropic exchange, since there are no local crystal field terms for ions with spin 1/2.
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Thus, a simple choice for the magnetoelastic coupling yields [98]

Wmn = γπ

∣∣∣∣∣∣∣〈n|
∑
i=1,N

Q=0,1,2

c(i)TQ2 (i) |m〉

∣∣∣∣∣∣∣
2

∆3
mnn(∆mn) (109)

where N = 4 is the the number of bonds, n(x) = (eβ~x − 1)−1, ∆mn = Em−En
~ the gap

between the eigenstates |m〉 and |n〉 of the molecule. Here the TQ2 (i) are combinations

of rank-2 complex tensor operators describing the anisotropic exchange on bond i, i+1

[35,98]:

T 0
2 (i) = T 2

0 (11|i, i+ 1),

T 1
2 (i) =

[
T 2
−1(11|i, i+ 1)− T 2

1 (11|i, i+ 1)
]
,

T 2
2 (i) =

[
T 2

2 (11|i, i+ 1) + T 2
−2(11|i, i+ 1)

]
. (110)

γ is the unique free parameter of the theory, which sets the frequency scale and reflects

the strength of the magnetoelastic coupling causing relaxation. The c(i) are numerical

coefficients whose specific choice does not influence results qualitatively, provided γ is

properly rescaled 3. Eq. (97) shows that the spectrum of the fluctuations is a sum

of 16 lorentzians, each characterized by a frequency λi. Our calculations show that

only a few relaxation frequencies significantly contribute to SSz ,Sz(ω,B, T ) in the in-

vestigated range of B and T . It has been demonstrated that in ring-shaped molecules

with small anisotropy, 1/T1 ∝ SSz ,Sz(ωL), 1/T1 being the nuclear spin-lattice relaxation

rate [20]. The proton 1/T1 can be evaluated in absolute units by exploiting the Moriya

formula [47] using as input the positions of the V-ions and of the hydrogens of the

molecule.

In previously studied rings [20,79,98] only a single frequency λ0 has appreciable weight.

In this case, Eq. (97) implies that 1/T1(T ) sharply peaks at the temperature T0 for

which λ0(T0) = ωL. However our calculations indicate that in V12 the dominant fre-

quency does not intersect ωL [see Fig. 40(a)]. This is reflected in the T -dependence

of 1/T1 shown in Fig. 40(b). Indeed, the calculated 1/T1 reaches an almost constant

value without showing any sharp peak, in excellent agreement with the experimental

NMR data.

3The available experimental information is by far insufficient to deduce the exact form of the

magnetoelastic hamiltonian
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where N ¼ 4 is the number of bonds, nðxÞ ¼ ðeb_x � 1Þ�1,
Dmn ¼ ðEm � EnÞ=_ the gap between the eigenstates jmi and
jni of the molecule. T

Q
2 ðiÞ are combinations of rank-2

tensor operators describing the anisotropic exchange on
bond i. We recall that phonons are assumed to cause the
modulation of n.n. anisotropic exchange, since there are no
local crystal field terms for ions with spin 1

2
. g is the unique

free parameter of the theory, which sets the frequency scale
and reflects the strength of the magnetoelastic coupling
causing relaxation. The cðiÞ are numerical coefficients
whose specific choice does not influence results qualita-
tively, provided g is properly rescaled [7]. Eq. (1) shows that
the spectrum of the fluctuations is a sum of 16 Lorentzians,
each characterized by a frequency li. Our calculations
show that only a few relaxation frequencies significantly
contribute to SSz;Sz

ðo;B;TÞ in the investigated range of B
and T . It has been demonstrated that in ring-shaped
molecules with small anisotropy, 1=T1 / SSz;Sz

ðoLÞ, 1=T1

being the nuclear spin–lattice relaxation rate [2]. The
proton 1=T1 can be evaluated in absolute units by
exploiting the Moriya formula [8] using as input the
positions of the V-ions and of the hydrogens of the
molecule. In previously studied rings [2,5,6] only a single
frequency l0 has appreciable weight. In this case, Eq. (1)
implies that 1=T1ðTÞ sharply peaks at the temperature T0

for which l0ðT0Þ ¼ oL. However, our calculations indicate
that in V12 the dominant frequency does not intersect oL

(see Fig. 2a). This is reflected in the T-dependence of 1=T1

shown in Fig. 2b. Indeed, the calculated 1=T1 reaches an
almost constant value without showing any sharp peak, in
excellent agreement with the experimental NMR data.

3. Conclusions

The relaxation mechanisms of the cluster V12 in contact
with a phonon heat bath have been studied through a
numerical investigation of the autocorrelation function of
the molecular magnetization. We have assumed the

spin–phonon coupling to take place through modulation
of anisotropic exchange, and we have calculated the
spectrum of the damping times of this autocorrelation.
By exploiting the Moriya formula we have evaluated the
proton nuclear-spin relaxation rate 1=T1 and we have
found excellent quantitative agreement with existing
experimental data. Unlike in rings studied so-far, there is
no sharp peak in the T-dependence of 1=T1.
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Fig. 1. Schematic representation of the V12 cluster. The red and blue

spheres are the Vanadium ions in the two outer V4 squares and in the

central V4 square, respectively.

a

b

Fig. 2. Top: spectral weights ðAðli ;T ;BÞÞ as a function of temperature T

(see Eq. (1)). The y-axis is log10ðlÞ (in THz). The color maps log10 A=wT

and gives the weight of each Lorentzian to the spectrum of the fluctuations

of M and the white dashed line represents the 1H Larmor frequency oL.

The graphic only shows frequency weights larger than 3%. Bottom: the

calculation of proton NMR 1=T1 for two values of the applied magnetic

field B. Experimental points are taken from Ref. [4]

A. Bianchi et al. / Journal of Magnetism and Magnetic Materials 310 (2007) 1450–1451 1451

Figure 40: Top: Spectral weights (A(λi, T,B)) as a function of temperature T [see
Eq.(97)]. The y-axis is log10(λ) (in THz). The color maps log10A/χT and gives the
weight of each lorentzian to the spectrum of the fluctuations of M and the white dashed
line represents the 1H Larmor frequency ωL. The graphic only shows frequency weights
larger than 3%. Bottom: The calculation of proton NMR 1/T1 for two values of the
applied magnetic field B. Experimental points are taken from Ref. [97].

6.5 The antiferromagnetic ring Cr7Ni

The Chromium-based heterometallic ring named Cr7Ni was taken into account in chap-

ter 5 as regards its static magnetic properties. In this section we want to focus on the

spin dynamics of Cr7Ni cluster. In fact, a major obstacle to the proposed technolog-

ical applications of magnetic molecules is constituted by phonon-induced relaxation.

Molecular observables, e.g. the magnetization, are deeply affected by the interaction

of the spins with other degrees of freedom such as phonons [20]. Here we investigate

the molecular spin-spin correlations through the approach described in Section 6.1 and

already applied for the Mn12 and Fe8 nanomagnets, the Fe30 mesoscopic molecules and

the antiferromagnetic cluster V12.
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Figure 41: Experimental data (scatters) and calculations (lines) of reduced proton NMR
1/T1/(χT ) for different values of the applied field along z (parallel to the ring axis).
The dashed line represents the calculations for Hz = 0.47 T considering the same set of
hydrogens used to produce the curves with Hz = 1.68, 2.8 and 4.7 T. The consequences
of the so called wipe-out effect [99] are apparent.

In the following we will assume a spherically symmetric ME coupling as in Ref. [75] [see

Eq. (87)]. γ still represents the spin-phonon coupling strength, which can be deter-

mined by comparing the theoretical results with experimental data. In fact, the nuclear

spin-lattice relaxation rate 1/T1 probes the fluctuations of molecular observables, thus

giving information on the relaxation dynamics [20]. Exploiting the Moriya formula [47],

the proton NMR 1/T1 can be evaluated in absolute units using as inputs the positions

of the Cr and Ni ions and of the hydrogens of the molecule by means of Eq. (98). The

occurence of a peak in the proton NMR 1/T1 has been clearly explained in homonu-

clear ring-shaped molecules with small anisotropy such as Cr8 [20]. In fact, in this case

1/T1 ∝ SSz ,Sz(ωL), where SSz ,Sz(ω,H, T ) is the Fourier transform of the autocorrela-

tion function of M [20]: SSz ,Sz(ω, T,H) =
∑

i=1,N A(λi, T,H)λi(T,H)/[λi(T,H)2 +ω2].

This equation shows that the spectrum of fluctuations of M is given by a sum of N

Lorentzians, where N represents the dimension of the Hilbert spin space associated to

the molecule. Each lorentzian has characteristic frequency λi, given by the eigenval-

ues of −W. For a wide range of H and T in these systems only a single relaxation

frequency λ0 significantly contributes to SSz ,Sz(ω, T,H). As a result, if the dominant

frequency λ0 intersects the Larmor angular frequency, i.e. when λ0(T0) = ωL, at the
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temperature T0 the proton NMR 1/T1 shows a sharp peak [20, 94]. Being an het-

erometallic ring, this explanation does not hold for Cr7Ni and Eq. (98) has to be used.

Nevertheless, our calculations show that a peak in the reduced 1/T1/(χT ) occurs in

agreement with experimental data (see Fig. 41). By fitting the observed peak position

we have obtained γ = 0.8 × 10−7 THz−2 [100]. This value turns out to be quite rea-

sonable since it can be further obtained by reproducing the experimental proton NMR

1/T1/(χT ) data in the parent Cr8 compound as shown in Fig. 42 4 [20, 79]. A ME

coupling strength similar in the two Cr-based rings should be expected, even though

the presence of a Ni ion in Cr7Ni could in principle cause the ME constant to augment.

In fact, the ME constant of each magnetic ion is proportional to the square of the

CF magnitude, and in Cr7Ni the rate of the Chromium and Nickel CF parameters,

dCr and dNi respectively, has been found to be dNi/dCr ∼12. Nonetheless, since the

experimental information is by far insufficient to fix more than one ME constant, it

has been chosen to reabsorbe the greater Nickel ME constant in a unique ME constant

equal for each magnetic ion. Apart from the similarities in the ME coupling strength,

the spin dynamics in the two parent compounds is quite different. In fact, in Cr8 the

occurence of peaks in the proton NMR 1/T1/(χT ) can be well explained in terms of

cluster magnetization dynamics by means of Eq. (97) [20, 79]. On the other hand, in

heterometallic ring Cr7Ni 1/T1/(χT ) is proportional to a linear combination of local

spin-spin correlation functions as shown in Eq. (98). Thus the positions and intensi-

ties of the peaks can be understood by inspecting the behaviour of αqq
′

ij Ssqi ,s
q′
j

(ωL) as a

function of T , where αqq
′

ij represents the geometric coefficient which depends on the rel-

ative positions of magnetic ions i, j and the probed nucleus. In order to reproduce the

correct intensity of each experimental curve of Fig. 41, it is necessary to consider only

the hydrogens probed by NMR. In fact, when the temperature decreases it is possible

to have a loss of NMR intensity followed by an enhancement of the spin-spin 1/T2 and

the spin-lattice relaxation rate 1/T1. When 1/T2 overcomes the limit fixed by the ex-

perimental setup, a loss of NMR signal may occur [99]. This effect is known as wipe-out

and was found out in several examples nanomagnets [99]. Nevertheless the wipe-out

affects the measured 1/T1/(χT ) also in Cr7Ni. As a result, ∼85% of the hydrogens in

Cr7Ni molecule for fields Hz = 1.68, 2.8, 4.8 T and only ∼37% for Hz = 0.47 T has

been considered in calculations. The remaining hydrogens not considered to evaluate

4In order to produce an ergodic ME coupling, a slightly site dependent spherically ME has been

chosen in such a way to have the mean value of γ=0.8×10−7THz−2.
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Figure 42: (a) Calculated and measured proton NMR 1/T1/(χT ) for different applied
fields in the case of Cr8 ring. Experimental points are taken from Ref. [20]. (b) Cal-
culated frequency spectrum of magnetization for H = 0.47 T. y axis is Log10[λ(THz)]
1/T, where the λi are the eigenvalues of −W matrix, i.e. the inverse of the times
characterizing the return to equilibrium of cluster magnetization. The color maps
Log10(A(λi, T,H)/(χT )), i.e. the the frequency weight of each lorentzian in the mag-
netization fluctuation spectrum [see Eq. (97)]. Only frequencies with weight greater
than 3% are shown in panel (b). The white dashed line represents the angular Larmor
frequency ωL for H = 0.47 T.
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Figure 43: Scatters: calculated 1/T1/(χT ) with Eq. (107), thus exploiting the fluctu-
ations of magnetization at Hz = 0.47 and 1.23 T. Dashed lines: calculated 1/T1/(χT )
with Eq. (98) and therefore considering the fluctuations of the molecular obervables
probed the hydrogens nuclei contained in Cr8 molecule. It is straightforward to note
that the two equations lead to the same result. Thus in homometallic AF ring Cr8,
observing the fluctuations of magnetization is equivalent to probing the fluctuations of
any of the molecular observables contained in the sum of Eq. (98).

the proton NMR 1/T1/(χT ) are the closest to magnetic ions. In fact, these hydrogens

experience a faster relaxation of the NMR 1/T1 with respect to other hydrogens. Thus,

if the corresponding 1/T2 overcomes the experimental limit, 1/T1 can not be probed

in a NMR experience, and therefore these faster hydrogens have been neglected in

calculations. Besides, there is another striking difference between relaxation dynamics

in Cr7Ni and Cr8 rings. This difference regards the scaling of 1/T1/(χT ) curves for

the various magnetic field at peak positions. As long as there is a dominant relaxation

time of cluster magnetization for Cr8 compound, the peak of 1/T1/(χT ) scales as 1
ωL

,

where ωL = γH 5. If we take, for instance, the curves at H
(1)
z = 0.47 T and H

(2)
z = 1.23

T having p1 and p2 peak value respectively, it can be found out a rate p1
p2
≈ H

(2)
z

H
(1)
z

both

in calculations and measurements. It is worth to remark that a similar result can be

obtained if instead of Eq. (107) Eq. (98) is used to evaluate 1/T1/(χT ) (see Fig.

43). This result allows to make two main considerations. Since for Cr8 homometallic

cluster it is equivalent to use Eq. (107) and (98) it follows that the molecular observ-

ables probed by hydrogen atoms peak at the same temperature. Moreover, it can be

5Here γ represents the giromagnetic ratio, and not the spin-phonon coupling strength.
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Figure 44: Continuos lines: 1/T1/(χT ) calculated as a linear combination of local
spin-spin fluctuations [see Eq. (98)]. Dashed lines: 1/T1/(χT ) calculated exploiting
Eq. (107), i.e. the fluctuations of cluster magnetization.

argued that observing the fluctuations of magnetization is equivalent to probing the

fluctuations of any of the molecular observables contained in Eq. (98). At this point

the following question arises: how the calculated 1/T1/(χT ) would appear in Cr7Ni

if only the fluctuations of molecular magnetization were taken into account. In other

words, one may wonder to what extent it is not correct to use Eq. (107) to calculate

1/T1/(χT ) in Cr7Ni heterometallic ring. The dashed lines in Fig. 44 represent the

calculation of 1/T1/(χT ) by Eq. (107). It can be noted that the peaks do not occur

at the right temperature, differently from the case of Cr8. Besides, the two curves at

Hz = 1.68 and 2.8 T scale according to the law 1
ωL

, something that does not match with

the experimental data. This demonstrates that in Cr7Ni the proton 1/T1/(χT ) probes

the local spin-spin fluctuations and not the fluctuations of cluster magnetization.

6.6 Conclusions

In this chapter we have investigated the relaxation dynamics in several types of mag-

netic molecules: the Mn12, Fe8 nanomagnets, the Fe30 icosidodecaedron, the V12 anti-

ferromagnetic cluster containing ions with spin 1/2 and the Cr7Ni heterometallic ring.

In nanomagnets a fast relaxation mechanism occurs when the magnetic field applied

along the easy axis is high enough so that the two lowest levels belong to one well of
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the potential, and the the temperature is low enough so that the lowest level of the

other well is not appreciably populated. In other words, the application of a strong

enough magnetic field can speed up the relaxation dynamics with decreasing the sam-

ple temperature, thus causing the breakdown of the Arrhenius law. In Fe30, V12 and

Cr7Ni the relaxation dynamics is investigated by analysis of NMR measurements. In

Fe30 the relaxation mode characterizing the return of equilibrium of the cluster magne-

tization falls in the frequency window of NMR, thus allowing to experimentally probe

the relaxation time of magnetization. The T -dependence of the relaxation time can be

inferred by the peak positions of the measured proton 1/T1/(χT ) at different applied

magnetic fields. This is not the case for V12 and Cr7Ni. In the former case the times

characterizing the magnetization dynamics are not detectable in a NMR experiment.

Thus the NMR response 1/T1 does not show any peak. The latter case is much more

complicated. In fact, being a heterometallic ring, in Cr7Ni the 1/T1/(χT ) does not sim-

ply probe the fluctuations of cluster magnetization, but more generally combinations

of molecular observables. Anyhow, peaks in the measured proton 1/T1/(χT ) occur and

calculations reproduce the experimental NMR data very well.
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Chapter 7

General conclusions

In this thesis theoretical models within the spin Hamiltonian approach and the cor-

responding computational techniques have been developed in order to investigate the

spin dynamics in several types of magnetic molecules. In particular, the class of the

so called nanomagnets can be treated in the strong exchange limit: each molecule well

behaves as a single total spin S with an effective potential. This approximation allows

to give explanation of many properties of nanomagnets at low temperature thanks to

the reduced dimensions of the corresponding spin Hamiltonian in the (2S + 1)-fold

degenerate spin subspace. Nevertheless, in most magnetic molecules the single spin

model (known as “Giant spin”) can not be applied and the spin Hamiltonian has to

be evaluated in the total Hilbert spin space. This difficulty has been overcome by ex-

ploiting the irreducible tensor operator technique together with perturbative methods.

In fact, the isotropic exchange represents the main interaction in all studied clusters.

In order to have a deeper understanding of fundamental features and a major control

on technological aspects, it is crucial to know the mechanisms which govern the spin

dynamics. Both from a theoretical and an experimental point of view, spin dynamics

is characterized by two distinct regimes: coherent and incoherent.

The coherent dynamics has been directly investigated through the analysis of inelas-

tic neutron scattering (INS) measurements and indirectly through the analysis of bulk

measurements (such as magnetization and specific heat at high fields). This has allowed

to determine the microscopic parameters by comparing the theoretical predictions with

experiments. In particular, the parameters of the isotropic exchange, of the crystal

fields and of the dipolar interaction of the Cr8Zn spin segment (or open ring) have

been determined by reproducing the experimental INS cross sections. Furthermore, we

have investigated the consequences of the breaking of ring symmetry in Cr8Zn taking

103
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the closed Cr8 ring as reference. The most relevant effect of the ring opening has been

found in the structure of eigenstates of Heisenberg isotropic exchange interaction: the

appearance of disjoint quantum fluctuations of the total spin length of the two sub-

lattices causes the usual classification of low-lying states into distinct rotational bands

to fail. These fluctuations show up in the measured INS intensity as a function of the

scattering wave vector Q, and produce the large decrease of the effective anisotropy

with respect to the closed ring. Another consequence is the decrease of the gap between

ground- and first-excited multiplets [8]. We have then focused on this last point by

analysis of magnetization measurements on Cr8Cd (open ring) and Cr8 compounds.

In both clusters the magnetization M as a function of applied magnetic field shows a

clear staircase structure. By determining the peak positions of dM/dH it is possible to

demonstrate that Cr8Cd shows a more prominent deviation from Landé rule with re-

spect to Cr8 due to the ring opening [7]. Other two Cr-based rings have been analysed

by interpreting magnetization measurements at very high fields: they are the Cr7Ni and

Cr8Ni heterometallic rings. In both cases a clear step-wise increase of magnetization

with increasing field is observed. The very good agreement of high field magnetiza-

tion measurements up to almost 60 T with calculations shows the spin Hamiltonian

approach to be suitable even at very high fields. In particular, in Cr7Ni these results

confirm that the microscopic picture derived from INS experiments [30,68] at zero field

perfectly holds even for spin multiplets not accessible to the INS technique. Besides,

in Cr8Ni the magnetization study has proved a spin singlet ground state. Due to the

odd number of magnetic sites the AF interactions between neighbouring spins can not

be simultaneously satisfied [67], and the system has been regarded as frustrated [66].

Indeed, effects of magnetic frustration can be found in the ground S = 0 state [9].

The relaxation dynamics has been investigated in several types of magnetic molecules:

the Mn12, Fe8 nanomagnets, the Fe30 icosidodecaedron, the V12 antiferromagnetic clus-

ter containing ions with spin 1/2 and the Cr7Ni heterometallic ring. In nanomagnets

we have shown that a fast relaxation mechanism occurs when the magnetic field applied

along the easy axis is high enough so that the two lowest levels belong to one well of the

potential, and the the temperature is low enough so that the lowest level of the other

well is not appreciably populated. In other words, the application of a strong enough

magnetic field can speed up the relaxation dynamics with decreasing the sample tem-

perature, thus causing the Arrhenius law to fail. In Fe30, V12 and Cr7Ni the relaxation

dynamics is investigated by analysis of NMR measurements. In Fe30 the relaxation

mode characterizing the return of equilibrium of the cluster magnetization falls in the
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frequency window of NMR, thus allowing to experimentally probe the relaxation time

of magnetization. The T -dependence of the relaxation time can be inferred by the

peak positions of the measured proton 1/T1/(χT ) at different applied magnetic fields.

This is not the case for V12 and Cr7Ni. In the former case the times characterizing

the magnetization dynamics are not detectable in a NMR experiment. Thus the NMR

response 1/T1 does not show any peak. The latter case is much more complicated. In

fact, being the Cr7Ni a heterometallic ring, in this case the 1/T1/(χT ) does not simply

probe the fluctuations of cluster magnetization, but more generally combinations of

molecular observables. Anyhow, peaks in the measured proton 1/T1/(χT ) occur and

calculations reproduce the experimental NMR data very well. By summarizing, in all

studied clusters the model well captures the main features of the relaxation dynamics.

In the future some efforts will be devoted to find out some experimental evidence of

the fast relaxation mechanism which governs the relaxation of magnetization in nano-

magnets with a double well potential at strong enough applied field and low enough

temperature discussed above. Furthermore, analysis of torque measurements on Cr8Zn

and Cr8Ni compounds would corroborate the here presented microscopic description

by means of INS and thermodynamic measurements.



106 7. General conclusions



Appendix A

Inelastic and quasi-elastic

components of spin dynamics

In Chapter 6 an expression of the quasi-elastic part of the relaxation function RAB(t)

was calculated in first order perturbation theory, the perturbation being a small static

magnetic field abruptly switched off at t = 0. At t > 0 a relaxation of molecular

observables will occur, and the characteristic times of this process can be determined

by both the quasi-elastic (QE) and inelastic (IN) part of RAB(t):

R
[QE]
A,B (t) = β

∑
m,n

p(eq)
m

(
Bmm − 〈B〉eq

)
νnm(t)

(
Ann − 〈A〉eq

)
(111)

R
[IN ]
A,B (t) =

∑
k 6=l

ei∆lkte−t/τlk
p

(eq)
l − p(eq)

k

E
(0)
k − E(0)

l

BlkAkl (112)

where A, B are two generic molecular observables, E
(0)
i are the eigenvalues of the

unperturbed system, and p
(eq)
i are the Boltzmann factors at the equilibrium (for t > 0,

i.e. after the perturbation has been switched off). ν(t) = eWt where W is the rate

matrix, Wmn giving the probability per unit time of a transition between the m, n

levels of the spin system due to the coupling of the spins with other degrees of freedom

(e.g. phonons). Besides the Laplace transform of R
[QE]
A,B (t) is:

R̃
[QE]
A,B [iω] = β

∑
m,n

p(eq)
m

(
Bmm − 〈B〉eq

)
×Re

{(
1

iω −W

)
nm

}(
Ann − 〈A〉eq

)
. (113)

By means of the Equations above it can be found an expression for the generalized

susceptibility χ
[QE,IN ]
A,B (ω) = χ

′[QE,IN ]
A,B (ω) + iχ

′′[QE,IN ]
A,B (ω) [44]:

χ
[QE,IN ]
A,B = −R[QE,IN ]

A,B (0) + iωR̃
[QE,IN ]
A,B [iω], (114)
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from which it can be recovered that at ω = 0 there are obviously no dissipative effects

since χ
′′[QE,IN ]
A,B (ω = 0) is identically zero. Therefore at ω 6= 0 the imaginary parts of

QE and IN susceptibility read as follows:

χ
′′[QE]
A,B (ω) = ωR̃

′[QE]
A,B [iω] = ωβ

∑
m,n

p(eq)
m

(
Bmm − 〈B〉eq

)
×Re

{(
1

iω −W

)
nm

}(
Ann − 〈A〉eq

)
(115)

χ
′′[IN ]
A,B (ω) = ωR̃

′[IN ]
A,B [iω] = ω

∑
k 6=l

τ−1
kl

(ω + ∆kl)2 + τ−2
kl

p
(eq)
l − p(eq)

k

E
(0)
k − E(0)

l

BlkAkl. (116)

Eqs. (116), (115) (out of phase susceptibilities) are crucial to determine the relaxation

mechanisms in magnetic molecules, since they directly give information on the spin-

spin correlation functions through the fluctuation-dissipation theorem. In addition, it is

worth to stress that from Eqs. (111), (112), and from the real part of the χ
[QE,IN ]
A,B (ω =

0) in Eq. (114) the expressions for the Curie and Van Vleck susceptibilities can be

obtained:

χCurie = −χ′[QE]
A=B (ω = 0) = R

[QE]
A=B(t = 0)

= β
∑
n

e−βEn

Z

(
Ann − 〈A〉eq

)2

(117)

χV anV leck = −χ′[IN ]
A=B(ω = 0) = R

[IN ]
A=B(t = 0)

=
∑
k 6=l

p
(eq)
l − p(eq)

k

E
(0)
k − E(0)

l

|〈l |A| k〉|2

= 2
∑
k 6=l

e−βE
(0)
l

Z

|〈l |A| k〉|2
E

(0)
k − E(0)

l

, (118)

where the obervable A will now represent the total (for homonuclear clusters) or local

(for heteronuclear clusters) magnetic moment in the considered molecule. In the latter

case the sum of all local susceptibilities has to be performed in order to have the

total cluster susceptibility. In Ref. [21] another method to evaluate the generalized

susceptibility was proposed. It is based on a perturbative approach in which the

magnetic system undergoes relaxation dynamics because of a small oscillating magnetic

field (time-dependent perturbation). The basic assumption of this method consists in

postulating that the interaction with phonons is rapid enough in order to establish
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an equilibium state at the instant value of the magnetic field. By adopting the same

symbols used in Ref. [21] this leads to:

χ
′′[QE]
αβ (ω) = Im

{
−iω

∑
nk

∆mα,nn(iω1 + W)−1
nk ×∆mβ,kkρ0k/kT

}
(119)

where m is the spin operator of the ion magnetic moment, α, β = x, y, z, W is the rate

matrix and ρ0 is the equlibrium density matrix. By observing that

Im
{−i(iω1 + W)−1

ij

}
= Re

{
1

(iω −W)ij

}
(120)

it is straightforward to note that Eqs. (115) and (119) are equivalent. Nonetheless, the

two methods presented in Refs. [20, 21] show a tiny discrepancy in the IN part of the

generalized suceptibility. In fact, here we report the two expressions of the real part of

AC suscetptibility obtained in the two methods mentioned before:

χ
′[IN ]
A,B (ω) = −R[IN ]

A,B (0)− ωR̃′′[IN ]
A,B [iω]

= −
∑
k 6=l

p
(eq)
l − p(eq)

k

E
(0)
k − E(0)

l

BlkAkl

−ω
∑
k 6=l

∆lk − ω
(∆lk − ω)2 + τ−2

lk

p
(eq)
l − p(eq)

k

E
(0)
k − E(0)

l

BlkAkl (121)

χ
′[IN ]
αβ (ω) =

∑
n,k 6=n

mα,nkmβ,kn(ρ0k − ρ0n)
ωnk − ω

~[ω2
nk + γ2

nk]
(122)

where ∆ij = ωij = (E
(0)
i −E(0)

j )/~ reflects the energy difference expressed as a frequency

for the couple of energy levels involved in the relaxation process. Besides, the τ−1
ij = γij

is the average of the lifetimes of levels n and m, and represents the time after which

coherence can not be preserved anymore. Differently form the case of the QE part of the

out of phase AC susceptibility, the two expressions above do not concide. As regards

Eq. (121) we have already demonstrated that identically χ
′[IN ]
A,B (ω = 0) = χV anV leck

as pointed out before in Eq. (118) and as can be easily obtained from Eq. (121)

by imposing A = B and putting ω = 0. Indeed, in order to obtain the Van Vleck

susceptibility from Eq. (122) an approximation has to be carried out:

χ
′[IN ]
αβ (ω = 0) =

∑
n,k 6=n

mα,nkmβ,kn(ρ0k − ρ0n)
ωnk

~[ω2
nk + γ2

nk]

∼=
∑
n,k 6=n

mα,nkmβ,kn
(ρ0k − ρ0n)

~ωnk
= χV anV leck, (123)
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ωk n - γk n ωk n +γk n

1 / ( 2γn k )

 

  

 

f ( ω)1 / γn k

F W H M

ωk n

Figure 45: A characteristic Lorentzian centered in ωkn and of FWHM given by 2γnk.

where the last equivalence is possible only if |ωnk| >> γnk holds. Therefore, the method

proposed in Ref. [20] reveals to be more general than that presented in Ref. [21],

since the latter needs a further approximation for the Van Vleck susceptibility to be

recovered. Nevertheless, this approximation turns out to be valid and reasonable since

it means that the free evolution periods of the system are much smaller than the

characteristic times of relaxation processes [20, 101] (level lifetimes τ
(i)
life or relaxation

times τ
(i)
QE as defined in Chapter 3). Moreover, this is the approximation made also by

Jensen which allows definitvely to asses that expressions in Eqs. (121) and (122) refer

to the same physical quantity [34]. In order to clarify this last point let us consider

the IN part of the out of phase susceptibility in Eq. (116) as calculated by the method

presented in Ref. [20] and in the following equation as calculated in Ref. [21]:

χ
′′[IN ]
αβ (ω)

∑
n,k 6=n

mα,nkmβ,kn(ρ0k − ρ0n)
γnk

~[(ωnk − ω)2 + γ2
nk]
. (124)

It is straightforward to note that in Eq. (124) for n, k fixed the χ
′′[IN ]
αβ (ω) has a

Lorentzian-type depedence from ω:

f(ω) =
γnk

~[(ωkn − ω)2 + γ2
nk]
. (125)
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The f(ω) is a Lorentzian curve centered at ω = ωkn and a FWHM f(ω = ωkn ± γnk)
as can be seen in Fig. 45. Let us define as g(ω) function the ω-dependence in the

corresponding Eq. (116):

g(ω) =
τ−1
lk

(ω −∆lk)2 + τ−2
lk

× ω

E
(0)
k − E(0)

l

. (126)

Differently from f(ω), the g(ω) function does not represent a Lorentzian. However, it

can be found that g(ω) presents an absolute maximum at ωmax =
√

∆2
lk + τ−2

lk . Besides,

if we take the approximation ∆lk >> τ−1
lk which is equivalent to postulate |ωnk| >> γnk

we have ω ≈ ∆lk and as a result:

g(ω = ∆lk) = τlk (127)

FWHM = 2τ−1
lk (128)

which means that the g(ω) is effectively a Lorentzian as far as the approximation

∆lk >> τ−2
lk holds. By summaryzing, we have demonstrated that the methods pre-

sented in Refs. [20,21] are equivalent -though the former from Ref. [20] has revealed to

be more general- if the free evolution periods of the system are much more rapid than

the typical relaxation times in magnetic molecules.
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